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Introduction 

In the 1730s and early 1740s Euler studied the statics of thin elastic 
bands or laminae, researches that he first began to publish in 1732 
and which he carried out as a member of the Academy of Sciences 
in St. Petersburg. His investigation centred on determining the 
shapes such laminae assume in equilibrium when subject to various 
loadings. In the case of principal interest, the “elastica” or “elastic 
curve”, external forces were supposed to act at the ends of the lamina 
while its weight was itself regarded as negligible. The differential 
equation of the elastica had been derived by Jakob I Bernoulli as 
early as the 1690s. Euler’s analysis was based on the study of a 
certain differential equation; from a later mathematical viewpoint 
one would say that he was considering the graphical solution of an 
elliptic integral. In the course of his investigation he obtained the 
“Euler buckling formula” yielding the maximum load an elastic 
column can sustain without bending. 

Euler presented his results in the first part of the appendix “De 
curvis elasticis” to his 1744 treatise on the calculus of variations, 
Methodus inueniendi curuas lineas. Daniel Bernoulli had suggested 
in a letter to Euler of 1742 that the equation of the elastica could 
be obtained by assuming a certain expression - in modern termin- 
ology it  would be called the strain potential energy of the elastica - 

* Craig G. Fraser, Institute for the History and Philosophy of Science and Technology, 
Victoria College, University of Toronto, Toronto, Ontario, Canada MSS IK7 

Crnruurus 1991 VOI 34 pp 21 1-246 



212 Craig C. Fraser 

is minimized in equilibrium. In the opening sections of the appendix 
Euler verified Daniel’s conjecture using methods from the calculus 
of variations. He proceeded to derive the same equation by known 
mechanical principles, thereby establishing the validity of the vari- 
ational procedure. The greater part of the appendix is devoted to 
an investigation by direct methods, unconnected to variational 
mathematics, of the mechanics of elastic laminae. It seems clear that 
Euler was using the variational treatise as an opportunity to publish 
these supplemental researches in the theory of elasticity. 

Euler’s “De curvis elasticis” has been described in the historical 
literature, primarily in relation to the more general development of 
the theory of elasticity in the 18th century.2 In addition to its 
importance as a contribution to mechanics his essay is historically 
noteworthy as a study in the interaction of mathematics and physics. 
His researches embody a style and a conception of mathematical 
physics characteristic of exact science in the early modern period, 
possessing numerous points of technical, conceptual and method- 
ological interest. The present paper attempts to further our under- 
standing of Euler’s science by critically examining that part of his 
theory devoted to classification, with particular attention to these 
points of interest. In adding to the existing commentary on his essay 
it strives to represent. the perspective that underlies his original 
investigation, emphasizing differences between his and the modern 
approach to the subject. 

Theory of Elasticity 1694-1 744 

In order to understand the background to Euler’s essay it  will be 
useful to consider briefly the character of research on elasticity in 
the early 18th century. The elastic behaviour of rods and beams 
was of interest during the period in two related but distinct problems 
of statics. In the problem of fracture one attempted to determine 
the maximum load that a beam of given material and dimensions 
can sustain without breaking. Typically it was assumed that the 
beam is attached firmly to a wall and that the rupture takes place 
close to the wall (Figure l(a)). In the problem of bending on the 
other hand one was concerned with determining the shape assumed 
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by a rod or lamina in equilibrium when subject to given external 
forces. In the case of the elastica these forces were assumed to act 
at the ends of the rod and cause a bending of the rod, as shown 
in Figure l(b). Galileo, Mariotte, Leibniz, Varignon and Parent 
obtained significant results on the first of these problems, while 
Jakob Bernoulli initiated study of the second. Euler’s own investiga- 
tion of the elastica grew directly from that of Bernoulli’s. 

The most significant characteristic of early work on elasticity was 
that it was carried out without the general theoretical perspective 
that is provided today by the concept of elastic stress. This concept, 
which underlies such basic modern formulas as the stress-strain 
relation S = E E  (“Hooke’s law”) and the flexure formula M = SI / c ,  
only originated in an explicit developed form in the 1820s in the 
treatises of Navier and C a ~ c h y . ~  Although one can discern in the 
earlier writings (particularly those later in the century) some of the 
elements that enter into the modern understanding of stress, the 
essential idea - that of cutting a body by an arbitrary plane and 
considering forces per unit area acting across this plane - was 
absen t.4 

The divide that separates the modern theory and that of the 
early 18th century is illustrated by the problem of elastic bending. 
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Consider the derivation today of the formula for the bending 
moment of a beam. One begins by assuming that there is a neutral 
axis running through the beam that neither stretches nor contracts 
in bending. We apply elementary stress analysis and consider at 
an arbitrary point of the beam a cross-sectional plane cutting 
transversally the neutral axis. Elastic stresses distributed over the 
section are assumed to act across it. Calculation of their moment 
about the line that lies in the section, is perpendicular to the plane 
of bending and passes through the neutral axis leads to the flexure 
formula, M = SI/c ,  where M is the bending moment, I is the moment 
of area of the section about the line, cis the distance of the outermost 
unit of area of the section from the line and S is the stress at this 
outermost area. 

In the problem of fracture Leibniz and Varignon obtained results 
that can be readily interpreted in terms of modern formulas and 
theory. Typically they assumed that the beam was joined transver- 
sally to a wall and that rupture occurred at the joining with the 
wall. Here the physical situation directly concentrated attention on 
the plane of fracture, something of concrete significance and no 
mere analytical abstraction. The conception then current of the 
loaded beam as comprised of longitudinal fibres in tension is readily 
understood today in terms of stresses acting across this plane. 

In the problem of elastic bending by contrast researchers were 
much slower to develop an analysis that connected the phenomenon 
in question to the internal structure of the beam. Here there was 
nothing in the physical situation that identified for immediate study 
any particular cross-sectional plane. In all of Jakob Bernoulli’s 
seminal writings on the elastica the central idea of stress fails to 
receive clear identification and development.’ 

An illuminating example of how elastic deformation was analyzed 
during the period is provided by an unpublished paper of Euler’s, 
dating (apparently) from sometime in the 1 7 3 0 ~ . ~  Euler considered 
an “annulus” (a washer-like ring) that is disturbed from its equilib- 
rium position and set as a consequence into motion. Figure 2 shows 
a part abBA of the ring in its normal and stressed configuration. 
The segment AaeE is regarded as being composed of concentric 
filaments. The inner line ae remains constant under deformation 
while the outer line A E  is stretched to AE. The triangle eE& shows 
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Figure 2. (from Euler's Opera postuma (1862), p. 130) 

the stretching of the filaments as one proceeds outward from a to 
A.  Euler sets c = Aa, ds = ab and dt  = EE. 

