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Abstract Carl Jacobi worked in the 1830s at the University of Königsberg on what
became known as Hamilton-Jacobi theory, and also on the theory of the second
variation in the calculus of variations. The first was a subject in dynamical analysis,
while the second was a subject in pure mathematics. Insofar as the calculus of
variations was concerned, Jacobi’s contributions were seminal and original but
presented in an incomplete and programmatic form. Together his writings stimulated
active but independent traditions of research in both subjects. In the late 1850s
and 1860s Alfred Clebsch and Adolph Mayer—mathematicians associated with the
Königsberg school—established a new approach to the investigation of sufficient
conditions in the calculus of variations by bringing methods from Hamilton-Jacobi
theory to bear on the transformation of the second variation. In doing so they
established the basis for research on the subject that was eventually codified in
writings around 1900 of Camille Jordan, Adolf Kneser, Gustav von Escherich and
Oskar Bolza.

1 Introduction

A central problem of the calculus of variations in the nineteenth century was
identifying a set of conditions that are sufficient to ensure a maximum or minimum.
While several necessary conditions had been found, the question of whether these
conditions taken together were sufficient was an open subject of investigation.

In the second half of the 1830s Carl Gustav Jacobi carried out research in both
dynamical analysis and the calculus of variations. In 1837 he published two seminal
papers in Crelle’s journal on these subjects. The paper on dynamics, “Ueber die
Reduction der Integration der partielle Differentialgleichungen erster Ordnung,”
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(Jacobi 1837b) was stimulated by William Hamilton’s discoveries as well as by
some results of Joseph Lagrange and Siméon Poisson. The one on the calculus of
variations, “Zur Theorie der Variationsrechnung und der Differentialgleichungen,”
(Jacobi 1837a) belonged to pure mathematics, and extended in an original way the
work of Adrien Legendre and Lagrange on the problem of sufficiency. The two
subjects were distinct and relatively independent of each other. Although dynamical
analysis employed methods and results from the calculus of variations it was in
no way connected to the concerns of the mathematical subject. The latter were
made up of logical and theoretical elements or goals—the problem of sufficiency,
questions of existence—that involved no reference to any physical domain or
applied concerns.1

Jacobi’s contributions to dynamics led to the creation of that branch of mathemat-
ical science known today as Hamilton-Jacobi theory. Jacobi continued to work on
this subject and delivered lectures on it at the University of Königsberg in 1841–42
and the University of Berlin in 1848. The Königsberg lectures were edited by Carl
Borchardt and Alfred Clebsch and published in 1866 in a volume titled Vorlesungen
über Dynamik (Jacobi 1866a). The latter also contained a 167-page appendix on the
more mathematical aspects of dynamics including the formulation of a theory of
canonical transformations and a programmatic outline of the further mathematical
development of this theory. The Berlin lectures were unpublished and less influential
although they did circulate to some degree in German libraries in the second half
of the century. They were finally published in 1996 (see Jacobi (1996) and Thiele
(2000)).2

1 The term “pure mathematics” is being used here in its conventional modern sense that was well
established by the end of the nineteenth century. Pure mathematics is distinguished by its focus on
conceptual, logical and formal aspects and its relative detachment from empiricism. By contrast, in
the early nineteenth century pure mathematics referred to that which is not practical or pragmatic
in character. The Journal für die reine und angewandte Mathematik was founded in 1826 under
the editorship of Leopold Crelle, who served in this position until his death in 1856. The table of
contents was divided into pure mathematics (with broad subject categories of analysis, geometry
and mechanics) and applied mathematics. The latter included topics such as machines, hydraulics,
crystallography and cartography. Work in mathematical dynamics was generally regarded as a
pure subject. A memoir on the three-body problem that Jacobi published in 1843 was listed in
the table of contents twice, first under the “pure” heading and then again under the “applied”
heading. This subject schema was abandoned when Carl Borchardt became editor in 1856, 2 years
before Clebsch’s publications of 1858 on the second variation. (The journal was often referred to
as “Crelle” even after Crelle’s death.) See also Archibald (2001), Hacking (2014, Chapter 5) and
Fraser (2018, 124).
2 An account of the historical genesis of the original Hamilton-Jacobi theory is given by Nakane
and Fraser (2002). Jacobi’s results in dynamical analysis became the basis of an active thread of
research in celestial mechanics. Mathematical results were valued primarily if they were applicable
to the investigation of planetary motion. Notable researchers here were Adolphe Desboves, William
Donkin, and in the 1890s, Henri Poincaré. Other researchers of note included Joseph Liouville,
François Tisserand and Ludwig Charlier. For the development of Hamilton-Jacobi theory in the
nineteenth century including its relations to celestial mechanics see Fraser and Nakane (2023).
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Jacobi’s ideas in the calculus of variations also spurred a vigorous program
of research up into the 1880s. Investigators included Charles Delaunay, Victor
A. Lebesgue, Joseph Bertrand (age 19!), Friedrich Eisenlohr, Gaspard Mainardi,
Simon Spitzer, Otto Hesse, Alfred Clebsch, Rudolf Lipschitz and Adolph Mayer.
For whatever reasons, Jacobi himself did not publish anything on the subject after
1840, and it is not clear to what extent he remained engaged with the work of others.

