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HAMILTON-JACOBI METHODS AND WEIERSTRASSIAN FIELD THEORY IN
THE CALCULUS OF VARTATIONS: A STUDY IN
THE INTERACTION OF MATHEMATICS AND PHYSICS

The relationship between mathematics and empirical science has evolved and developed
historically, and is continuing to evolve and develop today. The twentieth century has seen
many new and different ways in which mathematics is used, in non-linear analysis,
computer science, operations research, industrial engineering, economics, and so forth.
The present paper discusses some aspects of the interaction of mathematical analysis and
theoretical mechanics during the period 1700-1900, with attention to the relatively
classical example of the calculus of variations on the one hand, and Hamilton-Jacobi
theory on the other.

MATHEMATICS AND PHYSICS 1700-1%00

The rejection of geometric conceptions that occurred in the work on analysis of Euler and
other eighteenth-century researchers was not accompanied by a realization that the
calculus could be developed in full logical isolation as part of pure analysis. In Fuler’s
analytical writings the relationship between foundation, theoretical development and
problem generation is not worked out. Euler's entire project in the calculus of variations
consisted of the derivation of differential equations for general problems, each of which
embaodied characteristics found in a given set of examples from geometry or mechanics.
As Euler’s work evolved and developed the separation of analysis from geometry was
made more explicit at a theoretical level. His variational investigations however remained
centered on the derivation of general differential equational forms. He provided no
account of how the problems m question might originate or be generated within this or any
other branch of pure analysis.

Euler sometimes wrote as if problems are things that are external to analysis that
guarantee its meaning and validity. In a memoir published in 1758 he investigated singular
solutions to ordinary differential equations, that is, solutions which are not included in the
general integral containing arbitrary constants. He took a differential equation and
exhibited a particular function y = f(x) that satisfied the equation but was not in the general
solution. He wrote: “Concerning the example that [ have just set forth, as it is drawn from
fantasy, one could doubt whether this case is ever encountered in a real problem. But the
same examples that [ adduced in order to clarify the first paradox, will serve also to clanfy
this one.”' {(The examples in question concerned curves in the plane that satisfied certam
tangent conditions.)

93

E. Grosholz and H. Breger (eds.), The Growth of Mathematical Knowledge, 93-101.
() 2000 Khewer Acodenmic Publishers.



The point here is connected to a larger difference of outlook between eighteenth-
century and modern mathematics. That the problems of geometry and mechanics should
conform to treatment by pure analysis was something that Euler implicitly accepted as a
point of philosophical principle. The term philosophy (or metaphysics) is here being used
in the sense identified by Dasten (1991, 522): “the presuppositions (often unexamined)
that inform a scientist’s work, which may be of either epistemological or ontological
impott...metaphysics 1s what is left over once the mathematical and empirical content have
been subtracted....” In the writings of such post-positivist intellectual historians as E. A.
Burtt the term metaphysics in this sense referred to very broad assumptions, such as a
general Platonic belief among early modern thinkers in the mathemattcal character of
physical reality.? We suggest that it is also useful at a more concrete level in explaining
certain tacit but definite attitudes displayed by Euler in his research in geometry and
analysis.

Demidov (1982, 37) writing of the failure of Euler and d’ Alembert to understand
each othet’s point of view in the debate over the wave equation observes:

A cause no less important of this incomprehension rests, in our opinion, on the understanding of the
notion of a solution of a mathematical probiem. For 4’ Alemben as for Euler the notion of soch a
solution does not depend on the way in which it is defined._rather the solution represents a certain
reality endowed with properties that are independent of the method of defining the solution. To
reveal these properties diverse methods are acceptable, including the physical reasonings employed
by d*Alembert and Euler,

A biographer (Grimsley 1963, 248) of d’ Alembert has noted his insistence on “the
elementary truth that the scientist must always accept the essential ‘giveness’ of the
situation in which he finds himself.” The sense of logical freedom that is inherent in
modern mathematics was notably absent in the eighteenth centyry.

During the nineteenth century mathematical analysis experienced a profound
logical transformation as it underwent successive phases of a process known as
“arithmetization.” This change was accompanied by a larger shift in the way mathematics
was understood, a shift that was manifested most prominently in such subjects as the
foundations of geometry, algebraic number theory and mathematical logic. The deep
intellectual transformation that took place in mathematical cutlook after 1800 is expressed
succinctly in Dedekind’s famous statement of 1888 that “Numbers are free creations of the
human mind,” a statement which presupposes a sense of logical freedom that would have
been foreign to eighteenth-century masters of the subject. This transformation was alse
accompanied by a new sense of the nature of mathematics and its possibilities, expressed
for example in George Boole’s remark of 1854 that “It is not of the essence of
mathematics to be conversant with the ideas of number and quantity.”

