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Preface 

... in the current state of analysis we may regard these discussions [of past 
mathematics] as useless, for they concern forgotten methods, which have 
given way to others more simple and more general. However, such discus- 
sions may yet retain some interest for those who like to follow step by step 
the progress of analysis, and to see how simple and general methods are 
born from particular questions and complicated and indirect procedures. 
J. L. LAGRANGE Lefons du calcul des fonctions [1806, 315] (Commenting on 
the history of the calculus of variations in the 18th century). 

This passage, written by JOSEeH LOUIS LAGRANGE at the end of a long and 
distinguished career, summarizes very well both his view of the history of mathe- 
matics as well as the distinctive character of  his own extensive contributions to 
mathematics and mathematical physics. The passion to generalize, to construct 
simplifying algorithms, principles and methods, constitute~ a theme which runs 
throughout his work in the exact sciences. This tendency is especially evident in 
his contributions to the calculus of  variations, and it comes, therefore, as no 
surprise to discover that the above passage appears in the course of a discussion 
devoted to 18 th century developments in this subject. 

As a result of the surveys of  such mathematicians as ROBERT WOODHOUSE 
[1810], ISAAC TODmJNTER [1861] and HERMAN GOLDSTINE [1980] we possess 
today a fairly comprehensive outline of LAGRAY~E'S main results in the calculus 
of  variations. What  has been missing thus far, however, is a study that focusses 
on LAGRANGE'S approach to the foundations of this calculus. The purpose of the 
following article is to provide such a study. My historical aims are broader 
and somewhat different than LAGRANGE'S, whose views inevitably reflect those 
of  the eminent practitioner looking back at his own place in the events of the 
preceding century. I nevertheless hope to convey a sense of the phenomenon of 
the general emerging from the particular which so stimulated LAGRANGE to include 
historical surveys in his treatises. 

The development of LA6RAY~E'S approach to the foundations of  the calculus 
of  variations falls naturally into two distinct periods: the first begins with his ear- 
liest letters to EULER in the mid-1750's and ends with the publication in 1788 of 
his treatise the M~chanique Analitique; the second is marked by the appearance 
of his didactic works on the differential, integral and variational calculus at the 
end of the 18 th and beginning of the 19 th century. I shall in this study provide an 
account of  these stages, commencing in each case with a description of the origins 
of LAGRANGE'S research in the work of earlier geometers, followed by a more 
detailed summary of the research itself. In describing LAGRANGE'S presentation 
of principles and methods I shall concentrate on the question of how he himself 
understood the fundamental processes of  the calculus of variations. I shall pay 
special attention to instances where this understanding differs f rom our own. 

A central topic of this study concerns LAGRANGE'S changing derivation of 
the so-called EULER-LAGRANGE equations. Since the calculus of variations in its 
classical formulation is somewhat old-fashioned today, I have included a brief 
survey of the theory involved in the standard derivation of these equations. The 
purpose of this section is to make this study self-contained by acquainting the 
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reader with the usual elementary concepts and terminology of the subject. Readers 
familiar with this theory may move directly to Part One. 

The Mathematical Theory 

I present the elementary theory as it is developed in modern texts. (See, for 
example, COURANT & HILBERT [1953, 164-274].) Assumef i s  a twice continuously 
differentiable function of the three arguments x, y and y '  = dy/dx. Suppose 
also that the second derivative y"  is continuous. (The theory can be modified to 
accomodate various differentiability conditions; the latter played no role at all 
in the period under consideration in this article and shall, therefore, not be a 
matter of great concern in what follows.) Consider the definite integral 

b 

(1) I = f f ( x , y , y ' ) d x .  
a 

The basic problem of the calculus of variations is to find the functional relation 
between y and x for which I has a stationary value. This condition is expressed 
analytically as follows. We consider a family of comparison curves y = y(x, o 0 
parameterized by ~. We then define the operator ~ : 8( ) = 8( )/8~/~=0 d0¢. Thus 
dy = (8y/8~)[~=0 d~. The condition that I has a stationary value becomes 

811[ d~ = O. 
(2) OI = ~ I~=o 

An immediate consequence of (2) is the EULER-LAGRANGE equation: 

