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THE CONCEPT OF ELASTIC STRESS IN 
EIGHTEENTH-CENTURY MECHANICS: SOME 

EXAMPLES FROM EULER* 

CRAIG G. FRASERt 

Introduction. In the historical evolution of any highly mathematized 
physical theory there occurs an interesting interplay between the develop
ment of physical concepts and ideas, on the one hand, and the application 
and extension of mathematical techniques on the other. The subject of 
continuum mechanics offers in this respect a very clear example. Com
bining mathematical elements taken from calculus, analytic geometry and 
linear algebra, it provides a general and powerful approach to the inves
tigation of physical phenomena, one based nevertheless on a specific and 
highly idealized conception of the way in which matter interacts. 

The subject as it emerged in the writings of N avier and Cauchy in the 
1820s had roots in several different branches of pure and applied science.1 

Considerable knowledge was available about engineering design and the 
strength of material structures, a field of research that had been investi
gated in the eighteenth-century and was familiar to French-trained engi
neers in the post-Revolutionary period. Theoretical mechanics, the science 
that became known in nineteenth-century France as "rational" mechanics, 
had reached a very high level of development in the classic treatises of Eu
ler, Lagrange and Laplace. Finally, the advent of the wave theory of light 
led to an interest in analyzing wave phenomena based on an elastic-solid 
model of the ether. 

In surveying the eighteenth-century background to Cauchy's work one 
it struck by how little of the modern theory was in place in the period 
before Coulomb. A wide range of problems was considered, numerous spe
cial results were reached, and sophisticated mathematical techniques were 
frequently employed; overall, however, the subject remained in a very rudi
mentary state of development. Even the most basic results. concerning the 
distribution of shear stress in beams, for example, were beyond the scope 
of the theory, such as it was then. 

The present paper seeks to examine aspects of the early history of the 
concept of stress, focusing on examples from the work of Euler, and to in
dicate some of the difficulties that were involved in the original formulation 
of the stress principle. It is intended as a case study in concept formation 

* Paper presented at International Conference on Hamiltonian Dynamical Systems, 
March 1992, University of Cincinnati. 

t Institute for the History and Philosophy of Science and Technology, Victoria Col
lege, University of Toronto, Toronto, Ontario M5S 1K7, Canada, Tel: 416-9778-5135; 
Fax: 416-978-3003; E-Mail: cfraser@epas.utoronto.ca. 

1 Belhoste [1991, Chapter 6] provides a discussion of Cauchy's early work on elasticity. 
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2 CRAIG G. FRASER 

within the domain of mathematical physics. In reference to physical science 
in the eighteenth-century the historian Thomas Hankins [1985, 30] has ob
served: " ... then as now physical concepts developed much more slowly 
than did new mathematical techniques. Physical concepts are extraordi
narily difficult to create. Mathematical methods may not be any simpler, 
but when they are needed they seem to be found much more quickly."2 

The stress principle. The stress principle is used to analyze the 
static and dynamic behaviour of a continuous body when it is acted upon 
by applied forces. There are two distinct ideas involved in this principle. 
The first, which is logically independent of the concept of stress per se, is 
that a body may for the purposes of analysis be imagined to be divided 
into two parts: one of these parts is isolated for study and the effect of the 
second part upon the first is replaced by a specified set of forces acting at 
the boundary. The second idea is that the given separation into two parts 
may be regarded as being accomplished by a plane of division, with the 
effect of the second part on the first being understood in terms of forces 
per unit area or stresses distributed over this plane and acting across it. 

It is this second idea that is taken up and developed in the full theory 
of stress. One distinguishes between normal and shear stress and analyzes 
the mechanical behaviour of the body in terms of the relations between 
the various stress components acting on an infinitesimal cube of material 
contained in the body. 

Background to Euler's early research. In the early eighteenth 
century there was considerable work on determining the shape assumed by a 
perfectly flexible body under various loadings. The basic idea, developed by 
the brothers Johann and Jakob Bernoulli and published by Jakob Hermann, 
was to analyze the tensions acting on a segment of a hanging cable and to 
obtain a differential equation that described the resulting curve. Since the 
cable was regarded as inextensible and perfectly flexible no assumptions 
were necessary concerning the elastic behaviour of the material comprising 
the cable. 

