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It was proved by the Merton school that the quantity of
motion in such a case is equal to the quantity of a uniform
motion at the speed achieved halfway through the acceler-
ated motion; in modern formulation, 5 = arf2 (Merton
rule). Discussions like this certainly influenced Galileo in-
directly and may have influenced the founding of coor-
dinate geometry in the 17th century. Another important
development in the scholastic “calculations” was the sum-
mation of infinite series.

Figure 5; Uniformly accelerated motion; s = speed,
& = acceleration, t = time, and v = velocity.

Basing his work on translated Greek sources, about 1464
the German mathematician and astronomer Regiomon-
tanus wrote the first book {printed in 1533) in the West on
plane and spherical trigonometry independent of astrono-
my. He also published tables of sines and tangents that
were in constant use for more than two centuries.

The Renaissance. Italian artists and merchants influ-
enced the mathematics of the late Middle Ages and the Re-
naissance in several ways. In the 15th century a group of
Tuscan artists, including Filippo Brunelleschi, Leon Bat-
tista Alberti, and Leonardo da Vinci, incorporated linear
perspective into their practice and teaching, about a cen-
tury before the subject was formally treated by mathe-
maticians. Italian maestri d'abbaco tried, albeit unsuccess-
fully, to solve nontrivial cubic equations. In fact, the first
general solution was found by Scipione del Ferro at the be-
ginning of the 16th century and rediscovered by Nicecolo
Tartaglia several years later. The solution was published by
Gerolamo Cardano in his 4rs magna (Ars Magna or the
Rules of Algebra)y in 1545, together with Lodovico Ferrari’s
solution of the quartic equation.

By 1380 an algebraic symbolism had been developed in
Italy in which letters were used for the unknown, for its
square, and for constants. The symbols used {oday for the
unknown (for example, x), the square root sign, and the
signs + and — came into zeneral use in southern Germany
beginning about 1450, They were used by Regiomontanus
and by Fridericus Gerhart and received an impetus about
1486 at the University of Leipzig from Johann Widman,
The idea of distinguishing between known and unknown
quantities in algebra was first consistently applied by
Frangois Vidte, with vowels for unknown and consonants
for known quantities. Vigte found some relations between
the coefficients of an equation and ijts roots. This was sug-
Bestive of the idea, explicitly stated by Albert Girard in
1629 and proved by Carl Friedrich Gauss in 1799, that an
equation of degree 1 has n roots, Complex numbers, which
are implicit in such ideas, were gradually accepted about
the time of Rafael Bombelli (died 1572), who used them in
connection with the cubic.

Apollonius’ Canics and the investigations of areas (quad-
ratures) and of volumes (cubatures) by Archimedes formed
part of the humanistic learning of the 16th century. These
studies strongly influenced the later developments of ana-
Iytic geometry, the infinitesimal calculus, and the theory of
functions, subjects that were developed in the 17th centy-
TY. {Me.F)

Mathematics in the 17th and 18th centuries

THE 17TH CENTURY

The 17th century, the period of the scientific revolution,
witnessed the consolidation of Copernican heliocentric as-
tronomy and the establishment of inertial physics in the
work of Johannes Kepler, Galileo, René Descartes, and
Isaac Newton. This period was also one of intense activity
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and innovation in mathematics, Advances in numerical
calculation, the development of symbolic algebra and ana-
Iytic geometry, and the invention of the differential and in-
tegral caleulus resulted in a major expansion of the subject
areas of mathematics, By the end of the 17th century a
program of research based in analysis had replaced classi-
cal Greek geometry at the centre of advanced mathemat-
ics. In the next century this program would continue to de-
velop in close association with physics, more particularly
mechanics and theoretical astronomny. The extensive use of
analytic methods, the incorporation of applied subjects,
and the adoption of a pragmatic attitude to questions of
logical rigour distingnished the new mathematics from tra-
ditional geometry.

Institutional background. Until the middie of the 17th
century, mathematicians worked alone or in small groups,
publishing their work in books or communicating with
other researchers by letter. At a time when people were
often slow to publish, “invisible colleges,” networks of sci-
entists who corresponded privately, played an important
role in coordinating and stimulating mathematical re-
search. Marin Mersenne in Paris acted as a clearinghouse
for new results, informing his many correspondents—in-
cliding Pierre de Fermat, Descartes, Blaise Pascal, Gilles
Personne de Raberval, and Galileo—of challenge prob-
lems and novel solutions, Later in the century John
Collins, librarian of London’s Royal Society, performed a
similar function among British mathematicians,

In 1660 the Royal Society of Londen was founded, to be
followed in 1666 by the French Academy of Sciences, in
1700 by the Berlin Academy, and in 1724 by the St. Pe-
tersburg Academy. The official publications sponsored
by the academies, as well as independent journals such as
the Acta Eruditorom (founded in 1682}, made possible the
open and prompt communication of research findings.
Although universities in the 17th century provided some
support for mathematics, they became increasingly in-
effective as state-supported academies assumed direction
of advanced research.

Numerical ealculation. The development of new meth-
ods of numerical calculation Wwas a response to the in-
creased practical demands of numerical computation, par-
ticularly in trigonometry, navigation, and astronomy. New
ideas spread quickly across Europe and resulted by 1630 in
a major revolution in numerical practice.

Simon Stevin of Holland, in his short pamphlet Lg Disine
(I585), introduced decimal fractions te Europe and
showed how to extend ihe principles of Hindu-Arabic
arithmetic to caleulation with these numbers. Stevin em-
phasized the utility of decimal arithmetic “for all accounts
that are encountered in the affairs of men,” and he ex-
plained in an appendix how it could be applied to survey-
ing, stereometry, astronomy, and mensuration. His idea
was {o extend the base-10 positional principle to numbers
with fractional parts, with a corresponding extension of no-
tation to cover these cases. In his system the number
237.578 was denoted

237@5@7@8@,

in which the digits to the left of the zero are the integral part
of the number, To the tight of the zero are the digits of the
fractional part, with each digit succeeded by a circled num-
ber that indicates the negative power to which 10 is raised.
Stevin showed how the usual arithmetic of whole numbers
could be extended to decimal fractions using rules that de-
termined the positioning of the negative powers of 10,

In addition to its practical utility, La Disme was signifi-
cant for the way it undermined the dominant style of clas-
sical Greek geometry in theoretical mathematics. Stevin’s
proposal required a rejection of the distinction in Euclid-
tan geometry between magnitude, which is continuous,
and number, which is a multitude of indivisible units. For
Euclid, unity, or one, was a special sort of thing, not num-
ber but the origin, or principle, of number. The introguc-
tion of decimal fractions seemed to imply that the unit
could be subdivided and that arbitrary continuous magni-
tude could be represented numerically; it implicitly sup-
posed the concept of a general positive real number.

Develop-
ment of
analysis
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Logarithms

Influence
of Greek
geometers

Tables of logarithms were first published in 1614 by the
Seottish laird John Napier in Wwis treatise Description of the
Marvelous Canon of Logarithms. This work was followed
(posthumously} five years later by anothei in which Napi-
er sct forth the principles used in the construction of his ta-
bles. The basic idea behind logarithms is that addition and
subtraction are casier to perform than multiplication and
division, which, as Napicr observed, require a “tedious ex-
penditure of @me” and are subject o “slippery erross.” By
the law of exponents, a’a™ = @'+ that is, in the multipii-
cation of numbers, the exponents are related additively, By
correlating the geometric sequence of numbers a, a*, @,
... {a is called the base) and the arithmetic sequence 1, 2,
3,...and interpolating to fractional values, it is possible to
reduce the problem of multiplication and division to on¢
of addition and subtraction. To do this Napier chosc a base
that was very close to 1, differing from it by only /107,
The resulting geometric sequence therefore yiclded a dense
set of values, suitable for constructing a table.

