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"Jacobi's Result {(1837) in the Calculus of Variations
and its Reformulation by Otto Hesse (1857).
A Study in the Changing Interpretation of
Mathematical Theorems

CRAIG G. FRASER
(Toronto}

I. Imtroduction

Li

Jacobi's interest in the caleulus of variations was connected with his work in
ranalytical mechanics, a subject that he had been investigating since at least 1832
His major paper of 1837, "Zur Theorie der Variations-Rechnung und der
Differential-Gleichungen"”, was divided in two parts, the first devoted to the
mathematical problem of finding conditions for an extremum, the second to a
discussion of the dypamical equations of motion of a system of particles.
Although the mathematical and mechanical parts were logically independent
there were significant links connecting his work in the two domains. Some of
the examples that he presented to illustrate his mathematical ideas were drawn
from analytical mechanics, while the latter subject was itself developed in terms
of integral variational principles.

From the moment of its publication Jacobi's paper was recognized as an
important contribution to mathematics. Joseph Liouville arranged a French
translation which was published in 1838 in his Jowrnal de Mathématiques Pures
et Appliquées. In the years which followed V. A. Lebesgue and C. Delaunay
wrote detailed memoirs for this journal in which they provided demonstrations
for results Jacobi had stated without proof. In his 1850 An Elementary Treatise
on the Calculus of Variations John Jellett used Delaunay's memoir in order to
give a very complete account of Jacobi's theorem. He supplemented this
account with the presentation of many illustrative examples. In 1861 Isaac
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Todhunter published an English translation of the mathematical part of Jacobi's
paper and gave an historical survey of the various results then available.

Jacobi's results were the subject of detailed investigation by researchers in
Italy and Germany. Notable among these was the Konigsberg mathematician
Otto Hesse. Hesse, a student of Jacobi's in the early 1830s, published in 1857 an
important and influential article in Crelle's journal. His results were extended by
the young Alfred Clebsch in the following year to problems with side conditions
in the form of differential equations; these researches also appeared in Crelle's
journal. Adolph Mavyer, a leading researcher in the calculus of variations at the
end of the century, built on the work of both Hesse and Clebsch.

Hesse, Clebsch and Mayer developed their results in research articles
published in leading mathematical journals. Elements of Hesse's approach were
also picked up by the authors of two textbooks of the 1860s. Moigno and
Lindelof in volume 4 of their Lecons de Calcul Différentiel et de Calcul
Intégral (1861) and J. Dienger in his Grundriss der Variationsrechnung (1867)
both based their exposition on Jacobi's original paper, but incorporated
important elements of Hesse's contribution. In an 1881 textbook the American
author Lewis Carll adopted Jellett's exposition (the latter itself being based on
the work of Delaunay) but also described several of Hesse's innovations.

In the following decades Hesse's version gradually achieved dominance as
the preferred account of the classical theory of the second variation. In volume
three of his 1896 treatise Cours d'dnalyse Camille Jordan based his exposition
solely on Hesse's and Clebsch's theory. In Oscar Bolza's authoritative textbooks
of 1904 and 1909 Hesse's account was adopted as the preferred way of
analyzing the second variation.

Hesse's theory became the established approach in advanced continental
research into the second variation. It ‘also became closely associated with
historical accounts of Jacobi's original paper. At the end of the century, as part
of the general historical interest that had developed among German
mathematicians, Paul Stickel published a collection of classic papers in the
calculus of variations for the Osmwald Klassiker series. Included was Jacobi's
article of 1837. In the explanatory notes at the end Stackel used Hesse's
formulation in order to clarify Jacobi's contribution, Bolza, an author concerned
with historical sources, indicated that he would draw on Hesse in his account of
Jacobi's theorem, indicating that Hesse had provided the "most complete
commentary” on Jacobi's result (Bolza 1909, p.60). Goldstine preceded his
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historical account of Jacobi's paper by an "excursus" containing a summary of
Hesse's theory (Goldstine 1980, p. 151-56). In his discussion of the paper itself
he referred to this theory in order to document the successive elements of
Tacobi's achievement.