In addition to the contrast in subject matter (physics on the one hand and pure
mathematics on the other) there were technical aspects that distinguished Jacobi’s
work in the two areas. In the calculus of variations, the primary problem of interest
involved a single dependent variational function and derivatives of this function
of arbitrary order. By contrast, in Hamilton-Jacobi dynamics one considered
integrand functions of multiple dependent variables where only first derivatives of
the variables occur. Furthermore, in dynamics questions about conditions that are
sufficient to ensure the existence of maxima or minima did not arise, for two reasons:
first, the physical instantiation of the formalism obviated any need to consider
questions of existence; and second, logical concerns about sufficiency played at best
a minor role in dynamical investigations.

The focus of the present study is the research on the second variation that was
stimulated by Jacobi’s 1837 paper. The elaboration of Jacobi’s results on the second
variation may be divided into two streams: researches by Delaunay, Eisenlohr,
Bertrand and Hesse up to 1857; and researches by Mainardi, Spitzer, Clebsch,
Mayer and Husserl, from the 1850s to the 1880s and continuing from there into
the new century. It is this second stream of research that is the primary focus of the
present paper.3

2 The Problem in Its Elementary Form

The variational integral is given as

.I =
∫ x1

x0

f
(
x, y, y′) dx. (1)

3 Isaac Todhunter’s 1861 book provides an overview of work done on the calculus of variations
up to that time and is notable for the range of writings examined. See in particular Chapter 10,
“Commentators of Jacobi.” Modern historical accounts of the developments in the calculus of
variations discussed in the present paper are contained in Goldstine (1980) and Fraser (1996, 2003,
2018, 2019). Goldstine’s book is a stimulating and informative study written by a specialist in the
modern mathematical subject. His approach is “to select those papers and authors whose works
have played key roles in the classical calculus of variations as we understand the subject today”
(Goldstine 1980, vii). Historian of mathematics Helena Pycior (1983, 493) suggests that the book
has some shortcomings: “Its style is not representative of the finest mathematical (or historical)
exposition. It contains no adequate statement of purpose or audience, makes but few attempts to
highlight major ideas through clear prose statements, and evidences throughout an extremely tight,
technical style.”
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The δ-process is introduced to effect a comparison between the value of I along
this curve and along a class of neighbouring curves. Set δy = w(x), where
w(x0) = w(x1) = 0. The first and second variations I1 and I2 are by definition

.I1 =
∫ x1

x0

(
∂f

∂y
w + ∂f

∂y′ w
′
)

dx, (2a)

.I2 =
∫ x1

x0

(
∂2f

∂y2 w2 + 2
∂2f

∂y∂y′ ww′ + ∂2f

∂y′2 w′2
)

dx. (2b)

The difference �I in the value of I along the actual and comparison arc is

.�I = I1 + 1

2
I2 + higher order terms. (3)

A solution curve y = y(x) that makes I a maximum or minimum will satisfy the

Euler-Lagrange equation .
∂f
∂y

− d
dx

(
∂f
∂y′

)
= 0. If this equation holds it is easy to show

that we have I1 = 0. Because w(x) is small, it is then clear that I2 will dominate in
this expansion. Hence the sign of �I in (3) is determined by the second variation I2.

In what follows we introduce some standard abbreviations for the second partial
derivatives:

.P = ∂2f

∂y2
,Q = ∂2f

∂y∂y′ , R = ∂2f

∂y′2 . (4)

The expression (2b) for I2 then is written

.I2 =
∫ x1

x0

(
Pw2 + 2Qww′ + Rw′2

)
dx. (5)

The central problem becomes one of transforming the second variation to a form
that gives rise to a criterion to decide if a maximum or minimum holds.

In 1788 Legendre presented an important result. An auxiliary function v = v(x)
is introduced. Legendre showed that the second variation can be reduced to the form

.I2 =
∫ x1

x0

R

(
w′ + Q + v

R
w

)2

dx, (6)

where the function v is a solution of the differential equation

.R
(
P + v′) = (Q + v)2. (7)

Assume that such a solution v has been found. Consider the inequality

.R = ∂2f

∂y′2 ≥ 0 (8)
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on [x0,x1]. For a given curve y = y(x) that minimizes I, I2 will be positive. It follows
from (6) that for such a curve the inequality (8) holds. (Suppose R is negative on part
of the interval [x0,x1]. Select a variation w = w(x) that is positive on this subinterval
and zero elsewhere. From (6) we see that for such a variation, I2 < 0, which is a
contradiction.) (8) would become known in the later subject as Legendre’s necessary
condition.

To obtain Legendre’s condition one must show that a solution to (7) exists
and remains finite on the given interval. In his Théorie des fonctions analytiques,
Lagrange (1797, 206–210) called attention to this point and produced examples in
which no finite solution exists. Suppose for example that f (x,y,y′) = y′2 − y2. In
this case P = −2, Q = 0 and R = 2 and (7) becomes 2(v′ − 2) = v2. This equation
integrates to v = 2tan(x + c), where c is a constant. It is clear that if x1 − x0 is greater
than π /2 then no suitable solution of 2(v′ − 2) = v2 will exist. Although Lagrange
did not contribute any new results to the variational theory, he at least raised the
question of conditions under which the Legendre transformation is valid.4

3 Jacobi’s Discoveries

Jacobi investigated a more general problem than the example from Lagrange in the
preceding section. The variational integrand f is taken to be a function of y, y′ and
higher-order derivatives of y:

.I =
∫ x1

x0

f
(
x, y, y′, . . . , y(n)

)
dx. (9)

Jacobi concentrated in particular on the case n = 2:

.I =
∫ x1

x0

f
(
x, y, y′, y′′) dx. (10)

The investigation of the transformation of the second variation here requires a
deeper level of analysis and is an order of magnitude more difficult than the case
f (x, y, y′). This investigation would occupy the energies of researchers up into the
1870s and beyond.

