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CHAPTER 12

The Calculus of Variations: A Historical Survey

CRrRAIG FRASER

12.1. Introduction

The calculus of variations as a recognizable part of mathematics had its origins
in Johann Bernoulli’s challenge in 1696 to the mathematicians of Europe to find
the curve of quickest descent, or brachistochrone. This problem as well as others
in which it was required to determine a curve satisfying some minimal or maxi-
mal property proved to be amenable to the techniques of the new calculus. The
development of the subject in the eighteenth century engaged the efforts of such
leading analysts as Jakob Bernoulli, Leonhard Euler and Joseph Louis Lagrange.
Bernoulli invented a general and successful method of solution. Euler in turn took
this method and fashioned from it a coherent and extended mathematical theory,
one based on certain standard differential equational forms. In 1762 the subject
was radically reshaped as a result of Lagrange’s introduction of the §-algorithm.
Lagrange’s variational formulation provided the general mathematical framework
for subsequent research in the field.

Euler and Lagrange showed that the solution to a variational problem must
satisfy a certain differential equation, known today as the Euler or Euler-Lagrange
equation. In an investigation of the second variation published in 1788 Legendre
derived an additional criterion that must be satisfied by this solution. His deriva-
tion was based on a certain transformation of the variational integrand involving
the integration of an auxiliary differential equation. He provided no method for
integrating this equation, nor did he provide an analysis of the conditions under
which the transformation is valid. In a seminal paper published in 1837 Carl Gustav
Jacobi provided the outlines of precisely such a theory. There were two fundamen-
tal aspects to his theory. On the one hand it yielded a new and systematic way
of transforming the second variation. On the other hand it furnished criteria for
determining what later mathematicians would call conjugate points. In the thirty
years following 1837, a range of authors elaborated and extended the results con-
tained in Jacobi’s paper. This line of research culminated in an 1868 paper by
Adolph Mayer in which he provided a brilliant synthesis of the two fundamental
aspects of Jacobi’s theory.

In the 1870s the calculus of variations entered a new phase as German re-
searchers began to investigate the subject in a rigorous way from the standpoint
of the theory of a function of a real variable. In 1877 G. Erdmann published a
paper giving conditions under which broken extremals, function whose derivatives
are discontinuous at a finite number of points, are solutions to a variational prob-
lem. Two years later Paul du Bois-Reymond carried out a detailed study of the
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basic variational processes in terms of real-variable analysis. In the mid-1880s Lud-
wig Scheefer published research in which he subjected the traditional conditions of
Euler, Legendre and Jacobi to very close critical scrutiny.

The leading figure in the new calculus of variations was Karl Weierstrass. In
his lectures in the 1870s and early 1880s he pioneered a new method which pro-
vided conditions sufficient to ensure the existence of a maximum or minimum in
single-integral variational problems. The basic idea of Weierstrass, the concept of
a field of extremals, allowed one to develop the theory in reference to a much larger
class of comparison variations. Hilbert presented an important simplification of
Weierstrass’s technique in his famous Paris address of 1900. Writings based on
Weierstrass’s field methods were published during the period 1895-1905 by Ernst
Zermelo, Adolph Kneser, E. R. Hedrick, Oscar Bolza and E. J. B. Goursat. Major
textbooks by Bolza (Bolza 1909) and Jacques Hadamard (Hadamard 1910) provided
a masterful synthesis of contemporary achievements in the subject.

The present survey follows the general lines set forth in the preceding synopsis.
Important topics which have been omitted or discussed very incompletely include
the theory of multiple integrals, problems of constrained optimization, direct meth-
ods, the connections between differential geometry and the calculus of variations,
and the various developments (existence theory, calculus of variations in the large,
control theory) that have marked research in the present century. In the final two
sections we discuss variational principles in mechanics and existence questions, but
once again these are vast subjects whose history we can only touch upon.

12.2. Prehistory

Sometime around 150 BC the Greek mathematician Zenodorous wrote a treatise
on Isoperimetric Figures. His results were presented half a millennium later by
Pappus in the fifth book of the Collection, a work composed about 350 AD. Pappus’s
treatise was translated into Latin by Commandino in 1588 and was widely read and
studied in the seventeenth century.

Pappus derived several results concerning the area of a circle and the area of
polygonal figures of the same perimeter. He showed that the circle has a greater
area than any regular polygon with the same perimeter. He also showed that given
two regular polygons with the same perimeter, the one with the larger number
of sides has the larger area. Finally, he showed that given two polygons of the
same number of sides and the same perimeter, one of which is regular and the
other is not, the regular polygon has the greater area. Pappus then proved some
results concerning the volume of a sphere and the volumes of solids having the
same surface area as the sphere. Galileo’s Two New Sciences of 1637 contained
a Latin treatise in which the study of constrained fall was placed on a new and
sophisticated physical and mathematical basis. One of the problems he considered
was to compare motion along the arc of a circle with the corresponding motion
along a series of chords contained in the circle. He established that the time of
fall along the path consisting of several chords decreases as the number of chords
increases in number. Regarding the circle as the limit of polygonal chord paths, he
concluded that the time of fall along the circle is less than the corresponding time
along the chord joining the initial and final points.

The results of Pappus and Galileo involved a comparison of the circle and a
polygonal figure. Neither researcher conceived of his respective problem in terms
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of a more general class of comparison curves. This limitation may be attributed to
the absence of suitable mathematical methods for introducing and analyzing the
behaviour of an arbitrary plane curve. With the invention of analytic geometry
and calculus, it was possible to carry out a more extended investigation. The first
genuine problem of the calculus of variations seems to have been formulated by Isaac
Newton in his Principia Mathematica of 1687. In a scholium to Proposition 24 of
Book II of this work Newton considered the problem of determining the volume
of revolution that experiences the least resistance as it moves parallel to its axis
through a resisting medium. He was able to obtain a condition on the minimizing
curve that was given in terms of the tangent to the curve at each point.

Whiteside (in (Newton 1974, 466)) writes: “The immediate reaction of New-
ton’s contemporaries to this scholium on its publication in the 1687 Principia was
one of near-total incomprehension.” An examination of Newton’s private papers
first published in this century show that he used techniques to solve this problem
that are similar to the ones later developed by Jakob Bernoulli. Unfortunately, the
published Principia contains only a statement of the solution. His methods seem
to have remained unknown to his contemporaries and his work had little influence
on the development of the subject.

12.3. The Bernoullis, Taylor and Euler

The early Leibnizian calculus consisted of a sort of geometrical analysis in which
differential algebra was employed in the study of “fine” geometry. The curve was
analyzed in the infinitesimal neighbourhood of a point and related by means of an
equation to its overall shape and behaviour.

The cycloid, an important curve which turned out to be the solution of several
variational problems, is the path traced by a point on the perimeter of a circle as
it rolls without slipping on a straight line. The cycloid has a simple description in
terms of the infinitesimal calculus. Let the generating circle of radius r roll along
the x-axis and let the vertical distance be measured downward from the origin
along the y-axis (Fig. 12.1). An elementary geometrical argument revealed that
the equation of the cycloid is

2
(12.1) (d_) -
dy Y
where ds = \/dx? + dy? is the differential element of path length.