In his work of 1619 Napier presented an interesting kine-
matic model to generate the geometric and arithmetic se-
quences used in the construction of his tables. Assume two
particles move along geparate lines from given initial
points. The particles begin moving at the sarme instant with
the same velocity. The first particle continues to move with
a speed that is decreasing, proportional at cach instant to
the distance remaining between it and some given fixed
point on the line. The second particle moves with a con-
stant specd equal to its initial velocity. Given any incre-
ment of time, the distances traveled by the first particle in
successive increments form a geometrically decreasing s¢-
quence. The corresponding distances traveled by the sec-
ond particle form an arithmetically increasing sequence.
Napier was able to use this mode! to derive theorems yield-
ing precise limits to approximate values in the two se-
GUENCEs.

Napier’s kinematic model indicated how skilled mathe-
maticians had become by the early 17th century in ana-
lyzing nonuniform motion. Kinematic ideas, which ap-
pearcd frequently in mathematics of the period, provided
a clear and visualizable means for the gencration of geo-
metric magnitude. The conception of a curve traced by a
particle moving through space later played a significant
sole in the development of the calculus.

Napier’s ideas were taken up and revised by the English
mathematician Henry Briggs, the first Savilian Professor of
Geometry at Oxford. In 1624 Briggs published an exten-
sive table of common logarithms, or logarithms to the base
10. Because the basc was no longer close to 1, the table
could not be obtained as simply as Napier’s, and Briggs
therefore devised techniques involving the calculus of fi-
nite differences to facilitate catculation of the entries. He
also devised interpolation procedures of great computa-
tional efficiency to obtain intermediate values.

In Switzerland the instrument maker Joost Biirgi arrived
at the idea for logarithms independently of Napier, al-
though he did not publish his results until 1620, Four years
later a table of logarithms prepared by Kepler appeared in
Marburg. Both Biirgi and Kepler were astronomical ab-
servers, and Kepler incinded logarithmic tables in his fa-
mous Tabulae Rudolphinae (1627; “Rudolphine Tables™),
astronomical tabulations of planciary motion derived
using the assumption of elliptical orbits about, the Sun.

Analytic geometry- The invention of analytic geometry
was, next to the differential and integral calculus, the most
important mathematical development of the 17th century.
Originating in the work of the French mathematicians
Vigte, Fermat, and Descartes, it had by the.middle of the
century established itself as a major program of mathe-
matical research.

Two tendencies in contemporary mathematics stimuiated
the rise of analytic geometsy. The first was an increased in-
terest in curves, resulting in part from the recovery and
Latin translation of the classical treatises of Apollonius,
Archimedes, and Pappus, and in part from the increasing
importance of curves in such applied ficlds as astronomy,
mechanics, optics, and stereometry. The second was the
emergence a century earlier of an established algebraic
S maiion = thi wark of the Ttalian and German algebraists

and its subsequent shaping by Viéte into a powerful math-
ematical tool at the end of the century.

Vidte was a prominent representative of the humanist
movemnent in mathematics that set itself the project of
restoring and furthering the achicvements of the Classical
Greek geometers. In his I artem analyticem isagoge
{1591, “Introduction to the Analytic Arts”) Vigte, as part
of his program of rediscovering the method of analysis
used by the ancient Greek mathematicians, proposed new
algebraic methods that employed variables, constants, and
equations, but he saw this as an advancement over the
ancicnt method, a view he arrived at by comparing the
geometric analysis contained in Book VII of Pappus’ Col-
leetion with the arithmetic analysis of Diophantus’ Arith-
metica. Pappus had employed an analytic method for the
discovery of theorems and the construction of problems; in
analysis, by contrast to synthesis, one proceeds from what
is sought until one arrives at something known. In ap-
proaching an arithmetic problem by laying down an equa-
tion among known and unknown magnitudes and then
solving for the unknown, one was, Viéte reasoned, follow-
ing an “analytic” procedure.

Viete introduced the concept of algebraic variable, which
he denoted using a capital vowe! (d, £, 1,0, U),as well
as the concept of parameter (an unspecified constant quan-
tity), denoted by a capital consonant (B, C, D, and s0 on).
In his system the equation SBA?—2CA + 4= D would
appear as B3 in A quad—C plano 2 in 4 + 4 cub aequatur
D solido.

Vidte retained the classical principle of homogeneity, ac-
cording to which terms added topether must all be of the
same dimension. In the above equation, for example, each
of the terms has the dimension of a solid or cube; thus the
constant €, which denotes a plane, is combined with A to
form a quantity having the dimension of a solid.

It should be noted that in Viéte's scheme the symbol A is
part of the expression for the object obtained by operating
on the magnitude denoted by A. Thus operations on the
quantities denoted by the variables are reflected in the al-
gebraic notation iteelf, This innovation, considered by his-
torians of mathematics to be a major conceptual advance
in algebra, facilitated the study of the symbalic solution of
algebraic equations and led to the creation of the first con-
scious theory of equations.

After Vidte’s death the analytic art was applied to the
study of curves by his countrymen Fermat and Descartes.
Both men were motivated by the same goal, to apply the
new algebraic techniques Lo Apollotiug’ theory of loci as
preserved in Pappus’ Collection. The most celebrated of
these problems consisted of finding the curve or locus
traced by a point whose distances from several fixed lines
satisfied a given relation.

Fermat adopted Viéte's notation in his paper “Ad Locos
Planos et Solidos Isagoge” (1636; “Introduction to Plane
and Solid Loci™). The title of the paper refers to the ancient
classification of curves as plane (straight lines, circles), solid
(cllipses, parabolas, and hyperbolas), or linear {curves de-
fined kinematically or by a locus condition). Fermat con-
sidered an equation among two variables. One of the vari-
ables represented a line mcasured horizontally from a given
initial point, while the other represented a second line po-
sitioned at the end of the first line and inclined at a fixed
angle to the horizontal. As the first variable varied in mag-
nitude, the second took on avalue determined by the equa-
tion, and the endpoint of the second line traced out a curve
in space. By means of this construction Fermat was able to
formulate the fundamental principle of analytic geometry:

wWhenever two unknown quantities are found in final equality,

there results a loeus fixed in place, and the endpoint of one of

these unknown quantitics describes a straight line or a curve.
The principle implied a correspondence between twa dif-
ferent classes of mathematical objects: geometric curves
and algebraic equatibns. In the paper of 1636 Fermat
showed that, if the cquation is a quadratic, then the curve
is a conic section—that is, an ellipse, parabola, oT hyperbola.
He also showed that the determination of the curve given
by an equation is simplified by a transformation involving
a change of variables to an equation in standard form.

Descartes’s La Géométrie appeared in 1637 as an ap-

Vidte's
nottine:



f pendix to his famous Discourse on Method, the treatise
samétrie  that presented the foundation of his philosophical system.
s+ -, Although supposedly an example from mathematics of his
;M.;f £% rational method, La Géométrie was a technical treatise un-
derstandable independently of philosophy. It was destined
ta become one of the most influential books in the history
of mathematics.