8y dx 

To obtain (3) we consider comparison families of the form y(x, c 0 = y(x) + at(x),  
where ¢(x) is any function of x which possesses a continuous second derivative 
on [a, b] and for which ~(a) = ¢(b) = 0. Through an integration by parts (2) 
becomes 

kay " dx  + \ a y  ! ay  = 0 

o r  

(4) -~y dx ~(x) dx = O. 
a 

(3) follows from (4) by the fundamental lemma of  the calculus of  variations: 
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Fundamental Lemma: Assume for every function ((x) with continuous second 
derivative on [a, b] and ((a) = ((b) = 0 that the following relation holds: 

b 
f #(x) ¢(x) dx = o, 

a 

where #(x)  is continuous on [a, b]. Then #(x)  = 0 for all x in [a, b]. 

The proof  of the lemma is indirect; we suppose ~(x) > 0 on some subinterval 
[al, bz] and obtain a contradiction by considering the function ¢(x) that is equal 
to (x -- al)* (x - b2) 4 on [al, b2] and zero elsewhere. 

The problem of deriving (3) from (2) is the simplest possible one in the calculus 
of variations; I shall in this article refer to it as the elementary problem. A more 
general problem is obtained by supposing f is a function of x, y, y '  and higher 
order derivatives y ' ,  . . . .  y(n). In this case the EULER-LAGRANGE equation (3) be- 
comes 

~f d \oy ] 
(5) ay dx + dx  -------T- "'" + ( -  1)" dx-----------a~ = O. 

I f  f is a function of additional dependent variables and their derivatives up to 
order n then we obtain an equation similar to (5) for each additional variable. 

The theory developed thus far has been non-parametric: one independent and 
several dependent variables appear in the function f In the parametric problem 
we supposef is  a functions of x, x', x" ,  . . . .  x ("), y , y , y "  . . . . .  , . . . , y ( ' ° , z , z , z  , . . . ,  z (~), 
where x, y, z are functions of an independent parameter t that does not appear 
in f .  The symbol prime (') now denotes differentiation with respect to t. (It is 
usual to assume the variational problem is independent of the choice of para- 
meterization. This condition leads to restrictions on the form of f I shall not, 
however, pursue this point further here; see note 6.) Corresponding to the variable 
x we obtain the EULER-LAGRANGE equation 

~f d \~x l 
(6) ~x d------t-- + dt - - - - - T - -  "'" + ( -  1)n tit ~ = O, 

with similar equations for y and z. An important advantage of the parametric 
approach is its ability to deal with endpoint conditions. Assume for example 
that f = f (x ,  x', y, y', z, z') and we permit the second endpoint to move along 
a curve. In addition to the EULER-LAGRANGE equation we now obtain the end re- 
lation 

~X ,1 (~X + Oy "{- (~Z ]b ~--- 0,  

an equation which expresses what is called the transversality condition. 
Let us return to the elementary non-parametric problem. I end by presenting 

an example which figures prominently in  Part Two of this study. The example 
concerns the case in which f (x ,  y, y') possesses a primitive function F(x, y) such 
that  dF/dx = f A necessary and sufficient condition for the existence of F is 
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that the EULER-LAGRANGE equation Of/~y -- d(~f/~y')/dx = 0 degenerate into 
an identity, true for all values of x, y and y'. If f = f ( x ,  y,  y ' ,  . . . .  y(n)) then a 
primitive F = F(x,  y,  y ' ,  . . . .  y(n-1)) will exist if and only if the EULER-LAGRANa~ 
equation (5) reduces to an identity. The necessity and sufficiency of this condition 
are discussed in Part Two. 

(I) Part One 

a) Introduction 

In June 1754 the eighteen-year-old native of Turin JOSEPH Louis LAGRANGE 
wrote to LEONHARD EULER to announce a minor result he had obtained and, 
more importantly, to signal to EULER his interest in the latter's extensive work 
in mechanics and mathematics. One of the subjects mentioned by LAGRANGE 
concerned EULER'S solution to the isoperimetrical problem. This problem was 
typical of those contained in EULEg'S classic treatise of 1744 Methodus Inveniendi 
Lineas Curvas Maxirni  Minirnive Proprietate Gaudentes (Method of finding curved 
lines which show some maximum or minimum property). In this work the Swiss 
geometer presented a collection of methods for solving problems in that branch 
of mathematics that later became known as the calculus of variations. (The 
name itself was coined by EULER in response to LAGRANGE'S early researches.) 
Although a fundamental advance, the techniques of the Methodus lnveniendi 
required complicated geometrical constructions and reasonings; their application 
to any given example was arduous, a fact EULER himself acknowledged. 

