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But [the historian’s] particular business lies, not with this bare and general sim-

ilarity, but with the detailed dissimilarity of past and present. He is concerned

with the past as past, and with each moment of the past in so far as it is unlike

any other moment (Oakeshott, 1933, p. 106).

Abstract: Two parts of analysis to which Leonhard Euler contributed

in the 1740s and 1750s are the calculus of variations and the theory

of infinite series. Certain concepts from these subjects occupy a fun-

damental place in modern analysis, but do not appear in the work of

either Euler or his contemporaries. In the case of variational calculus

there is the concept of the invariance of the variational equations; in

the case of infinite series there is the concept of summability. However,

some modern mathematicians have suggested that early forms of these

concepts are implicitly present in Euler’s writings. We examine Euler’s
work in calculus of variations and infinite series and reflect on this work

in relation to modern theories.

8.1 Introduction
The present study explores the notion of anachronism in the history of

mathematics in relation to some mathematical work of Leonhard Euler.

The focus is on the 1740s and early 1750s, during Euler’s Berlin period,

when he was approaching the height of his mathematical powers and

productivity. We consider aspects of two subjects that he investigated

in an original and ground-breaking way: calculus of variations and the

a From Anachronisms in the History of Mathematics: Essays on the Historical Interpretation of
Mathematical Texts, edited by Niccolò Guicciardini © 2021 Cambridge University Press.
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theory of infinite series. Certain concepts occupy a fundamental place in

the modern subject, but do not appear in the work of either Euler or his

contemporaries. In the case of variational calculus there is the concept of

the invariance of the variational equations; in the case of infinite series

there is the concept of summability.While both concepts are a product of

research since the later part of the nineteenth century, modern historical

commentators have discerned the presence of intuitions or embryonic

ideas of invariance and summability in Euler’s writings. Our goal will

be to look more closely at what Euler did and to evaluate the historical

claims being made for his mathematical prescience.

8.2 Euler and the invariance of the variational equations
8.2.1 Euler’s variational equation

In 1744 Euler published a major book on what would later be called the

calculus of variations, his Methodus Inveniendi Lineas Curvas Maximi
Minimive Proprietate Gaudentes (hereafter referred to as Methodus In-
veniendi).1 In Chapter 2 of this work we are given the general problem
of finding the curve that maximizes or minimizes a definite integral∫ b

a
Zdx, where Z is a function of x, y, and p = dy

dx . The curve is given

in an orthogonal Cartesian system, depicted in Figure 8.1. Suppose that

dZ = Mdx + Ndy + Pdp. Through a process of reasoning that involved
disturbing a single ordinate of the curve, Euler was able to show that the

optimizing curve satisfies the differential equation N − dP
dx = 0. In mod-

ern notation this equation is written as ∂Z
∂y − d

dx
∂Z
∂y′ = 0, and is known

as the Euler equation or the Euler–Lagrange equation for the variational

problem.

In §33 of Chapter 2 Euler considers the problem of the shortest dis-

tance between twopoints in the plane. In an orthogonal coordinate system

the differential element of path length is
√

(dx2 + dy2) =
√

(1 + pp)dx.2

Hence Z =
√

(1 + pp) and the length of a curve joining the two points is∫ b

a

√
(1 + pp)dx.We have dZ = p√

(1+pp)
dp and the equation N− dP

dx = 0

1 For the development of Euler’s researches leading up to this work see Fraser (1994).
2 The derivative p is given by Euler in the form pdx = dy. An oddity of his notation is that he
writes dx2 and dy2, but always writes pp rather than p2. Thus in §20 of Chapter 1 we have√

(dx2 + dy2) =
√

(1 + pp)dx.
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Figure 8.1 Euler (1744, Tabula I, Fig. 4).

reduces to
p√

(1+pp)
= constant, or p = constant, which is the equation of

the line y = a + nx, where a and n are constants.
In the fourth chapter of the Methodus Inveniendi Euler begins with a

proposition, the intent of which is to assert a very wide interpretation for

the methods he had introduced in the earlier chapters. He observes that

if we have any equation between two variables x and y, we can always

consider these variables as the orthogonal coordinates of a curve defined

by the equation. Hence if we are given a function Z of x, y, and p (where
p = dy

dx ) we can apply the earlier methods to find the particular equation

between y and x (the function y of x) that maximizes or minimizes the
integral

∫ a

a0
Zdx. In a corollary Euler elaborates on the significance of

this finding:

Therefore the method previously presented may be applied widely to find the

equations between the coordinates of a curve, so that the expression
∫

Zdx is
a maximum or minimum. Indeed, it extends to any two variables, whether they

belong to any given curve, or are only conceived of in analytical abstraction3

(Euler, 1744, p. 130).

Euler is observing that logically his methods do not depend on any

particular geometric coordinate system but are part of pure analysis.

In examples that follow in the chapter, Euler (1744, pp. 134–144)

illustrates this conclusion by deriving the variational equation for exam-

ples involving curves given in non-orthogonal coordinate systems. The

first example concerns the problem of the shortest distance between two

3 “Methodus ergo ante tradita multo latius patet, quam ad aequationes inter coordinatas curvarum

inveniendas, ut quaepiam expressio
∫
Zdx fiat maximum minimumve. Extenditur scilicet ad

binas quascunque variabiles, sive eae ad curvam aliquam pertineant quomodocunque, sive sola

analytica abstractione versentur.”
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Figure 8.2 Euler (1744, Tabula I, Fig. 7).

points, where the problem is formulated in polar coordinates. In Figure

8.2, it is necessary to find the curve joining the points A and M of least

length. Euler sets the angle ACM equal to x, and the radius CM equal

to y. In the triangle nmM we have Mn = ydx and mn = dy, so the
infinitesimal pathlength Mm is Mm = dx

√
(yy + pp). Thus, the length

along the curve from A to M is∫
dx
√

(yy + pp),

where the integral is evaluated from x = 0 to the angle x corresponding
to the point M . With Z =

√
(yy + pp) and dZ = Mdx + Ndy + Pdp we

have

M = 0, N =
y√

(yy + pp)
, P =

p√
(yy + pp)

.

Because Z does not contain x we see immediately that a first integral

of the equation N − dP
dx = 0 is Z + C = Pp, where C is a constant.4

Given the expressions for Z and P above this equation may be simplified

4 Euler is using the result that if Z = Z (y, y′) does not contain x then the equation ∂Z
∂y − d

dx
∂Z
∂y′ =

0 is integrable. We have

dZ

dx
=

∂Z

∂y
y′ + ∂Z

∂y′ y
′′ +

d( ∂Z
∂y′ )

dx
y′ + ∂Z

∂y′ y
′′ =

d( ∂Z
∂y′ y

′)
dx

.