With the emergence m the nineteenth century of an intermalized and logically
self-contained conception of mathematics, there also developed a corresponding notion of
theoretical physics, in which a highly mathematical approach was combined with a clear
disciplinary separation of physics from mathernatics. Jungnickel and McCormmach, in
their social study of theoretical physics from Ohm to Einstein, subtitle volume one, “The
torch of mathematics 1800-1870”, and volume two, “The now mighty theoretical physics



1870-1925". They call attention to the disappearance in the second half of the century of
the figure of the mathematician-physicist, of whom Gauss and Riemann had been
outstanding examples. They write:

Mathematicians continued to be of help to physicists as the needs of physical theory came 10 include
bodies of mathematical knowledge not contained in Riemann’s original manval on the pastial
differential equations of physics. But the position of intermediary between mathematics and physics,
as Riemann was seen to hold, was increasingly taken over by a new kind of specialist, the theoretical
physicist. The theoratical physicist might consult or even collaborate with a mathematician, but he
always worked as a physicist rather than a mathematician. As a physicist, he was knowledgable in
mathematics, and although he did not do original research in mathematics, he was capable of
adapting new mathematics to physical uses and, in the process, of offering mathematicians new
mathematical opportunities. (1986, V. 1, 185).

This new disciplinary alignment was apparent in the growing distinction between
mathematical physics, a subject practised by mathematicians on the one hand, and
theoretical physics, a subject of concern to physicists on the other {Jungnickel and
McCormmach 1986 V. 2, 346-7). The physicist Wilhelm Wien (1915) publicly discussed
this dichotomy in an article titled “Ziele und Methoden der theoretischen Physik.”

WEIERSTRASSIAN FIELD THEORY
IN THE CALCULUS OF VARIATIONS

In the 18705 the calculos of variations entered a new phase as German researchers began
to investigate the subject in a rigorous way from the standpoint of the theory of a function
of a real variable. In 1877, G. Erdmann pubhished a paper giving conditions under which
broken extremals, functions whose derivatives are discontinuous at a finite number of
points, are sclutions to a variational problem. Two years later Paul Du Bois-Reymond
carried out a detailed study of the basic variational processes i terms of real-variable
analysis. In the middle 1880s Ludwig Schecfter published rescarches in which he
subjected the traditional conditions of Euler, Legendre and Jacobi to very close critical
scrutiny.

The leading figure in the new calculus of variations was Karl Weierstrass. More
than any other researcher Weierstrass established the logical outlook of this branch of
analysis as a modern mathematical subject. In his lectures the distinction between
necessary and sufficient conditions appears clearly for the first time. He carefully specitied
the continuity properties that must be satisfied by functions and their variations. In
problems of constrained optimization he used theorems on implicit functions to ensure that
the optimizing arc was embedded in a suitable family of comparison curves.

Before the 1860s researchers did not identify at the outset of their investigation
the precise class of comparison arcs in a given variational problem. There was no prior
logical conception concerning the nature of this class. The o-process introduced by
Lagrange required however that both the comparison arc and its slope at each point differ
by only a small amount from the actual curve. This condition was imposed implicitly by
the nature of the variational process.



Weierstrass broadened the notion of a solution to include a much larger class of
comparison arcs. At a general level his approach to the calculus of variations involved a
very basic logical re-orientation of the subject. In earlier variational research the nature of
the mathematical objects was determmned implicitly by the methods employed. Weierstrass
by contrast began with objects defined constructively in terms of an explicit theory of a
function of a real variable.

In his lectures of the 1870s and early 1880s Weierstrass picneered a new method
which provided conditions sufficient to ensure the existence of a maximum or minimum in
single-integral variational problems. His basic idea, involving the so-called excess
function, allowed one to develop the theory in reference to an extensive class of
comparison variations. To apply his method one must show that the hypothetical
minimizing or maximizing arc y, = y,{x} may be embedded in a strip or region
(“Flichenstreife™) of the plane containing y,(x} and covered by a family of solutions to the
Euler equation. This family satisfies the property that there is a unique member joining the
imtial peint 0 and any subsequent point in the region; at each such point there will
therefore be a well-defined slope function, given as the slope of the extremal passing
through the point. In his 1899 Lehrbuch derVariationsrechnung Adolf Kneser introduced
the formal term “field of extremals” to designate such a family of curves.

An important simplification of Weierstrass’s technique was presented by Hilbert
in his famous Paris address of 1900. Writings based on Weierstrass's field methods were
published during the period 1895-1905 by Ernst Zermelo, Kneser, E. R. Hedrick, Oscar
Bolza and E. J. B. Goursat. Major textbooks of Bolza (1909) and Jacques Hadamard
(1910) provided a masterful synthesis of contemporary achievements in the subject.