In the year following his first letter to EULER, LAGRANGE carefully studied 
the Methodus Inveniendi. On 12 August 1755 he wrote again to Berlin to describe 
a method he had devised for solving the problems of that treatise which avoided 
any appeal to geometry. In three pages LAGRANGE presented his algorithm and 
showed how it could be applied with "marvelous ease" to three central examples 
of the Methodus Inveniendi. 

LAGRANGE'S letter was a remarkable document; it deeply impressed EULER. 
The two men subsequently corresponded on the subject of LAGRANGE'S new meth- 
od until October 1756, when the outbreak of the Seven Years' War disrupted 
for three years communication between Turin and Berlin. Their correspondence 
prior to this disruption provides a valuable record of how LAGRANGE'S thought 
evolved during the fifteen months following his second letter. In particular, we 
are able to trace a change in his approach from a non-parametric to a para- 
metric presentation of the variational method. 

In 1760 LAGRANGE submitted two papers to the Turin Academy of Sciences 
which made public the fruits of his earlier researches: the first is devoted to a 
parametric development of the mathematical method of variations; the second 
consists of an extensive application of variational techniques to the principle 
of least action in dynamics. Both memoirs are helpful in determining how 
LAGRANGE understood variational processes. The subsequent evolution of this 



156 C. FRASER 

understanding may be traced in a series of  treatises on mechanics LAGRANGE 
composed over the next two and a half decades, a series that culminated with 
the publication in 1788 of his classic Mdchanique Analitique. The appearance of 
this treatise constitutes a natural closing point in the first stage of LAGRANGE'S 
approach to the foundations of  the calculus ot variations. 

In the sections which follow I shall examine the development of LAGRANGE'S 
thought from his early letters to EULER up to the Mdchanique Analitique. In de- 
scribing the background in EULER'S work as well as LAGRANGE'S first announce- 
ment of  his method I have constructed the narrative so that the reader may share 
in a sense of  LAGRANGE'S mental w o r l d - h i s  path to the new method and his 
excitement at the act of  d i s cove ry -a s  he composed his second letter to EULER 
in the spring and summer of 1755. My subsequent account will focus on LA- 
GRANGE'S changing derivation of the fundamental equations of  the variational 
calculus and on the question of what these changes reveal about his conception 
of this subject. 

b) Euler's Methodus Inveniendi (1744) 

The background to EULER'S Methodus Inveniendi and the work itself have 
been discussed in CARATH~ODORY (EULER [1744]) and GOLDSTINE [1980]. 1 I shall 
describe in detail two problems treated by EULER that were later presented by 
LA6RAN~E as illustration of the power of  his new method: the first is the ele- 
mentary problem; the second is the elementary problem generalized to include 
an additional dependent variable and a side condition. I shall concentrate on those 
features of  EULER'S analysis, which, I believe, directly influenced LAGRANGE. 

In  Proposition I I I  of  Chapter Two EULER considers a curve joining the points 
a and z (see Figure 1). The curve is the geometric representation of an analytical 
relation between the abscissa x and the ordinate y. The letters M, N, O designate 
three points of  the interval A Z  infinitely close together. The letters m, n, o designate 
the points of  the corresponding ordinates M m,  Nn, 0o.  EULER sets A M  = x, 
A N =  x',  A O =  x "  and M m =  y, N n =  y', O o =  y" .  The l e t t e rp  is defined 
by the relation dy = pdx;  hence p - - - -  dy/dx. EULER presents the relations 

y ' - y  

P -  dx ' 
(I) y,, _ y '  

p t  - -  

dx 

1 GOLDSTINE in his account follows CARATHt~ODORY. CARATHI~ODORY interprets 
EULER'S analysis in terms of the techniques of the so-called direct methods in the calculus 
of variations. The resulting description is, I believe, a non-trivial departure from the 
original treatise; among other things, it obscures features that would have been suitable 
to have influenced LAGRANGE. Also, I cannot agree with GOLDSTINE when he says 
p = (y' -- y)/dx involves the use of "finite differences .... to approximate" the derivative, 
or when he uses the symbol A to denote P '  - P. In my opinion such terminology mis- 
represents EULER'S original analysis. 
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o 

Fig. 1 

which give the values of p at x and x' in terms of dx and the infinitesimal differ- 
ences of the ordinates y, y '  and y".  