Hence Z +C = ∂Z
∂y′ y

′, whereC is a constant.
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to
yy√

(yy+pp)
= const = b. The triangles Mnm and CPM are similar

and we have the proportional equality Mm : Mn = MC : CP. Letting
Mm = dx

√
(yy + pp),Mn = ydx,CM = y we obtain CP = yy√

(yy+pp)
,

which is a constant. Hence the perpendicular CP from C to the tangent

to M is a constant, and the curve AM must be a straight line.5 Since two

constants are available in the integration of Ndx − dP = 0 the straight
line AM is a solution to the problem.6

8.2.2 Invariance in calculus of variations and analytical dynamics
The examples just presented are at the center of some modern claims

about Euler’s intuitive familiarity with the concept of invariance. In-
variance (or covariance) has different meanings in different areas of

mathematics – algebraic forms, projective geometry, differential geome-

try, topology and functional analysis, to name a few. As far as variational

equations are concerned, the relevant historical domain of research in-

volved work in analytical mechanics and the calculus of variations in the

second half of the nineteenth century. The subject of invariance came to

the fore in the researches of Carl Jacobi in analytical dynamics. Jacobi

began with the canonical equations of motion and considered transfor-

mations of the variables that would preserve the canonical form of these

equations. He was able to show that such transformations can be given

in terms of what became known as a generating function. The methods

and ideas he pioneered were taken up further by researchers in celestial

mechanics, most importantly byHenri Poincaré, the Swedish astronomer

Ludwig Charlier, and the English mathematician Edward Whittaker. A

key step was to show that a solution is effected by taking the generat-

ing function to be a solution of the Hamilton–Jacobi partial differential

equation.

In the early years of the twentieth century German physicists working

in quantum physics realized that canonical transformations and the asso-

ciated Hamilton–Jacobi theory provided exactly the mathematical tools

needed to investigate the physical systems that were of interest to them.

The physicist Arnold Sommerfeld (1923, pp. 555–6) wrote: “Up to a

5 In modern terminology CM and CP are the pedal coordinates of the point M on the curve

AM . This terminology was not used by Euler.
6 Today we would integrate

yy√
(yy+pp)

= constant and obtain a solution of the form y = A
cos x+B

for the polar-coordinate equation of the straight line joining A to M .
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few years ago it was possible to consider that the methods of mechan-

ics of Hamilton and Jacobi could be dispensed with for physics and to

regard it as serving only the requirements of the calculus of astronomic

perturbations and the interests of mathematics.” As a result of the rapid

development of quantum theory the situation had changed dramatically.

Sommerfeld continued: “. . . it seems [today] almost as if Hamilton’s

method was expressly created for treating the most important problems

of physical mechanics.”

In twentieth-century literature on mechanics, canonical transforma-

tions occupy a prominent place. However, the subject in the early years

of the century was a peripheral one within the calculus of variations. It

did not appear at all in Oskar Bolza’s comprehensive Vorlesungen über
Variationsrechnung of 1909, although this book did deal in detail with
some parts of Hamilton–Jacobi theory. In the years following the pub-

lication of this book, the situation began to change, as mathematicians

turned their attention to those transformations that were of such inter-

est to celestial mechanicians and quantum physicists. One such figure

was the Munich mathematician Constantin Carathéodory, who wrote a

chapter on the calculus of variations for Phillip Frank and Richard v.

Mises’s 1925 Die Differential- und Integralgleichungen der Mechanik
und Physik. Consider a dynamical problem described by canonical equa-

tions of motion for a given coordinate system. A transformation from

this set of coordinates to a new set of coordinates is canonical if the

equations of motion in the new coordinate system are also canonical. A

key result proved by Carathéodory was that the canonical equations of

motion are preserved under a specified class of transformations, given in

terms of a suitable generating function. The invariance of the canonical

equations under a canonical transformation is the fundamental key to the

utility of Hamilton–Jacobi methods in describing dynamical systems.7

In 1935 Carathéodory published his Variationsrechnung und Partielle
Differentialgleichungen Erster Ordnung, which contained his distinctive
blend of partial differential equations, tensor analysis and the calculus

of variations. The author displayed an incomplete grasp of the history,

apparently unaware of Hamilton’s dynamical memoirs of the 1830s that

stimulated Jacobi’s famous 1837 paper. He seemed to believe that Hamil-

7 There are other forms of invariance that are of interest with respect to canonical transforma-

tions, such as the Poincaré integral invariants and Lagrange and Poisson brackets as canonical

invariants (see Goldstein, 1950, pp. 247–58). The invariance that is germane to our discussion

is the property of preserving the form of Hamilton’s equations under transformation.
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ton’s contributions were solely to optics, and there is nothing to indicate

any substantial familiarity with Jacobi’s original papers.8 The overall

aim of the book was to investigate in a systematic way connections be-

tween partial differential equations and variational analysis. In part one

on partial differential equations he developed the theory of canonical

transformations, and presented a rather abstract and difficult-to-follow

proof of the invariance of the Lagrangian equations of dynamics under

a transformation (more precisely, he presented a general theorem from

which this result is said to follow).9

Carathéodory was a cosmopolitan figure known for his facility with

languages and broad appreciation of culture. From the 1930s until the end

of his life he engaged in the study of the eighteenth-century history of the

calculus of variations leading up to Euler’s 1744 treatise as well as some

of Euler’s later memoirs on the subject. In his obituary of Carathéodory,

Oskar Perron (1952, p. 42) noted, “he understood masterfully how to

extract from the deficient methods of each period fruitful approaches

for the exact treatment of the problems raised.”10 Carathéodory himself

provided an elegant statement of the promise of history in an address

he delivered in 1936 to a meeting of the Mathematical Association of

America at Harvard University:

It may happen that the work of the most celebrated men may be overlooked. If

their ideas are too far in advance of their time, and if the general public is not

prepared to accept them, these ideas may sleep for centuries on the shelves of

our libraries. Occasionally, as we have tried to do to-day, some of them may be

awakened to life. But I can imagine that the greater part of them is still sleeping

and is awaiting the arrival of the prince charming who will take them home

(Carathéodory, 1937, p. 233).