Assumptions about elasticity did enter into research on two distinct 
and important problems, the problem of fracture and the problem of the 
elastica. In the study offracture one attempted to determine the maximum 
load that a beam of given material and dimensions can sustain without 
breaking. In the problem of bending one was concerned with determining 
the shape assumed by a rod or lamina in equilibrium when subject to given 

2 Hankins is referring to the history of physical science where the mathematical tech
niques in question were already largely in place. It should be noted that within math
ematics itself the process of concept formation is far from straightforward. The estab
lishment of such subjects as Galois theory, differential geometry or partial differential 
equations illustrates the slowness and difficulty with which the relevant techniques and 
concepts were identified and developed. On a more philosophical level one could argue 
that the absence of an empirical referent in pure mathematics places a special premium 
on the formation and development of concepts there. 
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external forces. In the case of the elastica these forces were assumed to act 
at the ends of the rod causing it to bend into a curve. 

In the problem of fracture researchers such as Leibniz, Varignon and 
Parent obtained results that can be readily interpreted in terms of modern 
formulas and theory. Typically they assumed that the beam was joined 
transversally to a wall and that rupture occurred at the joining with the 
wall. Here the physical situation directly concentrated attention on the 
plane of fracture. The conception then current of the loaded beam as 
comprised of longitudinal fibres in tension is readily understood today in 
terms of stresses acting across this plane. 

In the problem of elastic bending by contrast researchers were much 
slower to develop an analysis that connected the phenomenon in question to 
the internal structure of the beam. Here there was nothing in the physical 
situation that identified for immediate study any particular cross-sectional 
plane. In all of Jakob Bernoulli's seminal writings on the elastica the central 
idea of str~ss fails to receive clear identification and development. 

Two papers by Euler. The formative period in the development of 
Euler's early research in mechanics occurred during the ten years following 
his move at age twenty to St. Petersburg in 1728. A colleague of Hermann's 
(until 1731) and Daniel Bernoulli's, he benefited from the favourable in
tellectual atmosphere that existed at this time for research in the Russian 
academy. If one surveys his early work on mechanics it shows a familiarity 
with Johann and Jakob Bernoulli's writings in the Acta Eruditorum, New
ton's Principia Mathematica, Hermann's Phoronomia, Taylor's Methodus 
incrementorum and Varignon's various papers on particle dynamics in the 
Paris Academy's memoirs. 

(a) Euler's "De oscillationibus annulorum elasticorum" 

An example illustrating how Euler understood elastic deformation dur
ing the period is provided by an unpublished paper, dating (we believe) 
from sometime the 1730s.3 Euler considered an "annulus" (washer-like 
ring) that is disturbed from its equilibrium position and set as a conse
quence into motion. Figure 1 shows a part abBA of the ring in its normal 
and stressed configuration. The segment AaeE is regarded as being com
posed of concentric filaments. The inner line ae remains constant under 
deformation while the outer line AE is stretched to AE. The triangle eEE 
shows the stretching of the filaments as one proceeds outward from a to A. 
Euler sets c = Aa, ds = ab and dt = EE. 

3 The essay was eventually published in 1862. Dating of the paper is discussed by 
Fraser [1992, p. 244, n.6], who suggests the middle 1730s as the most plausible time of 
composition. 
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~C------------------,A~---------------~~ 
A E B Ee B 

c 

Figure 1 (from Euler [1862, Fig. 3]) 

~C----------------~A~---------------~~ 

E e 

e 

Figure 2 (from Euler [1862, Fig. 4]) 

To obtain a measure of the elastic force Euler considered the material 
membrane FGH J (Figure 2) consisting of the extended part of a series of 
stretched filaments. F J = g is the magnitude of the extension and FG = f 
is the width of the membrane. He supposed that the weight P is sufficient 
to sustain this stretching so that P/ fg is a measure for the given material 
of the elastic force per unit of extension and per unit of width. 

The stretched part of the ring segment AaeE is comprised of the trian
gle eEe (Figure 2). Consider the portion M N nm of eEe located a radial 
distance eN = x from e. M N nm is composed of a series of concentric 
extended filaments bounded by MN and mn. Since MN = (x/c) (Ee) = 
(x/c)dt the area of M Nnm is (xdxdt)/c. The elastic force that gives rise to 
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MNnm is therefore equal to (Pxdxdtfcfg). Euler calculated the moment 
of this force about the point e to be (Px 2dxdt)f c2 fg. (Rather curiously he 
took x f c instead of x as a measure of the moment arm eM.) By integrating 
this expression from 0 to c he obtained a value of the total "force of cohe
sion", (Pcdt)f(3fg).4 By relating this formula to the radii of curvature of 
ab in its normal and deformed states he arrived at an expression that he 
was able to use to investigate the vibratory motion of the ring. 5 