Suppose now that Z is any function of x, y and p such that the quantity 
Z dx "cannot  be integrated". (The meaning of this condition will become clear 
in II(b).) Consider the (definite) integral f Zdx corresponding to the abscissa AZ. 
This integral is equal to 

f z dx (integral from A to M) + Z dx + Z '  dx + etc., 

where Z, Z' ,  ... denote the values of Z at x, y, p;  x', y', p' ,  ... Suppose f Z dx 
(A to Z) is a maximum or minimum. Increase the ordinate y '  by the infinitely 
small "particle" nv. The resulting change in f z dx must then be zero. The only 
part of this integral that is affected by varying y '  is Z dx + Z '  dx = (Z + Z')  dx. 
EULER writes 

(2) 
dZ = M dx + N dy + P dp, 

d Z ' =  M ' d x  + N ' d y '  + P 'dp ' .  

He proceeds to interpret the differentials in (2) as the infinitesimal changes in 
Z, Z' ,  x, y, y', p, p '  that result when y'  is increased by nv. From (1) we see that 
dp and dp" equal nv/dx and ( -1 )nv /dx .  (EULER presents these changes in the 
form of a table, with the variables in the left column and their increments in the 
right column.) Hence (2) becomes 

(3) 

n v  
d Z = P ' - -  

dx '  

n v  
dZ' = N "  nv - P "  - -  

dx" 

Thus the total change in f z dx equals (dZ + dZ') dx = nv . (P + N '  dx - P'), 
This expression must be equated to zero. EULER sets P '  - P = dP and replaces 
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N '  by N. He therefore obtains 0 = N dx  - dP or 

dP 
(4) N - ~ x =  0, 

as the final equation for the curve. 
Equation (4) is the EULER-LAGRANGE equation for the variational problem. 

An important  feature of  EULER'S derivation of this equation concerns the shifting 
role of  the symbol d. In (4) and the final step by which (4) is obtained d is used 
to denote the differential as it was customarily used and understood in 18 th century 
LEmNIzian analysis. The differential dx is held constant; the differential of  any 
other variable equals the difference of its value at x and its value at an abscissa a 
distance dx f rom x. (A historical account of  LEmNtzian analysis is contained in 
Bos [19741.) By contrast, the differentials dx, dy etc. that appear in (2) denote 
changes in x,  y,  etc. that result when the single ordinate y is increased by the 
"particle" nv. Hence the "differentials" dy', dp, dp" equal nv, nv/dx, - n v / d x ;  
the "differentials" dx, dy, dp",  etc. are zero. Note that  in both of ECLER'S uses 
of  the differential there are no limiting processes or finite approximations. The 
abscissa A Z  is divided into infinitely many intervals M N  = N O  = . . . ;  the differ- 
ential dy equals y '  - y. There is nothing to indicate that EOLER even implicitly 
viewed A Z  as the limit of  a finite partition, or dy = y '  - y as a finite difference 
approximation. Furthermore, the quantity nv is referred to as a "particle",  a 
choice of language that reflects the discreteness underlying his understanding of 
infinitesimal processes. 

In Chapter Three of the Methodus  Inveniendi EULER turns to a more com- 
plicated class of  examples. In Proposition I I I  the problem is to render extreme 
the integral f z dx, where Z is now a function of x, y,  p = dy/dx  and a new 
variable H.  2 H is connected to x, y, p by the side condition H = f [ z ]  dx, where 
[Z] is a function of x, y, p and f [ z ]  dx is the definite integral of  [Z] evaluated 
f rom the initial abscissa A to A M  = x. (The motivation for this problem arises 
from, among others, examples in which Z depends on x,  y,  p and the length of 

path s = f 1/1 + p2 dx.) Increase y '  by nr. The resulting changes dp, dy', dp' 
0 

equal nv/dx, nv, - m , / d x .  Let us calculate the corresponding change in H.  We 
have 

/ 7 =  

H ' =  
(5) 

7 tt 

7 I t l  

f [z] dx, 

f [Z] dx + [2:1 dx, 

f [Zl dx + [Z] dx + [Z'] dx, 

f [z] dx + [z] dx + [z'] dx + [z"] dx, etc. 