L2

The present essay is devoted to a comparative examination of Jacobi's paper
of 1837 and Hesse’s of 1857. Qur approach is guided by the general
historiographical principle that much can be learned in the history of
mathematics through a comparative study of the successive formulations that a
given theorem or solution receives in the course of its development. Such a
critical method, which allows a detailed point-by-point comparison of the
corresponding steps in different derivations of the same theorem, results in a
clearer perception of the history and leads to a better understanding of the
mathematical and conceptual character of the theory in question. This method,
which has been applied by the author in several concrete examples', provides a
useful tool of historical investigation, one whose possibilities have perhaps yet
to be fully recognized in contemporary historiography of mathematics.

In the present essay we will for reasons of exposition limit the level of
technicality, although it should be noted that additional details would need to be
supplied in a more complete account. We have tried to make the relevant points
accessible to a mathematically educated reader with the usual access to standard
literature who has no special training in the calculus of variations. Our goal it
first to identify the relative mathematical character of Jacobi's and Hesse's work
and second to consider the implications of our study for an understanding of the
place of Jacobi's theorem in the history of the caleulus of variations. Our
discussion, somewhat critical of traditional historiography, concludes with some
reflections on changes that have occurred since 1800 in the basic outlook of the

subject.
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. Jaeobi's Paper of 1837

[1§]

We are in what follows concerned only with the mathematical part of Jacobi's
paper. The background to his investigation was provided by work of Legendre
and Lagrange on the second variation® In 1786 Legendre had devised a
transformation of this variation which led to the establishment of a new
necessary condition for the existence of an extremum. Legendre's results were
presented by Lagrange in his Théorie des fonctions analytigues (1797), who
discussed further some techmical points concerning the existence of the
functions that were required in order to obtain the given condition.

Ostensibly Facobi formulated his paper as a further refinement and extension
of Lagrange's results. While this was the form he gave to his investigation it is
clear that he was presenting a whole new approach to the subject, one based on
important and original ideas. We will explain his basic conception for the
simplest case where the variational integrand fis a function of x, y and y'=dy/dx.
The variational integral under consideration is

W) 1=/

where we have inserted the limits of integration x, and x, - absent in the
original- into the formula for this integral. Let us assume that a given function
y=y(x) renders the integral / an extremum We replace y by y+3y and consider
the value of / along the resulting comparison curve. Here dy=gw(x), wheree is a
small multiplicative constant and w is a function of x with wix,)=w(x,)=0. The
difference Al in the value of 7 along the actual and comparison arcs is

)
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It is clear that the first term in the expansion (2) will dominate. Because [ is an
extremum we obtain the equation

2 ww' -+ Yaet..
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By means of a standard procedure that originated with Lagrange (3) may be
transformed. Using an integration by parts and the fact that wix,) =w(x,)=0 we
express (3) in the form

)

[ L e

8y dxé”

o

Because w(x} is arbitrary it is clear that the solution y=y(x) to the variational
problem will need to satisfy the Euler differential equation

3f d  of

5
©) dy  dx &y

——}=10

It is evident that in the case of a genuine extremum A7 must preserve the
same sign for all admissible increment functions w(x). Consider now the second
term in the expansion for A7 given in (2}

‘ 2 2 2
(6) g—j(Lﬂfzwuz O s 22 sy
24°8 Y8y oy

Because the first-order term in (2) is zero it is clear that (6) will dominate in the
expansion. The third-order term involving & can in general be made either
positive or negative. Thus in order for a genuine extremum to obtain it must be
the case that there is no w(x) for which (6) is equal to zero.

Jacobi's basic insight was to formulate the preceding analysis in terms of the
variational operation 8. Using the 8-process the increment A/ may be expressed
in the form




154 . .- - Craig G. Fraser -

) AI=61+581+ 61

2 3!

Here &I, &I, &1,... denote the first, second, third... variation of /. We have

J sy"yas

@) &= ajfdx jafasc j‘(é’fgwar

In the same way in which equation (4) was obtained (8) may be expressed in the
form

© &= j‘Vaydx

where

aoy vp-9L_4.f
ay  dx 5y

)

Using the operational character of the 8-process we find that
(1) &1 =6(0)= 5{IV5y)¢bc jaVayazx
or simply
(12) 4§ I= ?é‘Vc?ydx .
We have seen that the solution y=y¢x) to the variational problem must satisfy

the Euler differential equation (5). The general solution to this second-order
equation will contain two arbitrary constants @ and . If the given solution is to
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be a genuine extremum then the second variation &7 must be different from
zero for all admissible variations dy. We are therefore led naturally to consider
conditions under which &7=0. From (12) it is apparent that §7=0 if

(13) SV =0.