What is striking in Euler's treatment of this problem is the absence of 
anything that could be interpreted from a later perspective as an applica
tion of the stress principle. The elastic forces that arise are regarded as 
being distributed over the plane in which they act, not over a transverse 
cross-section. This plane is not regarded logically as something that divides 
the body into two parts; rather it is viewed as a component element (rather 
like a membrane) of the body upon which it is a necessary to calculate the 
forces acting. These forces are themselves viewed as an absolute function 
of the displacement dt. Thus Euler lacked the concept of elastic strain. 
The formula (Pcdt)f(3fg) itselffails to relate in a satisfactory manner the 
bending moment to the cross-sectional structure of the ring.6 

(b) Euler's "Solutio problematis de inveniendi curva quam format lamina 
utcunque elastica in singulus punctis a potentiis quibuscunque sollicitata" 

Although unsuccessful Euler's paper "De oscillationibus" is of interest 
because of the detailed picture it presents of his understanding at this time 
of elastic phenomena. In this published writings he would abandon any 
attempt at analyzing the elastic behaviour of a body in terms of its internal 
constitution. The approach that he would follow publicly throughout his 
career was established in the 1732 paper "Solution of the problem of finding 
the curve formed by an elastic lamina acted upon at each point by arbitrary 
soliciting powers". Its purpose was to provide a coordinated treatment of 
the various results then available concerning mechanical lines, the catenary, 
parabola, elastica, velarium, lintearia and so on. 

4 The text that is reprinted in the Opera has Pc2 dt/3fg rather than Pcdt/3fg. (The 
latter is what actually follows from the preceding step of the derivation.) That this is 
a misprint is evident from the fact that Euler immediately sets dt = (a - b)cdslab and 
obtains Pcc(a - b)ds/3abf g, the formula he actually works with in the paper. (That the 
c2 is a typographical error is also clear from the fact that the Euler always denotes the 
square of a single-letter variable a by aa rather than a2 .) 

5 A detailed critical account of Euler's analysis is presented by Cannon and Dostro
vsky [1981,37-43). 

6 Through a series of "corrections" it is possible to obtain the modern formula for the 
bending moment of a prismatic beam from Euler's procedure. In calculating the moment 
of the elastic force we use x rather than x leas the moment arm; we replace dt by the 
strain dt I ds; we incorporate the thickness h of the ring into the final formula; finally, we 
interpret E = PI fg as "Young's modulus" . With these changes Euler's formula becomes 
E(c2 /3)(dtlds), which is the flexure formula for a prismatic beam in which the neutral 
axis is assumed to lie on an outer surface. (It is on the basis of an argument something 
like this that Truesdell [1960, 145) arrives at a high evaluation of Euler's paper.) 
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B 

c 

F 

Figure 3 (from Euler [1732, Fig. 4]) 

In the "general problem" considered by Euler we are given a heavy 
lamina EM A that is subjected at its end to vertical and horizontal forces 
E and F (Figure 3). It is necessary to determine the shape of the curve 
subject to this loading. Consider any point M on the lamina. Euler took 
the resisting moment at M to be Av/r, where v is an elastic constant, A is 
a constant of proportionality and r is the radius of curvature of the curve 
at M. The resisting moment will balance the moment of all forces acting 
on the section of the system to the right of M. Let A be the origin of a 
Cartesian coordinate system, AP = x, PM = y. The moment about M 
of the forces E and F is Ex + Fy. Euler calculated the moment of the 
body forces acting on the lamina M A to be 

x y 

J Pdx+ J Qdy, 
o 0 

where P and Q are equal to 

x 

P = J Fv dx , 
o 

Fv being the vertical force per unit distance along the x-axis and FH being 
the horizontal force per unit distance along the y-axis. (Euler obtained 
these last expressions in a preliminary lemma. The result is demonstrated 
geometrically in terms of curves and graphs. The argument reduces to the 
following. If M (x) is the moment due to the vertically-acting body forces 
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x x 

then we have dM = j(Fv(t)dX)dt. Hence it is clear that P = j Fv(t)dt.) 

a a 
The total moment of all forces must balance the resisting moment, leading 
to the general equation 

x y 

(1) ~v = Ex + Fy + j Pdx + j Qdy. 

a a 

In the case of perfectly flexible bodies the elastic force v = 0 and (1) 
reduces to 

x y 

(2) Ex + Fy + j Pdx + j Qdy = O. 
a a 

If furtherrriore we suppose Q = 0 we have the case of the hanging cable 
given by 

(3) 

x 

Ex + Fy + j Pdx = O. 
o 

Differentiation yields this equation in the form 

(4) Edx + Fdy+ Pdx = O. 

Euler further differentiated (4) with respect to s, where s is the distance 
along the curve: 

(5) dP Fdxddy - Fdyddx = 0 
+ dx 2 . 