Carathéodory published two scholarly articles on the early history of

the calculus of variations, but his main contribution was an introduction

he wrote to Euler’s Methodus Inveniendi, an undertaking carried out
8 Carathéodory incorrectly gives the year of Jacobi’s paper as 1836. He could not have been

very familiar with the paper, since Jacobi’s opening sentence consists of an acknowledgment

of Hamilton’s papers on mechanics of 1834 and 1835. Carathéodory’s neglect of history here

stands in contrast to his scholarly investigations at this time of the early-eighteenth-century

history of the calculus of variations.
9 In a review of the 1965 English translation of part one of Carathéodory’s book, Richard Courant

(1967)writes “The original [1935] book is amasterpiece ofmathematicalwriting.”An historical

appraisal of its contents and influence remains to be written.
10 “verstand er es auch meisterhaft, aus den unzulänglichen Methoden jener Zeit den frucht-

baren Kern herauszuschälen und wertvolle Ansätze zu finden zu einer exakten Behandlung der

aufgeworfenen Probleme.”
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in what must have been difficult circumstances and connected to the

planning for the re-publication of Euler’s book in series one of his

Opera omnia. Carathéodory completed this introduction by 1946, but
volume 24 of the Opera with this introduction would not appear until
1952, two years after his death in February of 1950.

Carathéodory’s account of Euler’s book tended to have a moderniz-

ing quality, at times attributing to Euler twentieth-century methods and

ideas that were understood to be implicit or at least foreshadowed in

his analysis. This tendency is apparent in his account of Example 7 to

Proposition III from Chapter 2 of Euler’s 1744 book. The problem con-

sists ofmaximizing orminimizing the integral
∫ b

a
(x2+y2)n

√
(1 + p2)dx,

where p = dy
dx .

11 Euler calculates N and P and considers the equation

N − dP
dx = 0 for three cases: n = 1, n = 1

2
, and n = 3

2
. He shows in each

case that the differential equation can be integrated by quadratures. In

his solution Euler introduces complex numbers in order to integrate ra-

tional expressions in a way that had become fairly standard by that time.

According to Carathéodory (1952, p. xxxvii), this problem today would

be reduced by means of a conformal mapping to the problem of the

shortest distance in the plane. While Carathéodory conceded that Euler

did not notice this fact, he found it “astonishing” that in his introduction

of complex numbers in the solution Euler followed a method that “in

principle agrees with the one that we would use today.”12

Carathéodory provided a classification of the different variational

11 This problem for n = 1 was analyzed in parametric form by Tonelli (1923, pp. 430–435),

who referred to Euler. Tonelli presented it as a minimization problem for moment of inertia.

Carathéodory (1935, pp. 307–309) formulated the general problem in the complex plane where

the real and complex parts are given parametrically. Euler presents the variational integral in

the form
∫

(xx + yy)ndx
√

(1 + pp).
12 “. . . der in Prinzip mit demjenigen, den man heute benutzen würde, übereinstimmen.” The

following is a reconstruction of the train of thought that may have led Carathéodory to this

improbable conclusion. In Section IV of his introduction Carathéodory began by describing

a paper which Euler wrote near the end of his life and which was published in Euler (1810).

Carathéodory refers to it only as E 731. In fact it was written some 35 years after the publication

of theMethodus Inveniendi. The problem under consideration is a generalization of Example 7

from Chapter 2 of the 1744 book. Euler showed how the use of polar coordinates simplifies the

integration. In the introduction Carathéodory then continued with a discussion of Example 7.

Unmentioned by Carathéodory was the fact that he had analyzed in some detail a version of

Example 7 in his 1935 book, where he took a complex number in polar form and transformed

the real and imaginary parts to end up with an expression (in parametric form) formally similar

to the one in Example 7. He was apparently impressed by the fact that in the 1810 paper Euler

had used polar coordinates, that he himself used the polar representation of complex numbers

in his 1935 book, and that Euler had in 1744 in his solution to Example 7 in the Methodus
Inveniendi used complex numbers to integrate rational expressions. These considerations seem
to have led Carathéodory to the above conclusion.
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problems that Euler addressed. The problem of the shortest distance

between two points in a polar-coordinate system, discussed above, was

grouped with other examples fromChapter 4 of theMethodus Inveniendi
under the title “Covariant transformation of variational problems.” He

wrote that these examples “may be viewed as evidence for the covari-

ance of Euler’s equations for arbitrary coordinate transformations.”13

He concluded with the observation: “Thus, in Euler’s book, we find the

first indications of a theory that has only been systematically developed

in our time.”14

In his History of the Calculus of Variations Herman Goldstine (1980,
p. 84) was inspired to include a whole section of the chapter on Euler un-

der the heading “Invariance Questions.” Here are presented the examples

from the first part of Chapter 4 of the Methodus Inveniendi. Goldstine
acknowledged a suggestion he had received from André Weil that “Eu-

ler’s interest in this topic probably stemmed from Leibniz’s inquiries

into the behavior of
∫
ydx under coordinate transformations.” Goldstine

stated, echoing Carathéodory, “It is truly in keeping with Euler’s genius

that he should have worked at ideas that were only to be satisfactorily

and completely discussed in modern times.”

8.2.3 Some critical reflections

Euler first formulated and proved fundamental theorems about varia-

tional integrals with a general integrand function Z (x, y, y′). The further
elaboration of this theory took the form of the derivation and solution

of the Euler variational equation for a range of problems. A variational

problem is posed and gives rise to an integrand function Z (x, y, y′). It is
necessary to find y = y(x) such that

∫ b

a
Zdx = an extremum. If we for-

mulate the problem analytically in other variables u and v in a different
coordinate system then the variational problem gives rise to an inte-

grand function W (u, v, v′) and it is necessary to find v = v(u) such that∫ b

a
W du = an extremum. One always begins with the problem, followed

by an analytical description, followed by the Euler variational equation,

followed by a solution.

13 “können als Proben für die Kovarianz der EulereschenGleichungen bei beliebigenKoordinaten-

Transformationinen bewertet werden.”
14 “Somit finden wir im Eulerschen Buche die ersten Ansätze zu einer Theorie, die erste in unseren

Tagen systematisch entwickelt worden ist.”
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One could begin with the condition
∫ b

a
Zdx = an extremum, indepen-

dent of any motivating problem and ask if a transformation of variables

from x, y to u, v leads to a differential equation that may also be solved.
This is apparently what Carathéodory and Goldstine had in mind when

they credited Euler with having the intuition or some inkling of modern

ideas of invariance. The problem of the shortest distance between two

points was formulated in a standard Cartesian coordinate system and

reduced to a differential equation by the variational process. The same

result was then obtained using a polar-coordinate system, and again re-

duced to a differential equation and solved. While Euler did not employ

a transformation from Cartesian to polar variables, the ideas of transfor-

mation and invariance were implicit in his analysis. The difficulty with

this interpretation is that it projects onto the original analysis a way of

thinking about the subject that is not present either as a potential idea or

as an unrealized intuition.

As a point of comparison consider canonical transformations inHamil-

ton–Jacobi theory. For any dynamical system one can take a set of coordi-

nate variables and investigate the system fromfirst principles using them.