Let y=y{x,a) be a solution of the Euler equation (5), where the notation
indicates the dependency of the solution on the arbitrary constant . We have

(14) V(a) = éf{st’(xaaj})sy’{xsa» . %(af(x!ly(x;;?!y’(x!a))) — 0

Let us increase o by the increment a+d&r. We have again

(15) V(a+oa)=

_ Ef(x,y(x,a+da),y(x,a+85a)) _ﬁ(é’f(x,y(x,aﬁnda),y’(x,a +§a))) -0

3y dx ay'
We now consider a variational process in which dy=(dvdy)da. By subtracting
(14) from (15) we see that &V=0. Similarly if Sy=(5v Sb)Sb we have SV=0.
Since AV=0 1is a second-order linear differential equation in
dy=ew(x} the general solution will be of the form

N R
(16) w(x)=« anrp’ 2

where o and B are constants.

Jacobi was able to derive an important result concerning Legendre's
transformation of the second variation (he referred in this connection to treatises
of Lagrange and Dirksen). The second variation is

Pf o B T
17) &I=¢ T+ *ydx
) j( 2w+ )
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Let v=v(x) be a function of x and congider the expression
d
18 —(w?v) .
(18)  —-(w™v)

Because w(x,)=w(x, =0 the integral of (18) is zero:

(19) J‘%(wzv)dx -0,

o

Thus if we add (19) (multiplied by &%) to (17) there results no change in the
value of the second variation:

@0) &1-= J'((é’f LW (5Z,+v)ww+§;f w')d

The integrand is a quadratic expression in w and w'. Legendre observed that it
will become a perfect square if

52 2 dv 2
é}{;é’f }(é’f

21
@1 oy’ Aydy'

)2

(

For v(x) satisfying this differential equation the second variation becomes

2
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Thus in order for the solution to be a minimum it is clear that we must have

(23) ng =0

r2 ?
¥
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which is simply Legendre's necessary condition.

Let u(x) be given by (16), i.e., u(x)=af& )+ fév/db), where y(x,a,b) is the
general solution of the Euler equation (5). Jacobi observed that the desired
solution v to (21) will be given as

&f lﬁzfdu
Gyay’ uo”y dx”

24 v=—A—"—

To understand this note that w(x)=u(x) makes the second variation equal to
zero. Introducing this value for w into (22) and equating the integral to zero we

obtain
2
d ;;'w
. U yoy
25 — = Ju=0,
9) ST
&yfz

Solving this equation for v we obtain the expression given in (24).

A criticism Lagrange had made of Legendre's procedure concerned the
question of whether finite solutions v to (21) exist on the interval i question.
By expressing v by means of (24) Jacobi had reduced this question to a siudy of
the known function u(x)= (/) + BV/5b).

The preceding account follows the reasoning of Jacobi's original paper
closely. We have rendered in more detail the reasoning which allows one to
conclude that dy=(3/dr)da is a solution of S=0. In addition, Jacobt at the
beginning of the paper asserted, with no explanation at afl, that equation (24)
gives the function v needed in Legendre's transformation of the second
variation. It is only rather later in the paper that the reasoning behind this
somewhat mysterious announcement becomes clear.

That our account is faithful to the underlying sense of the paper is clear from
Jacobi's own very lucid summary:

The metaphysic of the results obtained (if I may use a French expression)
depends nearly upon the following considerations. The first variation is known
to take the form {V&ydx, where V=0 is the equation to be integrated. The
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second variation then takes the form /5¥8ych. If then the second variation is to
be incapable of changing its sign, it must be incapable of vanishing; so that the
equation 8V=0, which is linear in &y, must have no integral which satisfies the
conditions to which by the nature of the problem & is subjected. Thus we see
that the equation &%=0 plays an important part in these investigations, and we
soon perceive its connexion with the differential equations which must be
integrated in order to obtain the criteria for maxima and minima. For we easily
see that a partial differential coefficient of y with respect to any constant which
ocours in  as the solution of ¥'=0, will be a suitable value of &y satisfying the
differential equation &¥=0. Thus the general expression for dy as the integral of
the equation V=0 will be a linear function of all the partial differential
coefficients of y with respect to the constants which it involves.?