In the opening sections of La Géométrie Descartes intro-
duced two innovations. In place of Vigte's notation he ini-
tiated the modern practice of denoting variables by letters
at the end of the alphabet {x, y, 2) and parameters by let-
ters at the beginning of the alphabet {4, b, ¢) and of using
exponential notation to indicate powers of x O, X3, .. D
More significant conceptually, he set aside Vidte’s princi-
ple of homogeneity, showing by means of a simplke con-
struction how to represent multiplication and division of
lines by lines; thus all magnitudes (lines, areas, and vol-
urnes) could be represented independently of their dimen-
sion in the same way.

Descartes’s goal in La Géométrie was to achieve the con-
struction of solutions to geometric problems by means of
instruments that were acceptable generalizations of ruler
and compass. Algebra was a tool to be used in this pro-
gram:

if, then, we wish to solve any problem, we first suppose the
solution already effected, and give names to all the lines that
seem necessary for its construction—to those that are unknown
as well as to those that are known. Then, making no distinetion
in any way between known and unknown lines, we must un-
ravel the difficulty in any way that shows most naturally the
relations between these lines, until we find it possible to express
a single quantity in two ways. This will constitute an equation,
since the terms of one of these two expressions are together
equal to the terms of the other.

In the problem of Apollonius, for example, one sought to
find the locus of points whose distances from a collection
of fixed lines satisfied a given relation. One used this rela-
tion to derive an equation, and then, using a geometric
procedure involving acceptable instruments of construc-
tion, one obtained points on the curve given by the roots
of the equation.

Descartes described instruments more general than the
compass for drawing “geometric” curves, He stipulated
that the parts of the instrument be linked together so that
the ratio of the motions of the parts could be knowable.
This restriction excluded “mechanical” curves generated
by kinematic processes. The Archimedean spiral, for ex-
ample, was generated by a point moving on a line as the
ine rotated uniformiy about the origin. The ratio of the
circumnference to the diameter did not permit exact deter-
mination:

the ratios between straight and curved lines are not known, and

I even believe cannot be discovered by men, and therefore no

conclusion based upon such ratios can be accepted as rigorous

and exact,
Descartes conciuded that a geometric or nonmechanical
{ ~ CUTVE Wis Otie whose equation f{x, ) = 0 was a polynomial
msj“"of finite degree in two variables. He wished to restrict
10 . mathematics to the consideration of such curves.

gt “ Descartes’s emphasis on construction reflected his classi-
- cal orientation. His conservatism with respect to what
curves were acceptable in mathematics further distin-
guished him as a traditional thinker. At the time of his
death, in 1650, he had been overtaken by events, as re-
search moved away from gquestions of comstruction to
problems of finding areas (then called problems of quad-
rature) and tangents. The geometric objects that were then
of growing interest were precisely the mechanical curves
that Descartes had wished to banish from mathematics.

Following the important results achieved in the 16th cen-
tury by Gerolame Cardano and the Italian algebraists, the
theory of algebraic equations reached an impasse. The ideas
needed to investigate eguations of degree higher than four
were slow to develop. The immediate historical influence of
Vigte, Fermat, and Descartes was to furnish algebraic meth-
ods for the investigation of curves. A vigorous school of re-
search became established in Leiden around Frans van
Schooten, a Dutch mathematician who edited and pub-
lished in 1649 a Latin translation of La Géomélrie. Van

wiric
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Schooten published a second two-volume translation of the
same work in 1659-1661 that also contained mathematical
appendices by three of his disciples, Johan de Witt, Johan
Hudde, and Hendrick van Heuract. The Leiden group of
mathematicians, which also included Christiaan Huygens,
was in large part responsible for the rapid development of
Cartesian geometry in the middle of the century.

The calculus. The historian Carl Boyer called the calcu-
lus “the most effective instrument for scientific investiga-
tion that mathematics has ever produced.” As the mathe-
matics of variability and change, the calculus was the
characteristic product of the scientific revolution. The sub-
jeat was properly the invention of two mathematicians, the
German Gottfied Withelm Leibniz and the Englishman
Isazc Newton. Both men published their researches in the
1680s, Leibniz in 1684 in the recently founded journal
Acta Eruditorum and Newton in 1687 in his great treatise,
the Principia. Although a bitter dispute over priority de-
veloped later among followers of the two men, it is now
clear that they each arrived at the caleulus independently.

The calculus developed from techniques to solve two
types of problems, the determination of areas and volumes
and the calculation of tangents Lo curves. In classical geom-
etry Archimedes had advanced furthest in this part of
mathematics, having used the method of exhaustion to es-
tablish rigorously various results on areas and volumes and
having derived for some curves (e.g., the spiral) significant
results concerning tangents. In the carly 17th century there
was a sharp revival of interest in both classes of problems.

The precalenlus period. In his treatise Geometria Indivis-
ibilibus Continuorim (1635, “Geometry of Continuous
Indivisibles™) Bonaventura Cavalieri, a professor of math-
ematics at the University of Bologna, formulated a sys-
tematic method for the determination of areas and vol-
umes. As had Archimedes, Cavalieri regarded a plane
figure as being composed of a collection of indivigible lines,
“a1i the lines” of the plane figure. The collection was gen-
erated by a fixed line moving through space parallel to it-
gelf. Cavalieri showed that these collections could be inter-
preted as magnitudes obeying the rules of Euclidean ratio
theory. In proposition 4 of Book II, he derived the result
that is written today as

L
1
2dx =2
L" 3

Let there be given a parallelogram in which a diagonal is drawn;
then “all the squares” of the parallelogram will be triple “all the
squares™ of each of the triangles determined by the diagonal.

Cavalieri

Cavalieri showed that this proposition could be interpret-
ed in different ways—as asserting, for example, that the
volume of a cone is one-third the volume of the circum-
scribed cylinder or that the area under a segment of a
parabola is one-third the area of the associated rectangle.
In a later treatise he generalized the result by proving

J‘l).'"dx = _IM..
0 R+

for n = 3 to n = 9. To establish these results, he intro-
duced transformations among the variables of the prob-
lem, using a result equivalent to the binomial theorem
for integral exponents. The ideas involved went beyond
anything that had appeared in the classical Archimedean
theory of content.

Although Cavalieri was successful in formulating a sys-
tematic method based on general concepts, his ideas were
not easy to apply. The derivation of very simple results re-
quired intricate geometric considerations, and the turgid
style of the Geometria Indivisibilibus was a barrier to its
reception.

John Wallis presented a quite different approach to the
theory of gquadratures in his Arithmetica Infinitorum
(1655; The Arithmetic of Infinitesimals). Wallis, a suc-
cessor to Henry Briggs as the Savilian Professor of Geom-
etry at Oxford, was a champion of the new methods of
arithmetic algebra that he had learned from his teacher
Williarmn Oughtred. Wallis expressed the area under a curve
as the sum of an infinite series and used clever and unrig-
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orous inductions to determine its value. To calculate the
area under the parabola,

[}
f Xdx,
o

he considered the successive sums

O+l l+1 04144 1.1 0+1-+4+9_1 1

1+1 3 64+4+4 3 1229+9+9+9 3 18

and inferred by “induction” the general relation

2412422 . 4wt 1y 1
mrrmwt+nrt., .0 3

61

By letting the number of terms be infinite, he obtained ¥
as the limiting value of the expression. With more compli-
cated curves he achieved very impressive results, including
the infinite expression now known as Wallis’ product:

3.3
4 4

4
t

02 o
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Research on the determination of tangents, the other sub-
ject leading to the calculus, proceeded along different lines.
In La Géométrie Descartes had presented a method that
could in principle be applied to any algebraic or “geomet-
ric” curve—i.e., any curve whose equation was a polyno-
mial of finite degree in two variables. The method de-
pended upon finding the normal, the line perpendicular to
the tangent, using the algebraic condition that it be the
unique radius to intersect the curve in only one point.
Descartes’s method was simplified by Hudde, a member of
the Leiden group of mathematicians, and was published in
1652 in van Schooten’s edition of Lo Géométrie.