HAMILTON-JACOBI THEORY IN ANALYTICAL DYNAMICS

Lagrange's Mécanique Analvtique of 1788 was a comprehensive textbook on statics and
dynamics based on a general statement of the principle of virtual work. The central
teehnical achievement of this treatise was to introduce the “Lagrangian™ form of the
differential equations of mation, 57/dg-d(57/0g,)/d=cV/0g, for a system with » degrees of
freedom and generalized coordinates g; (i=1...., #). The quantities 7 and F are scalar
functions denoting what in later physics would be called the kinetic and potential energies
of the system. The advantages of these equations are well known: their applicability to a
wide range of physical systems; the freedom to choose whatever coordinates are suitable
to describe the system; the elimination of forces of constraint; and their simplicity and
elegance.

In addition to presenting powerful new methods of mechanical investigation
Lagrange also provided a discussion of the various principles of the subject. The
Mécanique Analytigue would be an important source of inspiratien for such nineteenth-
century researchers as Hamilton and Jacobi. In investigating problems in particle
dynamics in the early 1830s Hamilton hit upon the idea of taking a certain integral and
regarding it as a function of the initial and final coordinate values. He was able to show
that the given integral regarded in this way — the so-called principal function — satisfies



two partial differential cquations of the first order. Although Hamilton employed
variational ideas and techniques his analysis was developed within the established theory
of analytical dynamics.

Hamilton’s theory was a very original and seminal contribution to the formal
development of dynamics. He himself reported in 1834 in a letter to his friend William
Whewell that he had “made a revolution in mechanics.” His findings were published in
English in Philosophical Transactions of the Royal Society. Hamilton was fortunate to
have in Jacobi a reader who immediately appreciated the significance of his work and was
also an exceptional mathematician in his own right. Jacobi took what he referred to as
Hamilton's “beautiful idea” and developed an improved and revised theory. Whereas
Hamilton had stipulated that the conservation of mechanical energy (live forces) holds,
Jacobi observed that this eguation can be derived without such an assumption.
Furthermore, Jacobi emphasized the integration problem and used the theory of partial
differential equations to obtain a solution to the dynamical ordinary differential equations
in terms of the solution of the corresponding Hamilton-Jacobi equation.

Jacobi confined his investigation to the primary problem in analytical mechanics.
In 1858 Clebsch used some of ideas of the Hamilton-Jacobi theory in his mathematical
investigation of the second variation. In the course of doing so he provided a simple and
general exposition of Jacobi's derivation of the Hamilton-Jacobt equation. Mayer, in his
study several years later of the second variation, also summarized some of the essential
ideas of the Hamilton-Jacobi theory.

A detailed exposition of the Hamilton-Jacobi theery is beyond the scope of the
present paper. There is however one observation which we can make that is germane to
our study. It is of interest to note the way in which the later mathematical concept of a
field of extremals is implicit in the Hamilton-Jacobi development. In Clebsch’s derivation
of the Hamilton-Jacobi partial differential equation it is assumed that the given region of
the x-y plane is covered with a family of curves that are solutions to the Euler differential
equation; it is also assumed implicitly that there is a unique such solution joining the initial
point and any subsequent point in the region. The slope of the extremal passing through
each point gives rise to a well-defined field function defined over the region.

The germ of this idea can be traced to Hamilton's original derivation of his
principal function in his paper of 1834 (and even earlier, to his draft memoirs). Hamilton
was working within a dynamical framework and did not conceptualize his result in terms
of the calculus of variations. For example, a key step in his derivation of the Hamilton-
Jacobi equation required assuming that the trajectory followed by the system is described
by the dynamical equations of motion (expressed in terms of camonical coordinates);
viewed as a problem in the calculus of variations what was being assumed in this step was
that the Euler variational equation holds, ie. that the given trajectory is an extremal.
Although it is not within the scope of the present paper it would be of some interest to
provide a detailed analysis of Hamilton’s original theory and to present a step-by-step
comparison of his derivation with that which would obtain using later variational theory.

Interest in the Hamilton-Jacobi theory in the second half of the nineteenth
century seems to have been largely based on its role in integrating the variational



differential equations. A particular integraticn of the Euler equations in terms of canonical
constants was employed by Clebsch and Mayer in their study of the second variation. [n
order to fransform the second variation to positive definite form it was necessary to
introduce functions containing certain constants, and Clebsch and Mayer were able to
obtain a solution in terms of the constants of integration for the variational equations given
in canonical form. In mechanical investigations efforts were concentrated on the question
of transforming the coordinates of a system in order to obtain a set of coordinates that
vielded a tractable solution to the integration problem.