To obtain a measure of the elastic force Euler considers the 
material membrane FGHJ (Figure 3) consisting of the extended 
part of a series of stretched filaments. F J  = g is the magnitude of 
the extension and FG =f is the width of the membrane. He supposes 
that the weight P is sufficient to sustain this stretching so that P/fg 
is a measure for the given material of the elastic force per unit of 
extension and per unit of width. 

v e 

Figure 3 (from Euler's Opera postuma (1862), p. 130) 
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The stretched part of the ring segment AaeE is comprised of the 
triangle eE& (Figure 3) .  Consider the portion MNnm of eE& located 
a radial distance eN = x from e. MNnm is composed of a series of 
concentric extended filaments bounded by M N  and mn. Since 
M N  = (x/c)(EE) = (x/c)dt the area of MNnm is (xdxdt)/c. The elastic 
force that gives rise to MNnm is therefore equal to (Pxdxdtlcfg). 
Euler calculates the moment of this force about the point e to be 
(Px2dxdt)/c2fg. (Rather curiously he takes x/c instead of x as a 
measure of the moment arm eM.)  By integrating this expression 
from 0 to c he obtains a value of the total “force of cohesion”, (Pcdt) /  
3fg.’ By relating this formula to the radii of curvature of a6 in its 
normal and deformed states he arrives at an expression that he is 
able to use to investigate the vibratory motion of the ring.8 

What is striking in Euler’s treatment of this problem is the absence 
of anything that could be interpreted from a later perspective as 
stress analysis. The elastic forces that arise are regarded as being 
distributed over the plane in which they act, not over a transverse 
cross-section. These forces are also viewed as an absolute function 
of the displacement dt;  thus Euler lacks the concept of elastic strain. 
The formula (Pcdt /3fg)  itself fails to relate in a satisfactory manner 
the bending moment to the cross-sectional structure of the ring.’ 

Although unsuccessful Euler’s paper is of interest because of the 
detailed picture it presents of his understanding at this time of elastic 
phenomena. In his essay “De curvis elasticis” he would abandon any 
attempt at a direct physical analysis of elastic bending, concentrating 
instead on the mathematical investigation of relations that are 
treated methodologically as physical postulates. 

Equation of the Elasticu 

The object of “De curvis elasticis” is a “lamina”, a thin elastic ribbon 
or band that resists bending and retains its original length when 
deformed as a result of the application of an external force. Euler 
begins his investigation with a derivation of its equation of static 
equilibrium by means of variational techniques that had been 
introduced in the main body of the mathematical treatise. In his 
letter of 1742 Daniel Bernoulli had conjectured that the equation 
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of the elastic curve could be obtained by minimizing the expression 
Jsd/R2, where d s  is an element of path-length along the curve, R is 
the radius of curvature at this element and the integration is taken 
over its length." By analyzing the geometrical structure of the bent 
lamina at a point one could show that the elongation de of the 
outer fibre was inversely proportional to the radius of curvature R 
of the lamina at that point. Since it  was known that the potential 
live force of the element ds,  what in later mechanics would be called 
the strain potential energy of ds, was proportional to d s ( d ~ ) ~ ,  it 
followed that it was also proportional to ds/R2. Its total value over 
the entire lamina was therefore proportional to Jds/R2.  Daniel 
Bernoulli's conjecture that this quantity must be a minimum in 
equilibrium was one of several variational laws of mechanics that 
were beginning to be formulated at this time." 

Since the lamina is assumed to retain its original length in 
deformation the variational problem falls mathematically within 
the class of isoperimetric problems. The integrand ds/R2 of the 
resulting variational integral Ids/R2 contains second derivatives. 
Euler had in the Methodus inveniendi provided techniques that for 
the first time allowed one to derive the variational equations in 
such a case. Daniel Bernoulli's conjecture therefore provided an 
exemplary opportunity to apply his theory.' 

Although the opening derivation provides a natural link with the 
mathematical treatise, it stands somewhat apart from the main 
investigation of "De curvis elasticis". It was presented by Euler 
because it represented a significant new result that indicated the 
interest and potential usefulness of a variational approach to mech- 
anics. 

In the direct derivation he considers a lamina A B  that is built 
into a support at B (Figure 4). (Thus both B and the tangent to the 
lamina at B are regarded as fixed.) At the other end A a weightless 
rod is attached and from the end C of the rod a force P acts. (In the 
usual case P will act at A.  The introduction of the rod allows more 
generally for the possibility of a non-negative moment of P about 
A.)  The weight of the lamina is assumed to be negligible in compari- 
son with P. The problem is to derive an equation that describes the 
lamina in equilibrium under this loading. 
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Figure 4 (from Euler’s Methodus inueniendi ( I  744), p. 250) 

Euler employs a Cartesian coordinate system with origin at A 
and oriented so that the y-axis coincides with the direction of the 
force P. Let M be a point on the lamina with coordinates x and y. 
Euler calculates the equation of the lamina in equilibrium according 
to principles laid down by Jakob I Bernoulli. The moment exerted 
by the external force about M equals P(x  + c), where c is the distance 
from A to the point C. The resisting “elastic force” (what we would 
today call the bending moment) of the lamina at M is regarded by 
Euler as given by the expression E k 2 / R ,  where E k 2  is a quantity 
that measures the “stiffness” of the lamina and R is the radius of 
curvature of the lamina at  M .  (Ek’ will depend on the type of 
material comprising the lamina as well as its dimensions.) In equilib- 
rium these two expressions must be equal: 

Ekk 
R 

P ( c + x )  = -. 

The differential calculus yields the formula for R 

ds3 
ds ddy ’ 

R = - -  

where dx is taken to be constant (that is, in modern parlance, x is 
the independent variable). Substituting this expression for R into 
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(l), multiplying each side of the resulting equation by dx and 
integrating Euler obtains 

(3) 
- Pdx($xx + cx +f) 

1 / (E2k4  - P 2 ( i x x  + cx +A2) ’ 
dy = 

where f is a constant of integration. 
Euler prefers to re-express (3) in terms of the general form he had 

previously obtained by means of the variational procedure. Thus 
the final equation of the elastic curve is taken to be 

(4) 

and y are connected to those of (3) by 

(a + Px + y x x )  dx  
l/(a4 - (a  + px + yxx12) ’ 

dy = 

where the quantities a, a, 
the relations 

- 2Ekky P a 
P =  , c = -  2 y 7  f=- 

aa 2 Y .  
( 5 )  

The direction of the force P is determined by the sign of the constant 
y; for positive y it points in the direction of the positive y-axis, for 
negative y it points in the direction of the negative y-axis. 

Euler omits any discussion of the physical reasoning required to 
obtain the expression E k 2 / R  for the bending moment. Satisfactory 
treatment of this question would involve an investigation of the 
structure of the lamina in terms of something like stress analysis, 
which, as was noted earlier, was not available at this time. He at 
least recognized that it is necessary to consider two quantities in 
the constant of proportionality Ek’: E ,  which depends on the nature 
of the material comprising the lamina, and k 2 ,  which depends on 
the dimensions of the lamina. 

In effect the lamina is treated as a line satisfying the property that 
its curvature at each point is proportional to c+x .  The elastica 
therefore belongs with the catenary and the cycloid to a class of 
curves of the period that were solutions to mechanical problems. It 
should nonetheless be noted that the term “elastic curve”, commonly 
used at the time, is something of an oddity. Whereas the catenary 
was obtained by considering tensions that act tangentially along a 
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hanging cable, equation (1) is derived by considering the internal 
three-dimensional structure of the lamina. The concept of an elastic 
curve, a breadthless line satisfying (l), therefore abstracts from the 
very characteristic that serves ultimately to define it as a theoretical 
entity. (In modern engineering the term is used differently. It refers 
not to the object itself - a band or ribbon - but rather to the curve 
assumed under deformation by an axis through the centroids of the 
sections of the lamina.) 