Jacobi expressed in a particular way the relationship between the first and second
variations in terms of the variational operation δ. He also introduced a new type

4 Lagrange’s discussion of this point is limited to the case n = 1. What is missing in Lagrange’s
account is an analysis of the equation I2 = 0 in terms of variations given as partial derivatives of the
solutions to the Euler equation with respect to the arbitrary constants appearing in this solution. In
this respect, he did not anticipate the crucial idea of a conjugate point. (Compare Goldstine (1980,
146) who suggests that Lagrange had “in an interesting way, a presage of Jacobi’s condition on
conjugate points.”)
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of variation that was fruitful in this investigation. The solution y = y(x) to the
variational problem must satisfy the Euler-Lagrange differential equation and will
contain 2n arbitrary constants. Let a be one of these constants. We let the variation
δy be obtained by varying a and define δy = (∂y/∂a)da.

The new variation led Jacobi to the concept of the conjugate point and the
criterion known in modern textbooks as Jacobi’s condition. Because y = y(x) is
a solution arc it follows that I1 = 0. Now the third-order term can in general be
made either positive or negative. Thus, in order for there to be a maximum or
minimum it must be the case that there is no admissible variation for which I2 = 0.
(An admissible variation is one that is zero at the endpoints of the interval.) One
is able to show that for the variation δy = (∂y/∂a)da we have I2 = 0. Suppose that
for such a variation ∂y/∂a(x0,a) = 0 and thus δy(x0,a) = 0. If it is also the case that
δy(x*,a) = 0 for some x* with x0 < x* ≤ x1 then there is an admissible variation for
which I2 = 0 and there is no maximum or minimum. A value of x* for which this is
true corresponds to what is known as a conjugate point. Jacobi’s condition asserts
that in order for a minimum or minimum to exist there can be no conjugate point on
the interval [0, x1]. Expressed analytically, there is no x* (x0 < x* ≤ x1) for which
∂y/∂a(x*,a) = 0.

Four years after the appearance of Jacobi (1837a) the young French mathemati-
cian Charles Delaunay published a substantial paper on the subject of Jacobi’s
memoir. Delaunay (1841) is a valuable aid in understanding Jacobi’s results, with
insightful explanations of key parts of the theory, that were by no means clear in the
original article. Some years later Spitzer (1854, 1014) would write that “Delaunay’s
excellent work contributes not a little to the understanding of Jacobi.”

The main part of Jacobi’s memoir was devoted to a new transformation of the
second variation that was based on a result about ordinary differential equations.
This result was stated but not proved. Jacobi’s transformation was different from
Legendre’s and seems, like many of his ideas, to have been a mysterious product
of his mathematical mind. In the years following the appearance of Jacobi’s paper
researchers devoted a great deal of effort to the study of the transformation of the
second variation along the lines opened up by him. Several proofs of the theorem
on linear differential equations were published, most notably one by Lebesgue
in 1841 in Liouville’s journal. Other than Delaunay the most important figure
in this tradition was Hesse. Hesse’s 1857 memoir in Journal für die reine und
angewandte Mathematik represented the high point in the development of the Jacobi
transformation and also marked the end of this particular line of investigation. The
Jacobi transformation is something of a relic in the history of nineteenth-century
mathematics.5 The idea at its base would be replaced by the theory of Spitzer,
Clebsch and researchers that followed them.

5 The Jacobi-Hesse transformation is of intrinsic mathematical interest and did not fall completely
by the wayside. It was presented in some detail in Ernesto Pascal’s 1899 textbook Variationsrech-
nung. Nevertheless, it would appear to have been an improbable development in the history of
analysis.
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4 Spitzer

Simon Spitzer was a Jewish Austrian mathematician known for his many contribu-
tions to analysis. A detailed historical study of his mathematical work remains to
be done. Our interest here is an early two-part article on the calculus of variation
that he published in 1854 and 1855 in the Sitzungsberichte der Mathematisch-
Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften.6

Following Jacobi, Spitzer developed the analysis in terms of variations given
in terms of the partial derivatives of y (y being a solution of the Euler-Lagrange
equation) with respect to the constants of integration that appear in y. However,
he rejected Jacobi’s new transformation of the second variation, writing (1854,
1025) “There has occurred to me another and much simpler way of determining
the values of λ by means of which Jacobi’s complicated and difficult transformation
is avoided.”

Spitzer retained Legendre’s older method of transforming the second variation,
in which the second variation is directly equated to an expression in positive or neg-
ative definite form. Altogether his writings constituted an impressive and extended
treatise on the mathematics of the second variation. Hesse (1857, 414) stated that
“Spitzer departs from the path trodden by Jacobi” and referred to Spitzer’s writings
as being “elaborated with as much intellectual acuity as diligence.”