One would end up with a Hamiltonian and canonical equations for these

variables. No transformations are involved. Why then are transforma-

tions useful? The answer is that one can find canonical transformations

using a generating function, and in the new coordinates so obtained the

equations will be canonical and may be easier to integrate. Indeed, by

taking the generating function to be a solution of the Hamilton–Jacobi

partial differential equation for the problem, one is able to transform

the original coordinates to ones that are constant, and the problem is

solved. The invariance of the canonical equations under transformations

provides a coherent and effective tool for integrating the differential

equations that describe the dynamical system.

The situation with the Euler equation is rather different. In textbooks

on the calculus of variations, the Euler equation is typically obtained for

a given problem using a suitable selection of variables. There seems to

be no advantage in beginning with a set of variables and transforming

to new ones to obtain a transformed Euler equation. One could simply

formulate the problem directly in terms of the new variables.

It is certainly of mathematical interest to investigate the invariance of

the Euler equation for a given set of variables, independent of how the

variational integral was obtained or any geometric or physical signifi-
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cance one attaches to the variables. No one in the eighteenth century did

this, and few modern textbooks do it. In 1969 the Austrian–American

mathematician Hans Sagan published a textbook in which he gave a

detailed account of the invariance of the Euler equations.15 Having de-

veloped the basic variational theory in the usual way as part of real

analysis, Sagan (1969, p. 108) makes the remarkable and incorrect as-

sertion that the derivation of the Euler equation “was essentially based

on the fact that the coordinates were cartesian coordinates.” Neverthe-

less, he does provide a detailed and useful account of the issues – not

altogether simple – arising in any transformation and states conditions

under which the families of comparison arcs in the two systems are

comparable. Sagan (1969, pp. 108–115) shows that under “fairly liberal

conditions on the integrand, the extremal and the transformation itself”

invariance will hold.

8.2.4 Euler and the foundations of analysis
In Leibniz’s original paper of 1684 on the calculus he considered the

problem of finding the path followed by a light ray in going from two

points A and B across an optical interface. The time of transit is con-

nected by an equation to a spatial coordinate variable. The relationship

between the time and the spatial variable can then be expressed by a

curve, and one is able to apply the differential algorithm that he devel-

oped for curves. In the early years of the next century mathematicians

such as Pierre Varignon used a comparison orthogonal Cartesian graph

in investigating curves given in polar coordinates. There was a pervasive

use of geometrical diagrams and representations in investigating what

today would be called functional relationships between variables. (See

Fraser (2003) for more details.)

The Methodus Inveniendi was an important step in Euler’s program
to separate analysis from geometry, and here lies the significance of the

first part of Chapter 4 of that work. An equation between two variables

is the basic object of study, and could be conceived of and investigated

independently of any particular geometrical interpretation or coordinate

representation. Although the function concept is not explicitly intro-

15 Hans Sagan received his PhD in 1950 in calculus of variations from the University of Vienna

and had a career in the United States at North Carolina State University. He was a commentator

for the collected works of Johan Radon, Hans Hahn, and Karl Menger. See “History of the Math

Dept at NCSU,” at http://www4.ncsu.edu/~njrose/Special/Bios/Sagan.html.
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duced in 1744, it is certainly implicit in Euler’s investigation, and would

be the next step in the elaboration of his program of analysis.

8.3 Euler and divergent series
8.3.1 Convergence and rigor

In the years following the publication of theMethodus Inveniendi, Euler
pursued a range of subjects in analysis. A prominent area of investigation

was infinite series, mainly but not exclusively power series. Detailed

accounts were presented in his Introductio in Analysin Infinitorum of

1748 and in the multi-volume tomes on calculus that he published in

the 1750s. During this period he began to investigate in a more serious

way series that do not converge arithmetically but nonetheless have

interesting properties. Euler’s most productive effort in this direction

was a paper on divergent series that he submitted first to the Berlin

Academy in 1746, then to the St. Petersburg Academy in 1753, and

that was finally published in 1760 in the memoirs of the St. Petersburg

Academy for 1754–1755.16

Among modern mathematicians there is often a sense that Euler’s use

of divergent serieswas naïve and cavalier regarding convergence. Typical

is C.N. Moore’s (1932, p. 64) remark, “It is apparent that the procedure

of Leibnitz and Euler in the case of the simple series 1 − 1 + 1 − 1 + · · ·
is entirely out of harmony with present day notions of rigor in analysis.”

However, to one recent commentator Euler’s reputation has been unjustly

“tarnished” and should be redeemed “as a result of recent developments”

in the theory (Kowalenko, 2011, p. 370). According to this view, the route

to Euler’s vindication is provided by the modern theory of summability.
Summability, developed in the 1890s by Ernesto Cesàro and others,

established a rigorous foundation for divergent series. This leads to the

question: Was Euler a summability theorist ahead of his time?

8.3.2 Infinite series in the eighteenth century17

Early-eighteenth-century mathematicians had intuitive notions of con-

vergence and divergence. Due to the prevailing view that mathematics

was about quantity, one was free to obtain the “development” of any
16 The chronology for the publication of this paper is given by Faber (1935, p. lxxv).
17 In this section we follow Ferraro (2008) and Kline (1972).
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quantity in the form of a power series (assumed to converge for at least

some values of the variable) but could leave aside the question of con-

vergence until applying the series to a geometric problem. This principle

of “infinite extension” thus allowed for the formal manipulation of both

finite and infinite series to occur prior to questions of convergence. The

mid-century shift in calculus from its geometric foundation to a form of

algebraic analysis gave a further boost to mathematicians’ confidence in

formulas. Under this philosophy, the general applicability of any method

derived from the generality of its object. Since formulas were objectively
given as part of algebra, their generality of usage was assured, even if

this gave rise to divergent series. Formalism thus became untethered

from geometry while remaining subtly connected with intuitive notions

of quantity. As the most prolific practitioner of this new analysis, Euler’s

willingness to pursue formalism’s implications for infinite series brought

this tension to the foreground.

Consider the series 1 − 1 + 1 − 1 + · · · , which had been studied by
several mathematicians before Euler. Clearly it did not become infinite.

Grouping the terms (1−1)+ (1−1)+ · · · seemed to make the sum zero,

but when writing 1 − (1 − 1) − (1 − 1) − · · · it appeared the sum was 1.