Equations corresponding to the forms (1) and (3) were first 
presented by Euler in a paper published in 1732. Throughout the 
1730s he continued to work on the problem of elastic deformation, 
and published a memoir on the vibration of elastic rods in 1740. In 
the 1732 paper he acknowledged Jakob Bernoulli’s pioneering work 
on the elastic curve. Versions of (1) and (3) had indeed originally 
appeared in Bernoulli’s writings of 1694-95 in the Acta eruditorum. 
Jakob’s significant innovation was to relate the bending moment to 
the radius of curvature and to express this radius in terms of a 
formula (namely (2) above) of the recently established Leibnizian 
differential calculus. He referred to the formula as a “golden the- 
orem” and clearly viewed it as the key to unlocking the secret of 
the elastica. The spirit of his research, and what distinguished 
it from contemporary mechanical investigations, was a sense of 
intellectual excitement at the power of the new analysis to assist 
and even redefine the study of mechanical problems. It is this spirit 
that provided the impetus for Euler’s own mathematical research 
in elasticity. 

Bernoulli’s original derivation in 1694 was presented for the so- 
called rectangular elastica, where the external force acts at the end 
of the lamina (c = 0) and makes a right angle with the direction of 
the lamina at this point. (Physical examples were the half-slats that 
make up the ribbing of a barrel.) He succeeded in deriving its 
equations and even in carrying out some of the analytical-numerical 
work needed to determine the parameters associated with the curve. 
In a short note published in the Acta ertiditortrm in September 1694 
Huygens criticized Bernoulli’s memoir, noting among other things 
that he had failed to exhibit several possible configurations of the 
deformed elastica (Figure 5) as a consequence of his theory.I3 In 
his subsequent writings Bernoulli acknowledged this criticism and 
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Figure 5 (from Huygens’s note in the Actn eruditorum 1694) 

briefly indicated how his analysis could be extended to cover other 
cases.14 He was however primarily interested in such subjects as the 
proper position of the neutral fibre and the formulation of the laws 
of elastic stretch. 

In the “De curvis elasticis” of 1744 Euler comments little on the 
background to his own work except to mention that the “very great 
man” Jakob Bernoulli had investigated elastic curves. It would seem 
clear that he was familiar with the Acta eruditorum of the 1690s, 
where Bernoulli’s initial inv.estigations had appeared. The criticisms 
of Huygens’ published in that journal certainly provide the specific 
context for that part of his 1744 essay that deals with the statics of 
elastic laminae. Euler’s achievement there was precisely to present 
a systematic mathematical analysis of equation (1) that provided a 
full response to Huygens’s objection. 

Classification of Elastic Curve 

The focus of Euler’s investigation is the different shapes assumed 
by the lamina when variable forces act at its ends. This concern is 
not motivated by any immediate technological application and 
indicates the theoretical orientation of his essay, a characteristic 
further evidence in his detailed study of the formal classes of elastic 
curve. Historically classification had tended among the exact 
sciences to be a special concern of mathematicians. Whereas physical 
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researches were rooted finally in the analysis and prediction of 
empirical phenomena, mathematics required for its very identity 
as a subject the consideration of questions of organization and 
taxonomy. Problems of classification had occupied a prominent 
place in its history, from Euclid’s study of irrationals in Elements X 
through to Descartes’ grouping of plane curves and Newton’s 
enumeration of the forms of the cubic. 

Euler seeks in the section “Enumeratio curvarum elasticarum” to 
determine the “infinite variety of these elastic curves.” He begins 
with the differential equation (4). He translates the origin of the axes 
a distance p/2y and sets y = 1 in order to reduce (4) to the form 

(a + xx) dx 

dy = 

Euler notes that a4 - (a + x2)2 = (a’ - a - x’) (a2  + a + x’) and sets 
c1 = a* - c 2  so that (6) becomes 

(UU - cc + XX) dx 
dy = 

I/(cc - xx )  (2aa - cc + xx) 
(7) 

The step from (4) to (6) is noteworthy in terms of what it reveals 
about Euler’s mental outlook. He is regarding the elastic curve in 
much the same way one would a curve in analytic geometry. The 
translation of axes was routinely used there to simplify the curve’s 
equation, and he seems to be employing this device for the same 
effect here. The constants in equation (4) however have a certain 
physical meaning; the coordinate transformation imposes a con- 
dition on the external force, namely that it now acts at the point A ,  
with the corresponding moment about this point zero. This is in 
fact the case that he wishes to consider and he is introducing the 
transformation to arrive at it. Given that the elastic curve is an 
object with a definite physical identity, and given that a translation 
of axes can only assist in its description, it would have been prefer- 
able, as a point of logical exposition, to simply restrict consideration 
to this case, and to set p by fiat equal to zero in (4). (A logical 
possibility is that Euler is supposing that the system is rigidly 
attached to the coordinate axes and is being moved with them 
during the translation, while the applied force itself is contrived to 
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remain stationary. Such an interpretation does not however seem 
plausible. Coordinate transformations were descriptive tools used 
for the analysis of mechanical systems; the axes were never regarded 
as an actual physical part of the systems. Furthermore, if he was 
envisaging the transformation this way one would expect some 
discussion of what has happened to the rod attached at the point 
A*)  

Equation (7) is the basis for Euler's graphical study of the elastic 
curve or lamina (the two terms are used interchangeably). In Figure 
6, A is the origin of the coordinate system and AE and A B  are the 
directions of the positive x and y axes respectively. M is a typical 
point on the curve A M C .  The external force P acts in the positive 
y-direction at A .  Euler imagines that the points A and B may be 
regarded as being joined by a thread of tension P so that a force 
equal and opposite to P acts at B. (This way of envisaging the 
elastica had originated with Huygens [1694].) The two significant 

Figure 6 (from Euler's Merhodus inoeniendi (1744), p. 256) 



224 Craig G. Fraser 

quantities that he associates with the curve are P and the sine of 
the angle + P A M  formed by the tangent at A and the x-axis: 

(8) 
aa - cc 

aa 

by (5) and the value 
from tan ( P A M )  = 

. sin(4:PAM) = 
2Ekk p = -  \ .  

aa 

This exmession for P is furnished directly 
for sin(+PAM is derived by calculatioi 
(a2  -c2)/c + 2 a 2 - c 2 ,  obtained by setting x = 0 in (7). 

Euler begins his study of (7) with several observations concerning 
its graph. Since dy/dx increases to  infinity as x approaches c i t  is 
clear that the curve will consist of the hump A M C  in the interval 
0 I x I c. Euler notes that if y and x are replaced by - y and - x in 
(7) the expression for dy/dx remains unchanged. He concludes that 
for x10 the curve will consist of the segment amc congruent to 
A M C  but located on the opposite side of the y-axis. From the 
derivation of (7) it is apparent that A is a point of counterflexure, 
that is, that the curvature at A is zero. He proceeds to analyze the 
behaviour of the curve in the interval CB. To d o  this, he refers the 
origin to the point C and expresses x and y in terms of a t - u  
coordinate system, where CQ = t and Q M  = u. Here x = c - t  and 
y = b - u and (7) becomes 

(UU - 2ct + t t )  dt  
du = 

f i c  - t )  (2aa - 2ct + t t )  

For small t we have the approximate relation du = a 2 d t / 2 a f i ,  
which leads upon integration to u = a f i .  Thus the curve is 
parabolic in the neighbourhood of C, and Euler concludes that i t  
will progress beyond C in the same manner that it advanced from 
A to C. 