In part one Spitzer exhaustively analyzed the second variation for the integral
.I = ∫ x1

x0
V

(
x, y, y′, . . . , y(n)

)
dx for the three cases n = 1, 2, 3. (The variational

integrand function is here denoted V by Spitzer.)
Following his Italian contemporary Gaspare Mainardi (1852) Spitzer in part two

introduced a new element of generality into the variational problem. (Spitzer’s
account was more detailed and complete than Mainardi’s and will be the subject
of what follows.7) We assume that instead of one dependent variable y there is a
second dependent variable z. The variational integrand function now takes the form

.V = V
(
x, y, y′, . . . , y(n), z, z′, . . . , z(n)

)
. (11)

Spitzer developed the theory in a limited way for the general integral (11). However,
in order to go further and keep the treatment tractable he turned in §21 to the case
where n = 1 in (11). Here the problem is to select functions y and z of x that
maximize or minimize the variational integral, where the latter is now given in the
form

6 Simon Spitzer (1826–1887) and his wife Marie (née Bunzl) had a large family. Their descendants
suffered from the persecution of Austrian Jews that intensified following the 1938 annexation of
Austria by Germany. The Spitzers’ son Alfons and his wife (then in their 70s) perished in 1942 in
the Łódź Ghetto. Their grandson Fritz committed suicide late in 1938. Two of their granddaughters
emigrated, Leoni Spitzer to England (where she died in 1940) and Helen Adolf to the United States.
7 Mainardi (1852, 169–171) devoted three pages of his memoir to the problem of multiple
dependent variables whereas Spitzer (1855, 57–121) devoted 65 pages to this subject.
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.I =
∫ x2

x1

V
(
x, y, y′, z, z′) dx. (12)

The analysis of this problem parallels the earlier case involving a single variable y
with V = V(x, y, y′, y′′) and .I = ∫ x2

x1
V

(
x, y, y′, y′′) dx. The various considerations

and challenges that arose in the latter problem are also present in the optimization
of I in (12).

Spitzer obtained the second variation I2 corresponding to (12) and showed that
it could be reduced to another form that allowed one to infer a general condition
(corresponding to Legendre’s necessary condition) for the variational problem
involving two dependent variables. As in the first part of his investigation, he carried
out in detail the quite substantial labours of calculation that were needed to do
the analysis in full. (Partial derivatives of V (denoted by letters) and of y (with
respect to the constants of integration) and determinate methods appear throughout
the extensive computations. Figure 1 is typical of some of the pages from Spitzer’s
memoir.) Included was a consideration of the auxiliary differential equations that
were required for the transformation. The constants arising in the solution to these
equations must satisfy certain conditions in order for the transformation to be
possible. (The constants are given in terms of the constants of integration that appear
in the solution to the Euler-Lagrange equations for the problem.) His major result
was stated in §23 (Spitzer 1855, 93).

Fig. 1 Pages from Spitzer (1855)
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For a maximum or minimum to occur it must be the case that .
∂2V
∂y′2 and .

∂2V
∂z′2 have

the same sign on [x1, x2] (positive for a minimum and negative for a maximum) and

the term .
∂2V
∂y′2

∂2V
∂z′2 −

(
∂2V

∂y′∂z′
)2

must be positive on this interval. (These conditions

ensure that the second variation I2 has the same sign on the interval.)

5 Clebsch and Mayer

Alfred Clebsch’s (Fig. 2) contributions to the calculus of variations are contained
in three papers he published in 1858a, b and 1859 in Journal für die reine und
angewandte Mathematik. Clebsch was a product of the Königsberg school, having
studied at the University of Königsberg in the early 1850s under Friedrich Richelot,
Franz Neumann and Hesse. Hesse and Richelot had been students of Jacobi, while
Neumann was Jacobi’s colleague.8 Clebsch’s investigation of the second variation
was done early in his career, when he was in his middle twenties, at a time when
he was also working on problems in hydrodynamics and mechanics. He was also
the editor of Jacobi’s Vorlesungen über Dynamik; although Jacobi died in 1851 this
work was only published in 1866. By this date Clebsch’s interests had shifted and

Fig. 2 Alfred Clebsch
(1833–1872). (Image from
Wikimedia Commons, Public
domain)

8 On the Königsberg school, Richelot and Mayer see Fraser (2018, 126–127).
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Fig. 3 Adolph Mayer
(1839–1908). (This portrait is
reproduced from the 1908
obituary of Mayer in volume
17 of Jahresbericht der
Deutschen
Mathematiker-Vereinigung. In
the obituary his first name is
given throughout as Adolf)

he would go on to achieve distinction for his research in algebraic geometry and the
theory of invariants.

Adolph Mayer’s (Fig. 3) interest in the calculus of variations was stimulated
by the lectures at Königsberg in 1864–65 of Richelot, who suggested the topic
of his Habilitationsschrift. In December of 1866 Mayer, then 27, defended the
Habilitationsschrift before the philosophical faculty of the University of Leipzig.
This work was devoted to an investigation in the general setting of the Lagrange
problem connecting the transformation of the second variation with the theory of
the conjugate point. It was published in 1866 as Beiträge zur Theorie der Maxima
und Minima der einfachen Integrale. Mayer published a much abbreviated and
refined version of the work 2 years later in Journal für die reine und angewandte
Mathematik. In addition to doing fundamental original work, Mayer also provided
clear and expository accounts of Clebsch’s achievements. (von Escherich (1898,
1191) stated that Clebsch’s investigation of the second variation only became of
interest after Mayer “substantiated Clebsch’s result in a simpler, more transparent
manner.”9) In addition to Clebsch, Mayer also cited in his Beiträge works of Spitzer
(1854–1855), Hesse (1857) and a memoir of Rudolf Lipschitz that had just appeared
in 1866. In the introduction Mayer (1866, vii) stated that the true nature of the
problem was not as clear in Lipschitz’s account as it was in Clebsch’s and so he

9 Jacobi’s (1837a) was interpreted and explained more clearly by Delaunay (1841), and Clebsch’s
(1858a, b) were interpreted and explained more clearly by Mayer (1868). Jacobi and Clebsch were
the creators while Delaunay and Mayer provided new ideas, lucidity and detail.
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would follow Clebsch in his development.10 Neither Lipschitz nor Clebsch explored
the conditions needed to ensure that the functional entities in the transformation
exist, a point that was at least touched on by Spitzer and would become the primary
focus of Mayer’s investigation.