2 EULER actually assumes that Z is a function of x, y, p and higher order derivatives 
q, r . . . .  , where q dx = dp, r dx = dq . . . .  are the relations which define these vari- 
ables. For simplicity of exposition I describe his analysis for the elementary case. (What 
I present is exactly his analysis when the partials of Z and [Z] with respect to q, r, . . . ,  
namely, Q, [Q], R, [R], .. . ,  are zero and four is subtracted from his superscript numbering 
scheme.) 
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Suppose d[Z] -- [M] dx + [N] dy + [P] dp. The changes in [Z], [Z'], [ Z ' ] , . . .  
are presented by EULER as follows: 

(PJ  
d" [Z] dx = nv . dx \ dx]  ' 

( (6) d - [ Z ' ] d x = n v . d x  [ N ' ] -  d x ]  

d.  [Z"] dx = 0, etc. 

Hence the changes in H,  D r ' , / / " , / I %  ... equal 

d.  I I  = O, 

d .  H '  = nv . dx \ dx ] ' 

(7) ( dlel  
d.  I I "  = n~ . dx [ N ' ] -  dx ] ' 

d ' / / "  = d- H ' "  = d ' / /0v)  = etc., 

where we have used the fact that d[P] = [P'] - [P]. 
We now calculate the change in f z dx + Z dx + Z '  dx + etc. which results 

when y'  is increased by nv. Suppose dZ --- M dx + N dy + P dp + L dll .  The 
part of the change that arises from the variation o fy ' ,  p and p '  is, as before, 

t 
When y'  is increased by nv all of the quantities 17, H' ,  H " , . . .  are varied. The 
total change in f z  dx + Z dx + Z ' d x  + etc. due to these variations is 

(9) L dx . d H  + L" dx . dH" + L'" dx • dH"  + etc. 

Substituting the values of dH, dH', d H " , . . ,  given by (7) into (9) yields 

d[el] L"' 
(10) m "  dx(L'[P]) + nv" dx IN'] - dx ] (L" dx + dx + L ~iv) dx + etc.). 

EULER replaces IL'] and [N'] by [L] and IN] and sets L"  dx + L" '  dx + L (iv) dx + 

etc. equal to H - fL dx, where H is the integral of L from A to Z. With these 
substitutions (10) becomes 

d[P]~ 
(11) nv.  dx(H - f L  dx) [N] - dx / + nv.  dx(L[e]), 

which EULER rewrites (using d( f L dx) = L dx) as 

(12) nv.  dx ([N] ( H -  f L d x )  - d[P] (H  - f L  dx)) 
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By adding (12) and (8) and equating the resulting expression to zero he obtains 
the final equation for the problem 

(13) 0 = [N] (H - f L  dx) - d[P] (Hdx- f L  dx) + N---~x'dP 

Note once again the dual role of the symbol d in EULER'S derivation of (13). 
We must distinguish between his employment of d in calculating the change in Z 
and H and the more conventional appearance of this symbol in such equations 
as (13). EULER'S notation in Problem III has in fact begun to reflect this dual 
usage. Thus he sets d[Z] = [M]dx  + [N]dy + [P]dp but writes d . [ Z ]  to 
indicate the change in [Z] that results when y'  is increased by nv. (He is, however, 
not completely consis tent-consider  equations (7) and (9).) Another interesting 
feature of his analysis is his replacement of the infinite sum L"  dx + L'"  dx + 
L (iv) dx + ... by the integral H - fL dx. This step is presented as a formal one 
with no explanation. 