Euler summarizes these considerations by observing that the 
solution of (7) will consist of a periodic odd curve in which the 
segment ACB is symmetrical about the line DC. He proceeds to 
calculate certain important quantities associated with the curve. 
Using the binomial expansion he expresses the right sides of 

d y  = 
(aa - cc + xx) dx nadx - and ds = 

I/(cc - xx) (2aa - cc + xx) I/(cc - xx) (3aa - cc + xx) 
, 
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as infinite series. Integrating term by term and noting that 
~ ~ d x / ~ ~  = 4 2  he obtains 

l 2  3 cc l 2  . 3 2  5 c4 1- - .-. -  - ~ . - . ~  
22 1 2aa 2 2 . 4 2  3 4a4 

Euler remarks that these series may be used to calculate a andf  
from c and b and conversely, to calculate c and b from a andf: (It 
follows in particular that c and b may be derived for a lamina of 
given length 2ffrom a knowledge of the force P = 2Ek2/a2.) 

The key to Euler’s classification is the relationship with respect 
to magnitude of the constants a and c. The different species are 
obtained by considering the angle PAM as it changes in value from 

Species One. If c2/a2 is infinitesimal or  very small then 
3: P A M  N 90” and thesegment ACB(Figure6)isonlyslightlycurved. 
Because c is small with res ect to a, equation (7) may be approxi- 
mated as dy = adx/ P 2(c2 - x  ) .  Integration yields y = (a/@) 
arcsin(x/c). Since the lamina is almost straight we may set A B (  = 

2b) = 2f Since x = 0 when (fi/a)2f= n we obtain f =  7ca/21/Z. 
Substituting the value for P given by (8) into this last relation gives 

90” to -90”. 

Ekk nn p = 
8 - 4  

A notable implication of (lo), which Euler mentions only in passing, 
is that a finite force is required to produce even an infinitesimal 
curving of the lamina. In later mechanics (10) would become known 
as “Euler’s buckling formula” and the value of P in (10) as the “first 
Euler critical load.” 
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Note: Euler also classifies as species (1) the degenerate case in 
which a = co (force P = 0 and f = co) and the curve coincides with 
the y-axis and the lamina assumes its natural shape. 

Species Two. If 0 < c2 /a2  < 1 then 9: P A M  < 90” and the curve has 
the form of Figure 6. Since c 2 / 2 a 2 < i  it is clear from (9) that f i s  
finite. (9) also implies thatf> n a / 2 f i .  Hence P > (Ek2/f2)(n2/4) and 
so i t  is clear that the force drawing A and B together is greater than 
its value for the corresponding species-one curve in which A C  =f: 

Species ?hree. We have a = c and % P A M  = 0”. This gives the 
rectangular elastica, originally derived by Jakob Bernoulli, whose 
equation is 

xxdx 
dy = --. 

Euler mentions that he has shown elsewhere that b andfsatisfy the 
“remarkable” relation 4bf= nu2 (a result derived from (9) by setting 

Figure 7 (from Euler’s Mrfhodus inoeniendi ( I  744), p. 262) 
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a = c and multiplying the two series.)” Beginning with an approxi- 
mate value off derived from (9) he uses (8) and this relation to 
evaluate P and b/a.16 

Species Four. Here a < c, 0: P A M  < 0’ and the curve has the form 
of Figure 7. As c2/a2 increases in value the distance A B  will decrease. 
An upper bound for c 2 / a 2  will therefore be obtained by setting 
A D  = 0 in (9) and solving for c2/a2. Euler calculates this quantity 
(“by methods familiar to everyone”) as 1.651868 corresponding to 
an angle PAM (“found from the tables”) of -40’41’. He observes 
that as c2/a2 approaches this limit multiple intersections of the 
humps of the curve will occur and that the diameters DC, dc will 
eventually merge with the axis AE. 

Species Five. Here the limit c2/u2 = 1.651868 is reached, AB = 0 
and the curve assumes the form of Figure 8. The angle at the knot 
MAN is 81’22’ (twice 40’41’). 

Species Six. The ends of the lamina A and B are drawn apart by 
an increasing force and the lamina assumes the form A M C N B  of 
Figure 9. Here 2 > c2/a’ > 1.651868 and - 90’ < 9: PAM < - 40’41’. 
(Although unremarked by Euler, multiple overlapping of the humps 
of the curve will occur as c2/a2 immediately exceeds 1.651868.) 

The cases considered thus far may be regarded as the configur- 
ations successively assumed. by the lamina A B  as the force P 
increases in magnitude. They exhaust the possible shapes of the 
elastic curve in which the segment ACB is regarded as a lamina in 
tension under the action of forces P and - P  at A and B. Euler 
however considers several further possibilities . 

Species Seven. Here c2/la2 = 2. Euler mentions the limiting case 

Figure 8 (from Euler’s Methodus inueniendi (1744), p. 262) 
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Figure 9 (from Euler’s Methodus inueniendi (1744). p. 263) 

where c tends to I/iu while the segment ACB remains constant. 
Because the series 

1 2  1 2 . 3 2  1 2 . 3 2 . 5 2  
1 + , + - - -  + + etc., 2 2 2 . 4 2  2 2 . 4 2 . 6 2  

is divergent it is clear from (9) that u (and therefore c) is zero and 
hence that the force P is infinite. (He does not show diver ence 
although it is not difficult to establish.”) Thus when c = 6 the 
lamina A B  becomes a straight line drawn by an infinite force. (The 
alternative limiting case x = 0 in which c tends to f i u  while A B  
tends to infinity is not considered by him. It is doubtful whether 
this case, which seems to require the functional viewpoint of later 
real analysis, would have constituted a possibility within his under- 
standing of equations and their graphs.) He is however primarily 
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interested in the non-degenerate limiting case that is obtained by 
beginning with the general curve of species (6), transferring the 
origin to the point D and taking the limit as c tends to f i a  . If we 
assume a is non-zero then the arc AC tends to infinity. As a 
representative of species seven he therefore arrives at the curve of 
Figure 10, where x = DQ and y = QM are the coordinates of a 
typical point M on the curve. (For this single case he assumes that 
the positive y-axis is directed along DB.) Equation (7) becomes here 

(aa - xx) dx  

d y = q q z q >  
which is integrable and leads upon integration to 

(I = natural logarithm). 
c + V ( c c  - xx) 

X 

The curve will cut the axis DC at C (x = c) and at a second point 
0, determined by solving the equation y = 0 by means of tables. 
Euler arrives at the value x = .2884191c for 0. He calculates the 

A 
Figure 10 (from Euler’s Methodus inueniendi (1  744), p. 264) 
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knot angle M O N  and shows that it equals 112'56'48". (It should be 
noted that Figure 10 which accompanies the text is poorly drawn; 
the knot angle in it is no greater than 90". The distortion is even 
greater in Figure 11 which accompanies species eight.) 