Because ds is constant we have d(dx2 + dy2) = 0 or dxddx + dyddy = O. 
(5) may therefore re-expressed in the form 

(6) 

An alternate form of (6) was obtained by Euler by setting the radius of 
curvature r equal to dsdy / ddx: 

(6') rdPdx2 = Fds3 . 

Euler observed that all the various types of the catenary are expressed by 
(6'). 

Euler illustrated (6) with several examples, one of which will be de
scribed here. Suppose the curve BM A is a segment of a light flexible 
hanging cable fixed at B from which a uniform heavy horizontal load 
is suspended (Figure 4). We have E = 0 and dP = adx where a is 
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a constant. F may here be regarded as the tension supporting the ca
ble at A. Equation (4) becomes adx3dy = Fds2 ddx, which integrated 
yields ay = -(Fds2)/(2dx2). Because the applied force at A acts to 
the right we replace F by -F and (using ds2 = dx2 + dy2) arrive at 
dx = (dyvF)/J(2ay - F). This is the equation, Euler noted, of the Apol
lonian parabola. 

B 

c 

____________ ~~------------~ a 
p 

Figure 4 (from Euler [1732, Fig. 5] ) 

Returning later in the paper to the more general equation (1) Euler 
considered examples in which the elastic constant v is non-zero, deriving 
differential equations to describe the resulting curve. His research here was 
preparatory to his famous essay of 1744 on the elastica in which he provided 
a full and systematic analysis of the different solutions obtained from (1) 
when FH and Fv are zero.7 

Let us turn now to a criticai evaluation of Euler's 1732 paper. Earlier 
researchers in mechanics - Jacob Bernoulli and Hermann foremost among 
them - had analyzed the catenary and elastica separately. The equation of 
the catenary was obtained by examining tensions along a segment of the 
hanging cable following the approach that is more or less customary today. 
The equation of the elastica by contrast was obtained by examining the 
elastic behaviour of the fibres that make up the lamina and arriving at an 
estimate for the resisting moment at each point. Using the fact that the 
resisting moment of a perfectly flexible body is everywhere zero, Euler was 

7 Euler's essay of 1744 is the subject of [Fraser 1991]. 
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able by means of equation (1) to provide a single method that covered both 
flexible and elastic lines. 

Euler's condition for equilibrium is that the moment of all forces acting 
on the body to the right of a given point M must balance the resisting 
moment at M. In effect he is dividing the line into two parts, isolating for 
study the part M A, and examining at the boundary point M the effect of 
the second part BM on M A. This principle had been used implicitly by 
Jakob Bernoulli and Hermann when they equated the tension acting at a 
given point of a hanging cable to the sum of all forces acting on the cable to 
the right (or to the left) ofthis point. Euler himself came to the realization 
by 1750 that the principle could be used in balancing either the force or the 
moment acting at a point.s In a memoir of 1771, "Genuine principles of the 
doctrine of the equilibrium and motion of flexible and elastic bodies" , he 
provided a more explicit statement of this condition, supplementing it with 
a derivation of the general differential equation relating the tension, normal 
shear and .moment acting at an arbitrary point of a line. This paper, as 
well as one published five years later in 1776, contained Euler's finished 
theory of the static equilibrium of mechanical lines. 

B 
C -------..:-................................. a 

A 

o 

Figure 5 (from Euler [1732, Fig. 1]) 

Central to Euler's conception of an elastic line is the assertion that the 
resisting moment at a given point is proportional to the radius of curvature 
of the line there. This proposition is a consequence of the "hypothesis" 
presented at the beginning of the 1732 paper. Euler considered two rods 
CB and Ba joined initially at B in a straight line (Figure 5). The action 
of the force or power AD at A causes the segment Ba to assume the 
position BA. Euler stated that the moment of this power at B will be 
proportional conjointly to the "elastic force" at B and the angle aBA. 
This hypothesis, he wrote [1732, 71], "is commonly assumed and could 
probably be demonstrate physically if the angle aBA is extremely small." 