One aspect of Clebsch’s mathematical style is noteworthy. All mathematicians
that preceded him had provided worked-out accounts of the theory for simpler
cases involving first, second and third derivatives of one or two dependent variables.
Clebsch by contrast presented the theory once and for all in complete generality and
eschewed any exposition of elementary or more accessible cases. The mathematical
development was to be experienced at a level of high generality and presumably
only at that level. This elevation of generality of presentation came to characterize
mathematical work in the calculus of variations. It reflected the emergence of a
new mathematical mentality, one that anticipated to some degree the celebrated
“modernism” of twentieth-century mathematics.

Clebsch seems to have been stimulated by Hesse’s 1857 article. Hesse’s con-
tribution was both substantial and stylistic, indicating the sophisticated formal and
notational procedures that would be necessary for the very general statement and
treatment of the problem preferred by Clebsch. Hesse is the only researcher other
than Jacobi cited by Clebsch. Nevertheless, the actual ideas at the base of Clebsch’s
approach are similar to those, not of Hesse, but of Spitzer.11 Clebsch followed
Spitzer in considering the problem where there are multiple dependent variables
and their first derivatives in the variational integrand function. It should be noted that
his notation was slightly different from Spitzer’s in Eq. (12) above. The variational
integrand f is given by Clebsch as a function of x, y1, y2, . . . , yn and .y′

1, y
′
2, . . . yn

′.
That is,

.f = f
(
x, y1, y2, . . . , yn, y

′
1, y

′
2, . . . yn

′) , (13)

in which the variables y1, y2, . . . appear first and then the first derivatives .y′
1, y

′
2, . . .

follow.12 This was of course the standard everywhere in mathematical dynamical

10 Lipschitz (1866) was not widely discussed by later researchers and seems to have had limited
influence. It made no use of Hamilton-Jacobi methods which were an integral part of the later
development of the subject. At the turn of the century the theory of the second variation was
known simply as the “Clebsch-Mayer theory.”
11 Spitzer had rejected Jacobi’s new transformation, which as we noted above, he found compli-
cated and apparently somewhat artificial. Hesse’s 1857 paper was motivated by a desire to replicate
Spitzer’s results while adhering to a general and rigorous formulation of Jacobi’s transformation.
(At the beginning of his article, Hesse (1857, 227) wrote: “In the following treatise I have tried first
to uncover the actual source from which Jacobi drew his results, and second to trace the Jacobian
transformation of the second variation back to Spitzer’s form.”) Clebsch refers to Hesse’s article
but makes no mention of Spitzer, although his point of departure was anticipated by Spitzer. See
also footnote 5 above.
12 Clebsch does not actually give (13) but states (1858a, 336) verbally that f is a function of
y1,y2, . . . ,yn and their first derivatives. In (1858b, 336) he states that f is a function of x,y1,y2, . . . ,yn
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writing, and Clebsch’s formulation indicated a familiarity with dynamical conven-
tions that was absent in Spitzer.

Clebsch broke new ground by modifying the statement of the variational problem
to include auxiliary constraints in the form of differential equations. For purposes
of exposition, we depart from his general presentation and show how it works in the
case of two dependent variables. We have the dependent variables y1, y2 and one
side constraint. The problem is to maximize or minimize

.I =
∫ x1

x0

f
(
x, y1, y2, y

′
1, y

′
2

)
dx, (14)

where y1, y2 are assumed to satisfy the differential equation

.ϕ
(
x, y1, y2, y

′
1, y

′
2

) = 0, (15)

in which ϕ is a given function of .x, y1, y2, y
′
1, y

′
2. Let the function .�

(
x, y1, y2, y

′
1,

y′
2

)
be defined as

.� = f + λϕ. (16)

Here λ = λ(x) is a multiplier. Consider the problem of maximizing or minimizing
the integral

.I =
∫ x1

x0

�
(
x, y1, y2, y

′
1, y

′
2

)
dx. (17)

The desired maximum or minimum will be a solution that satisfies the constraint
equation (15) and is also a solution of the Euler-Lagrange equations for the
optimization of I:

.
∂�

∂y1
− d

dx

∂�

∂y1
′ = 0,

∂�

∂y2
− d

dx

∂�

∂y2
′ = 0. (18)

In the modern subject a problem with constraints in the form of differential
equations is known as a “problem of Lagrange.” Lagrange had originally developed
the multiplier rule to handle examples in which an auxiliary variable z appears in the
integrand, a variable connected to x and y by means of a differential equation. This
class of problems formed the subject of Chapter 3 of Euler’s Methodus inveniendi
(1744). Clebsch (1858a, 267–268) by contrast seems to have been the first to have
observed that the rule also yields the variational equations in the standard free
problem of maximizing or minimizing the integral .