12

In the paper Jacobi also outlined a general method different from Legendre's
for changing the second variation to a form in which the integrand consists of a
term multiplied by a square. His method was based on a certain result in the
theory of linear differential equations. Although we will not here describe the
analysis it is worth noting that his derivation of what later became known as
"Jacobi's differential equation" made use of the operational character of the d
and & symbols.

Having presented this transformation Jacobi turned to the questiont of how in
a particular problem one decides whether a given solution is a genuine
maximum or minimum. He formulated the discussion in terms of neighbouring
soluttons to the Euler equation. Although he did not relate the main idea to his
earlier analysis his reasoning seems to have been more or less the following.
Possible extremalizing arcs will be solutions to the Euler equation V'=0. Let its
general solution y(x,a) contain the arbitrary constant a. If we let Sv=(J/ ) b
then 6V=0 and the second variation is zero. Assume further that both Y(x,a) and
Y(x,a+éa) satisfy the given end conditions. Then &y is an admissible variation,
i.e. one for which Sy(x,)=8y(x,)=0. It is clear in this situation that there can be
no maximum or minimum, because the sign of the third variation can in general
be made either positive or negative. Hence to establish that we have a genuine
extremum we must ensure that it is not possible to pass two neighbouring arcs
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yx,a) and y(x,a+&a) through the endpoints. As illustration of these ideas Facobi
considered the elliptical motion of a planet governed by the principle of least
action. He also mentioned the case of a particle constrained to move on the
surface of a sphere. For the purposes of the present paper it is not necessary to
work through these examples. As in the rest of his discussion he provided only
an outline, suppressing much of the reasoning and rather considerable
calculational work that would have been involved in a more complete account,

1. Hesse's Paper of 1857

FLIN

As noted earlier much subsequent research in the calculus of varations

_centred on providing a fuller treatment of the transformation of the second

variation for the general case where the integrand contains derivatives of
arbitrary order of y with respect to x. Hesse's distinctive achievement in h%s
‘paper of 1857 consisted of the particular analytical formulation he gave t.o this
question. An influential line of later writers would base their presentation of
Jacobi's theorem on Hesse's account, These authors were typically concerned
with exposition, with establishing the basic results and principles of the calculus
of variations, and so restricted their initial discussion to the simplest case where
the variational integrand is of the form fxyy). It thus occurred Somew.hat
paradoxically that Hesse's formulation, whose rather specific and technical
purpose was to facilitate the general analytical transformation of the secm?d
variation, became the accepted approach to the basic ideas underlying Jacobi's
theorem.

A full appreciation of Hesse's contribution can only be achieved by
considering his treatment of the general variational problem, in which the
integrand function £ is of the form fx,y,y"y",...»™). Since our interest here is
only in the implications of his approach for the ideas of Jacobi's theorem_ we
shall - with some reservation - follow the precedent of modern textbook writers
and consider his formulation for the simplest case, in which f is of the form

eyt
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1.2

Hesse considered functions y of x on the interval a <x <&, The variational
integral is

@) | feopyde.

The variation of y is denoted by z, where z is assumed to consist of an
increment function multiplied by a small constant. The Euler equation for the
problem is

QN Fo)- ‘#dfc” 0.

Solutions to (27) will contain two arbitrary constants e, «,. Hesse presents the
second variation in the standard form

(28) A, :j‘zwasc

where
(29) 2% =ayzz+2a,z2' + a,z'z’,
Here

& & &
(30)  ay = {’ 4 I_m*fﬁ ay 2"_;}:_
8% ﬁyé’y (?y

In §6 of his paper he showed how (28) can be transformed by means of an
integration by parts. We write (29) in the form

(Bl 2¥=agz+az,
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where
7k d é"l’
- =
(32) a,=¥"(2)= 5 & (z')= S
(31) is now re-expressed in the form

! dalz
(33) agez+az' =(a,-a }z+—~£x— .

Hesse set

(4 @) =a,-a =¥(z)- ﬂ;z') .

It is assumed that the variation z vanishes at the endpoints a and 4. Integrating
(33) we obtain the desired expression for the second variation

35) A, :fzw(z)dx.