Equation (13) is in the modern development of the subject derived by the 
method of multipliers: the problem it to find the function y = y(x) that renders 

b 

extreme f Z dx subject to the condition dH/dx - [Z] = 0. This problem leads 
a 

to the one of rendering extreme the modified integral with the new integrand 
Z + 2 ( d / 7 / d x -  [Z]), where 2 is a multipler. The EULER-LAGRANGE equation 
corresponding t o / 7  is d2/dx = ~Z/~/7 = L. By integrating this equation from 
x to the endpoint and substituting into the equation corresponding to y we obtain 
(13). It is important to note, however, that although the multiplier method leads 
to the same result, it is not a correct description of EULER'S original procedure, 
where, for example, the side condition is never considered in differential form. 
The use of multipliers would seem to involve at least in part ideas not present 
in the Methodus Inveniendi. (The reader may also wish to consult the discussion 
of this point in GOLDSTINE [1980, 74-76].) 

c) Lagrange's letter of 12 August 1755 

LAGRANGE'S second letter to EULER begins with a brief description of his 
new method followed by three examples in which it is applied to problems taken 
from the Methodus Inveniendi. The method is based on the addition of the sym- 
bol 0 to the infinitesimal and integral calculus. LAGRANGE supposes that x is 
constant with respect to 8, that is, that 0x = 0. 0y denotes the corresponding 
differential of y that occurs in problems of maxima and minima; it is used to 
distinguish this change in y from the usual differential dy appearing in the same 
problems. The quantity OFy denotes the increment in Fy (F a function of y) when 
y is increased by @. LAGRANGE asserts that dO Fy = Od Fy, and, more generally, 
that dmO Fy = Odm Fy; if Fy = y and m = 1 we obtain d@ = ddy. (LA- 
GRANGE'S only justification for these relations is to refer to a memoir composed 
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by  EULER in 1734. 3 The  asser t ion o f  their  va l id i ty  should,  I think,  mos t  p roper ly  
be r ega rded  as an  unp roven  as sumpt ion  or  ax iom concern ing  the fo rma l  p rop -  
erties o f  his new (3-calculus.) H e  proceeds  to  lay down the fol lowing relat ions,  
ob ta ined  by  in tegra t ion  by  pa r t s :  

(1) f z  du = zu - fu dz ,  

(2) fz  d2u = z du - u dz + fu d2z,  

(3) f z  d3u = z d2u - dz du + u d2z - fu d3z, 

(4) fu f z =  fu× f z -  f z  fu. 

LAGRAIqGE sets f u  = H and H -  f u  = V, so tha t  (4) becomes  

(5) fu fz  = fvz .  

The integrals  in (1), (2), and  (3) are to be evalua ted  f rom an unspecif ied ini t ial  
value  of  x to  x = a. In  the re la t ion  H - -  f u  = V, H is the integral  of  u f rom the 
init ial  value to  x = a and f u  is the integral  o f  u f rom the init ial  value to  x = x. 
f u  f z  in (4) and  (5) is ob ta ined  by  in tegra t ing  z f rom the ini t ia l  value to x and  
then  in tegra t ing  u f z  f rom the ini t ial  value  to a. A similar  in te rpre ta t ion  holds  
for f z  fu. fu x fz'in (4) equals  the  product of the integrals  o f  u and  z f rom the 
ini t ial  value o f  x to  x = a. 

The  first p rob l em LAGRANGE considers  is to  f ind tha t  re la t ion  between x and  y 
which makes  Z a m a x i m u m  or  min imum.  Z is a funct ion o f  x,  dx, y,  dy, dZy, . . .  
LAGRANGE writes 

(6) (3Z = N (3y + P(3 dy + Q(3 d2y + R(~ d3z + etc. 

He  asserts tha t  (3 f z  = f (3Z and  integrates (6): 

(7) (3 f z = f N (3y + f P (3 dy + f o (3 a2y + etc. 

LAGRANGE next  interchanges the d and  (3 and  uses (1), (2), (3) to ob ta in  

(8) (3 f z = f N (3y + COy - f dP (3y + Q d (3y - dQ (3y + f dzO (3y - etc. 