The cycloid was the solution to the brachistochrone problem. Consider a curve
joining two points in a vertical plane and consider a particle constrained to descend
along this curve. We must find the curve for which the time of descent is a minimum.
Let us take the origin as the first point and let the coordinates of the second be
z =a,y=0b. We assume the particle starts from rest. By Galileo’s law, the speed

1Goldstine (1980, 8) suggests that Newton’s methods, bearing some similarities to Jakob
Bernoulli’s, may have been transmitted to the larger European community by James Gregory
in his lectures at Oxford in the fall of 1694. There is however an obvious difficulty with this
suggestion. Newton devised two solutions to the resistence problem. The solution that has
similarities with Jakob Bernoulli’s method was composed in 1685 and remained part of his private
papers. The version conveyed to Gregory in the summer of 1694 was based on different ideas, as
is evident in Goldstine’s (Goldstine 1980, 19-21) detailed account.
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of a particle in constrained fall when it has fallen a distance y is \/2gy, where g is
an accelerative constant. We have the relations

d 1 V1 2
(12.2) £~ gy or dt= dy= WLIUCE
dt V29Yy V29Yy

Hence the total time of descent is given by the integral
1 [ \/1+y7?
(12.3) e / Y g,
V29 Jo VY

The problem of the brachistochrone is to find the particular curve y = y(x) that
minimizes this integral.

Following Johann’s Bernoulli’s public challenge in 1696, solutions to this prob-
lem were devised by his elder brother Jakob, by Johann himself and by Newton
and Leibniz. All of these men showed that the condition that the time of descent
is a minimum leads to equation (12.1) and all-—with the exception of Leibniz—
concluded that the given curve is a cycloid. Johann’s solution was based on an
optical-mechanical analogy which is well known today from its description by Ernst
Mach in his Die Mechanik in Ihrer Entwicklung Historisch-Kritisch Dargestellt. Al-
though of considerable interest, his solution did not provide a suitable basis for the
further development of the subject.

On the other hand Jakob Bernoulli’s solution contained ideas that would de-
velop into the calculus of variations. He considered three arbitrary infinitesimally
close points C, G and D on the hypothetical minimizing curve and constructed
a second neighbouring curve identical to the first except that the arc CGD was
replaced by CLD (Fig. 12.2). Because the curve minimizes the time of descent, it
is clear that the time to traverse CGD is equal to the time to traverse CLD. Using
the dynamical relation ds/dt o< \/y and this condition, Bernoulli was able to derive
equation (12.1).

Jakob Bernoulli also investigated problems in which the minimizing or maxi-
mizing curve satisfied an auxiliary integral condition. The classical isoperimetric
problem was the prototype for this class of examples. His idea was to vary the curve
at two successive ordinates, thereby obtaining an additional degree of freedom, and
to use the side constraint to derive a differential equation. Although Jakob died in
1705, some of his ideas were taken up by Brook Taylor in his Methodus incremen-
torum of 1715. Taylor skillfully developed and refined Jakob’s conception, intro-
ducing some important analytical innovations of his own. Stimulated by Taylor’s
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FIGURE 12.2

research and concerned to establish his brother’s priority, Johann, then thirty-eight,
also adopted Jakob’s methods and developed them along more geometric lines in a
paper published in 1719.

In two memoirs published in the St. Petersburg Academy of Sciences in 1738
and 1741, Euler extracted from the various solutions of Jakob and Johann Bernoulli,
as well as the research of Taylor, a general approach to integral variational problems.
These investigations were further developed and were made the subject of his classic
treatise Methodus inveniendi curvas lineas (Euler 1744). Published when he was
thirty-seven, this treatise was a remarkable work of synthesis in which he virtually
created the “calculus of variations” (the name itself would come later) as a branch
of analysis. He realized that the different integrals in the earlier problems were all
instances of the single form

b
(12.4) / Z(z,y,ys ..., y™) dzx

where Z is a function of x, y and the first n derivatives of y with respect to z.
He derived a differential equation, known today as the Euler or Euler-Lagrange
equation, as a fundamental condition that must be satisfied by a solution of the
variational problem.

In Chapter 2 Euler developed his derivation of this equation (for the case n = 1)
with reference to Figure 12.3, in which the line mno is the hypothetical extremizing
curve. The letters M, N, O designate three points of the z-axis AZ infinitely close
together. The letters m, n, o designate corresponding points on the curve given
by the ordinates Mm, Nn, Oo. Let AM =z, AN =z, AO = z” and Mm = y,
Nn =1y', Oo = y". The differential coefficient p is defined by the relation dy = p dx;
hence p = dy/dx. We have the following relations

" /

Y~y r B —4
12.5 — , vy -y
(12.5) p i p 7

b
The integral Z dx was regarded by Euler as an infinite sum of the form

a
o+ Zdr+Zdr+Z'dr+- - -, where Z, is the value of Z at x —dx, Z its value at x
and Z' its value at x + dz, and where the summation begins at z = a and ends at
z = b. (It is significant to note that Euler did not employ limiting processes or finite

approximations.) Let us increase the ordinate 3’ by the infinitesimal “particle” nv,
b

obtaining in this way a comparison curve amwvoz. Consider the value of Z dx

a
along this curve. Since the curve is extremizing, the difference between this value
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b
and the value of Z dz along the actual curve will be zero. The only part of the

integral that is aﬁgcted by varying v’ is Zdx + Z' dz = (Z + Z') dz. Euler wrote:
(12.6) dZ = M dz + N dyP dp, dZ' = M'dx + N'dy' + P'dp'.

He proceeded to interpret the differentials in (12.6) as the infinitesimal changes
inZ, 7', z,y,y, p, p' that result when gy’ is increased by nv. From (12.5) we see
that dp and dp’ equal nv/dz and —nv/dz. (These changes were presented by Euler
in the form of a table, with the variables in the left column and their corresponding
increments in the right column.) Hence (12.6) becomes

n nv
. 7 =P — dZ' =N'-nv-P - —.
(12.7) d i’ nv .
b
Thus the total change in / Z dx equals

(dZ + dZ')dz =nv - (P + N'dz — P).

This expression must be equated to zero. Euler set P’ — P = dP and replaced N’
by N. He therefore obtained 0 = N dz — dP or

dp
(12.8) N-—=0

as the final equation of the problem.
Equation (12.8) is the simplest instance of the Euler differential equation, giving
a condition that must be satisfied by the minimizing or maximizing arc. We would
write
0Z d(0Z/oy')
oy dz N
in modern notation. Euler also derived the corresponding equation when higher-
order derivatives of y with respect to = appear in the variational integral. This
derivation was a major theoretical achievement, representing the synthesis in one

0,
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equational form of the many special cases and examples that had appeared in the
work of earlier researchers.

Chapter 4 of Euler’s treatise was of particular interest from the viewpoint
of the conceptual foundations of analysis. The derivation of equation (12.8) was
carried out in reference to Figure 12.3, in which the variables  and y are the
orthogonal coordinates of a point on the minimizing curve. In Chapter 4, however,
Euler calculated (12.8) in several problems in which the variables have quite diverse
geometrical interpretations. For example, he formulated the problem of the shortest
distance between two points using polar coordinates, derived (12.8) in terms of
these variables and proved that the resulting curve is a straight line. His procedure
showed that the reasoning involved in the derivation of (12.8) is very general and
does not depend on the particular representation of x and y assumed in Figure 12.3.
As Euler himself observed, the variables of the problem are abstract quantities and
this figure is only a convenient geometrical visualization of an underlying analytical
process.

12.4. Lagrange

Lagrange’s first important contribution to mathematics, obtained when he was
nineteen, consisted of his invention of the J-algorithm to solve the problems of
Euler’s Methodus Inveniendi. He announced his new method in a letter of 1755
to Euler and published it in 1762 in the proceedings of the Turin Society. His
d-algorithm permitted the systematic derivation of the variational equations and
facilitated the treatment of conditions at the endpoints. His innovation was im-
mediately adopted by Euler, who introduced the name “calculus of variations” to
describe the subject founded on the new method.