A class of curves of growing interest in the [7th century
were those generated kinematically by a point moving
through space. The famous cycloidal curve, for example,
was traced by a point on the perimeter of a wheel that

Non- rolled on a line without slipping or sliding. These curves
algebraic were nonalgebraic and hence could not be treated by
curves Descartes’s method. Gilles Personne de Roberval, profes-

sor at the Collage Royale in Paris, devised a method bor-
rowed from dynamics to determine their tangents. In his
analysis of projectile motion Galileo had shown that the
instantaneous velocity of a particle is compounded of two
separate motions: a constant horizontal motion and an in-
creasing vertical motion due to gravity. If the motion of the
generating point of a kinematic curve is likewise regarded
as the sum of two velocities, then the tangent will lie in the
direction of their sum. Roberval applied this idea to sever-
al different kinematic curves, obtaining results that were
often ingenious and elegant.

In an essay of 1636 circulated among French mathemati-
cians, Fermat presented a method of tangents adapted
from a procedure he had devised to determine maxima
and minima and used it to find tangents to several alge-
braic curves of the form y = xn. His account was short and
contzined no explanation of the mathematical basis of the
new method, It is possible to see in his procedure an argu-
ment involving infinitesimals, and Fermat has sometimes
been proclaimed the discoverer of the differential calculus.
Modern historical study, however, suggests that he was
working with concepts introduced by Vidte and that his
method was based on finite algebraic ideas.

Isaac Barrow, the Lucasian Professor of Mathematics at
the University of Cambridge, published in 1670 his Geo-
metrical Lectures, a treatise that more than any other an-
ticipated the unifying ideas of the calculus. In it he adopt-
ed & purely geometric form of exposition to show how the
determinations of areas and tangents are inverse problems.
He began with a curve and considered the slope of its tan-
gent corresponding to each value of the abscissa, He then
defined an auxiliary curve by the condition that its ordi-
nate be equal to this slope and showed that the area under
the auxiliary curve corresponding to a given abscissa is
equal to the rectangle whose sides are unity and the ordi-
nate of the original curve. When reformulated analytically,

this result expresses the inverse character of differentiation
and integration, the fundamental theorem of the calculus.
Although Barrow’s decision to proceed geometrically pre-
vented him from taking the final step to a true calculus, his
lectures influenced both Newton and Leibniz.

Newton and Leibniz.  The essential insight of Newton
and Leibniz was to use Cartesian algebra to synthesize the
earlier results and to develop algorithms that could be ap-
plied uniformly to a wide class of problems. The formative
period of Newton’s researches was from 1665 to 1670,
while Leibniz worked a few years later, in the 1670s. Their
contributions differ in origin, development, and influence,
and it is necessary to consider each man separately.

The son of an English farmer, Newton became in 1669
the Lucasian Professor of Mathematics at the University of
Cambridge. Newton’s earliest researches in mathematics
grew in 1665 from his study of van Schooten’s edition of
La Géomértrie and Wallis’ Arithmetica Infinitorum. Using
the Cartesian equation of the curve, he reformulated Wal-
lis” results, introducing for this purpose infinite sums in the
powers of an unknown x, now known as infinite series.
Possibly under the influence of Barrow, he used infinitesi-
mals to establish for various curves the inverse relationship
of tangents and arcas, The operations of differentiation
and integration emerged in his work as analytic processes
that could be applied generally to investipate curves.

Unusually sensitive to questions of rigour, Newton at a
fairly early stage tried to establish his new method on a
sound foundation using ideas from kinematics. A variable
was regarded as a “fluent,” a magnitude that flows with
time; its derivative or rate of change with respect to time
was called a “fluxion,” denoted by the given variable with
a dot above it, The basic problem of the calculus was o in-
vestigate relations among fluents and their fluxions. New-
ton finished a treatise on the method of fluxions as early as
1671, although it was not published untif 1736, In the 18th
century this method became the preferred approach to the
caleulus among British mathematicians, especially after
the appearance in 1742 of Colin Maclaurin’s influential
Treatise of Fluxions.

Newton first published the calculus in Book I of his great
Philosophige Naturalis Principia Mathematica (1687,
Mathematical Principles of Nawral Philosophy). Originat-
ing as a treatise on the dynamics of particles, the Principia
presented an inertial physics that combined Galileo’s me-
chanics and Kepler's planetary astronomy. It was written
in the early 1680s at a time when Newton was reacting
against Descartes’s science and mathematics. Setting aside
the analytic method of fluxions, Newton introduced in 11
introductory lemmas his calculus of first and last ratios, a
geometric theory of limits that provided the mathematical
basis of his dynamics.

Newton’s use of the calculus in the Principia is illustrat-
ed by proposition 11 of Book L if the orbit of a particle
moving under a centripetal force is an ellipse with the cen-
tre of force at one focus, then the force is inversely pro-
portional to the square of the distance from the centre. Be-
cause the planets were known by Xepler's laws to move in
ellipses with the Sun at one focus, this result supported his
inverse square law of gravitation. To establish the proposi-
tion, Newton derived an approximate measure for the
force by using smal lines defined in terms of the radius
(the line from the force centre to the particle} and the tan-
gent to the curve at a point. This result expressed geomet-
rically the proportionality of force to vector acceleration.
Using properties of the ellipse known from classical geom-
etry, Newton calculated the limit of this measure and
showed that it was equal to a constant times 1 over the
square of the radius.

Newton avoided analytical processes in the Principia by
expressing magnitudes and ratios directly in terms of geo-
metric quantities, both finite and infinitesimal. His deci-
sion to eschew analysis constituted a striking rejection of
the algebraic methods that had been important in his own
early researches on the calculus. Although the Principia
was of inestimable value for later mechanics, it would be
reworked by researchers on the Continent and expressed in
the mathematical idiom of the Leibnizian calculus.

Leibniz’s interest in mathematics was aroused in 1672
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during a visit to Paris, where the Putch mathematician
Christiaan Huysens introduced him to his work on the the-
ory of curves. Under Huygens’ tutelage Leibniz immersed
himself for the next several years in the study of mathe-
matics. He investipated relationships among the summing
and differencing of finite and infinite sequences of num-
bers. Having read Barrow’s geometric lectures, he devised
a transformation rule to calculate quadratures, obtaining
the famous infinite series for nf4:

1
4 1 3 5

Leibniz was interested in questions of logic and notation,
of how to construct a characteristica universalis for ration-
al investigation. After considerable experimentation he ar-
rived by the late 1670s at an algorithm based on the sym-
bols & and [, He first published his research on differential
caleulus in 1684 in an article in the Aeta Eruditorum,
"Nova Methodus pro Maximis et Minimis, Itemque Tan-
gentibus, qua nec Fractas nec Irrationales Quantitates
Moratur, et Singulare pro illi Caleuli Genus™ (“A New
Method for Maxima and Minima as Well as Tangents,
Which Is Impeded Neither by Fractional nor by Irrational
Quantities, and a Remarkable Type of Calcuius for This™).
In this article he introduced the differential dx satisfying
the rules dix + y) = dx + dy and d(x)) = xdy -+ ydx and
illustrated his caleulus with a few examples. Two years
later he published a second article, “On a Deeply Hidden
Geemetry,” in which he introduced and explained the
symbol | for integration. He stressed the power of his cal-
culus to investigate transcendenial curves, the very class of
“mechanical” objects Descartes had believed lay beyond
the power of analysis, and derived a simple analytical for-
mula for the cycloid.