Hesse re-expressed ‘¥ in the form
da, 2’

(36)  W(z)={ay,~al )z~

From (36) we immediately have

dia, (u'z—zu' )}

37 Y- ¥ (u) =~ e

Integration of (37) vields

(38) f {6(z) - 2P () = —a, (u'z — ')
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Recall that the general solution to the Euler equation (27) contains the
constants @, and @, Hesse observed (§8) that if one differentiates (27) with
respect to ¢ {A=1,2) one obtains

Jy

(39) ‘P(aal

)=0.

He set

(40) 1'1:5“—", Py =

Since ¥{z)=0 is a second-order linear differential equation in z its general
solution is w=a,r, +a,r, (a, and @, are new constants). Substituting this value for
u into (38) we have

(4D Ju‘l’(z)afx =—a, (uz' —zu").

Using (41) we integrate (35) by parts and obtain

b d(i)
(42) Azx".a” (' 2,

or

3
[
(43) Azrfallmaﬁc_

u2

(43) is the desired transformation of the second variation, yielding the
Legendre condition a,,>0 for a minimum. Hesse concluded with a discussion of
the relationships among the constants appearing in the solution to the probiem.
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L3

There are two defining elements of Hesse's approach that would be widely
adopted by later writers in the calculus of variations. The first is to express the
quantity 2w in the integrand of the second variation A, in the form

ZT:E}("‘Z'}'@—Z’ ]
Jz &z

and to integrate

by parts to obtain

b
A, = jz‘l’(z)dx,

where Hz) = Jy/-d(Sy/éz')/dx. The second is to take a solution y=y(x, o) of
Euler's equation and to verify by differentiating this equation with respect to o
that z=3/Je satisfies the equation ¥(zj=0. (The equation ¥{z)=0 is often
called "Jacobi's differential equation” in modern textbooks.)

L4

Unlike Jacobi Hesse provided no examples from dynamics or geometry to
illustrate the analysis. The perspective of his investigation was limited. The
paper was concerned with a study of a certain class of linear differential
equations and with the formal transformation of the integrand in the second
variation. The conceptual development of the subject received little attention.’
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IV. Comparison

Iv.i

The really new idea of Jacobi's, what imparted to the subject a fundamental
new direction, was to analyze the second variation in terms of the partial
derivatives of the general solution to the Euler equation with respect to the
arbitrary constants appearing in this solution. If one traces the source of this
idea it will be found in Jacobi's exploitation of the operational character of the
variational process. By initially expressing the first variation in the form [ Véydx,
where V=0 is the Euler equation, he was able to express the second variation as
[8V8ydx. The condition that the second variation is zero could then be analyzed
in terms of variations that arose from varying the constants appearing in the
general solution to =0,

In Hesse's formulation this fundamental idea, what Jacobi called the
"metaphysic” of his result, is absent. We are instructed to treat the integrand in
the second variation as a quadratic form in the increment function and its
derivative and to integrate this form by parts; the resulting expression equated
to zero is shown, a posteriori, to be satisfied by the partial derivatives of the
general solution to the Euler equation. Rather than being regarded as a more
"complete" account of Jacobi's result, Hesse's formulation should be seen as a
distinct variant, one lacking the cogency of Jacobi's original exposition but
possessing certain attractive analytical features in the formal transformation of
the general variational integrand.

Iv.2

Jacobi's research was rooted in an approach to the calculus of variations in
which the conception of the &-process was fundamental. The operational
character of this process had been at the base of Lagrange's original innovation
and was emphasized by subsequent writers of the period. It should be noted that
at a more general level the calculus of variations was embedded in a well-
established eighteenth-century tradition of algebraic analysis. The ordinary
calculus had from its very beginning in Leibniz relied heavily on the operational
nature of the differential process, evident in the algorithmic properties of the d
operation. With the increasing de-geometrization of the calculus that occurred
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in the eighteenth century, most prominently in the textbooks of Euler, a
conception of algebraic analysis developed, stressing the formal, relational, and
purely aigebraic character of the subject. In the writings of Euler and Lagrange
this programme of algebraic analysis received detailed and highly authoritative
development.®

Interest in algebraic analysis was apparent in the attempts at the end of the
eighteenth and the first part of the nineteenth centuries to develop various sorts
of operational caleuli.” Within the calculus of variations authors such as Robert
Woodhouse (1810) and E. IL Dirksen (1823) explicitly construed the subject in
terms of the application of a general §-process to problems of maxima and
minima. Jacobi's paper of 1837 can be seen as a brilliant instance of algebraic
analysis in which recognition of the operational character of the 8-process led to
a major advance, one that reoriented the subject and resulted in a seminal new
line of research.