In 1703, Guido Grandi argued that the series representation

1

1 + x
= 1 − x + x2 − x3 + · · ·

yields the answer 1
2
= 1 − 1 + 1 − 1 + · · · upon letting x = 1. Leibniz

concurred, but he made his case probabilistically: since the result was

either 0 or 1 depending on the number of terms summed, one should

take the answer to be the average. When Euler turned to this series, he

began with the expansion

1

1 − x
= 1 + x + x2 + x3 + · · ·

which he saw as a valid formal development of the “quantity” 1
1−x . Upon

letting x = −1, it yields 1
2
= 1 − 1 + 1 − 1 + 1 − · · · , in agreement with

Grandi and Leibniz. But Euler went on to let x = 2, which gave him

−1 = 1 + 2 + 4 + 8 + · · · . This put him in new territory, as the series is

no longer bounded but clearly divergent in the infinite sense. In a similar

vein, the substitution of x = −1 into the development
1

1 + x
= 1 − x + x2 − x3 + · · ·
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led Euler to write∞ = 1+2+3+4+· · · . Upon comparing these latter two
results, Euler concluded that −1 must be greater than ∞, hence ∞ must

serve as a kind of boundary between the positive and negative numbers.

These results were not without criticism even in his own time. Ferraro

(2008, p. 216) highlights the following comment Nicolaus Bernoulli

made to Euler in 1743, “I cannot persuade myself that you think that

a divergent series . . . provides the exact value of a quantity which is

expanded into the series.” Bernoulli’s caution may ring true to modern

mathematicians because of the hindsight afforded by the nineteenth

century’s turn from formalism to rigor (Fuss, 1843, pp. 701–702).18

8.3.3 Cauchy’s new definitions
The decline of formalism stemmedmainly from its limitations as ameans

of generating useful results. Moreover, as methods began to change, an

awareness of formalism’s apparent difficulties and even contradictions

lent momentum to efforts to rein it in. Euler had been confident that the

“out-there” objectivity of algebra secured the generality of his formal

techniques, but Cauchy demanded that generality be found within math-

ematical methods themselves. In his Cours d’analyse of 1821, Cauchy
rejected formalism in favor of a fully quantitative analysis. Rather than

the formulas themselves, the “quantities” became the individual values

of the expressions when the variable took on a certain value. Hence the

statement f (x) = g(x) was not a formal relationship holding for inde-
terminate x but was a quantitative statement holding only for specific

values of x. The statement 1
(1−x) = 1+ x+ x2+ x3+ · · · was true only for

the values for which the series converged. Otherwise (say, when x = 2)
it was meaningless. Cauchy specified that given the sum of the first n
terms of a series

sn =
n−1∑
i=0

un,

18 Commenting on the work of eighteenth-century mathematicians but referring specifically to

Euler, Kline (1983, p. 307) writes, “Their efforts to justify their work, which we can now

appraise with the advantage of hindsight, often border on the incredible.” Wonderment at the

reasonings of the mathematical masters of the past occurs not infrequently in modern historical

commentaries. Consider the following comments of James Pierpont (1928, p. 32) on Lagrange’s

expansion of functions by Taylor series: “When a modern reader looks over reasoning like this

and bears in mind that Lagrange was one of the greatest mathematicians of all time, he is

amazed. The great gulf that separates mathematical reasoning of to-day from that of date 1813

is brought home very clearly to him.”
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if the partial sums sn approach a limit s as n increases, then the series
converges with s as its sum. If the limit does not exist, the series diverges
and there is no sum. The question of convergence now came first, and

the manipulations the formalists had assumed valid for both finite and

infinite series now depended onwhether the series converged. Niels Abel

concurred with the new ideas and in a letter of 1828 to Bernt Holmboe

declared, “Divergent series are in general something very fatal, and it is

a shame to base on them any demonstration whatsoever. By using them,

one may draw any conclusion one wishes and it is these series that have

produced so many misfortunes and given birth to so many paradoxes”

(Abel, 1881, pp. 256–7).19

It should be noted that mathematicians in England and Germany con-

tinued to study divergent series well into the middle decades of the

nineteenth century. Eberhard Knobloch (2015, p. 501) has suggested

that the theoretical predilections of English formalists such as George

Peacock and Augustus DeMorgan were aligned with Euler’s conception

of divergent series. Certainly, the English formal school was more fa-

vorably disposed to divergent series than were the French rigorists. (For

a survey of these developments see Burkhardt (1910). Compare also

Fraser (2003, pp. 325–7).) However, it is fair to say that the mainstream

of analysis with its emphasis on rigor led as the nineteenth century

progressed to the marginalization of divergent series as an area of math-

ematical investigation. The notion that rigor rescued mathematics from

disarray has become a rather common view and might be considered a

part of the heritage of the modern mathematician, leading to the discom-
fort over Euler’s status. If one views the concepts “series” and “sum” as

cumulatively improving entities gradually unveiled for us over hundreds

of years, then one might well say that Cauchy’s refinements do eclipse

Euler’s results.20 However, Cauchy did not instill rigor by introducing
convergence, as if Euler had failed to consider it. Cauchy changed the

notion of what an infinite series is – no longer an algebraic object subject

19 “Les séries divergentes sont en général quelque chose de bien fatal, et c’est une honte qu’on ose

y fonder aucune démonstration. On peut démontrer tout ce qu’on veut en les employant, et ce

sont elles qui ont fait tant de malheurs et qui ont enfanté tant de paradoxes.” These sentences

are translated by Kline (1972, p. 973) as follows: “The divergent series are the invention of the

devil, and it is a shame to base on them any demonstration whatsoever. By using them, one may

draw any conclusion he pleases and that is why these series have produced so many fallacies

and so many paradoxes.”
20 This line of thought may even be natural to, say, a calculus teacher who needs to justify why

convergence matters.
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to formal manipulation, but a relationship between definite numerical se-

ries subject to convergence first. Euler and Cauchy had distinct notions

of “series,” so it is dubious to charge Euler with mere negligence.21

One might instead pivot to the idea that Euler’s reputation was unfairly

stained by “victors” who rewrote mathematics at his expense. Consider

Hardy’s (1949, p. 17) remark: “Mathematics after Euler moved slowly

but steadily towards the orthodoxy ultimately imposed on it by Cauchy,

Abel and their successors, . . . after Cauchy, the opposition seemed defi-

nitely to have won.” The belief that Euler’s successors treated him poorly

might lead the historian today to assess his theory of series in a more

sympathetic way.

8.3.4 Summability theory
The predominant mathematical trend in the nineteenth century was to

support Cauchy’s thinking about infinite series. The sum of a convergent

series existed and the sum of a divergent series did not exist. To be sure
there were English and German exceptions, and their researches pro-

vided impetus to continue to think about divergent series. Also notable

was evidence for the utility of divergent series, such as in the asymptotic

approximation of certain functions. Research in complex analysis (then

called the theory of analytic functions) suggested a possible need. Con-

sider an analytic function represented by a power series on an open disk

but not for values on the disk’s boundary: a new concept of “sum” would

allow for the assignment of a value for the function on the boundary.