8 See Euler's Wlpublished notebook EH 5, pp. 268--269, cited in [Truesdell 1961, p. 
395, note 1, example 3]. 



10 CRAIG G. FRASER 

______ ~----~c~--------_.K 
A B 

L 

Figure 6 (from Lagrange [1771, Fig. 1]) 

Note that in this conception physical objects such as rods and beams 
are idealized as one-dimensional lines, possessing a certain degree of elas
ticity but lacking any internal constitution that can be further analyzed. 
This point of view seems to have become standard in eighteenth-century 
theoretical mechanics. A paper published by Lagrange in 1771 opened 
with a discussion of the elastic curve. The author wished to show that the 
moment of an applied weight P acting at the end of the curve would at 
each point equal P times the perpendicular distance from the point to the 
vertical through P. The validity of this result for rigid bodies was known 
and it was necessary to demonstrate it for elastic bodies. To do so La
grange considered a curve made up of polygonal segments; at each vertex 
a force represented as sort of an elastic hinge was assumed to exert a re
sisting moment (Figure 9). He devised a certain argument on the basis of 
this model to establish the result, which was then extended to continuous 
curves by assuming that the number of sides of the polygonal line increases 
indefinitely. 
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Figure 7 (from Poisson [1811, Fig. 40]) 
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In 1811 in the first volume of his Traite de Mecanique Simeon Poisson 
adopted Euler's conception of the elastic line. He justified treating the 
elastic lamina as a geometrical line by noting that its thickness would be 
assumed constant along its length. In an extended discussion (pp. 212-
230) he analyzed an elastic line as an infinite-sided polygonal line in which 
an elastic moment is exerted at each vertex (Figure 7). He assumed as 
hypothesis the proportionality of the moment to the angle between two 
successive polygonal segments. 

In the second edition ofthe Traite, published in 1833, Poisson discarded 
this model, replacing it by an analysis in terms of stresses acting across 
cross-sectional planes.9 He provided no discussion of this change, although 

9 Poisson's analysis of the static equilibrium of an elastic lamina in the 1833 edition 
of the Traite is presented on pp. 600-607 of volume 1. On pp. 617-620 he presents an 
analysis of elastic bending for various assumptions concerning the shape of the transverse 
cross-section of the lamina. 
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it is clear that the appearance of stress analysis in the treatises of N avier 
and Cauchy influenced his treatment. By the 1830s the older Eulerian 
conception of an elastic line had become something of an historical curiosity. 

The employment of the elastic line as a conceptual entity was indica
tive of the distinctive style of theoretical mechanics as it was practiced 
in the eighteenth-century. It was at this period not simply a case of ap
plying mathematics to physical reality. In the characteristic processes of 
abstraction and conceptualization the entities under study emerged as ob
jects possessing both a mathematical and physical identity. The elastic 
line was a kind of mathematico-physico hybrid. Although treated formally 
as a geometrical object in a quasi-Archimedian sense, its ultimate onto
logical status (paradoxically) was that of a physical object. There was an 
understanding of the relationship of mathematics to empirical reality in 
which the autonomous mathematical character of conceptual entities was 
acknowledged to a greater degree than it would be in later physics. Io 

Concluding remarks. If one surveys eighteenth-century work for an
ticipations of the concept of stress they are found in researches that focus 
on concrete physical problem. Problems such as the fracture of beams or 
the buckling of columns led researchers to analyze the internal forces act
ing across a given cross-sectional plane, be it the plane of fracture or the 
plane perpendicular to the long axis of the column. In each case the object 
under study was a definite engineering structure possessing a well defined 
physical identity. 

When scientists attempted to develop a general mathematical theory 
of elasticity they turned to models that were physically very restrictive. 
Euler's treatment of the statics of elastic lines is a case in point. His 
investigation was limited at the outset by the adoption of an idealization 
of physical structures that excluded any analysis of their properties in terms 
of the concept of internal stress. ll He was himself conscious of limitations 
of his approach, writing [1771, 381] at the beginning of his 1771 paper 
that "we are still far removed from a complete theory which is capable of 
determining the figure of elastic surfaces as well as bodies" , in consequence 
of which he would restrict his study to "simple strings whether perfectly 
flexible or elastic, as they have been treated till now by geometers." 

It was Cauchy's achievement to develop a theory that was mathemat-

10 Further discussion of the general philosophical point at issue here is provided by 
Grosholz [1990]. 

11 The papers of 1771 and 1772 are excellent representatives of exact science as it was 
practiced by Euler. A given point of view is worked out in a systematic and methodical 
manner with the careful derivation and study of the requisite differential equations. 
What results is an orderly and satisfactory analysis whose overall character and scope 
are substantially restricted by the limitation of the initial point of view. (Miller's [1916, 
238] general comments are relevant here: 'The great volume of Euler's writings is partly 
due to the fact that he went into great details, and presented even the simpler matters 
with considerable completeness.") 
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ically sophisticated and at the same time grounded in a physical analysis 
generally applicable to continuous structures and media. Consideration 
of the eighteenth-century background enables us to appreciate better his 
originality by indicating some of the difficulties of mathematical technique, 
physical conception and underlying methodology that were involved in the 
early evolution of the subject. 
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