Although the volumes of Jacobi’s collected works published in the 1880s were
edited by Weierstrass, there is no record that Weierstrass took much interest in the papers
in the fourth volume on mechanics. If he did he never integrated this interest into his study
of the calculus of variations. His development of field methods seems to have been a work
of pure analysis, carried out largely independently of any interest in theoretical mechanics.

At the end of the century mathematicians such as Adolf Kneser involved in the
development of field methods did become very interested in the Hamilton-Jacobi theory.
My own study of the technical sources has led me to hypothesize that some familiarity
with this theory may have contributed to Hilbert's original development in 1900 of the
invariant integral. [ believe that there are technical grounds for supposing that Hilbert
arrived at the idea for this integral by taking such standard results as the variable-endpoint
formula, and developing these results using a Hamilton-style conception of the variational
integral.* It should be noted that Beltrami's independent discovery in 1868 of the invariant
integral [as discussed in (Thiele 1997a)] was associated with his interest in the Hamilton-
Jacobi theory. 1t should also be noted that in his discussion of the invariant integral in his
published Paris address, Hilbert called attention to Kneser's related researches and referred
to the Hamilton-Jacobi equations.

I should emphasize that although there would seem to be intellectual reasons for
believing that Hilbert’s work on the invariant integral was influenced by the Hamilton-
Jacobi theory, we have no actual documentary evidence that this was the case. In an
examination of Hilbert's lectures from around 1900, Thiele [personal communication to
the author; see also his (1997a)] has found no evidence of an interest on Hilbert's part in
the Hamilton-Jacobi theory.

In any case, the Hamilton-Jacobi theory was a central concern of Kneser's and
received detailed coverage in both his LehArbuch of 1899 as well as in Bolza’s major
textbook a decade later. Subsequently, Carathéodory (1935} would investigate in a
systematic way the relationship between the calculus of variations, the Hamilton-Jacobi
theory and the theory of partial differential equations.

DISCUSSION

We would probably classify Hamilton as a mathematician-physicist, of the sort
represented by Gauss and Riemann, rather than a theoretical physicist, of the sori
represented by Helmholtz or Einstein. Nevertheless, Hamilton’s dynamical researches of
the 1830s were clearly part of physics rather than mathematics. His leading conceptions



were carried over from his earlier optical researches, and the intellectual process leading to
his major innovations was conceptualized in dynamical rather than analytical terms.

Theoretical mechanics and analysis provide clear examples of what Emily
Grosholz (1999) has called autonomeus but rationally related domains. Both the autonomy
and rational relatedness have been manifested in different ways in different histerical
periods, In the eighteenth century mechanics was conceived in much the same way as
geometry was, as part of mathematics. The physical objects of study in mechanics were
quasi-Archimedean entities, hybrids tc use a term introduced by Grosholz, capable of
mathematical-deductive study by the tools of advanced analysis. In mathematical analysis
itself however researchers such as FEuler emphasized the logical independence of this
subject from geometrical and mechanical conceptions. Euler's viewpoint was very
different from that of the early pioneers, who conceived of the foundation of the calcutus
in terms of geometric conceptions, or that of the nineteenth-century researchers, for whom
the numerical continuum provided a fundamental structure of interpretation.

As the nineteenth century progressed, researchers — particularly in Germany —
increasingly emphasized the autonomous, physical, empirical, anschautich character of
mechanics vis & vis mathematics. Meanwhile analysis itself was re-conceptualized as a
logical subject independent of physical science. By the end of the century, when analysis
in general and the calculus of variations in particular had achieved complete technical and
philosophical separation from empirical science, Hamilton-Jacobi theory provided an
external source of new and potent mathematical ideas. The rational relatedness of the two
subjects was manifested is a deep, unexpected and highly fruitful way.

NOTES

1. “Pour|’example que je viens d’alléguer icl, comme il est formé 4 fantaisie, on pourrait aussi douter, si ce
¢as s¢ recontre jamais dans la solution d’un probléme réel. Mais les mémes exemples, que j"ai rapportés
pour Eclaiteir I premier paradoxe, serviront aussi & éclaircir celui-ci.”

2. Daston is identifving the sense in which the term metaphysics is used by Burit and others. She is

somewhat critical of this usape because it does not take inte account the various actual historical

systems of metaphysics which prevailed in the early modem period. To the extent however that the
term serves to designate certain cxtra-scicntific or extra-mathematical attitudes in past research it
remains a useful concept of historical analysis.

See (Hankins 1980, xviii).

4. This is explained in more detajl in (Fraser, forthcoming) in a collection of essays on the history of analysis
{Jahnke and Knoche, forthcoming).
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