Alongside these new research concerns, shifts occurred in the foun-

dational methods of mathematics. Mathematicians began to see their

theories not as descriptions of reality but as syntactic structures whose

theorems were logical derivations from axioms and definitions. Support

for this conception came from the non-Euclidean geometries, which

showed that the postulates of Euclid were not necessary to produce a

consistent geometry. Kline (1972, p. 1097) writes: “The mathemati-

cians slowly began to appreciate that mathematics is man-made and

that Cauchy’s definition of convergence could no longer be regarded

21 Fraser (1989, pp. 323–4) notes, “The significant change in the theory of infinite series, however,

was not so much that classical analysis brought rigour to the subject by paying attention to

convergence, but that an arbitrary series whose individual terms were specified at will now

became, subject to convergence over some domain, implicitly an object of mathematical study.

The understanding of what an infinite series was had undergone a substantial transformation.”
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as a higher necessity imposed by some superhuman power.” The first

suggestive attempts to produce a new theory of series came from Ferdi-

nand Georg Frobenius (1880) and Otto Hölder (1882). In 1890, Ernesto

Cesàro provided the first modern concept of the sum of a divergent

series, known as the theory of summability.22

According to the theory one is free, in principle, to select any desired

procedure P for the summation of a series. This choice is merely conven-

tional and has no intrinsic connection to the series. There is no sense of

finding the “true” sum or any anchoring to an external reality. Hence the

sum of a series “exists” (or not) only relative to the procedure P; if it does

exist, it is called the P-sum. In practice, P should give fruitful conse-

quences. For example, it is desirable that the P-sum agree with the usual

sum for a convergent series – this is called regularity. Consider, then,
the summation of the previously considered series 1−1+1−1+ · · · ac-
cording to the following method. Given the series sn = u0+u1+ · · ·+un,
if

lim
n→∞

s0 + s1 + · · · + sn
n + 1

exists and is equal to s, then we call s the (C, 1) sum of the series (C

stands for Cesàro). Now considering our series sn =
∑n

i=0(−1)i we see
that the “sum of the partial sums” is

s0 + s1 + · · · + sn =
{
1 + 0 + 1 + · · · + 1 = n+2

2
for even n

1 + 0 + 1 + · · · + 0 = n+1
2

for odd n
.

But in either case we get

lim
n→∞

s0 + s1 + · · · + sn
n + 1

=
1

2

so the (C, 1)-sum of the series is 1
2
. This agrees, of course, with Euler’s

answer.

For a second example (Hardy, 1949, pp. 7–8), consider another def-

inition as follows. If the power series
∑

anxn converges in the usual

sense for small x and defines a function f (x) (subject to some additional
conditions) and f (1) = s, then we call s the E-sum of the series

∑
an

(the symbol E is for Euler). But then for

f (x) =
1

1 − 2x
= 1 + 2x + 4x2 + 8x3 + · · ·

22 This exposition follows Ferraro (1999).
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we have s = f (1) = −1, so the E-sum of the series 1+ 2+ 4+ 8+ · · · is
−1, which again agrees with Euler’s answer.
Despite these advances, Abel’s distrust of divergent series seems to

have remained fairly widely held. In the preface to Hardy’s Divergent
Series (1949, p. vii) J.E. Littlewood remarked: “In the early years of
the century the subject, while in no way mystical or unrigorous, was
regarded as sensational, and about the present title, now colourless,

there hung an aroma of paradox and audacity.” However, by the time of

Hardy’s volume, summability was well established, making divergent

series mundane and leading to a reassessment of past results. In fact,

Hardy (1949, p. 47) states that Leibniz, without actually specifying a

definition, nevertheless employed precisely the (C, 1) procedure, and that
the E-procedure is based on Euler’s principles. His remarks are those of

a mathematician who tends to see distant predecessors, in Fried’s (2018)

parlance, as “mathematical colleagues.” Thus Hardy (1949, p. 15) says,

“It is a mistake to think of Euler as a ‘loose’ mathematician, though

his language may sometimes seem loose to modern ears; [it] somehow

suggests a point of view far in advance of the general ideas of his time

. . . language which might almost have been used by Cesàro or Borel.”23

Hardy’s perceptionwould be echoed in historians that followed him. In

the article onEuler in theDictionary of ScientificBiographyA.P.Yushke-
vich (2008, p. 473) writes:

But he also was a creator of new and important notions and methods, the

principal value of which was in some cases properly understood only a century

or more after his death. Even in areas where he, along with his contemporaries,

did not feel at home, his judgment came, as a rule, from profound intuition

into the subject under study. His findings were intrinsically capable of being
grounded in the rigorous mode of demonstration that became obligatory in the
nineteenth and twentieth centuries [emphasis added].

Euler biographer Ronald Calinger (2016, p. 93) observes that “In some

cases it would take a century for scientists to grasp the proper use of his

procedures.” On the subject of infinite series Kline (1972, p. 453) lauds

Euler’s formal manipulations.

It is certainly true that Euler displayed a remarkable mathematical

inventiveness and employed a range of methods in his study of diver-

gent series. Kline (1972, p. 1110) concludes that Euler’s results awaited

23 Hardy’s remarks here are also quoted by Varadarajan (2006, p. 130), who adds, “It is therefore

clear that Euler had an understanding of the issues involving divergent series that was very

much ahead of his time.”
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only a rigorous confirmation, which vindicated them. He states directly:

“With hindsight we can see that the notion of summability was really

what the eighteenth- and early nineteenth-century men were advancing.”

These comments seem to ascribe to Euler an unaccountable prescience

that saw the “right” foundational theory on some imagined future hori-

zon. However, as we shall now try to show, the approach of a modern

mathematician differs substantially from that of an eighteenth-century

formalist.

8.3.5 Different kinds of definition
The contrast in understanding between an eighteenth-century mathe-

matician such as Euler and a modern researcher appears most strikingly

in the notion of definition. On this point, Hardy concedes the method-
ological gulf between Euler and himself. Regarding eighteenth-century

mathematicians he says:

They had not the habit of definition; it was not natural to them to say, in so

many words, ‘by X we mean Y ’. . . Mathematicians before Cauchy asked not
‘How shall we define 1 − 1 + 1 − · · · ?’ but ‘What is 1 − 1 + 1 − · · · ?’, . . . This
habit of mind led them into unnecessary perplexities (Hardy, 1949, p. 6).

Similarly, Konrad Knopp (1928, p. 457) puts his finger on the issue: “In

our exposition, the symbol for infinite sequences was created and then
worked with; it was not so originally, these sequences were there, and
the question was, what could be done with them” (emphasis in original).