In his 1744 book Euler had noted the somewhat complicated character of his
variational process and called for the development of a simpler method or algorithm
to obtain the variational equations. Lagrange’s new approach originated in his
(tacit) recognition that the symbol d was being used in two distinct ways in Euler’s
derivation of (12.8). In (12.8) and the final step by which (12.8) is obtained, d
was used to denote the differential as it was customarily used and understood in
Continental analysis of the period (see (Bos 1974)). The differential dz was held
constant; the differential of any other variable equalled the difference of its value at
z and its value at an abscissa a distance dx from z. By contrast, the differentials
dz, dy, etc., that appear in (12.6) were interpreted by Euler as the changes in z, y
etc., that result when the single ordinate y is increased by the “particle” nv. Thus
the “differentials” dy’, dp, dp’ equal nv, nv/dz, —nv/dz; the “differentials” dz, dy,
dp”, etc., are zero.

The young Lagrange had the perspicacity to recognize this dual usage and
invented the symbol § to denote the second type of differential change. Using it, he
devised a new analytical process to investigate problems of maxima and minima.
Although the purpose of his method was to compare curves in the plane, it was
nonetheless introduced in a very formal manner. The symbol § has properties
analogous to the usual d of differential calculus. Thus é(z + y) = dx + dy and
§(zy) = zdy + ydx. In addition, the d and ¢ are interchangeable, d§ = dd, as are d

and the integral operation / .
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The §-process led to a new and very simple derivation of the Euler equation
(12.8). It is necessary to determine y = y(z) so that

b
(12.9) 5/ Zdz =0,

where Z = Z(x,y,p) and p = dy/dz. Applying the ¢ operation to the expression
Z, we obtain

(12.10) 0Z = Néy + Pdy .

Note that here all of the ordinates are being varied simultaneously, and not just one,
as had been the case in Euler’s analysis. Because the § and | are interchangeable,

we have

b b b
(12.11) 6/ de:/ 5Zd:c:/ (Noy + Pép) dx .

Because the d and ¢ are interchangeable, we also have dp = §(dy/dz) = d(dy)/dx.
An integration by parts gives rise to the identity

b b b b
(12.12) / Pépdz = / PM dx = P(Sy‘ -—/ Eéydw .
i - dz a J, dzx

b
Hence the condition ¢ / Z dx = 0 becomes
a

b b
-/ (N—£>5yda:=0.
a a dx

We suppose that dy is zero at the end values z = a, z = b. Equation (12.13) then
reduces to

(12.13) Péy

b

dpP
12.14 N — — | dydz=0.
(1219 | (=) svas =0
From (12) we infer the Euler equation

apP
12.15 -—=0.
(12.15) 77 =0

In his investigation Lagrange relied heavily on the algorithmic, algebraic prop-
erties of his new process. In his history Goldstine (Goldstine 1980, 112) writes: “To
what extent Lagrange viewed his variation operator as a means for effecting a com-
parison of curves or as a purely formalistic construct I can form no precise reasoned
opinion; but I incline toward that way since he seems to treat his variation in that
way.” We can discern in this early work of Lagrange the striking analytical philos-
ophy, involving a rejection of diagrammatic aids and methods of proof, that would
become a prominent feature of his mature mathematics. As his career progressed,
his variational research would be closely associated with a conception of calculus as
algebraic analysis (cf. Chapter 4) which was most systematically expressed in his
famous textbooks of 1797 and 1806.

Euler took up Lagrange’s method in his writings of the 1760s and 1770s. In a
paper published in 1772 he presented what would become the standard interpreta-
tion of the d-process as a means for comparing classes of curves or functions. We
assume that y is a function of = and a parameter ¢, y = y(z, t), where the given curve
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y = y(z) is given by the value of y(z,t) at t = 0. We define dy to be (Gy/at)' dt.
0

One way of doing this, Euler explained, is to set y(z,t) = X(z) + ¢ - V(x), twhere
y(xz) = X(x) is the given curve and V(z) is a comparison or increment function;
hence we have dy = dt-V(z). In this conception the variation of a more complicated
expression made up of y(z,t) and its derivatives with respect to z is obtained by
taking the partial derivative with respect to t, setting ¢ = 0 and introducing the
multiplicative factor dt. In later variational mathematics the parameter £ would
often be used instead of ¢.

12.5. Legendre

Legendre initiated the study of the second variation in a memoir published in
1788. He considered the variational integral

b
(12.16) I:/ flz,y,y)dz .

Let us assume that a given function y = y(x) makes the integral I a maximum or a
minimum. Set dy = w(z), where w(a) = w(b) = 0. The first and second variations
I, and I are by definition

b
(a) I =/ (%w + %w') dz,

b(f , *f o, Pf
(b) 12 —/a (8—y2w +28y8y/ww + ay,2> dl’

We will use the following standard abbreviations for the second partial derivatives:
2f _0f _ %
0y? g - Oydy’ 2 - oy'? :

The difference in the value of I along the actual and comparison arcs is

(12.17)

(12.18) P= Q

1
(12.19) Al =1 + 512 + higher-order terms .

It is clear that I; will dominate in this expansion. Hence if a minimum is to
occur, then I; must be zero for all admissible w(z). The validity of the Euler
equation for the problem now follows by means of Lagrange’s procedure. Legendre
recognized that it is also necessary to examine /2 and to show that it is positive for
all admissible w(z). Let v = v(z) be a function of x and consider the expression

d, o

(12.20) (W)

Because w(a) = w(b) = 0, the integral of (12.20) is zero:

b
d
12.21 — (w? =0.
( ) /a o (w*v)dz =0
Thus if we add (12.21) to (12.17b), there will be no change in the value of the
second variation:

b
(12.22) I = / ((P + 0 )w? +2(Q + v)ww' + Rw’Q) dz .
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The integrand is a quadratic expression in w and w’. Legendre observed that it
will be a perfect square if

(12.23) R(P+') = (Q+v)*.

For v(x) satisfying this differential equation, the second variation becomes
b 2

(12.24) & :/ R<w’+ %w) dz

It is evident that the given transformation is only possible if R = 82 f/dy’? is non-
zero on the interval [a,b]. Legendre inferred that the proposed solution will indeed
by a minimum if we have

0% f
8y’2

on the interval. Condition (12.25) would become known later as Legendre’s condi-
tion.

Legendre extended his analysis to the case where the second derivative of y
with respect to = appears in the variational integrand. Here the associated trans-
formation involves the introduction of three auxiliary functions v, vy, vy connected
by three differential equations analogous to (12.23). Legendre’s results raised sev-
eral questions, some of which were discussed by Lagrange in his treatment of the
subject in his Théorie des fonctions analytiques of 1797. In order to carry out the
above transformation, it is necessary to integrate (12.23) and to obtain a solution
v = v(z). Legendre provided no general method for integrating this nonlinear dif-
ferential equation. Lagrange showed using particular examples that the associated
integral may not exist on the given interval. He also produced examples to show
that if the size of the interval is not restricted in some way, then it is possible, for
a given solution which satisfies Legendre’s condition, to find comparison functions
yielding a larger or smaller value of the variational integral. Having raised these
questions, however, he did not proceed to develop any sort of theory to explain the
conditions under which the second variation may be transformed.

(12.25) >0

12.6. Jacobi

12.6.1. Jacobi and his “school”. The next figure in our history is the Ger-
man mathematician Carl Gustav Jacobi, who published a seminal and very original
paper in Crelle’s Journal in 1837. The calculus of variations was only one of many
parts of mathematics to which Jacobi made fundamental contributions. His re-
search in elliptic functions, analysis, functional determinants, number theory and
analytical dynamics established him as one of the leading mathematicians of Eu-
rope. Although born into a Jewish family, he converted to Christianity in order
to pursue a career in mathematics. His most productive professional years were
spent at the University of Konigsberg from 1826 to 1843. In 1843 Jacobi obtained
a position in Berlin, where he lectured and carried out research until his death in
1851.