Leibniz continued to pubklish results on the new calculus
in the Acta Eruditortm and began to explore his ideas in
extensive correspondence with ather scholars. Within a few
years he had attracted a group of researchers o promulgate
his methods, including the brothers Johann Bernoulli and
Jakob Bernoulli in Basel and the priest Pierre Varignon
and Guillaume-Francois-Antoine de L'Hospital in Paris,
In 1700 he convinced Frederick William I of Prussia to es-
tablish the Brandenburg Society of Seiences (later renamed
the Berlin Academy of Sciences), with himself appointed
president for life,

Leibniz’s vigorous espousal of the new calculus, the di-
dactic spirit of his writings, and his ability to attract a com-
munity of researchers contributed to his enormous infly.
ence on subsequent mathematics. In contrast, Newton’s
slowness to publish and his personal reticence resulted in a
reduced presence within European mathematics, Although
the British school in the 18th century included capable re-
searchers, Abraham de Moivre, Tames Stirling, Brook Tay-
lor, and Maclaurin among them, they failed to establish a
program of research comparable to that established by
Leibniz’s followers on the Continent, There is a certain
tragedy in Newton’s isolation and his refuctance to ac-
knowledge the superiority of continental analysis. As the
historian Michael Mahoney observed:

Whatever the revolutionary influence of the Principia, mathe-

maties would have looked much the same if Newton had never

existed. In that endeavour he belonged to a community, and he
was far from indispensable to it,

THE 18TH CENTURY
— L e IRRY

Institutional background. After 1700 a movement to
found learned societies on the model of Paris and London
spread throughout Europe and the American colonies. The
academy was the predominant institution of science until
it was displaced by the university in the 19th century. The
leading mathematicians of the period, such as Leonhard
Euler, Jean Le Rond d’Alembert, and Joseph-Louis La-
grange, pursued academic careers at St, Petersburg, Paris,
and London.

The French Academy of Sciences (Paris) provides an in-
formative study of the 18th-century learned society. The
academy was divided into six sections, three for the math-

ricnces  ematical and three for the physical sciences. The mathe-
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matical sections were for geometry, astronomy, and me-
chanics, the physical sections for chemistry, anatomy, and
botany. Membership in the academy was divided by sec-
tion, with each section contributing three penstonnaires,
two associates, and two adjuncts. There was also a group
of free associates, distinguished men of science from the
provinces, and foreign agsociates, eminent international
figures in the field. A larger group of 70 corresponding
members had partial privileges, including the right to com-
municate reports to the academy. The administrative core
consisted of a permanent secretary, treasurer, president,
and vice president. In a given year the average total mem-
bership in the academy was 153,

Prominent characteristics of the academy included its
small and elite membership, made up heavily of men from
the middle class, and its emphasis on the mathematical sci-
ences. In addition to holding regular meetings and pub-
lishing memoirs, the academy organized scientific expedi-
tions and administered prize competitions on important
mathematical and scientific questions.

The historian Roger Hahn noted that the academy in the
18th century atlowed “the coupling of relative doctrinai
freedom on scientific questions with rigorous evajuations
by peers,” an important characteristic of modern profes-
sional science. Academic mathematics and science did,
however, foster a stronger individualistic ethos than is
usual today. A determined jndividual such as Euler or La-
grange could emphasize a given program of research
through his own work, the publications of the academy,
and the setting of the prize competitions, The academy as
an institution may have been more conducive to the soli-
tary patterns of research in a theoretical subject like math-
ematics than it was to the experimental sciences. The sep-
aration of research from teaching is perhaps the most
striking characteristic that distinguished the academy from
the model of university-based science that developed in the
19th century.

Anzlysis and mechanics, The scientific revolution had
bequeathed to mathematics a major program of research in
analysis and mechanics. The period from 1700 to 1800,
“the century of analysis,” witnessed the consolidation of
the caleulus and its extensive application to mechanics.
With expansion came specialization, as different parts of
the subject acquired their own identity: ordinary and par-
tial differential equations, calculus of variations, infinite
series, and differential geometry. The applications of
analysis were also varied, including the theory of the vi.
brating string, particle dynamics, the theory of rigid bod-
ies, the mechanics of flexible and clastic media, and the
theory of compressible and incompressible fluids, Analysis
and mechanics developed in close asseciation, with prob-
lems in one giving rise to concepls and technigues in the
other, and all the leading mathematicians of the period
made important contributions to mechanics.

The close relationship between mathematics and me-
chanics in the 18th century had roots extending deep into
Enlightenment thought, In the organizational chart of
knowledge at the beginning of the preliminary discourse
to the Encpclopédie, Jean Le Rond d’Alembert distin-
guished between “pure” mathematics (zeometry, arith-
metic, algebra, caleulus) and “mixed” mathematics {me-
chanics, geometric astronomy, optics, art of conjecturing).
Mathematics generally was classified as a “science of na-
ture” and separated from logic, a “science of man.” The
modern disciplinary division between physics and mathe-
matics and the association of the latter with logic had not
yet developed.

Mathematical mechanics itself as it was practiced in the
18th century differed in Important respects from later
physics. The goal of modern Physics is 10 explore the ulti-
mate particulate structure of matter and to arrive at fun-
damental laws of nature to explain physical phenomena,
The character of applied investigation in the 18th century
was rather different. The materfal parts of a given system
and their interrelationship were idealized for the Purposes
of analysis. A material object could be treated as a point-
mass, as a rigid body, as a continuously deformable medi-
um, and so on. The intent was to gbtain a mathematical
description of the macroscopic behaviour of the system

Applica-
tions of
analysis
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rather than to ascertain the ultimate physical basis of the
phenomena. In this respect the 18th-century viewpoint is
closer to modern mathematicat engineering than it is to
physics.

Mathematical research in the 18th century was coordi-
nated by the Paris, Berlin, and St. Petersburg academies, as
well as by several smaller provincial scientific academies
and societies. Although England and Scotland were im-
portant centres early in the century, with Maclaurin's
death in 1746 the British flame was all but extinguished.

History of analysis, The history of analysis in the 18th
century can be followed in the official memoirs of the
academies and in independently published expository trea-
tises. In the first decades of the century the calculus was
cultivated in an atmosphere of intcllectual excitement, as
mathematicians applied the new methods to a range of
problems in the geometry of curves. The brothers Johann
and Jakob Bernoulli showed that the shape of a smooth
wire along which 2 particle descends in the least time is the
cycloid, a transcendental curve much studied in the previ-
ous century. Working in a spirit of keen rivalry, the two
brothers arrived at ideas that would later develop into the
caleulus of variations. In his study of the rectification of
the lemniscate, & ribbon-shaped curve discovered by Jakob
Bernoulli in 1694, Giulio Carlo Fagnano (1682-1766) in-
troduced inpenious analytic transformations that laid the
foundation for the theory of elliptic integrals. Nikolaus I
Bernoulli {1687-1759), the nephew of Johann and Jakob,
proved the equality of mixed second-order partial deriva-
tives and made important contributions to differential
equations by the construction of orthogonal trajectories to
families of curves. Pierre Varignon (1654-1722), Johann
Bernoulli, and Jakob Hermann (1678-1733) continued to
develop analytic dynamics as they adapted Leibniz’s cal-
culus to the inertial mechanics of Newton’s Principia.