∫ x1
x0

f
(
x, y, y′, . . . , y(n)

)
dx.

and dy1dx,dy2dx, . . . ,dyndx. (Clebsch writes out the derivatives of all orders as quotients and does
not use the more standard prime notation employed by Spitzer, Hesse and others.)
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For example, consider an integrand function f of the form .f = f
(
x, y1, y2, y

′
2

)
.

We introduce the auxiliary function .ϕ = y′
1 − y2 and impose the side constraint

.y′
1 − y2 = 0. The function � is then � = f + λ(.y′

1− y2). The Euler equations (18)
become

.
∂f

∂y1
− dλ

dx
= 0,

∂f

∂y2
− λ − d

dx

∂f

∂y2
′ = 0, (19)

which reduce to the known Euler-Lagrange equational form

.
∂f

∂y1
− d

dx

∂f

∂y1
′ + d2

dx2

∂f

∂y′′
1

= 0. (20)

From the time of Legendre until the 1850s the theory of the second variation
had been formulated primarily for .I = ∫ x1

x0
f

(
x, y, y′, . . . , y(n)

)
dx. Clebsch’s

reformulation of this problem as one of constrained extrema had the important
consequence of eliminating higher-order derivatives in the variational integrand.
In order to do this one had to introduce multiple dependent variables. It was also
necessary to apply a powerful mathematical tool, the multiplier rule. Justification
of this rule is by no means simple, and a study of the first rigorous proofs reveals
something of the new and substantial ideas involved in its application. (It was not
until almost 30 years later that Mayer (1886) gave a proof of the multiplier rule in
the calculus of variations.)

Within this framework, Clebsch (1858a) was able to develop a general transfor-
mation of the second variation beginning with functions of the form

.� = �
(
x, y1, y2, . . . , ym, y′

1, y
′
2, . . . , y

′
m

)
. (21)

The starting point is to take the integrand F in the second variation and express it in
the form

.F = F + dB

dx
. (22)

F is in positive or negative definite form and B is an expression involving variations
that vanish at the endpoints. When integrated (22) gives the desired transformation
of the second variation.

Clebsch produced a formidable piece of analysis that led finally to a generaliza-
tion of Legendre’s necessary condition that is known in some modern textbooks as
Clebsch’s condition (Bolza 1909, 609). Consider a free system with no constraints.
If a given y1, y2, . . . , yn minimizes the variational integral, then the following
inequality must hold:

.

∑n

i=1

∑n

k=1

∂
2
�

∂yi
′∂yk

′ ζiζk ≥ 0, (23)
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where ζ i and ζ k are magnitudes given as determinates related to the variations of yi

and yk. If constraints are present, then ζ i and ζ k must also satisfy these constraints.
For the case of two variables y1, y2, (23) becomes

.
∂

2
�

∂y1′2 ζ1
2 + 2

∂
2
�

∂y1
′∂y2

′ ζ1ζ2 + ∂
2
�

∂y2′2 ζ2
2 ≥ 0. (24)

This condition is equivalent to stipulating that .
∂

2
�

∂y1′2 and .
∂

2
�

∂y2′2 are positive and that

.

(
∂2�

∂y1
′∂y2

′

)2

− ∂2�

∂y1′2
∂2�

∂y2′2 ≤ 0. (25)

As we saw above, this result had already been obtained by Spitzer (1855, 93).
In a second memoir Clebsch (1858b) further developed his transformation of

the second variation using methods from Hamilton-Jacobi theory in dynamical
analysis.13 (Lipschitz (1866, 27) noted Clebsch’s use of methods drawn from
“the investigations of Hamilton and Jacobi on mechanical problems.”) This was
a critical moment in history because it brought into the subject ideas from a
previously unrelated branch of analysis. The possibility of doing this at all was
of course opened up the introduction of multiple dependent variables and the
use of the multiplier rule to reduce the general variational integrand to the form
.�

(
x, y1, y2, . . . , ym, y′

1, y
′
2, . . . , y

′
m

)
, the same form as the integrand of variational

integrals in dynamics.
Clebsch’s memoirs are difficult to follow.14 (Recall von Escherich’s (1898, 1191)

remark given above.) Mayer presented the relevant results from Hamilton-Jacobi
theory in a more readable form in the opening part of his treatise. He stated that the
method originated in Hamilton’s work on mechanical problems and was perfected
by Jacobi. For simplicity of exposition, we will present the analysis for the free case
where there are no side constraints. We begin with the variational equations (what
are called the Euler-Lagrange equations although Clebsch and Mayer did not call
them that):

13 Clebsch was not the first to employ Hamilton-Jacobi methods in the calculus of variations.
Mikhail Ostrogradsky had already done so in a memoir published in 1850, although Clebsch did not
seem to have been aware of Ostrogradsky’s research. Ostrogradsky was concerned with showing
how Hamilton-Jacobi methods could be extended to more general variational integrands containing
higher derivatives of the optimizing curve-function y = y(x). However, the second variation and
its transformation were not taken up as a subject of investigation. Nevertheless, Ostrogradsky
developed his analysis for multiple dependent variables and in this respect anticipated the work
of Spitzer and Clebsch.
14 Goldstine (1980, Chapter 6) provides detailed descriptions of Clebsch (1858a, b) (as well as of
Mayer (1868)). His account adheres to the original papers closely with little explanation of their
content. For one part of Clebsch (1858b) Goldstine finds “it reasonable to replace his discussion
by a correctly formulated one” (p. 258).
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.
∂f