Species Eigh t .  We continue to place the origin of the coordinate 
system at the point D but now suppose that c2>2aZ.  Euler sets 
c2  = 2aZ + g 2  so that equation (1 1) becomes 

1 1 
(XX - zcc - z g g )  dx 

dy = 
I/(cc - xx) (xx - gg) 

It is clear that the values of x must lie between x = g and x = c. 
Euler infers the curve will assume the form of Figure 11, in which 
the line x = g is tangent to the curve at the points G and H and 
there are infinitely many diameters dc, DC, dc. This conclusion 

d 

D 

d 

GI 

Figure 1 1 (from Euler's Methodus inueniendi (1  744), p. 265)  
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seems to based on the fact that the given curve represents a phys- 
ically plausible configuration of the bent spring. (It should be 
pointed out that series (9) which had hitherto constituted the nu- 
merical basis of his investigation are no longer valid; the series that 
replace (9) when one integrates from g to c are not nearly as 
tractable. Euler does not present any mathematical argument to 
show that the points H and G actually lie on the curve. It is also 
unclear in his analysis why the curve of species seven should be the 
limiting case of species eight when c equals $a.) Euler observes 
that the knot angle M O N  in Figure 11 is greater than 112’56’48’’. 

Species Nine. Euler notes that if g = c then the curve will be 
“reduced, vanishing into space.” (He does not however remark that 
since c2 = 2a2 + g 2  this will happen when a = 0, i.e., when the force 
given by (8) becomes infinite.) Beginning with the general curve 
of species eight, he proceeds to move the origin to the midpoint of 
OC, sets c minus g equal to a constant and considers the limit- 
ing case that results when c and g tend to infinity. If g = c-2h 
and x = c -h - t  and we let c and g tend to infinity then (13) 
becomes 

tdt 
dy.= pG‘ 

It is clear that in this case the elastic lamina will be curved into a 
circle, the ninth and final species. (Although Euler does not remark 
it, it is apparent from 2a2 = c2-g2 = (c-g)(c+g) that a tends to 
infinity and hence that the force given by (9) tends to zero.) 

Euler concludes the section on enumeration with a discussion of 
how the different species may be produced by hanging a weight 
from an elastic lamina, one end of which is built into a rigid support. 
He first supposes the weight acts at the free end A of the lamina 
and notes that species one to six arise according to the different 
angle that the tangent at A makes with the direction of the force. 
In order to exhibit all the species by means of a uniform mechanical 
process he returns to the original situation for which equation ( I )  
was derived (Figure 4), in which the force P acts at the end of a rod 
of length h. The operative equation here is (3) (where the c that 
appeared in (3) is now renamed h). He proceeds to move the origin 
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to the point C (with the lever still intact.) With this change of 
coordinates (3) becomes 

ds (mEkk + i P h h  - i P x x )  
1 /E2k4 - (rnEkk + iPhh  - ~Pxx)’) ’ 

dy = 

where rn is the sine of the angle M A P .  He notes that (11) has the 
same form as (7) and therefore must correspond to one of the 
elastic species identified above. By comparing constants in the two 
equations he is able to provide an enumeration of the different 
curves in terms of inequalities involving the constant h. (The eighth 
species is the limiting case obtained by setting Ph equal to a constant 
and letting h tend to infinity while P tends to zero.) 

In effect what Euler is doing here is to consider an arbitrary point 
M on the elastica A M C B  and to imagine that its abscissa R M  has 
become a lever with force P acting along the positive y-axis at the 
point R (Figure 12). The part M C B  of the curve is now regarded as 
being maintained by the moment at M exerted by this force acting 
through the lever R M .  R may be regarded as the origin of the 
coordinate system, a change that has no effect (being a translation 
along the y-axis) on the form of equation (7). 

Euler could have dispensed with the unusual argument involving 
the rod and the comparison of equations (7) and (11) and simply 
observed that each of the species - including seven and eight - may 
be regarded as being given by means of the procedure just described. 

Figure 12 (not in Euler, adapted from Figure 5 above) 
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It should also be noted that the inequalities involving h which he 
derives could have been obtained directly by solving (7) for c2/a2 in 
terms of x and P. The content of his concluding discussion therefore 
seems to reduce to the observation that the class of elastic curves 
defined by the original equation ( I )  is entirely expressed in the 
enumeration of the nine species. 

Discussion 
There is a dual focus to Euler’s study of the elastic curve. He is 
classifying solutions of equation (7) and in a certain logical sense 
his theory is independent of any mechanical interpretation. He 
nevertheless is also conceiving of the elastic curve as a material 
lamina that is being deformed by the action of an applied force P. 
The elastic curve is a hybrid, an object with both a mathematical 
and physical identity, each of which is unfamiliar and requires 
investigation, and it is being considered by Euler simultaneously 
from both viewpoints. 

Frequently the differential equations of mathematical physics 
involve quantities like time or temperature that are relatively ab- 
stract. The variables of equation (7) by contrast have a direct, 
physical meaning - the distance along the lamina and its lateral 
displacement. The analytical description of the lamina possesses an 
unusual literalness that contributes to the identification in Euler’s 
theory of mathematical and physical perspective. 

In the approach adopted by Euler the mathematical viewpoint is 
largely determinative of the object under consideration. The precise 
physical situation of the lamina, for example, how it is positioned 
at the endpoints A and B, is not discussed and must be inferred 
from the analysis. (As species eight indicates, however, he is not 
above appealing to the physical model in order to reach mathemat- 
ical conclusions about the nature of the curve.) Some of Euler’s 
purely mathematical procedures invite comment. It is curious to see 
him approximating the curve at C by a parabola in order to 
investigate its behaviour about this point. In a rough or preliminary 
investigation the introduction of the approximative parabola, a 
simpler and better known object, would be natural. He could 
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however have observed directly that for y > b the differential equa- 
tion d y  = - (a2  - c2  + x2)dxY(c2 - x2)(2a2 - c2  + x2) (which also 
satisfies (1)) leads to an extension of A M C  which is symmetrical 
about DC. 