In addition to his varied work in analysis and mechanics, Jacobi was an ac-
tive teacher who exercised a strong influence on younger mathematicians of his
day. Scriba (Scriba 1973, 51) writes: “Such were Jacobi’s forceful personality and
sweeping enthusiasm that none of his gifted students could escape his spell; they
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were drawn into his sphere of thought, working along the manifold lines he sug-
gested, and soon represented a ‘school.” C. W. Borchardt, E. Heine, L. O. Hesse,
F. J. Richelot, J. Rosenhain, and P. L. von Seidel belonged to this circle; they
contributed much to the dissemination not only of Jacobi’s mathematical creations
but also of the new research-oriented attitude in university instruction.”? Adopting
the model of the university philological seminar, Jacobi and the physicist Franz
Neumann lectured at Koénigsberger directly on the subject of their research, a new
practice that would subsequently be followed throughout the German university
system.3

12.6.2. Jacobi’s 1837 paper. In his 1837 paper Jacobi succeeded in estab-
lishing a systematic theory for the study of conditions required to ensure a maximum
or minimum in the calculus of variations. His paper, in which proofs and justifi-
cations were omitted, became the basis for a vigorous programme of mathematical
research. We begin our discussion with an examination of his initial fundamental
insight. Following Lagrange’s procedure, we integrate the equation I; = 0 by parts,
obtaining

(12.26) I = / Vwdr =0,
where

_of d (of
oz v (o)

Because w(z) is arbitrary, it is clear that the solution y = y(x) to the variational
problem will need to satisfy the Euler differential equation

of d [(of
12.28 V=—-—1{3s=)]=0
( ) Oy dx (ay’
Jacobi’s new idea was to express the relationship between the first and second
variation in terms of the variational operation § in a particular way. We have the

following relationships between the variational integral I and its first and second
variations I; and I5:

(12.29) =61, I,=6I.

Hence if we express I; as

x
(12.30) I :/ Vwdx ,
o
the second variation I, takes the form

Xy 1
(12.31) I, =01, =0 </ vw dar) = / Wwdx
o To
or simply
1
(12.32) I, :/ Vwdz .
Zo

We have seen that the solution y = y(z) to the variational problem must satisfy
the Euler differential equation (12.28). The general solution to this second-order

2For details on “Die Jacobische Schule”, see Klein (1926, 112-115).
3See (Todhunter; Turner 1971).
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equation will contain two arbitrary constants a and 5. Because the first-order term
I, in (12.19) is zero, it is clear that the term involving I will dominate in this
expansion. It is not difficult to see that the third-order term can in general be
made either positive or negative. Thus we will only have a genuine extremum if
there is no w(z) for which I is equal to zero. We are therefore led naturally to
consider conditions under which Iy = 0. From (12.32) it is apparent that Iy = 0 if

(12.33) sV =0.

Let y = y(z, ) be a solution of the Euler equation (12.28), where the notation
indicates the dependency of the solution on the arbitrary constant a. We have
V(a) = 0. Let us regard a as a parameter and increase v by the increment da.
We again have V(a + da) = 0. We now consider a variational process in which
0y = (0y/0a)da. By subtracting V(a) = 0 from V(e + da) = 0, we see that
(0y/da)da is a solution of 6V = 0. Similarly, if 5 is a second arbitrary constant
appearing in y, then 0y = (Jy/93)d3 will be a solution of §V = 0. Since 6V =0 is
a second-order linear differential equation in dy, the general solution will be of the
form 6y = ¢ - u(x) where u(z) is given by
Ay 9y
(12.34) w) = B0 a8
where ¢y and ¢y are constants.

Jacobi’s achievement was to devise a theory that connected solutions to the
Euler equation to the analysis of the second variation. Thus he was able to use
the function u(z) given by (12.34) to obtain a solution to Legendre’s differential
equation (12.23). This was a remarkable result in itself. He also introduced a new
transformation of the second variation, in which (12.34) also played a central role,
that reduced I5 to the form (12.24). Delaunay (Delaunay 1841) and Spitzer (Spitzer
1854) provided detailed derivations of this solution, including details that Jacobi
omitted. Jacobi’s theory was primarily directed at the more general case where the
variational integrand contains higher-order derivatives of y with respect to x.

The considerable body of research stimulated by Jacobi’s paper was devoted
largely to an investigation of the transformation of the second variation. The most
notable contributors here were Delaunay (Delaunay 1841), Spitzer (Spitzer 1854)
and Hesse (Hesse 1857). However, in a brief passage in his paper Jacobi had
also drawn attention to another aspect of the problem, what in later variational
mathematics would be called the theory of the conjugate point. The essential
question is the following. Possible minimizing arcs will be solutions to the Euler
equation V = 0. Let its general solution y = y(x, @) contain the arbitrary constant
. We require that y = y(z,a) pass through the endpoints. Suppose that a
neighbouring solution y = y(z, a4+ da) also passes through the endpoints. Because
both y = y(z,a) and y = y(x, o + da) satisfy the end conditions, it follows that
0y = (Oy/O0a)da is an admissible variation, i.e., one for which dy(a) = dy(b) =
0. By Jacobi’s initial insight, for this choice of dy we have §V = 0. Hence the
corresponding second variation I is zero. It is clear in this situation that there can
be no minimum, because the sign of the third variation can (in general) be made
either positive or negative.

If we start at the initial point, we will eventually arrive at a second point
through which it is possible to find two solutions of the Euler equation satisfying
the associated end conditions. This second limiting point, the value of which cannot
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be reached or exceeded if we are to have a minimum, later became known as a
conjugate point. Considered analytically, it is necessary to show that it is not
possible to find functions of the form (12.34) which vanish at two points of the
given interval [a,b]. By investigating (12.34), we are able to determine the limits
within which it is possible to conclude that there is a solution to the variational
problem.

Jacobi illustrated this restriction using the example of the elliptical motion of
a particle moving about a centre of force, in which the trajectory is deduced from
the principle of least action. In lectures delivered in the early 1840s and published
posthumously in his Vorlesungen (Jacobi 1866, 46), he introduced an even simpler
example, the case of a single particle constrained to move on the surface of a sphere
but otherwise subject to no force. The principle of least action leads here to the
conclusion that the trajectory must be a geodesic or path of shortest distance.
Hence the particle moves on a great circle, i.e., the intersection of the surface of a
sphere and a plane through its centre. If we begin at a given point A and traverse
an angular distance of 180°, we reach a point C' conjugate to A. If the second point
B is equal to or beyond C| then it is not difficult to see that there are comparison
paths of equal or shorter distance.