The more general trend of nineteenth-century mathematics was however to
reject algebraic analysis as the logical basis for the calculus. Beginning with
Cauchy's textbooks of the 1820s the older conception was replaced by a newer
understanding which emphasized the numerical continuum and the properties of
functions defined on this continuum. The algorithmic, formal features of the
subject were no longer regarded as part of its essential defining character.

The rescarches of Hesse in the calculus of variations were consistent. with
this larger movement in nineteenth-century analysis. In his approach the
operational character of the subject was suppressed in favour of an a posteriori
analytical transformation of the second wvariation. This feature of Hesse's
investigation was present in the subsequent researches of Clebsch and Mayer.
The period 1875 to 1900 witnessed the development of field methods in the
writings of Scheeffer, Du Bois-Reymond, Weierstrass, Zermelo, Mayer,
Schwarz, Kneser, and Hilbert. It should be noted that here as well the
operational character of the &-process was suppressed. There was no
consideration of the second variation as such; instead of expanding the
difference of the variational integral along two comparison arcs in a power
series one analyzed instead this difference directly in terms of a field of
extremals consisting of solutions to the Euler equation.

In the modern subject the § operation has come to be seen as something
which has a certain practical value but which 15 in fact extraneous to the
essential logical and conceptual character of the subject. The situation is clear in
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comments scattered throughout the literature. Osgood writes "One of the weak
points in the use of the calculus of variations in physics lies in the tacit
assumption that the variations require no particular definition, for everyone
knows what &y, &/, etc. mean. As a matter of fact, their definition. is an
extremely delicate matter..." (Osgood 1925, p. 432). In his textbook Bolza
prefaces his account of the & formalism with the note, "Wir empfehlen den
Leser, diesen Paragraphen vorliufig zu uberschlagen und erst bei Bedarf darauf
zuriickzugreifen." (Bolza 1909, p. 45 n.1). In referring to research of the early
1800s Bliss observes that the "The analogies between the variations of Lagrange
and the differentials of the ordinary calculus absorbed the interest of students of
the subject, who elaborated them, with doubtfil rigor and without great profit
to the theory." (Bliss 1925, p. 176-177). In a work published two decades later
the same author notes "At the present time many of the results of the theory can
be obtained more readily without extensive use of the & notations.” (Bliss 1946,
p. 6). Pars observes "The operator & played a great part in the early researches.
Nowadays it is possible to develop the subject without using & at all." (Pars
1962, p. 17). Ewing notes "The name calculus of variations comes from a
procedure of Lagrange involving an operator 0 called a variation, but this
restricted meaning has long been overgrown." (Ewing 1969, xi). In his Lectures
on the calculus of variations and optimal control theory. Young writes,

"Already the title of our subject is a purely historical one; it refers to a particular
method, due to Euler and based on so-called variations, that was at one time
important in the subject, but which is of very secondary interest today.” (Young
1969, p. 3) 3

Researchers of the early nineteenth century placed the 8-algorithm at the

foundation of the subject because of their belief in the fundamental role of the

operational variational process. This process lay at the heart of Lagrange's

invention and was basic to Jacobi's brilliant research. In their attempt to extend

and refine the concept of an extremalizing arc subsequent mathematicians

embarked on a very careful delineation of the class of functional solutions and

provided a clearer characterization of the precise variational processes under

consideration, They were motivated not so much by a concern with rigour as a

desire to open up for closer study an extended and fascinating realm of
functional entities, one that was mathematically self-contained and capable of
detailed study by sophisticated techniques of real analysis. The approach of the

older variational formalism, with its relatively liberal manipulation of operations
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and expressions, scemed to detract from this mission. The concept of a variation
- understood as an operation - was no longer regarded as a fundamental entity
of the theory. A certain incommensurability developed between the modern
outlock and the way of thinking which had prevailed in the subject a century

earlier.
V. Further discussion

V.1

In sections 1.1 and IIL3 it was noted that modern authors typically follow
Hesse in their presentation of Jacobi's theorem. This is the case for textbooks as
well as for writings that are explicitly historical in nature. In the textbook

" literature Hesse is seldom actually mentioned or cited, his approach has become

in a generalized and conventional sense part of the commonality of the subject .’
On those occasions where he is credited it is done in 2 way that would suggest
that what is being presented is simply a refinement or an elaboration of the
original theory, an advance in style and technique but not really a distinct
formulation of the theory.