∂yi

= d

dx

∂f

∂yi
′ (i = 1, 2, . . . , n) . (26)

Consider a function V of the variables x, y1, y2, . . . , yn defined by the equations

.
∂f

∂yi
′ = ∂V

∂yi

,
∂V

∂x
= f −

∑n

h=1
yh

′ ∂V

∂yh

. (27)

(V is simply Hamilton’s principal function and .
∑n

h=1yh
′ ∂V
∂yh

−f is the Hamiltonian
H, although this terminology is not employed.) Using (27) one obtains the deriva-
tives yi

′ as functions of x, y1, y2, . . . , yn. Equation (27) then becomes a partial differ-
ential equation for V in terms of x, y1, y2, . . . , yn. Mayer called this the Hamiltonian
partial differential equation for the variational problem δI = 0.15 He proceeded to
give something known in the modern subject as Jacobi’s theorem, for which Mayer
cited Clebsch (1858b, 337–340). Let V = V(x, y1, y2, . . . , yn, a1, a2, . . . , an) be a
complete solution of (27), where a1, a2, . . . , an are arbitrary constants. Consider a
second set of n arbitrary constants α1, α2, . . . , αn. (Mayer stated that these may be
called canonical constants corresponding to a1, a2, . . . , an.) Then the solution of
(26) is given by the equations

.
∂V

∂yi

= ∂f

∂yi
′ ,

∂V

∂ai

= αi. (i = 1, 2, . . . , n) (28)

Having introduced these results, Mayer embarked on a derivation of the transfor-
mation of the second variation along the lines of Clebsch (1858a), which involved
no reference to canonical methods. At the conclusion of this derivation, he noted
that difficulties will arise if certain functional terms in the transformation become
infinite at isolated points. It is here that Mayer turned to Hamilton-Jacobi methods
to refine the analysis. From this point on these methods are basic to his development
of the theory. The investigation is recast in terms of the results contained in Clebsch
(1858b). Hamilton-Jacobi methods—including the standard canonical equations—
are also the foundation of Mayer’s 1868 article in Journal für die reine und
angewandte Mathematik.

In the Clebsch-Mayer theory the mathematics of the second variation is compli-
cated, involving multiple summations, arrays of variables and constants and detailed
computation of determinates. Everything is presented in complete generality with a
full set of side constraints in the form of differential equations. It is not possible
here to go into detail on this subject. However, we will try to provide an indication
of the advantages conferred by the use of Hamilton-Jacobi methods (Mayer 1866,

15 Nowhere does anything corresponding to the mass appear (it is taken to be one). The conjugate
variables pi also do not appear. Hamilton’s canonical equations are not given; reference is made
only to the Lagrangian equations (26). In Mayer’s article in Journal für die reine und angewandte
Mathematik 2 years later the conventional formulation is given in terms of conjugate variables and
canonical equations.
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35). Following Jacobi the variational process is defined by taking a solution of the
Euler-Lagrange equations and defining the variation as the partial derivatives of
the dependent variables y1, y2, . . . , yn with respect to any one of the constants of
integration ai appearing in the yi. The various expressions and summations that arise
in the derivation of the transformation involve these variations. Suppose the solution
of the Euler-Lagrange equations is given in the form (28) above using a complete
solution V of the Hamilton-Jacobi equation. Then we have

. (αk) = ∂V

∂ak

. (29)

Here the parenthetical notion (αk) is used to indicated that αk is regarded as a
function of x, y1, y2, . . . , yn, a1, a2, . . . , an. We have from (29)

.
∂ (αk)

∂ah

= ∂2V

∂ah∂ak

= ∂2V

∂ak∂ah

= ∂ (αh)

∂ak

. (30)

Equation (30) is used to simplify expressions appearing in the transformation.
Mayer (1866, 35) observed that a fundamental theorem that had been obtained in
the first part of his Beiträge became simpler and more elegant if canonical constants
of integration are employed. As the treatise progresses Hamilton-Jacobi methods
become integral to the development of the theory and predominate in Mayer’s 1868
article in Journal für die reine und angewandte Mathematik. Equations (29) and
(30) are used to obtain identities involving summations of mixed partial derivatives.
Using these identities and various substitutions one is led in a rather complex and
lengthy procedure to a new derivation of the transformation of the second variation
that is preferable to the one presented in Clebsch (1858a).

Mayer’s account of Clebsch’s transformation was only a prelude to his main
goal, which was to show that if Jacobi’s condition holds then one is able to obtain
suitable functions in the transformation that remain finite on the interval in question.
While the ideas here were foreshadowed in the work of Spitzer and Hesse the
main problem had been stated in a treatise on the calculus of variations published
in 1861 by François Moigno. These authors drew attention to the need to find a
system of functions for which the determinant in the denominator of the integrand
of the transformed second variation is non-zero throughout the given interval.
The arbitrary constants contained in these functions must satisfy certain auxiliary
relations. Moigno (1861, 192) observed: “The question of recognizing if such a
system of constants does or does not exist is in reality the most delicate part of
Jacobi’s theory, and it awaits yet a general solution.”