12.7. Mayer

It is important to note that in the twenty-five years following the appearance
of Jacobi’s paper it was the transformation problem that received the primary
attention of researchers. There was comparatively little concern during this period
for the theory of the conjugate point. This was true of Hesse’s 1857 paper, although

Hesse did include a section in which he showed in the case of variational integrals of
b

the form f(z,y,9') dz that the nonexistence of a conjugate point on the given

interval imaplies the validity of the transformation of the second variation. That is,
if there is no point conjugate to a on the interval [a, b], then the conditions that
must be satisfied in order to transform the second variation are valid. Of course, the
Jacobi theory was primarily directed at the more general case where the variational

integral is of the form / f(x,y,y',...,y(")) dz for n > 2. Hesse did not try to

extend his result to this case. It was not at all obvious in the general case how one
would connect the transformation problem to the theory of the conjugate point.
A clear recognition of this theoretical question and its satisfactory resolution
were the achievement of the Leipzig mathematician Adolph Mayer. He presented
his results in his Habilitationsschrift of 1866 and an article two years later in Crelle’s
Journal. A full account of his result is beyond the scope of the present study. We
can however indicate something of the general analytical setting within which he
carried out his investigation. Following Clebsch (Clebsch 1858), Mayer formulated
the fundamental variational problem as a Lagrange problem. Let us assume that
there are n dependent variables vy, ..., y,. The variational integral is of the form

b
(12.35) Iz/ Flo, 03 s+ v y™) e
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The variables y; are assumed to satisfy m subsidiary differential equations of the
form

(1236) (I’m(xvylw"7y'n)yi)"'>y'£z):O'

We wish to maximize or minimize I subject to (12.36). In 1806 Lagrange had
shown how to obtain the variational equations by means of a multiplier rule. We
multiply each of the equations ®,, = 0 by the multiplier function A,,(z) and form
the expression

(12.37) F=f+) Mo .
i=1
Then the solution to the problem will satisfy (12.36) and the Euler equations cor-
responding to the variational integrand F:
OF _ d OF _
dy; dr oy,

The multiplier rule formulated in this way yields the traditional problem of
b

maximizing or minimizing the integral flz,y,y',. .., y(")) dz as a special case.

(12.38)

This fact was noted explictly by Clebsch in his 1858 paper. Consider the case n = 2.
Let f = f(x,vy1,y2,y5) and assume ® = 3} — yo. Then F = f + A(y] — y2). The
Euler equations corresponding to F' are

Of _dA

8y1 dx Y
(12.39) af ) Aif’f -

Oya dx 0y -

Eliminating the multiplier A from these equations and letting y; = y, we obtain the

b
standard Euler equation corresponding to the integral / flx,y,v',y") d:
a

of d of d> of B
dy dxoy = dz? 0y’

In his paper Clebsch showed how the Jacobi transformation theory could be
extended to the general setting of the Lagrange problem. Mayer’s investigation of
the transformation conditions and the theory of the conjugate point was carried out
within the framework of Clebsch’s analysis of the second variation. In the course
of developing his results, he used specialized methods of Hamilton and Jacobi for
integrating the variational equations. Mayer’s 1858 paper was at the very highest
level of contemporary mathematical work both from a technical and a theoretical
point of view.

(12.40)

12.8. Erdmann

The classical methods of the calculus of variations gave solutions satisfying
certain smoothness requirements, in particular the requirement that the slope of
the optimizing arc must vary continuously along the length of the curve. In a book
published in 1871 the English mathematician Isaac Todhunter drew attention to
“discontinuous” solutions, that is, solutions containing corners where the derivative
changes suddenly in value. (The terminology of “continuous” and “discontinuous”,
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which would remain with the subject, had its origins in the older eighteenth-century
conception of continuity in terms of analytical form. A function was said to be
“continuous” if it was given by a single analytical expression. This condition implied
that the derivative (except at points of singularity) would vary smoothly.)
Although Todhunter initiated the serious study of discontinuous solutions, he
failed to derive the analytical conditions satisfied by such arcs. In a paper published
in 1876 the mathematician G. Erdmann succeeded in such an analysis. He did so
using something called the variable-endpoint formula. In our discussion up to now
we have assumed that the variation of the endpoints is zero. We now broaden
the variational problem to include extremal arcs in which the second endpoint is
allowed to vary in both the z and y directions. The formula for the variation of I

is now
of
:b+< —@y)é.’[}

(12.41)
of d of 8 of
ol =56 dz = — ——\dydr
/ ! / 5 - | v+ g
Versions of this formula had appeared in textbooks of Lagrange (Lagrange 1806,
lesson 22) and Lacroix (Lacroix 1806, 492-493)), and it was a standard result in the
nineteenth century. If we require that the arc joining the endpoints be a solution
to the Euler equation, then (12.41) reduces to

z=b

_of _ g9
(12.42) ST — ay"sy}pﬁ (f y ay'>

r=b '

Consider the variational problem § / f(x,y,vy") dz = 0 and suppose that the

solution y = y(z) has a corner at x = c. It is clear that the integral from a to ¢ and
the integral from ¢ to b must separately be optimal. Hence the Euler equation holds
separately on each of these intervals. Let us consider a comparison arc produced
by varying the point (c,y(c)) in both the x and y directions. From the variable
endpoint formula we obtain the condition
of
rz=ct <f y )6

(12.43)
0 9]
—iéy‘ +|f- y'—f oz f
£ r=c~ 8y’
In this formula the signs + and — are used to indicate that the derivative ¢’ in the
relevant expressions is taken to the right or left, respectively, of ¢. Because dz(c)

. =0.
r=c~ 8:(/ y
and dy(c) are arbitrary, we obtain the equations

r=ct

of _9f
8y’ - Oy lz=ct’
(12.44) (i y 6f\ <f_ AN
k 8y ) I : y By’ Ix:c+.

Equations (12.44) provide the conditions that must be satisfied by an optimizing
arc at a corner c. They are known today as the Erdmann corner conditions.
There are two aspects of Erdmann’s investigation with implications for the
subsequent development of variational analysis. First, with the concept of a solution
to include arcs with corners broadened, it was natural to extend this idea to the
comparison arcs themselves and thereby to greatly enlarge the family of comparison
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curves.® The solutions that were given by traditional variational methods were
“weak” extrema. Weierstrass would launch the study of “strong” extrema, ones
derived from a variational process involving comparison curves whose slope may
differ by any finite amount from the actual curve. (Because the class of comparison
curves is enlarged, the requirement that the given curve is an extremal is a stronger
condition.) Examples that were commonly used in the post-Weierstrass period to
illustrate the distinction between strong and weak extrema involved comparison
arcs with corners; some of these examples even originated with Erdmann’s 1877
paper.®

A second important aspect of Erdmann’s paper was his use of the variable-
endpoint formula. As we shall see below, this formula would be involved directly in
Weierstrass’s derivation of necessary and sufficient conditions involving the famous
excess function.

12.9. Weierstrass

12.9.1. Weierstrass’s lectures. Weierstrass’s contributions to the calculus
of variations were a product of his middle and mature years. Although he began
lecturing on the subject at the University of Berlin as early as 1865, his most
significant results were presented in the summer lectures of 1879, when he was
sixty-three years old. The edition which was eventually published in 1927 is based
on these together with a second set of lectures given in 1883. Although this delay in
publication limited the dissemination of his ideas, he exerted considerable influence
on contemporary German variational research through his public lectures. Copies
of his lectures circulated privately and his results were disseminated in published
form by other researchers beginning in the middle 1890s.