Geometric conceptions and problems predominated in
the early calculus, This emphasis on the curve as the ob-
ject of study provided coherence to what was otherwise a
disparate collection of analytic techniques. With its con-
tinued development, the calculus gradually became re-
moved from its origins in the geometry of curves, and a
movement emerped to establish the subject on a purely an-
alytic basis. In a series of textboeks published in the mid-
dle of the cemtury, the Swiss mathematician Leonhard
Euler systematically accomplished the separation of the
calculus from geometry. In his Intreductio in Analysin In-
finitonam (1748; Introduction to the Analysis of the Infi-
nite) he made the notion of function the central organizing
concept of analysis.

Euler’s analytic approach is illustrated by his introduc-
tion of the sine and cosine functions. Trigonometry tables
had existed since antiquity, and the relations between
sines and cosines were commonly used in mathematical
astronomy. In the cariy calculus mathematicians had de-
rived in their study of periodic mechanical phenomena the
differential equation

1
1—x2

dv
dx

and they were able to interpret its solution geometrically in
terms of lines and angles in the circle. Euler was the first
to introdnce the sine and cosine functions as quantities
whose relation to other quantities could be studied inde-
pendently of any geometric diagram.

Euler’s analytic approach to the calculus received support
from his younger contemporary Joseph-Louis Lagrange,
who, following Euler’s death in 1783, replaced him as the
leader of European mathematics. In 1755 the 19-year-old
Lagrange wrote to Euler to announce the discovery of a
new algorithm in the catculus of variations, a subject to
which Euler had devoted an important treatise 11 years
carlier. Fuler had used peometric ideas extensively and had
emphasized the need for analytic methods. Lagrange’s idea
was to introduce the new symbol § into the calculus and to
experiment formally until he had devised an algorithm to
obtain the variational equations. Mathematically quite dis-
tinct from Euler's procedure, his method required no ref-
erence to the geometric configuration. Euler immediately

adopted Lagrange’s idea, and in the next several years the
two men systematically revised the subject using the new
techniques.

In 1766 Lagrange was invited by the Prussian king, Fred-
erick the Great, to become mathematics director of the
Berlin Academy. During the next two decades he wrote
important memoirs on nearly all of the major areas of
mathematics. In 1788 he published his famous Mécanique
analytique, a treatise that used variational ideas te present
mechanics from a unified analytic viewpoint. In the pref-
ace Lagrange wrote:

One will find no Figures in this Work. The methods that I pre-

sent require neither constructions nos geometrical or mechani-

cal reasonings, but only algebraic operations, subject to a regu-
lar and uniform course, Those whe admire Analysis, will with

pleasure see Mechanics became a new branch of it, and will e

grateful to me for having extended its domain.

Following the death of Frederick the Great, Lagrange
traveled to Paris to become a pensionnaire of the Academy
of Sciences. With the establishment of the Ecole Polytech-
nique in 1794 he was asked to deliver the lectures on math-
ematics. There was a concern in European mathematics at
the time to place the calculus on a sound basis, and La-
grange used the occasion to develop his ideas for an alge-
braic foundation of the subject. The lectures were pub-
lished in 1797 under the title Théorie des fonctions
analytigues (“Theory of Analytical Functions™, a treatise
whose contents were summarized in its longer title “Con-
taining the Principles of the Differential Calculus Disen-
gaged from All Consideration of Infinitesimals, Vanishing
Limits, or Fluxions and Reduced to the Algebraic Analy-
sis of Finite Quantities.” Lagrange published a second trea-
tise on the subject in 1801, a work that appeared in a re-
vised and expanded form in 1806.

The range of subjects presented and the consistency of
style distinguished Lagrange’s didactic writings from other
contemporary expositions of the calculus. He began with
Euler’s notion of a function as an analytic expression com-
posed of variables and constants. He defined the “derived
function,” or derivative f'(x) of f{x), to be the coefficient
of { in the Taylor expansion of f{x + /). Assuming the gen-
eral possibility of such expansions, he attempted a rather
compiete theory of the differential and integral calculus,
including extensive applications to geometry and mechan-
ics. Lagrange’s lectures represented the most advanced de-
velopment of the [8th-century analytic conception of the
calculus.

Beginning with Baron Cauchy in the 1820s, later mathe-
maticians used the concept of limit to establish the calcu-
lus on an arithmetic basis. The algebraic viewpoint of
Euler and Lagrange was rejected. To arrive at a proper his-
torical appreciation of their work it is necessary to reflect
on the meaning of analysis in the I8th century. Since
Vidte, analysis had referred generally to mathematical
methods that employed equations, variables, and con-
stants. With the extensive development of the calculus by
Leibniz and his school, analysis became identified with all
calculus-related subjects. In addition to this historical as-
sociation, there was a deeper sense in which analytic meth-
ods were fundamental to the new mathematics. An ana-
Iytic equation implied the existence of a relation that
semained valid as the variables changed continuously in
magnitude, Analytic algorithms and transformations pre-
supposed a correspondence between local and global
change, the basic concern of the calculus. Tt is this aspect
of analysis that fascinated Euler and Lagrange and caused
them to see in it the “true metaphysics” of the calculus.

OTHER DEVELOPMENTS

During the period 1600-1800 significant advances oc-
curred in the theory of equations, foundations of Euclid-
ean geometry, number theory, projective geometry, and
probability theory. These subjects, which became mature
branches of mathematics only in the 19th century, never
rivaled analysis and mechanics as programs of research.

Theory of equations. After the dramatic successes of
Niccols Fontana Tartaglia and Lodovico Ferrar in the
16th century, the theory of equations developed slowly, as
problems resisted solution by known techniques. In the
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later 18th century the subject experienced an infusion of
new ideas. Interest was concentrated on two problems. The
first was to establish the existence of a root of the general
polynomial equation of degree 7. The second was to ex-
bress the roots as algebraic functions of the coefficients or
to show why it was not, in general, possible to do so,

The proposition that the general polynomial with real co-
efficients has a root of the form g - Hv—i became known
later as the fundamental theorem of algebra. By 1742
Euler recognized that roots appear in conjugate pairs; if
a + BV=1 is a root, then so is g—bv—], Thus, if @ -+ Av—=1
is a root of f{x) = 0, then f(x) = (x*—2Zax—a—b)g(x).
The fundamental theorem was therefore equivalent to
asserting that a polynomial may be decomposed into lin-
ear and quadratic factors, This result was of considerable
importance for the theory of integration, since by the
method of partial fractions it ensured that a rational func-
tion, the quotient of two polynomials, could always be
integrated in terms of algebraic and elementary transcen-
dental functions.