The preliminary analysis Euler undertakes to determine the gen- 
eral shape of the elastic curve would incidentally carry over without 
change to an investigation of the sine curve d y  = d x / v m .  In 
this respect it is necessary to remember that a calculus of trigono- 
metric functions was only beginning to be developed at this time 
and that “De curvis elasticis” was written before the refinement in 
analytical understanding that occurred with Euler’s major treatises 
of the period 1748-1765.’* 

It should be noted that logically what is being classified by Euler 
are solutions to equation (7). Thus the simple example of a straight 
lamina A B  of given length and stiffness in which the external load 
P is zero is not directly included in his classification (nor is it the 
limiting case of any of the species enumerated there). This example 
must be regarded instead as a segment of the infinitely long lamina 
that results when P = 0. The latter degenerate case, which really 
constitutes a distinct, unique possibility, is classified by Euler as 
species one and grouped with curves of small deflection, where the 
force P is of finite value., 

In introducing his classification Euler had stated that he would 
list “the different kinds of curves in the same way in which the 
species of algebraic curves included in a given order are commonly 
enumerated.” He was referring to Newton’s study of 1704 of the 
forms of the cubic, which he had explicitly invoked at one point in 
the main body of the variational treatise in connection with the 
solution to a particular isoperimetric problem. l 9  

Newton had developed a rather involved system of classification 
in terms of canonical forms, classes, genera and species. In total he 
arrived at seventy-two species of cubic curve. His scheme is illus- 
trated by the third canonical form y 2  = ax3 + bx2 + cx + d .  It was 
clear that the curve determined by this equation is symmetrical 
about the x-axis. By analyzing its roots Newton obtained live cases: 
roots all real and unequal, all real and two equal (in which there 
are actually two cases, according as the double root is the lesser or 
greater), all real and all equal, and one real and two unreal. Each 
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of these cases gives rise to a distinct species for which he provided 
a diagram (Figure 13). 

Although Euler's own classification was inspired by Newton, the 
principles of his enumeration are different. The elastic curve has a 
physical interpretation as a deformed lamina in tension. The differ- 
ent species are evolved naturally as solutions of a single differential 
equation of static equilibrium. The existence of the first species - 
mathematically indistinguishable from the second - is based on its 
physical significance as a model for a column undergoing com- 
pression. 

It is moreover questionable whether the sort of classificatory 
scheme Newton employs for algebraic curves is applicable to the 
solution of a transcendental equation of type (7). Thus the multiple 
overlapping that occurs in the transition from elastic species four 
to five and from five to six would seem to suggest an infinity of 
species of the Newtonian variety. 

A modern, more topological approach would tend to collapse 

Figure 13 (from Newton's "Enumeratio linearum tertii ordinis" (1704)) 
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together Euler’s species one to four and retain the rest, resulting in 
six classes in all, three of which (five, seven and nine) would be 
limiting cases. There will of course be a conventional element in 
any attempt at classification. One seldom encounters in modern 
mathematics the detailed study of the curves of the higher transcen- 
dental functions. Apart from the question of classification Euler’s 
theory of the elastica is of enduring mathematical interest as an 
exceptional example of graphical analysis. 

Comparison with Modern Theory 
Euler’s analysis of the elastic curve is an impressive piece of mathe- 
matical science. The equation of equilibrium is investigated without 
any simplifying assumption and the different kinds of curve are 
exhaustively enumerated. Careful attention is devoted to determin- 
ing the particular angles and lengths associated with each figure. 
Numerical relationships involving infinite series are calculated by 
means of the most advanced techniques of contemporary analysis. 

While the mathematical sophistication of his investigation is 
clear, its character as a contribution to applied science is less so. It 
will be useful to consider this question by comparing his theory 
with the modern approach to the problem of elastic bending. 

In engineering statics today one develops a theory for a given 
object - a beam, strut, or column - by laying down a coordinate 
system along its unstressed configuration and analyzing distortions 
(usually small) from this position. In Euler’s approach the elastic 
curve provides a unified model for all of these objects and the 
coordinate system is oriented once and for all with respect to the 
direction of the external force P. 

Euler’s goal - to formally enumerate the different curves that are 
solutions to (7) - failed to become a prominent concern of sub- 
sequent research in the theory of elasticity. The artifice of a lever 
arm to mediate the action of the end weight is introduced in order 
to provide a privileged mechanical procedure by means of which 
all the species of elastic curve may be exhibited. Once again it is 
part of his special theoretical stance that this should be a subject of 
interest. 
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The guiding principle of the classification concerns the way in 
which the shape of the curve alters as the angle P A M  decreases in 
value. Euler is aware that for a lamina of given length these shapes 
will be successively assumed as the result of the action of an 
increasing force P. He explicitly notes that series (9) may be used 
(at least in principle) to calculate the deflection c from a knowledge 
of the external force. This fact is however not pursued, and he does 
not in particular investigate the dependence of the lateral bending 
(quantity c/2f) on the magnitude of the load (quantity 2 E k 2 / a 2 ) .  His 
analysis should here be contrasted with the modern treatment of 
the elastica where the primary concern is correlating c/2f as a 
function of P and where the question of classification does not arise 
at 

Perhaps nothing more clearly indicates the distinctive character 
of Euler’s investigation than his failure to consider higher-order 
configurations of the lamina. As will be explained in more detail in 
the next section, formula (10) ( P  = Ek27r2/4f2) provides a measure 
of the minimum load needed to induce bending in the column AB,  
the latter being regarded as the part ACB of the periodic curve 
depicted in Figure 6. The shape of the bent column may however 
consist of more than one arch of the given curve. Such a possibility, 
which was first investigated by Lagrange [1771], is of considerable 
physical interest. If the column contains n loops of the curve then 
the expression for the load given by (10) becomes P = n2Ek27r2/ 
4f2. The column is evidently substantially stronger, a result which 
confirms theoretically the known practical value of side bracing. All 
of these considerations would seem to be directly inferrable from 
Euler’s analysis. His own failure to do  so may be explained by his 
particular mathematical perspective. Although the multi-arched 
column involves a new physical situation, the underlying mathemat- 
ical object - the periodic odd curve of small amplitude - is the same. 

Column Problem 

Euler follows the part of his essay on classification with a short 
section titled “De vi columnarum” (“On the force of columns”). 
Here he returns to the subject of species-one curves and notes the 
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applicability of equation (10) ( P  = Ek2n2/4f2)  to a column fixed at 
its base and loaded at the other end by a weight P. For a slightly 
bent column it is apparent that 2fis equal to the height. It therefore 
follows from (10) that the maximum weight a column can sustain 
without bending is inversely proportional to the square of its height. 
Euler notes the relevance of this fact to wooden columns. 

For (10) to be valid it is necessary that the upper end of the 
column be pinned; it is by no means clear that Euler was aware of 
this fact - the figure that is included with the text shows the upper 
end free. He seems however to have been primarily interested in the 
proportionality of the load to the square of the height and in 
comparing columns of varying heights. From this perspective it  is 
indifferent whether the upper ,end is pinned or free. 

Equation (10) would become celebrated in later engineering col- 
umn theory as Euler’s buckling formula. His derivation provides a 
remarkable example of how purely mathematical development can 
lead to a result of substantial physical interest and significance. 
There are nevertheless two respects in which his treatment of the 
bending of a column demonstrates a rather limited appreciation of 
its character as an engineering problem. First, he does not appear 
to have recognized that the value for P given by (10) is in fact 
critical. Although he is aware that as the force P increases the lateral 
displacement c also increases he shows no awareness that it would 
be of interest to investigate the precise correlation between P and 
c for a given range of values. (The infinite series (9) would have 
provided the numerical basis needed to carry out such an 
investigation.21) In particular, nowhere does he note what is of 
primary concern from an engineering viewpoint, that a very small 
fractional increase in P above the value in (10) will lead to a very 
substantial increase in c/25 

Second, although Euler is aware that the constant Ek’ in equation 
(1) ( P ( c + x )  = Ek’ /R)  measures stiffness, he is unable to relate i t  
theoretically to the dimensions of the lamina. For a prismatic beam 
of width b and thickness h he conjectures incorrectly that the 
bending modulus Ek’ is proportional to Ebh’. (It is in fact pro- 
portional to Ebh3 .  He may have been recalling the faulty derivation 
contained in his unpublished “De oscillationibus annulorum elas- 
ticorum”(Euler, 1862). It is also possible that he confused the section 
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modulus which appeared in contemporary formulas on the fracture 
of beams with the bending modulus Ek2  of his own equation 
(l).) In other subjects of the essay - the determination of E k 2  by 
experiment and the curvature of laminae in which Ek2  is variable 
- he avoids any theoretical consideration of the actual physical 
nature of elastic bending, positing instead relationships in which 
functions and constants appear that are to be determined by experi- 
ment or experience. 