The general problem here was also taken up in the lectures of Friedrich Richelot
in the early 1860s. It was solved definitively by Mayer in his 1866 Beiträge. The
solution is reached by means of equations and identities given by Hamilton-Jacobi
theory. Mayer’s result resolved the basic question of sufficiency for single-integral
variational problems. Mayer announced this result in the opening paragraph of the
forward to his Beiträge:
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As a result of a suggestion of my esteemed teacher, Professor Richelot, I have attempted
in the past years to determine the criteria for the minimum of a few particular integrals. I
found in these integrals a remarkable relationship between the denominator of the reduction
and another determinant which plays a major role in the Jacobi criterion. The reduction
of the second variation contains a certain number of arbitrary constants. It is shown that
by a suitable determination of these constants both determinants become identical. This
theorem, which is not restricted to the treatment of special problems but is generally
valid, if combined with an important observation of Professor Richelot’s concerning the
impossibility of the vanishing of the second variation under certain conditions, leads finally
by a completely different route to the proof and extension of the Jacobi criterion to the
general case of the calculus of variations involving a single independent variable. (Mayer
1866, v)

6 Consolidation

After Clebsch published his papers on the second variation he turned to other
subjects and died at age 39 in 1872. Mayer continued to work in the calculus of
variations but did not make substantial further contributions to the theory of the
second variation. However, he remained engaged with this subject. Adolf Kneser’s
notable article on the second variation (Kneser 1898) took as its starting point the
“Clebsch-Mayer theory.” He acknowledged (p. 321) personal correspondence with
Mayer in the writing of the article.

In 1882 Edmund Husserl completed his dissertation under the supervision of Leo
Königsberger at the University of Vienna on the calculus of variations. The main
subject of this work was Mayer’s theory of the second variation, concerning which
Husserl arrived at fundamental and novel insights (see Fraser (2019)). He also made
perceptive comments on the foundations of the calculus of variations. Husserl’s
dissertation was not published until 1983 (in French translation) and appears to have
had limited influence. Husserl himself turned away from mathematics to philosophy.
Nevertheless, his dissertation remains of considerable intrinsic interest and also
indicates that there was active interest in the 1880s among mathematicians in the
Clebsch-Mayer theory of the second variation.

Later accounts of the Clebsch-Mayer theory, by Camille Jordan (1887), Kneser
(1898), von Escherich (1898) and Bolza (1909), developed the subject along
the lines laid down by its original authors.16 These works show a concern with
formulating the theory at a high level of generality; the exposition is characterized
by formal complexity and elaborate notation. Although Clebsch and Mayer placed
primary emphasis on the transformation of the second variation by means of
Hamilton-Jacobi methods, they nonetheless also provided a transformation that did

16 In the preface to Jordan (1887, p. v) mention is made of “emprunts” from the work of several
authors, including “MM. Clebsch and Mayer sur la seconde variation des intégrales.” This preface
is not reproduced in the second edition of 1896 and subsequent editions and there is no indication
of where the relevant results originated.
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not refer to these methods. (The latter evidently was the case for Clebsch (1858a).)
By contrast, Jordan and von Escherich introduced Hamilton-Jacobi methods from
the outset and the analysis was developed from this standpoint. Jordan followed
the second method employed by Mayer (1866) in his Beiträge to prove the main
sufficiency result. Using the canonical constants of integration, Jordan derived
after some effort a certain equality involving determinate functions and used it to
establish the desired result.

The researches of Clebsch and Mayer were at a higher level than contemporary
work on the calculus of variations in textbooks and journal literature. The subse-
quent development of the theory by such prominent figures as von Escherich and
Kneser reflected its status at the turn of the century. The Clebsch-Mayer theory
receded somewhat into the background with the advent of Karl Weierstrass’s field-
theoretic approach to the problem of sufficiency, a development that took place
from 1890 into the 1920s (see Thiele (2007).) A focus on the second variation was
nonetheless a significant part of the history of the calculus of variations and the
Clebsch-Mayer synthesis remains today an impressive and substantial achievement.

7 Conclusion

In his writings on dynamics Jacobi emphasized that it was possible to develop
the subject on a more purely mathematical level. Concerning the theory of partial
differential equations he wrote,

Hamilton’s theorems themselves contribute to the perfection of this theory in a significant
and unexpected way, although the author has not emphasized this purely analytical interest.
(1866b, 304)

In this same work Jacobi (1866b, 468–470) concluded the final section on canonical
transformations with a programmatic outline of further mathematical work to be
done. Transformations that were introduced to facilitate the integration of the
dynamical equations of motion were also viewed on a mathematical level as a
subject of interest. Jacobi’s proposal was not developed by him, probably because of
other interests, poor health and early death, but it was taken up in a more geometrical
setting by Sophus Lie in the 1870s. (For details on these developments see Fraser
and Nakane (2023, 273).)

The mathematical possibilities Jacobi saw in Hamilton-Jacobi theory involved
partial differential equations and transformations that were intrinsic to the subject
matter under consideration. It was a natural step to go from dynamical transfor-
mations to a more purely mathematical study of these objects, particularly for
someone like Jacobi who was primarily a mathematician to begin with. There was
a consistency and natural affinity between dynamical analysis and its development
into cognate areas of mathematics.

By contrast, Clebsch’s application of Hamilton-Jacobi theory to the study of
the second variation involved an insertion of dynamical analysis into an area of
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pure mathematics with no connection to the physical domain or with applied
mathematics. Dynamical analysis and the theory of the second variation were not
cognate subject areas. Physicists were not interested in the investigation of necessary
and sufficient conditions. Prior to Clebsch (1858b) no one had thought to apply
Hamilton-Jacobi methods to the study of the second variation. It was an indication
of Clebsch’s remarkable originality and mathematical perspicacity that he made this
connection.
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