Although d’Alembert, Euler, and Lagrange worked on the
fundamental theorem, the first successfu] proof was devel-
oped by Carl Friedrich Gauss in his doctoral dissertation of
1799, Easlier researchers had investigated special cases or
keo(‘ ©"had concentrated on showing that all possible roots were of

L o the form a & IW—1. Gauss tackled the problem of existence
U 4ief87 directly. Expressing the unknown in terms of the polar co-
T ordinate variables r and 0, he showed that a solution of the

polynomial would lie at the intersection of two curves of

the form T, 8) = 0 and Ulr, 8 = 0. By a careful and rig-
orous investigation he proved that the two curves intersect,

Gauss’s demonstration of the fandamental theorem initi-
ated a new approach to the question of mathematical exis-

tence. In the 18th century mathematicians were interested
in the nature of particular analytic processes or the form
that given solutions should take. Mathematical entities
were regarded as things that were given, not as things
whose exjstence needed to be established. Because analysis
was applied in geometry and mechanics, the formalism
seemed to possess a clear interpretation that obviated any
need to consider questions of existence. Gauss’s demon-
stration was the beginning of a change of attitude in math-
ematics, of a shift to the rigorous, internal development of
the subject.

The problem of expressing the roots of a polynomial as
functions of the coefficients was addressed by several
mathematicians independently about 1770. The Cam-
bridge mathematician Edward Waring published treatises
in 1762 and 1770 on the theory of equations. In 1770 La-
grange presented a long expository memoir on the subject
to the Berlin Academy, and in 1771 Alexandre Vander-
monde submitted a paper to the French Academy of Sci-
ences. Although the ideas of the three men were related,
Lagrange’s memoir was the most extensive and most in-
fluential historically.

Lagrange presented a detailed analysis of the solution by
radicals of second-, third-, and fourth-degree equations and
investigated why these solutions failed when the degree was
greater than or equal to five. He introduced the novel idea
of considering functions of the roots and examining the
values they assumed as the roots were permuted. He was
able to show that the solution of an equation depends on
the construction of a second resolvent equation, but he was
unable to provide & general procedure for solving the re-
solvent when the degree of the original equation was
greater than four. Although his theory left the subject in an
unfinished condition, it provided a solid basis for future
work. The search for a general solution to the polynomial
equation would provide the greatest single impetus for the
transformation of algebra in the 19th century.

Foundations of geometry, Although the emphasis of
mathematics after 1650 was increasingly on analysis,
foundational questions in classical geometry continued to
arouse interest. Attention centred on the fifth postulate of
Book I of the Elements, which Buelid had used to prove
the existence of a unique paraliel through a point to a given
line. Since antiquity, Greek, Istimic, and European
geometers had attempted unsuccessfully to show that the
parallel postulate need not be a postulate but could instead
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be deduced from the other postulates of Euclidean geome-

try. During the period 1600-1800 mathematicians contin-

ued these efforts by trying to show that the postulate was
equivalent to some result that was considered self-evident,

Although the decisive breakthrough to non-Euclidean

geometry would not occur until the 19th century, re-

searchers did achieve a deeper and more systematic under-
standing of the classical properties of space,

Interest in the parallel postulate developed in the 16th
century after the recovery and Latin translation of Proclus’
commentary on Euclid’s Elemients. The Italian researchers
Christopher Clavius in 1574 and Giordano Vitale in 1680
showed that the postulate is equivalent to asserting that the
line equidistant from a straight line is a straight line. In
1693 John Wallis, Savilian Professor of Geometry at Ox-
ford, attempted a different demonstration, proving that the
axiom follows from the assumption that to every figure
there exists a similar figure of arbitrary magnitude.

In 1733 the Italian Girolamo Saccheri published his Eu-
clides ab Omni Naeve Vindicatus (“Euclid Cleared of
Every Flaw™). This was an important work of synthesis in
which he provided a complete analysis of the problem of
parallels in terms of Omar Khayyam’s quadrilateral. Using
the Euclidean assumption that straight lines do not enclose
an area, he was abie to exclude geometries that contain no
parallels. It remained to prove the existence of & unique
parallel through a point to s given line. To do this, Saccheri
adopted the procedure of reductio ad absurdum; he as-
sumed the existence of more than one parallel and at-
tempted to derive a contradiction. Afier a long and de-
tailed investigation, he was able to convince himself
(mistakenly) that he had found the desired contradiction,

In 1766 Johann Heinrich Lambert of the Berlin Academy
composed Die Theorie der Parallellinien {“The Theory of
Parallel Lines™; published 1786),  penetrating study of the
fifth postulate in Euclidean geometry. Among other theo-
rems Lambert proved is that the parallel axiom is equiva-
lent to the assertion that the sum of the angles of a trian-
gle is equal to two right angles. He combined this faet with
Wallis® result to arrive at an unexpected characterization of
classical space. According to Lambert, if the parallel pos-
tulate is rejected, it follows that for every angle 0 less than
2R/3 (R is a right angle) an equilateral triangle can be con-
structed with corner angle @. By Wallis’ resuit any triangle
similar to this triangle must be congruent to it. It is there-
fore possible to associate with every angle a definite length,
the side of the corresponding equilateral triangle. Since the
measurement of angles is absolute, independent of any
convention concerning the selection of units, it follows that
an absolute unit of length exists. Hence, to accept the par-
allel postulate is to deny the possibility of an absoclute con-
cept of length.,

The final 18th-century contribution to the theory of par-
allels was Adrien-Marie Legendre’s textbook Eléments de
glométrie (Elements of Geometry and T rigonometry), the
first edition of which appeared in 1794, Legendre present-
ed an elegant demonstration that purported to show that
the sum of the angles of a triangle is equal to two right an-
gles, He believed that he had conclusively established the
validity of the parallel postulate. His work attracted a larpe
audience and was influential in informing readers of the
new ideas in geometry.

The 18th-century failure to develop a non-Euclidean
geometry was rooted in deeply held philosophical beliefs.
In his Critique of Pure Reason (1781), Immanue! Kant had
emphasized the synthetic a priori character of mathema-
tical judgments. From this standpoint, statements of geo-
metry and arithmetic were tiecessarily true propositions
with definite empirical conteat. The existence of similar
figures of different size, or the conventional character of
units of length, appeared self-evident to mathematicians
of the period. (C.G.F)

Mathematics in the 19th and 20th centuries

Most of the powerful abstract mathematical theories in use
today originated in the 19th century, so any historical ac-
count of the period should be supplemented by reference

to detailed treatments of these topics. Yet, mathematics

The
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a freld (dividing 1 by 2 does not yield an integer). But Weil
showed that simplified versions (posed over a field) of any
question aboutf integer solutions to polynomials could be
profitably asked. This transferred the questions to the do-
main of algebraic geometry. To count the number of solu-
tions, Weil proposed that, since the questions were now
geometric, they should be amenable to the techniques of al-
gebraic topology. This was an audacious move, since there
was no suitable theory of algebraic topology available, but
Weil conjectured what results it should yield. The difficui-
ty of Weil’s conjectures may be judged by the fact that the
last of them was a generalization to this setting of the fa-
mous Riemann hypothesis about the zeta function, and
they rapidly became the focus of international attention.
Weil, along with Claude Chevalley, Henri Cartan, Jean
Diendonné, and others, created a group of young French
mathematicians who began to publish virtually an ency-
clopaedia of mathematics under the name Nicolas Bourba-
ki, taken by Weil from an obscure general of the Franco-
German War. Bourbaki became a self-selecting group of
young mathematicians who were strong on algebra, and the
individual Bourbaki members were interested in the Weil
coniectures, In the end, they succeeded completely. A new
kind of algebraic topology was developed, and the Weil con-