More than any other researcher, Weierstrass established the logical outlook
of the calculus of variations as a modern mathematical subject. The distinction
between necessary and sufficient conditions appears clearly for the first time in his
lectures. He carefully specified the continuity properties that must be satisfied by
functions and their variations. In problems of constrained optimization he used
theorems on implicit functions to ensure that the optimizing arc was embedded in
a suitable family of comparison curves. As we observed above, traditional methods
of the calculus of variations were devoted to the determination of weak solutions or
extrema. Before, say, the 1860s researchers did not identify at the outset of their
investigation the precise class of comparison arcs in a given variational problem.
There was no prior logical conception concerning the nature of this class. However
the d-process introduced by Lagrange required that both the comparison arc and
its slope at each point differ by only a small amount from the actual curve. This
condition, which was imposed implicitly by the nature of the variational process,
was evident in expression (12.17b) for the second variation, where both dy = w
and 6y’ = w’ were small quantities. Todhunter (Todhunter 1871, 269) in his essay
on discontinuous solutions seems to have been the first to call explicit attention
to this limitation on the class of comparison arcs: “If we assert that the relation
[i.e., the Euler equation] does give a minimum, we must bear in mind that this
means a minimum with respect to admissible variations ... our investigation is not
applicable to such a variation as would be required in passing from the cycloid to the

4This possibilty was explicitly recognized by Todhunter in 1871; see the discussion below.
5See, for example, Bolza (1904, 39, 73-74).
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FIGURE 12.4

discontinuous figure: in such a passage dp[= 0y'] would not always be indefinitely
small. Of course it might be possible to give some special investigation for such a
case, but certainly the case is not included in the ordinary methods of the Calculus
of Variations.”6

Weierstrass provided such an investigation, broadening the notion of a solution
to include a much larger class of comparison arcs. At a general level his approach to
the calculus of variations involved a very basic logical reorientation of the subject. In
earlier variational research the nature of the mathematical objects was determined
implicitly by the methods employed. By contrast Weierstrass began with objects
defined constructively in terms of an explicit theory of a function of a real variable.

12.9.2. Weierstrass’s excess function’. In Figure 12.4 the arc (0 1) is the
solution to a given variational problem; i.e., it is an extremal (a solution to the Euler
equation) for the problem passing though the points 0 and 1. (The term “extremal”
was not used by Weierstrass; it originated with Kneser in 1900.) Consider a point 2
on this curve. Let 3 be a neighbouring point. Form the arc (3 2) joining these two
points. Form the extremal curve (0 3) joining 0 and 3. The resulting arc (0 3 2 1)
is a comparison arc to the given curve. Note that the slope of the segment (3 2)
will in general differ by a finite amount from that of (0 1) at the point 2.

We use the notation Ip; to denote the value of the given integral along the arc
(0 1). Let the coordinates of the point 2 be (z,y). Let o be a small positive quantity

SEmphasis in the original. It should be noted that Todhunter (Todhunter 1861, 3) ten years
earlier, in referring to the second variation, had observed in passing that both dy and dp are
small. However, this was an isolated observation, not introduced in the course of any particular
explanation of, or viewpoint on, the variational process.

"Throughout his work Weierstrass employed a parametric approach, in which the variables
z and y are regarded as functions of a parameter ¢. Historically, the very large majority of all
researchers had employed the ordinary theory, in which z is the independent variable and y is
a function of z. Although the parametric approach has certain advantages from a geometric
viewpoint, its analytical development is much less natural than the ordinary theory. During the
period 1895-1905 when Weierstrass’s ideas were becoming more widely known, researchers such
as Bolza, Osgood and Goursat went to some effort to reformulate his results in terms of the
ordinary theory. In our exposition of Weierstrass’s methods we use the ordinary rather than the
parametric theory, a decision that is based primarily on considerations of exposition. Because we
are primarily interested in the essential variational ideas of Weierstrass’s theory, we also omit the
detailed analytical considerations involving functions of a real variable contained in the original
lectures.
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2 4 1

FIGURE 12.5

and let ¢ be the slope of the arc (3 2). Note that ¢ will in general differ by a finite
amount from the value of y" at 2. Define dx = —o and dy = —oq. The coordinates
of the point 3 are then (z + dz,y + dy). By the variable endpoint formula (12.42)
we have

of of
(1245) 103 — 102 = a—y/(—0q> + (f = y’a—y,> (—0’) .
For small o we also have

(12.46) Is2 = f(z,y,q)0 .

The variation of the integral is therefore

(12.47)  Tog + Iz — Ioz = {f(m,y, 9) - f(z,9,9") - %(%y,y’)(q — y’)} o.

Weierstrass’s excess function is defined as
of
(1248) E(l‘, Y, yl) Q) = f(Z', Y, Q) - f($7 Y, yl - BT/(:D’ Y, y/)(q - y/) ‘

By means of (12.48) Weierstrass was able to introduce a new necessary condi-
tion, one that is valid when the comparison family of arcs is enlarged to include
curves whose slope differs by a finite amount from the actual curve. In order for
the given integral to be a minimum, we must have

(12.49) E(z,y,y',q) >0

for all points z, y and for all values of the slope q. Weierstrass called (12.49)
the fourth necessary condition; it supplemented the conditions already derived by
Euler, Legendre and Jacobi.

In his lectures Weierstrass showed that a modified version of condition (12.49) is
sufficient to ensure a minimum. To do so, he employed a slightly more complicated
construction, one however that was a natural development of the preceding analysis.
As before, let (0 1) be an extremal joining the endpoints 0 and 1 (Fig. 12.5). This
curve is given analytically as yo = yo(z). Consider the comparison arc y = y(z),
indicated by the curve (0,3,2,4,1) in Figure 12.5. The points 2 and 3 are points
on this curve with coordinates (z,y) and (z + dx,y + dy), respectively. Let (0,2)
and (0, 3) be extremals joining 0 and 2 and 0 and 3. Define

(12.50) S(z) = Iog + Io1

where Iy is the variational integral I evaluated along the extremal (0,2) and Io; is
the value of this integral evaluated along the segment (2, 1) of the comparison arc
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(0,2,3,4,1). We have

b
S() = / floids ,
(12.51) a

b
S(a) :/ flziyyide -
Then the variation of I is
b
If we can show that S(z) is a decreasing function of z on [a, b], it will follow that
AI > 0. We therefore calculate dS/dx and investigate the condition dS/dx < 0.
We have
(1253) ds = S(I + dCL‘) - S(CB) = .[03 + 132 — Iog .

Let p(z,y) denote the slope of the extemal (0,2) at the point 2. We assume that
p(z,y) is a well-defined function of the coordinates z,y of 2. By the variable-
endpoint formula (12.42)

Iog — Iz = ﬂ(ﬂc,y,zo) dy + <f(:v,y,p) —pg—;,(:c,y,p)> dz

oy’
(12.54) "
= <f(:r,y,p) + L o —p>) o
Also
(12.55) B = g ein.
Hence
G (f(x a1 — i 2 — 2l g ~p)> -
(12.56) : ) ; ) b b 6y/ » )

—E(ZL', ?J,P, y,) dl‘ &
Thus if the condition
(12.57) E(z,y,p,9') >0

is satisfied for all comparison arcs y = y(z), then dS/dz is always negative and the
solution yp = yo(z) renders the given variational integral a minimum.

12.9.3. The field concept. To carry out the preceding sufficiency proof,
Weierstrass assumed that the minimizing arc yg = yo(z) could be embedded in
a strip or region (“Flidchenstreifen”) of the plane containing yo(z) and covered by
a family of solutions to the Euler equation. This family satisfies the property that
there is a unique member joining the initial point 0 and any subsequent point in
the region. In his 1900 Lehrbuch der Variationsrechnung Kneser introduced the
formal term “field of extremals” to designate such a family of curves. In adopt-
ing this usage, Kneser was evidently inspired by the well-known field concept in
physics. This idea had originated in the writings of Faraday and was subsequently
developed by Maxwell and his followers. By the end of the century the concept
of a field had become a standard part of theoretical physics. Of course, a field of
extremals in the calculus of variations is a purely mathematical construction; the
field notion operates at the level of analogy with actual physical fields, serving as a
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conceptual tool in the formulation of sufficiency proofs. In certain particular cases,
for example, the projectile motion of a particle acted upon by a central force and
governed by a variational law, the possible physical trajectories of the particle co-
incide with the extremals of the mathematical field; in this case the mathematical
concept possesses a direct physical realization (although even here the lines of force
are not the same as the extremals of the field). In general, however, the variational
field concept is more abstract, essentially something which subsists by analogy with
the physicists’ construct.