In a memoir published by the Berlin Academy in 1759 Euler 
resumed his investigation of the column problem.22 Here he moves 
even further from the theory of elastic bending as it had originally 
appeared in the writings of Jakob Bernoulli. He suggests that his 
earlier results are also applicable to non-elastic materials, provided 
only that equation (1) remains valid. Instead of being something 
that is derived this equation is now regarded as a primitive relation 
of the theory, prescriptive of a certain class of physical phenomena. 
The moment of stiffness Ek2  is itself treated as a function of the 
distance from the top of the column and the equation of bending is 
investigated for various functional forms as a problem in differential 
equations.23 

The memoir of 1759 also contains Euler’s discussion of a “para- 
dox” he associates with the,column formula (10). He observes that 
whereas the smallest force applied perpendicularly to the end of a 
beam will produce some deflection, a certain finite weight (given by 
(10)) is needed to produce even the slightest bending of the column. 
A value of the load below that of (10) will produce no bending, 
while values greater will give rise to a progressive increase in the 
size of the bending. He detects here the appearance of a violation 
of the law of continuity, which would seem to require for a continu- 
ous range of values of the load a continuous measure of bending. 

To explain this paradox Euler considers in closer detail the 
derivation of equation (10). He suggests that if we assume 6 = 
tan ( < D A C )  (Figure 6 )  is greater than zero but ignore third and 
higher powers of 6 then (10) becomes 

P =  ll71.- Ekk vl.se,, (10‘) [e 
where e is the length of the column. (In fact, this formula is incorrect; 
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the expression that one may derive from series (9) is 
P = ( n 2 E k 2 / f 2 ) ( W  . 2 4  This error however has no effect on 
the argument t at Euler is developing.) Hence if we allow 8 to be 
imaginary we obtain values of the load that are smaller than those 
given by (10). A deflection of the column, albeit an imaginary one, 
is produced by these values. 

I t  is indicative of Euler’s peculiar mathematical sensibility that 
he thinks such an explanation is appropriate here. To the extent 
that an account of the paradox would seem necessary it  must 
presumably refer to the physical situation of the column. Thus a 
force applied at the end of a beam actually causes the deflection, 
whereas the given weight is only consistent with or sustaining of 
the bending of the column. Furthermore, a weight however slight 
will sustain bending if the moment of elasticity E k 2  is assumed 
sufficiently small. 

Conclusion 
The context of Euler’s investigation was very much established by 
the scientists who had preceded him. Thus the equation of the 
elastica was derived by Jakob Bernoulli, the problem of determining 
its bent forms was formulated by Huygens, the theme of classifi- 
cation originated with Newton, and the possibility of a variational 
treatment was suggested by Daniel Bernoulli. Euler’s distinctive 
achievement derived from the determination and solid analytic 
sense with which he pursued and developed the ideas of these men. 

In treating the basic equations of elasticity as physical postulates 
that are subject to experimental determination and mathematical 
development Euler followed an approach that would be character- 
istic of later positivistic physics. However, whereas the positivists 
would emphasize the role of mathematics as an operational tool in 
obtaining numerical values, there is in Euler’s theory a much more 
fundamental interpenetration of mathematical and physical 
c~ncep t ion .~ ’  The distinctiveness of his approach is evident in the 
way in which he conceptualizes the problem of the elastica, in the 
style of his investigation as well as in the very idea of the elastic 
curve itself. 
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A curious divide opened in the nineteenth century between math- 
ematics and theoretical physics, so that as physics progressively 
employed more mathematics it simultaneously distanced itself epis- 
temologically and foundationally from this subject. Modern theories 
of material mechanics whatever their level of mathematical maturity 
must reflect this separation. Euler’s “De curvis elasticis” provides an 
uncommon example of exact science produced before the separation 
had taken place. 
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NOTES 

1. Euler’s “De curvis elasticis” has been translated into German by Linsenbarth [ 19101. 
The notes that accompany the translation are reproduced and supplemented by D. M. 
Brown in the English translation of Oldfather [1933]. 

2. Euler’s theory is described in the major survey histories of elasticity: Todhunter and 
Pearson [1886, pp. 33-39], Timoshenko [1953, pp. 30-361, and Truesdell [1960, 
203-2191. Truesdell’s history is the most detailed and is noteworthy for the emphasis it 
places on Euler’s theory as a model for modern research. A final study is Heyman [ 1972, 
106-1091, which emphasizes the marginality of Euler’s researches to the subject of 
engineering design. 

3. The researches of Navier and Cauchy are described by Todhunter and Pearson [1886, 
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Chapters 3 and 51. A more recent account is presented by Grattan-Guinness [1990, V. 

4. Truesdell [1960, 43) provides a useful list of the properties of what is called the “stress 
vector”. It is clear however that such an abstract summary can only partially characterize 
the concept of stress as it  appears in specific historical applications of the theory of 
materials. 

5 .  Timoshenko [1953, 26-27] seems to attribute more to Bernoulli than may be actually 
found in his writings. Thus the formula he presents on p. 27 was only published by Euler 
in 1780 (see note 23, this article.) 

6. The essay was eventually published in 1862. Truesdell [1960, 1431 dates the paper to 
1727, when Euler was only twenty and before he had left Basel. My own sense for the 
chronology of Euler’s researches suggests that a somewhat later date would be more 
plausible. Thus his work in 1727 (outlined by A. P. Youschkevitch C1971, p. 4681) was 
unrelated to the contents of the paper. He was at this time investigating isochronous 
curves in resisting media, reciprocal algebraic trajectories and the arrangement of masts 
on a ship. There is nothing in his treatise Dissertatio physica de sono (1727) concerning 
the problem of solid elastic deformation. The problem of the elastica first appears in a 
memoir of 1732. (According to Truesdell [1960, 1481 an early manuscript version of this 
memoir exists in the Basel University Library, but the manuscript (to judge from its title) 
deals only with that part of the published work concerning flexible bodies.) The subject 
of the vibration of an elastic solid is only first mentioned in Euler’s correspondence with 
Daniel Bernoulli in 1735 and does not receive publication until 1740. Since a vibrating 
elastic solid is the subject of “De oscillationibus ...”, and since this paper appears to be 
something of a preliminary study, it would seem reasonable to suppose that it was written 
sometime in the middle 1730s. 
(Truesdell reports that an examination by G. K. Mikhailov of the paper and handwriting 
of the original confirms his conjecture that “De oscillationibus ...” dates from Euler’s 
Basel period. In the absence of more detailed information concerning the location and 
nature of the papers involved and the methodology employed in the dating i t  is dificult 
to evaluate this piece of evidence. Given however that Euler was professionally active 
from 1727 to 1783 (dictating much of his work in his later years) a date of around 1735 
would seem to be consistent with an early determination of his handwriting.) 