A possible explanation of this practice arises from Jacobi's well known failure
in the 1837 paper to provide details and full demonstrations for his propositions
and examples. According to this view Hesse simply supplied ideas and results
that were already implicit in the earlier paper. Given this and given that Hesse's
formulation became dominant in the modern subject it seems natural to interpret
Jacobi's results in terms of the later work.

Plausible as this explanation may seem it fails to withstand closer scrutiny,
Although it is true that Jacoli wrote in a compressed and elliptical style it is also
the case that his basic approach was clear. The preceding study has documented
the differences in mathematical content in the papers of the two men. The
Hessian theory fails to provide an appropriate framework for either a
mathematical or historical appreciation of Jacobi's achievement.

This criticism is not meant to denigrate the very impressive historical
contribution made by modern authors in the calculus of variations. Among the
various branches of analysis this subject has beginning with Lagrange been
characterized by a continuous and vigorous interest in its history. There has
nevertheless since the late nineteenth century been a certain definite alignment
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tc_> historical writings. The present study provides a concrete example of how a
given mathematical achievement is reinterpreted in the course of its
development. Advanced research at the end of the nineteenth century adopted
Hesse's formulation of Jacobi's theorem. The modern historical tradition has
been embedded in this tradition, bringing to its historical outlook various
presuppositions and judgments of value An almost unconscious resistance
developed to recognizing or appreciating older viewpoints and ways of thinking
A conceptual gulfis evident in Goldstine's {1980, vii) judgement of Todhunter‘s:
history that it is "hopelessly archaic"", a criticism directed primarily at the
Englishman's older mathematical heritage.

V.2

From a purely didactic standpoint, detached from any historical concern, it is
also possible to criticize the Hessian formulation of Jacobi's theorem ’The
essential idea of this theorem is that an increment function given as the éartial
derivative of the solution to the Fuler equation with respect to an arbitrary
constar-lt' annihilates the second variation. The source of this idea is located in
re(:f)g'mtmn of the operational relationship between the first and second
va,natu.)n.. Apprehension of the full meaning of the theorem involves a clear
appreciation of this situation, which, as we observed in IV.1, is not conveyed in
Hes‘se's account. In order to arrive at real understaﬁding a student is best
advised to return to Jacohi's original paper. t would indeed still be necessary to
consult fater writings for a detajled treatment of the geometrical and dynarnical
examples that Jacobi described only in outline. Nevertheless, the suggestion
"reac% the masters”, sometimes urged but not taken seriously, here possesses
genuine and undeniable import.
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Notes

! In [Fraser 1985} D'Alembert's original derivation of the dynamical differential equations in two
problems contained in his Traifé de Dynamigue (1743) is described in detail along with the
corresponding medemn or "classical" deduction of the same equations. The resuiting comparison
reveals the distinctiveness as well as the scientific and historical interest of [YAlembert's theory. In
{Fraser, 1989] Euler's demonstration of the theorem on the equality of mixed partial denivatives is
presented along with the classical (post-Cauchy) proof of the same resuit in order to bring out
differences between Fulerian and moderr conceptions of analysis. In a paper presented at a
conference on Newton in Moscow Fraser [1987] provides a detailed account of Newien's denivation of
Proposition 11 of Book One of the Principia Mathematica (1687) and Varignon's derivation of the
same result in his treatise of 1700 on central forces. The resulting comparison indicates significant
differences in their understanding of the rature of analysis.

? For references and discussion see {Todhunter, 1861, p. 1-5, p. 229-233] and Goldstine [1981, p. 139-
147].

? English translation taken from [Todhunter 1861, p. 248].
 Hesse explicitly considered this case in §9.