12.10. Refinement of Weierstrass’s methods

12.10.1. Hilbert’s invariant integral. Weierstrass’s methods underwent
two significant modifications at the hands of subsequent researchers. The most
important of these was Hilbert’s introduction in 1900 of the invariant integral to
simplify the derivation of the sufficiency condition (12.57).8

Suppose that yo(z) is a solution to the Fuler equation passing through the
given endpoints. Let

b
(12.58) = / 11, 1 9

We assume that yo(z) is embedded in a field of extremals, so that at each point in
some region containing yo(z) there is a well-defined function p(z, y) giving the slope
at (z,y) of the unique extremal that passes through the initial point and (z,y). Let
y(z) be a comparison arc which coincides with yo(z) at = a, z = b; |y(x) — yo ()|
is small but |y'(z) — y4(z)| need not be.

Consider the integral

b
(12.59) I :/ (f(x,y,p) + %(:c,y,p)(y’—p)> dx .

Hilbert realized that I* is path-independent, i.e., its value is independent of
the particular functional path y = y(z), so long as y = y(z) coincides with yo(z)
at the endpoints. Along the curve yo = yo(x) we have y)(z) = p(m,yo(ac)) and so
it follows that I* = I. Hence the variation AT is

b
a1= [ (F@w)) - S, ) do

(12.60) . o
~ [ (@) - fewp) - Z@un/ - p)do
ie.,
b
(12.61) Al = / E(z,y,p,y) dz .
Thus if the condition
(12.62) E(z,y,p(z,y),y") >0

is satisfied for all comparison arcs y = y(z), then it follows that the solution yo(z)
renders the given variational integral a minimum.

8For accounts of Hilbert’s research in the calculus of variations, including his introduction of
the invariant integral, see Goldstine (1980, 314-330) and (Thiele 1997).
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The key to Hilbert’s derivation was his recognition of the invariance of I*. Let
us write the integrand of (12.59) in the form

(rewn+ gh v -p) ds
(12.63) y

= (f(x,y,p) ~pg—;,(:r,y,p)> dr + %(w,y,p) dy .

Hilbert observed that the condition of exact differentiability, expressed in terms of
the partial differential equation,

0 of 0 [of
is equivalent to the validity of the Euler equation
Of(z,y,y)  d of(zy,y) _
(12.65) By - By =0

along curves of the field, for which the relation dy/dxz = p(z,y) holds.

Although Hilbert did not explain how he arrived at the idea for the invariant
integral, he may well have pursued the following line of thought. Expression (12.61)
for the total variation had been derived by Ernst Zermelo (Zermelo; Hahn 1895)
and was also present implicitly in the lectures of Weierstrass; these authors used a
parametric approach, in which each comparison curve of the family receives its own
parameterization. By rewriting Weierstrass’s result in ordinary form, as Hilbert did
in equation (12.61), it immediately became apparent that the integral I* is path-
independent. Hilbert then verified the path-independence a posteriori in terms of
the validity of the Euler equations and used this fact to simplify the derivation of
Weierstrass’s sufficiency condition.

The disadvantage of Hilbert’s formulation was that it was not immediately ap-
parent how one would generalize it to more complicated examples; the extension is
even unclear in the simple case where the variational integrand contains the second
derivative of y with respect to . Adolph Mayer (Mayer 1904) succeeded in general-
izing the derivation in a formal sense by means of multiplier rule. However, the idea
of the invariant integral really only became a viable notion when it was embedded
in a larger theoretical approach that had its origins in the writings on mechanics of
Hamilton and Jacobi (see 12.11). In an article published in an American journal,
Oskar Bolza (Bolza 1906) introduced the concept of a “field integral” and used it to
establish the invariance of the Hilbert integral in a natural and general way. Bolza’s
method was in essence the following. Consider the field integral

b
(12.66) S(z,y) = / oy de

where it is assumed that S is evaluated along the unique extremal from the initial
point to the point (z,y). We have S(b,yo(b)) = I. If we let 6y = dy and dz = dz,
we obtain from the endpoint formula (12.42) the relation

of of
12.67 dS =—d —y' == ) dz .
(12.67) oy Wt (f y ay') z
In this formula the quantity 3’ is equal at (z,y) to the slope p(z,y) of the extremal
that passes through this point. In order for dS to be an exact differential, the
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condition expressed in (12.64) must hold. A calculation confirms Hilbert’s obser-
vation that (12.64) is equivalent to the validity of the Euler equation at (z,y) for
the extremal passing through this point.

We now rewrite dS in the form

_(9fdy of \ .
or
of /
(12.69) ds = <f(m,y,p) + -a—y—,(:c,y,p)(y ~p)) dr .

Here 3’ denotes the slope at (x,y) of the comparison arc y = y(z). The variational
integral evaluated from a to b is therefore given by the formula

b
(12.70) sban®) = [ (f@n)+ L@ upl -») do.

The left side of (12.70) is equal to I, and the right side is equal to I*. Hence we
have established that [* is invariant.

12.10.2. Some modern perspectives. In deriving the necessary condition
(12.49), Weierstrass took the arc (0 3) (Fig. 12.4) to be an extremal, i.e., a solution
to the Euler equation. Since the point 3 must be distinct from 2, Weierstrass
stipulated that there can be no point conjugate to 0 along the arc (0 1). Thus in
order to carry out the given construction, Jacobi’s condition must hold.

Later authors beginning with Goursat removed the requirement that the neigh-
bouring arc (0 3) be an extremal. All that is needed is that it be given in some
definite manner. This is how Weierstrass’s necessary condition is derived in modern
textbooks. Weierstrass’s condition is now known as the second necessary condition,
the first being Euler’s and the third and fourth being Legendre’s and Jacobi’s, re-
spectively. The reason for this reordering of the original historical presentation of
the necessary conditions is that Legendre’s condition may be derived from Weier-
strass’s, given certain continuity assumptions.

It is nevertheless important to note that Weierstrass himself required the com-
parison arc to be an extremal and that consequently Jacobi’s condition is logically
prior to (12.49) in his development. Thus in Weierstrass’s original theory the field
concept was already implicit in the derivation of the necessary condition involving
the E-function. There was a unity to his treatment of this condition and the more
involved analysis required to prove sufficiency. This unity is not present today.
In the latter, Weierstrass’s necessary condition is derived without using compari-
son extremals and his sufficient condition is obtained in a different way (described
above) by means of Hilbert’s invariant integral.

Finally we note a peculiarity of modern exposition of the theory of sufficiency
in the calculus of variations. In modern treatment one will search in vain for an
account of the traditional case, f: f(z,y,9',y") dz — max / min, studied in such
detail by Legendre, Jacobi, Spitzer and Hesse. This seems rather surprising, since
this problem arises in mechanics (for example, the determination of the elastica)
and is well suited to illustrate the various issues that arise in a general theory
of sufficiency. Instead, such cases are reduced today to a problem of constrained
optimization following Clebsch’s procedure set forth above (12.7); the investigation
of sufficiency (using either transformation or field methods) is then subsumed under
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the general and somewhat abstruse theory of the Lagrange problem. The practice of
formulating the general variational problem as a Lagrange problem (or alternatively,
as a Mayer or a Bolza problem) is widely followed in modern literature on the
subject of sufficiency. An unfortunate result of this situation is that there is a
distinct contrast between the elementary case n = 1, on the one hand, and the
elaborate theory of the fully general Lagrange problem on the other.