For mathematicians of the modern era, a symbol has meaning only when

one assigns it such. Definitions are acts of the will, which construct a
priori the very objects of study and thus cannot be “true” or “false.” One
defines basic terms (or primitives) implicitly via the axioms, while other

terms are defined explicitly simply as symbolic abbreviations. A theory

consists of symbols arranged in a syntactic structure, whose elements

can take on any interpretation one wishes; hence, for example, one is

free to define a summation procedure P and see what happens.

This practicewas foreign toEuler. Eighteenth-centurymathematicians

did make definitions, yet they were of the “Euclidean” sort, where the

appropriate response to their question “What is X?” was a descriptive
definition that gave an accurate account of X’s true nature. Objects of
mathematical study were taken to have a real existence in the world. The

purpose of a definition was to specify and clarify an object to enable
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its investigation.24 Thus while a P-sum is self-consciously “man-made,”

an Eulerian sum is an attempted observation of nature. Euler’s thinking

was therefore more in line with Cauchy’s than with that of a modern

summabilist. Both Euler and Cauchy wielded the “Euclidean” notion of

definition as elucidation of “the unique and necessary ‘truth’ that already

existed in nature” (Ferraro, 2008, p. 222). For Euler, objective truth was

a necessary criterion for a proper definition.

8.3.6 Euler’s definitions
Euler’s formalism derived from the objective reality of the rules of

algebra. Consider his treatment of the statement d(log x) = dx
x . Leibniz

held that this is meaningful only for positive real x, but Euler disagreed:

For, as this calculus concerns variable quantities, that is, quantities considered

in general, if it were not generally true that d · l x = dx
x , whatever value we give

to x, either positive, negative, or even imaginary, we would never be able to
make use of this rule, the truth of the differential calculus being founded on the

generality of the rules it contains (Euler, 1751, p. 143, translation by Fraser,

1989, p. 331).25

For Euler, the applicability of the calculus stemmed from the general

character of its formulas and rules, which were true and given as part of

the subject of mathematics. Yet with analysis detached from its original

anchoring in geometry, the status of its objects of study was not entirely
clear. Euler’s results on divergent series had strained the connection

between formalism and “quantity” and required clarification. But Euler

did not make an arbitrary definition subject only to logical consistency;

this would have been unthinkable. Instead, he sought a concept of “sum”

that would avoid disputes and provide a basis for further research; it must

not be arbitrary. Euler dealt with the matter in his Institutiones calculi
differentialis (1755) and De seriebus divergentibus (1760). His finding
that−1 exceeded∞was sensibly quantitative, he said, on the grounds that
infinity, in analogy with zero, was a transition from positive to negative.

This could be defended by the “law of continuity and geometry.” But

24 Naturally Hardy does not consider such an act to be a “definition,” as the meaning was different

by his time.
25 “Car comme ce calcul roule sur des quantités variables, c. à d. sur des quantités considérées en

général, s’il n’etoit pas vrai généralement, qu’il fût d · lx = dx
x , quelque quantité qu’on donne

à x, soit positive ou négative, ou même imaginaire, on ne pourrait jamais se server de cette

régle, la verité du calcul differential étant fondée sur la généralité des regles, qu’il renferme.”
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upon seeing that

1

(1 − x)2
= 1 + 2x + 3x2 + 4x3 + · · ·

yields 1 = 1+4+12+32+ · · · for x = 2 but gives∞ = 1+2+3+4+ · · ·
for x = 1, it now seemed that even 1 must be greater than ∞, which
was a clear difficulty. Hence Euler (1755) admitted that a basically

quantitative understanding of divergent series could not be sustained.

In his Institutiones calculi he extended the notion in a more formal

direction:

Let us say, therefore, that the sum of any infinite series is the finite expression,

by the expansion of which the series is generated. In this sense, the sum of the

infinite series 1− x + x2 − x3 + · · · will be 1
(1+x) , because the series arises from

the expansion of the fraction, whatever number is put in place of x.

This statement agrees with the above comment about d(log x). He con-
tinues:

If this is agreed, the new definition of the word sum coincides with the ordinary

meaning when a series converges; and since divergent series have no sum,

in the proper sense of the word, no inconvenience can arise from this new

terminology. Finally, by means of this definition, we can preserve the utility of

divergent series and defend their use from all objections (Euler, 1755, pp. 78–9,

translation by Bromwich, 1908, p. 266).26

Barbeau and Leah (1976, p. 142) interpret these passages to mean

that Euler “distinguishes between convergent and divergent series along

modern lines . . . Thus his assignment of a sum to a divergent series is a

matter of conscious decision, made on pragmatic grounds and defensible

by the consistency of mathematical analysis.” They note that while Euler

often is perceived as misunderstanding infinite series, his ideas were

vindicated by Hardy. It is certainly true that Euler was creative and

versatile in his investigation of such series. Yet there is a clear difference

between Euler’s thinking and Hardy’s. Euler was not seeking an artificial

26 “Dicamus ergo seriei cuiusque infinitae summam esse expressionen finitam, ex cuius evolutione

illa series nascatur. Hocque sensu seriei infinitae 1+x+x2+x3+&c. summa revera erit = 1
1−x ,

quia illa series ex huius fractionis evolutione oritur; quicunque numerus loco x substituatur. Hoc
pacto, si series suerit convergens, ista nova vocis summae definitio, cum consueta congruet; &

quia divergentes nullas habent summas proprie sic dictas, hinc nullum incommodum ex nova

hac appellatione orietur. Denique ope huis definitionis utilitatem serierum divergentium tueri,

atque ab omnibus iniuriis vindicare poterminus.” Difficulties with this definition in the context

of some of Euler’s posthumously published work on trigonometric series are discussed by Faber

(1935, p. lxiv). See also Knobloch (2015, p. 501).
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way to retain the use of divergent series but was trying to capture what

a “sum” really was, to clarify the nature of the objects of his study. For

Euler the sum of a series was a function if and only if the series resulted

from the formal development of that function by the principle of infinite

extension. He defended his definition:

If therefore we change the accepted notion of sum to such a degree that we say

the sum of any series is a finite expression out of whose development that series

is formed, all difficulties vanish of their own accord. For first that expression

from whose expansion a convergent series arises displays the sum, this word

being taken in its ordinary sense; and if the series is divergent, the search cannot

be thought absurd if we hunt for that finite expression which expanded produces

the series according to the rules of analysis27 (Euler, 1760, p. 212, translation

by Barbeau and Leah, 1976, p. 148).

Again, a cursory reading might see Euler’s comments as making

an arbitrary definition. But there is a distinction: Euler’s definition is

grounded in the “rules of analysis”. As he saw it, the true meaning of

“sum” had to accommodate divergent series. He believed that the use of

divergent series could never lead to an error (Ferraro, 2008, p. 225).