. ¥ Hesse would go on to do extensive research on the theery of invariants in algebraic peometry, the part

of mathematics for which he is best known. Felix Klein's comment on this work (reported in [Haas
1972, p. 357]) is not irrelevant to the paper of 1857 under consideration here: Hesse's methods of
presenting material fortified and dissemivated the feeling for elegant calculations expressed in
symmetrical formulas.

® Fraser [1989] discusses Euler's and Lagrange's conception of algebraic analysis. For a discussion of
algebraic analysis in the context of German mathematics 1780-1840 see {Jahnke, 1993].

" Koppelmar: [1971-1972] presents a survey of work on operational calculi at the end of the eighteenth
and the first part of the nineteenth centuries. She is primarily concerned with examples where the
symbol of operation was itself manipulated as an algebraic symbol (for exampie, in differential
equations where expressions representing operations were built up from the D-symbel.) Her study
documents the very considerable degree of interest during the period in the calculus of operations.

¥ An interesting example of use of the 8-symbol is provided by the bock of Geifand and Fomin [1963,
99]. The second variation of the functionat Jfy] is denoted by &J/v] and equated to the entire second-
order term: in the expansion of A7, Thus the second variation as given here is one half of the second
variation as it was more traditionally defined.

This 1s not a particularly good definition. It would be like defining the second denivative of f{x) as
¥"(%). Nevertheless, the convention expresses the implicit understanding of the authors. The &
symbol has a purely nominal role in denoting certain expressions and lacks any conceptual or
operational significance.

® See for example [Bliss 1925, p. 162-163], Funk {1962, p. 139-142], [Pars 1962, p. 56-57], [Akhiezer
1962, p. 68-81], [Brechtken-Manderscheid 1991, p. 60-72].

¥ Bolza [1909, p. 60 n.1] credits Hesse but regards his paper as a "completion” of Jacobi's theory rather
than an independent development. The turn-of-the-century author Pascal [1899, p. 6-7] writes in the
historical introduction at the beginming of his textbook, concerning Hesse, "dem es in seiner
Abhandlung gelang, fast eine ganze neue Theorie tiber eine besondere Darstellbarkeit von linearum
Ausdriicken der successiven Derivativen einer und derselben Funktion aufStellen.” He is however
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here referring only to Hesse's method for transforming the general integrand in the second variation

Pascal's account of Jacobi's result is itself b
SC ased on th
edition 1860] and Moigno-Lindelsf [1861]. ¢ oldes

u Emphasis added.

: Cfaig G. Fraser ;)

treatment n Jellett [1850; German

Set and Measure as an Example of Complementarity

HANS NIELS JAHNKE
(Bielefeld)

1. Histery and hermeneuntics

There are different ideas on how and why history of mathematics should be
included into the teaching of mathematics. One is based on the idea of
hermeneutics (of. Jahnke, 1994). History of mathematics is essentially a
hermeneutic effort: Theories and their creators are interpreted. Interpretation

" comprises a circular process of forming hypotheses and checking them against

the material given, and interpreters should be aware of the hypothetical, even

intuitive character of their interpretations. If history of mathematics is not to

deteriorate into a dead dogma, a mere addition to the dogmas of mathematics
(as it appears to a lot of students), it should be clear to teachers and their
students that historical knowledge is not given from outside, but has to be
constructed out of the available sources. Therefore, teachers introducing history
should know something about historical sources and the basically hypothetical
character of large parts of our historical knowledge.

Hermeneutics is not only the central component of the historical method,
but could also gain a pedagogical dimension. Historical texts can be used in
teaching periods when a new concept or technique has been introduced and the
students are working to get acquainted with it. Understanding a bistorical text
requires the application of the new concept in a problem context that is
different from the usual exercises. In most cases, the ideas of the historical
author are different from those of today, and this provokes a rethinking of one's
own notions. In a natural way then, historical texts lead to reflection. For
Galilei, velocity was an intensive magnitude and composed of infinitely small
particles. This is opposed to a modern view that might consider instantaneous
velocity as a local rate of change of the distance-time function. An interpretation
of Galilei's views in the framework of the modern conception is not at all
obvious. However, it may provoke interesting reflections about our ideas of
what instantaneous velocity is. Guiding questions will be: Which ideas does the
historical author have about the respective concept? Which applications is he