12.11. Variational methods in mechanics

Throughout its history the calculus of variations has been closely associated
with research in theoretical mechanics. Problems in statics and dynamics have
provided examples and a sphere of application for the mathematical theory. The
latter has been deployed in turn in the invention of new methods in physics. To
understand something of the historical interaction of the two subjects, we shall
briefly examine the dynamical research of Lagrange, William Rowan Hamilton and
Jacobi.

Lagrange’s Mécanique analytique of 1788 was a comprehensive textbook on
statics and dynamics based on a general statement of the principle of virtual work.
This principle was formulated and applied using the d-formalism of the calculus of
variations. Lagrange’s central technical achievement was to derive the “Lagrangian”
form of the differential equations of motion

oT  doT oV
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for a system with n degrees of freedom and generalized coordinates ¢; (1 = 1,...,n).
The quantities 7" and V' are scalar functions denoting what in later physics would
be called the kinetic and potential energies of the system. The advantages of these
equations are well known: their applicability to a wide range of physical systems,
the freedom to choose whatever coordinates are suitable to describe the system, the
elimination of forces of constraint, and their simplicity and elegance.

In addition to presenting powerful new methods of mechanical investigation,
Lagrange also provided a discussion of the various principles of the subject. The
Mécanique analytique would be an important source of inspiration for such nine-
teenth-century researchers as Hamilton and Jacobi. In investigating problems in
particle dynamics in the early 1830s, Hamilton hit upon the idea of taking a certain
integral and regarding it as a function of the initial and final coordinate values. He
was able to show that the given integral regarded in this way—the so-called principal
function—satisfies two partial differential equations of the first order. Although
Hamilton employed variational ideas and techniques, his analysis was developed
within the established theory of analytical dynamics.

Hamilton’s theory was a very original and seminal contribution to the formal
development of dynamics. He himself said in 1834 in a letter to his friend William
Whewell that he had “made a revolution in mechanics.” His findings were published
in English in the Philosophical Transactions of the Royal Society. Hamilton was
very fortunate to have in Jacobi a reader who immediately appreciated the signifi-
cance of his work and who was also an exceptional mathematician in his own right.
Jacobi took what he referred to as Hamilton’s “beautiful discovery” and developed
an improved and revised theory. Whereas Hamilton had stipulated that the con-
servation of mechanical energy (live forces) should hold, Jacobi observed that this

(12.71)
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equation can be derived without such an assumption. Furthermore, Jacobi empha-
sized the integration problem and used the theory of partial differential equations
to obtain a solution to the dynamical ordinary differential equations in terms of the
solution of the corresponding Hamilton-Jacobi equation.

Jacobi confined his investigation to the primary problem in analytical mechan-
ics. In 1858 Clebsch used some of the ideas of the Hamilton-Jacobi theory in his
mathematical investigation of the second variation. In the course of doing so, he
provided a simple and general exposition of Jacobi’s derivation of the Hamilton-
Jacobi equation. Mayer, in his study several years later of the second variation
(see 12.6), also summarized some of the essential ideas of the Hamilton-Jacobi the-
ory. Clebsch and Mayer developed this theory as a mathematical subject, largely
independent of any connection to mechanics.

An historical exposition of the Hamilton-Jacobi theory is beyond the scope of
the present paper. We can however make one observation which is germane to our
study. It is of interest to note the way in which the later concept of a field of
extremals is implicit in the Hamilton-Jacobi development. In Clebsch’s derivation
of the Hamilton-Jacobi partial differential equation, it is assumed that the given
region of the z-y plane is covered with a family of curves that are solutions to the
Euler differential equation; it is also assumed implicitly that there is a unique such
solution joining the initial point and any subsequent point in the region. The slope
of the extremal passing through each point gives rise to a well-defined field function
defined over the region.

The germ of this idea can be traced to Hamilton’s original derivation of his
principal function in his paper of 1834 (and even earlier, to his draft memoirs).
Hamilton was working within a dynamical framework and did not conceptualize
his result in terms of the calculus of variations. For example, a key step in his
derivation of the Hamilton-Jacobi equation required the assumption that the tra-
jectory followed by the system was described by the dynamical equations of motion
(expressed in terms of canonical coordinates); viewed as a problem in the calculus of
variations, what was being assumed was that the Euler variational equation holds,
i.e., that the given trajectory is an extremal.

Interest in the Hamilton-Jacobi theory in the later nineteenth century seems
to have been largely based on its role in integrating the variational differential
equations. A particular integration of the Euler equations in terms of canonical
constants was employed by Clebsch and Mayer in their study of the second vari-
ation. In mechanical investigations efforts were concentrated on the question of
transforming the coordinates of a system in order to obtain a set of coordinates
that yielded a tractable solution to the integration problem.

Weierstrass seems to have carried out his research in the calculus of variations,
including his development of field methods, largely independently of an interest in
the Hamilton-Jacobi theory. Although some of Beltrami’s investigations were as-
sociated directly with this theory, he seems not to have had much influence on the
main development of the subject, which unfolded in Germany. Kneser’s Lehrbuch
der variationsrechnung of 1900 was the first major treatise containing an exposition
of both field methods and the Hamilton-Jacobi theory. Subsequently, Carathéodory
(Carathéodory 1935) explored systematically the relationship between the calculus
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of variations, the Hamilton-Jacobi theory and the theory of partial differential equa-
tions.?

12.12. Existence questions

Although we have concentrated on single-integral variational problems, the
theory extends in a natural way to problems with more than one independent
variable. Let u = (z,y) and define p = du/dz, ¢ = Ju/dy. Consider the problem
of maximizing or minimizing the integral

(12.72) //f(:v,y,p, q) dz dy
R

where R is some region in the z-y plane, and v is assumed to take on a specified
value on the boundary C' of R. The solution v must satisfy the Euler differential
equation
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As an example, suppose that

2 2
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In this case the Euler equation reduces to what is known as the potential equation
or Laplace’s equation for the function u:
0u  0%u
— +=—=0.
0r?  0Oy?
Nineteenth-century researchers in potential theory and complex analysis were led to
the problem of finding a function that satisfies Laplace’s partial differential equation
on a given region and takes on specified values on the boundary. George Green,
William Thomson and Peter Lejeune Dirichlet in potential theory and Bernhard
Riemann in complex analysis inferred the existence of such a function from the fact
that it would be a solution to a well-defined problem in the calculus of variations.
Thus the calculus of variations became the guarantor for the existence of a function
needed in another part of analysis. This process of reasoning was given the name
“Dirichlet’s principle” by Riemann.

In 1870 Weierstrass observed that it is not the case that a problem in the
calculus of variations will always have a solution. He considered the example

1 dy 2
2 —
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where the values of y at z = —1 and @ = +1 are different. He showed that
although it is possible to find admissible functions y = y(z) which make the integral
arbitrarily small, the minimum value of zero is never actually attained.
Weierstrass’s result called into question the validity of Dirichlet’s principle, as
an a priori method of analysis, and for a period the principle fell into disrepute. In
his Paris address of 1900, Hilbert called in Problem 20 for the further investigation
of existence questions in the calculus of variations. In articles published during the

(12.75) Au =

9Thiele (Thiele 1997) discusses the historical connections between Hamilton-Jacobi theory
and field theory.
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period 1901-1906 (for references see (Monna 1975, 132)), he resuscitated Dirichlet’s
principle by showing that under certain specified conditions the variational problem
will always have a solution. To secure this result, he employed a so-called “direct”
method: Instead of deriving the Euler differential equation and attempting to ob-
tain an integral of this equation, he used a suitable limiting process to show that
a solution to the original variational problem existed. Hilbert’s research initiated
an active programme of twentieth-century variational research in which questions
of existence have played a prominent part.
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