7. The text that is reprinted in the Opera has Pc2dt/3fg rather than Pcdr/3fg. (The latter is 
what actually follows from the preceding step of the derivation.) That this is a misprint 
is evident from the fact that Euler immediately sets dr = (a-b)cds/ab and obtains 
Pcc(a--b)ds/3abfg, the formula he actually works with in the paper. (That the c2 is a 
typographical error is also clear from the fact that Euler always denotes the square of a 
single-letter variable a by aa rather than a’.) 

8. A detailed critical account of Euler’s analysis is presented by Cannon and Dostrovsky 
[1981, 37431. 

9. Through a series of “corrections” it  is possible to obtain the modern formula for the 
bending moment of a prismatic beam from Euler’s procedure. In calculating the moment 
of the elastic force we use x rather than x/c as the moment arm; we replace dr by the 
strain dt/ds; we incorporate the thickness h of the ring into the final formula; finally, we 
interpret E = Pi/, as “Young’s modulus”. With these changes Euler’s formula becomes 
(Ec’/3)(dt/ds), which is the flexure formula for a prismatic beam in which the neutral axis 

2, 969-1047]. 
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is assumed to lie on an outer surface. (It is on the basis of an argument something like 
this that Truesdell [1960, 1451 arrives at  a very high evaluation of Euler’s paper.) 

10. Bernoulli’s letter was dated 20 October 1742 and sent from Basel. I t  is reprinted in Fuss 

11. See P. L. Moreau de Maupertuis’s “Loi du repos des corps” [1742], as well as Euler’s 
own “De motu proiectorum in medio non resistente, per methodum maximorum ac 
minimorum determinando”, published as the second appendix of his Methodus inueniendi 

12. The notes due to Linsenbarth in the Oldfather translation [1933, 352-153] are helpful 
in following Euler’s variational derivation. 

13. Huygens’s comments were contained in a letter to Leibniz, written from Holland and 
dated 24 August 1694. The letter is reprinted in Huygens’s Oeuvres [1905, 664670, 
especially pp. 665-61. I t  is also published in Leibniz [1850, 189-1931, Excerpts were 
translated from French into Latin and published in the Acta erudirorum of 1694 (see 
Huygens [1694]). This last note is reprinted in Jakob Bernoulli’s Opera [V. 1, 1744, 
6376381 and in Huygen’s Oeuvres [1905, 671-6721, (Huygens’s original sketch is 
reproduced in the Oeuvres. Figure 5 is the illustration that appears in the Acta eruditorum, 
which is of course what Euler would have seen.) 

[ 1843, 499-5071, 

[1744, 311-3201. 

14. Truesdell [ 1960, 1011 describes Bernoulli’s response to Huygens’s letter. 
15. The result, which belongs to the pre-history of the theory of elliptic integrals, was 

published in Euler [1743, 911 (in Opera omnia Ser. 1 V. 17, p. 34). Related memoirs are 
cited by Caratheodory in a note in Opera ornnia Ser. 1 V. 24 (p. 247). Todhunter [1886, 
37-38] establishes the result using gamma functions, and Linsenbarth (in Oldfather 
[1933, 154)) presents a proof using elliptic integrals. 

16. Euler makes here a calculational error that is corrected in the translation of Oldfather 
[ 19331. 

17. T o  establish divergence we prove that the series majorizes the harmonic series 1 +:+ 
&+A+ , .. Consider the induction hypothesis: 

1 2 . 3 2 . 5 2 . . . . . ( 2 n - 1 ) 2  1 > -. 
2’ .4’.  6’. _ _ .  . (2n)’ 4 .  n 

(*) holds for n = 2. It is straightforward to show that 

(2n+ 1)’ n 
(2flf2)’ flf 1 

> -  

Multiplying (*) and (**) we obtain 

1’ . 3’ . 5’ . . . . . (2n - 1)’ . (2n + 1)’ 1 
4 .  (n+ 1) 

1- 
2” 4’. 6’. ... . (2n)’. ( 2n f2 ) ’  

Hence the result is established. 
18. For a study of the early development of the trigonometric functions, see Katz [1987]. 
19. See Euler [1744, 195-1961, in Opera Ser. 1 V. 24, 184-185. 
20. See for example Southwell [1941, 4294351. Compare also note 21, this article. (An 

opposing perspective is expressed in the tables presented by Truesdell [ 1960, 21 2-2133, 
which seem to refer more to what a modern specialist might derive from Euler’s theory 
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than to what he actually does. Thus for example Truesdell’s equations (173). (176). (186) 
and (187) appear nowhere in Euler.) 

21. Let a, (= 2fif/n) and Po (= E2k2n/4f2) denote the species-one limiting values obtained 
from (9) and (8) by letting c tend to zero. Assume now that we retain terms of order c2/ 
a2 in (9): 

22. 

23. 

24. 

2s. 

f = $ ( l + $ )  

Consider the deflection c = (2J)e, where e is small. (9‘) becomes 

f = -  2;( I + -  ::) 

(9’) 

This equation leads to a quadratic in  a which may be solved approximately as a = 
ao+6ao, where 6 = -n2e2/16. Since P = 2Ek2/a2 i t  follows (in approximation) that 
P = P,+EP,, where E = -26 = n2eZ/8. Hence a fractional increase in Po of n2e2/8 
corresponds to a value for c/2fof e. We may therefore conclude that for small increments 
a given fractional increase in the load Po corresponds to a deflection that is an order of 
magnitude larger. (Note: The values of P and cl2fobtained from (9’) are in good agreement 
(for small c/2J with the ones in Southwell’s book [1941, 4341 that are computed from 
tables of elliptic integrals.) 
The memoir is titled “Sur la force des colonnes”. I t  is noteworthy that Euler uses the 
term “force” rather than “resistance”, the word in modem French that denotes the 
strength of a material structure. 
Much later, in a treatise published in 1780, Euler would finally suceed in relating the 
moment of stiffness Ek2 to the transverse dimensions of the column. The relevant part 
is 5 14-21 of Euler [1780]. Pearson remarks [ 1886,441 that to his knowledge this memoir 
is the first in which the formula appears. Significantly, Euler’s treatment suggests a 
familarity with the contemporary analysis of fracture problems. 
in the following we ignore terms of the form @/a)’ for n > 2. We have 0 = tan ( Q  DAC) = 

dx/dy (x = 0) = ( c i m / ( a 2 - c 2 ) .  Hence 0 = fic/a. We have from (9) /’= (no/ 
21/5)(1 +(c2/8a2)). It follows that l/a2 = (n2/8/1)(1+;(0/2)2). Hence P = 2Ek2/aZ = 

( n2 Ek2/4f2)( 1 + 20/2) ’) = ( n2 E k 2 / 4 f 2 ) v m -  . 
For a comparative discussion of Comte’s positivism and 18th-century exact science see 
Fraser [ 19901. 