. jectures were proved. The generalized Riemann hypothesis

was the last to surrender, being established by the Belgian
Pierre Deligne in the carly 1970s. Strangely, its resolution
still leaves the original Riemann hypothesis unsolved,

Bourbaki was a key figure in the rethinking of structural
mathematics. Algebraic topology was axiomatized by
Samuel Eilenberg, a Polish-born American mathematician
and Bourbaki member, and the American mathematician
Norman Steenred. Saunders Mac Lane, also of the United
States, and Eilenberg extended this axiomatic approach
until many types of mathematical structures were present-
ed in families, called categories. Hence there was a catego-
ry consisting of all groups and all maps between them that
preserve multiplication, and there was another category of
all topological spaces and all continuous maps between
them. To do algebraic topology was to transfer a problem
posed in one category (that of topological spaces) to an-
other (usually that of commutative groups or rings). When
he created the right algebraic topology for the Weil con-
jectures, the German-born French mathematician Alexan-
dre Grothendieck, a Bourbaki of enormous energy, pro-
duced a new description of algebraic geometry. In his
hands it became infused with the language of category the-
ory. The route to algebraic geometry becamne steeper than
ever, but the views from the summit have a naturalness
and a profundity that have brought many experts to prefer
it to the carlier formulations, including Weil's.

Grothendieck’s formulation makes algebraic geometry
the study of equations defined over rings rather than fields.
Accordingly, it raises the possibility that questions about
the integers can be answered directly. Building on the work
of like-minded mathematicians in the United States,
France, and Russia, the German Gerd Faltings tri-
umphantly vindicated this approach when he solved the
Englishman Louis Mordell’s conjecture in 1983. This con-
jecture states that almost all polynomial equations that de-
fine curves have at most finitely many rational solutions;
the cases excluded from the conjecture are the simple ones
that are much better understood.

Meanwhile, Gerhard Frev of Germany had pointed out
that, if Fermat’s last theorem is false, so that there are
integers u, v, w such that "+ v = wr (p greater than 3),
then for these wvalues of n, v, and p the curve
y2== x(x--ur} (x + v} has properties that contradict major
coniectures of the Japanese mathematicians Taniyama Yu-
taka and Shimura Goro about elliptic curves. Frey’s obser-
vation, refined by Jean-Pierre Serre of France and proved
by the American Ken Ribet, meant that by 1990 Tani-
yama’s unproved conjectures were known to imply Fer-
mat’s last theorem.

In 1993 the English mathematician Andrew Wiles estab-
lished the Shimura-Taniyama conjectures in a large range
of cases that included Frey’s curve and therefore Fermat’s
last theorem—a major feat even without the connection to
Fermat, It soon became clear that the argument had a se-
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rious flaw; but in May 1995 Wiles, assisted by another Eng-
lish mathematician, Richard Taylor, published a different
and valid approach. In so doing, Wiles not only solved the
most famous outstanding conjecture in mathematics but
alse triumphantly vindicated the sophisticated and difficult
methods of modern number theory. JJI.G)
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Greek mathematics: General surveys are THOMAS L. HEATH,
A History of Greek Mathematics, 2 vol. (1921, reprinted 1997);
JACOB XLEIN, Greelk Mathematical Thought and the Origin of Al-
gebra, trans. by EVA BRANN (1968, reissued 1992; originally pub-
lished in German, 1934); and WILBUR RICHARD KNORR, THe An-
cient Tradition of Geometric Problems (1986, reissued 1993),

Mathematics in the Islimic world:  Islimic mathematics is ex-
amined in J.L. BERGGREN, Episodes in the Mathematics of Me-
dieval Islam (1986, reissued 2003); E.S. RENNEDY, Studies in the
Islamic Exact Sciences (1984); and RUSHDI RASHID (ROSHDI
RASHED), The Development of Arabic Mathematics: Between
Arithmetic and Algebra, trans. by AFW. ARMSTRONG (1994,
originally published in French, 1984).

European mathematics during the Middle Ages and Renais-
sance;  An overview is provided by MICHAEL 8. MAHONEY,
“Mathematies,” in DAVID €. LINDBERG (ed.), Science in the Mid-
die Ages (1978, reissued 1980), pp. 145-178. Other sousces in-
clude ALEXANDER MURRAY, Reason and Society in the Middle
Ages (1978, reissued 1990), chapters 6-8; GEORGE $SARTON, In-
troduction to the History of Science (1927-48, reissned 1975),
part 2, “From Rabbi Ben Ezra to Roger Bacon,” and part 3, “Sci-
ence and Learning in the Fourteenth Century™; and, on a more
advanced level, EDWARD GRANT and JOHN E. MURDOCH {eds.),
Muathematics and Its Applications to Science and Natural Philos-
ophy in the Middle Ages (1987). For the Renaissance, see PAUL
LAWRENCE ROSE, The ltalian Renaissance of Mathematics: Stud-
fes on Humanists and Mathematicians from Petrarch to Galileo
(1975).

Mathematics in the 17th and 18th centuries: An overview of
this period is contained in DEREK THOMAS WHITESIDE, “Patterns
of Mathematical Thought in the Later Seventeenth Century,”
Archive for History of Exact Sciences, 1(3):179-388 (1961). Spe-
cific topics are examined in MARGARET E. BARON, The Origins
of the Infinitesimal Calculus (1969, reissued 2003); ROBERTO
BONOLA, Non-Euclidean Geometry: A Critical and Historieal
Study of Its Development, trans. by H.S. CARSLAW, 2nd rev. ed.
{1938, reissued 1955; originally published in Wakian, 1912); HER-
MAN H. GOLDSTINE, A History of Numerical Analysis from the
16th Through the 19th Century (1977); JUDITH V. GRABINER,
The Origins of Cauchy's Rigorous Caleulus (1981, reissued
2005); 1. GRATTAN-GUINNESS, Tie Development of the Founda-
tions of Mathematical Analysis from Euler to Riemann (1970).

Mathemnatics in the I19th and 20th centuries: Surveys include
HERBERT MEHRTENS, HENK BOS, and 1VO SCHNEIDER (eds.), So-
cial History of Nineteenth Century Mathematics {(1981); WILLIAM
ASPRAY and PHILIP KrrCHER {eds.), History and Philosophy of
Modern Mathematics (1988); and XEITH DEVLIN, Mathematics:
The New Golden Age, new and rev. ed. (1999). Special topics are
examined in UMBERTO BOTTAZZINI, The Higher Calculus: A His-
tory of Real and Complex Analysis from Euler to Welerstrass,
trans. by WARREN VAN EGMOND {1986; originally published in
Italian, 1981); JULIAN LOWELL COOLIDGE, A History of Geomer-
rical Methods (1940, reissued 2003); JOSEPH WARREN DAUBEN,
Georg Cantor: His Mathematics and Philosophy of the Infinite
(1979, reprinted £990); 1. GRATTAN-GUINNESS (ed.), From the
Caleulus to Set Theory, 1630-1910: An Introductory History
(1980, reissued 2000); JEREMY GRAY, Ideas of Space: Euclidian,
Non-Euclidean, and Relativistic, 2nd ed. (1989); and THOMAS
HAWKINS, Lebesgue's Theory of Integration: Its Origins and De-
velopinent, 31d ed. (1979, reissued 2001).
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