Euler was trying to study the objects that nature had thrust upon him,

by making and testing hypotheses. An example of this heuristic is his

consideration of the series

s = x − (1!)x2 + (2!)x3 − (3!)x4 + · · ·
which diverges for all x except 0. This series formally satisfies the differ-
ential equation ds + sdx

x2
= dx

x ; however, the equation can be integrated

to obtain the solution

s = e
1
x

∫ 0

x

e
−1
t

t
dt .

Euler maintained that the infinite series must be the expansion of this

solution. Letting x equal 1 we obtain a value for the divergent hypergeo-
metric series of alternating factorials:

1 − 1! + 2! − 3! + · · · = e
∫ 1

0

e
−1
x

t
dt,

27 “Si igitur receptam summae notionem ita tantum immutemus, ut dicamus cuisque seriei sum-

mam esse expressionemfinitam, ex cuius evolutione illa ipsa series nascatur, omnes difficultates,

quae ab utraque parte sunt commotae, sponte evanescent. Primo enim ea expressio, ex cuius evo-

lution nascitur series convergens, eius simul summam, voce hac vulgari sensu accepta, exhibit,

neque, si series fuerit divergens, quaestio amplius absurda reputari poterit, si eam indagemus

expressionem finitam, quae secundum regulas analyticas evoluta illam ipsam seriem producat.”
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with the integral on the right being approximately 0.59637.28 This es-

timate for the sum of the series was confirmed by other methods Euler

introduced to find its value (the “Euler summability method” and partial

fractions; see Barbeau and Leah, 1976, pp. 149–53). Thus, he saw that

his definition of sumwas supported by results from different approaches,

confirming the objectivity and correctness of his proposal to define the

sum in this way.29

Despite this success, Euler’s attempt to capture the true nature of

divergent series encountered difficulties. In 1797 J.F. Callet pointed out

that given

1 + x
1 + x + x2

=
1 − x2

1 − x3
= 1 − x2 + x3 − x5 + x6 + · · · ,

when x = 1 we have

2

3
= 1 − 1 + 1 − 1 + · · · ,

which does not agree with Euler’s previously determined value 1
2
. In

some of his posthumously published writings Euler himself drew at-

tention to “paradoxes” that arise in the study of infinite series (see the

footnote 18 on page 236). These kinds of problems would eventually

lead to Cauchy’s attempt at a novel definition for the “true” sum of a

series. While Cauchy was initiating a new epoch in the history of cal-

culus, a belief in objective truth was something he continued to share

with the older researchers. By contrast the summabilists, whose work

traced the fault lines of nineteenth-century upheavals in the foundations

of mathematics, introduced definitions that had no concern with truth

beyond logical coherence.

28 Interestingly, although the power series diverges, nonetheless its successive partial sums give

rather good approximations of the integral for a given x. For example, if one lets x = 0.1 and
takes the successive partial sums of s one obtains a good approximation to the integral from
the seventh sum to the fourteenth sum; the sums remain close until the twentieth sum after

which the factorials begin to dominate and the expansion diverges. Euler did not comment on

the asymptotic character of the expansion although it is not unlikely that he was aware of it.

Considerations related to asymptoticity arise in the memoir Euler (1750); see Faber (1935,

pp. cxi–cxii) and Barbeau and Leah (1976, p. 150).
29 While philosophical analysis is beyond the scope of this chapter, it could be maintained that the

contents of Euler (1760) are characterizable in terms of the “quasi-empiricism” identified by

philosopher Hilary Putnam (1975). Another article that touches on Euler’s work on divergent

series in relation to the philosophy of mathematics and mathematics education is Schroter

(2018).
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8.4 Conclusion

There is more than one way to view the mathematics of the past. Ivor

Grattan-Guinness (2004) identifies a disjunction between heritage (our
tracking of a particular concept’s journey along the “royal road” from

the past to the present) and history (our attempt to explain why a certain
mathematical development happened). The “heritage” approach evalu-

ates past mathematics in light of recent theories, looking for similarities

that reveal the gradual unveiling of a mathematical concept. Conversely,

“history” instinctively looks for differences and discontinuities. Michael

Fried (2018) extends Grattan-Guinness’s idea by positing a spectrum of

viewpoints. He describesmathematicians, who see their work as entirely
coextensive to that of earliermathematicians;mathematician–historians,
trainedmathematicians to whommodernmathematics provides the priv-

ileged perspective with which to assess the past; and historians of math-
ematics, to whom “the past is a problem” that stands in contrast with the

present. Fried comments, “Faced with a mathematical text, historians of

mathematics try not to coordinate the text with the mathematics of the

present, but to set it out from the present; they try to make it not more

familiar but rather more strange, more foreign . . . bring out its identity.”

Fried notes that these sentiments are echoed in political philosopher

Michael Oakeshott’s concern for the past as past, and with each moment

of the past in so far as it is unlike any other moment.

Therefore, one’s assumptions andmode of thought becomeparamount.

When studying past mathematics, should we take it to be an historically

evolving subject or understand it as the unfolding of a timeless whole?

The mathematics teacher or theorist may view it in the latter way, at

least psychologically; mathematics (all of it) is what mathematicians do,

so it must possess common styles of thought, procedures, inferences,

and rules for mathematical advance. By contrast, history looks for dif-

ferences. A historian can remain agnostic on philosophy of mathematics

while an historically minded mathematician generally may not feel so

inclined. Each mode of thought has distinct objectives.

Historically speaking, then, the perception of Euler as a visionary may

obscure the actual character of his work and its foundational import. The

significance of the examples in Chapter 4 of the Methodus Inveniendi
derives from their place in Euler’s evolving program to separate analysis

from geometry, not in any glimpse of some future notion of invariance.
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The significance of Euler’s formal approach to divergent series is not

in the way it foreshadowed modern theories of summability, but rather

in the latitude it provided him to obtain actual numerical values for

divergent series. The modern conception of mathematical invariance or

summability, as well as the associated philosophical commitments, are

very different from Euler’s own beliefs and outlook.

Claims that Euler grasped invariance, or was a summabilist, thus are

anachronistic. On one hand, anachronistic approaches find productive

uses in the classroom. After all, we are able to recognize from our point

of view that both Euler and Hardy were engaged in studying “divergent

series.” Hence we may draw on “heritage” for didactic purposes – say,

to teach about convergence. Indeed, there is some appeal to tracing

the “history of a concept” – a directional journey from a “period of

indecision,” to the clear present. On the other hand, for one who takes

our modern concepts and methods to be correct, it is easy to slip from a

view that Euler ought to have used them to a claim that he did somehow
use them. It is then that anachronism reaches the end of its utility: a more

historical lens is required to help us see the “past as past” and understand

Euler’s achievements in their own context.
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