3 The memoir LAGRANGE refers to is titled "De  infinitis curvis eiusdem generis seu 
methodus inveniendi aequationes pro infinitis curvis eiusdem generis" (EuLER [1734]). 
In  this memoir EULER makes use of the following result. Assume z is a function of a 
and x. Differentiate z holding a constant to obtain P dx, and differentiate P dx holding x 
constant to obtain B dx da. Next, differentiate z holding x constant to obtain Q da, 
and differentiate Q da holding x constant to obtain C da dx. Then B = C. (In modern 
notation 82g/tOa fox = c92z/Sx ~a.) To establish this result EULER considers the three quan- 
tities e = z(x + dx, a), f = z(x, a + da) and g = z(x  + dx, a + da). He states that 
P d x = e - - z  and B dx da = (g -- f )  -- (e -- z). ( g - - f  is obtained from e - - z  by 
replacing a by a + da.) Similarly, Q da = f - -  z and C da dx = (g -- e) -- ( f  -- z). 
Hence B = C. 

LAORAN~n apparently believed an argument similar to EULER'S could be applied 
to the differential operators d and 6 to show that d ,~Fy ~ 6 dFy. Unfortunately, he pro- 
vides no details and the result remains in his analysis an unjustified assumption. 
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Consequently 

(9) b f z = f (N - dP + d2Q - etc.) by + (P - dQ + etc.) by 

+ (Q - etc.) d a y  + etc. 

LA~RArqGE supposes that when x = a, by = d by = d 2 by  = 0 etc. He (implic- 
itly) assumes these quantities are a lso  zero a t  the initial value of x. (9) therefore 
becomes 

(10) b f z  = f ( N  - dP + d2Q - etc.) by. 

LAGRANGE now states that as a consequence of the "common  method of maxima 
and minima" 

(11) N - dP + d~Q - etc. = 0. 

In the case where Z contains only x, dx, y, dy (11) reduces to 

(12) N -  alP= O, 

which is the EULER-LAGRANG~ equation for the elementary problem. 
LAGRANGE proceeds to the case inwhich Z ~s a function of  x, dx, y, dy, d2y, ... 

and an additional variable z~. 0z is connected to the remaining variables by the 
side relation ~ = f ( z ) ,  where (27) is a function of x, dx, y, dy, dZy, ... He writes 

bZ = L O~ + N a y  + P b dy + Q O d2y + etc., 

(13) b(Z) = (N)by  + (P)b  dy + (O)a dZy + etc., 

az~ = f ( N ) b y  + f ( P ) b  dy + etc. 
Hence 

14) ~ fz = f N  by + fe gby + fQ dZby + etc. + fLf(N)by + fLf(P)d by 

+ etc. 

LAGRANGE sets H equal to the integral of  L f rom the initial value of x to x = a. 
He then writes H - f L  = V, where f L  is the integral of  L f rom the initial value 
to x. We now use the result given by (5) to transform (14): 

(15) b f z = f [ N + ( N )  V ] b y +  f [ P + ( P ) V ] d b y +  f [ Q + ( Q ) V ] d 2 b y  

+ etc. 

F rom (15) LA~RANO~ deduces "for  the maxima or minima" the equation 

(16) N + (N) F - dip  + (P) V] + d:[O + (Q) V] - etc. = 0. 

((16) follows f rom (15) by the same series of  steps by which equation (11) was 
derived f rom (7).) I f  Z and (Z) contain no differentials of  y higher than the first, 
(16) reduces to 

(17) N + (N) V -  d[P + (P) 11] -- O, 
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which is simply the final equation in the second of the two examples from EULER 
presented in the preceding section. 

LAGRANGE continues in the letter by applying his method to another example 
(Proposition V) from Chapter III of the Methodus Inveniendi. He also provides 
a brief discussion of how his method could be used to determine conditions 
satisfied by the extremal curve at the endpoints. LAGRANGE ends the letter by noting 
the applicability of his algorithm to a more general class of problems, namely, 
the analysis of surfaces that enjoy some extremal property. 

Let us turn now to a consideration of the genesis of the results contained in 
LAGRANGE'S letter. In the preamble LAGRANGE states that his investigation was 
inspired by EULER'S comment in Proposition 39, Chapter III of the Methodus 
Inveniendi: "A method is therefore desired, free of geometric and linear solutions 
by which it is evident that, in such investigations of maxima and minima, - p  dP 
ought to be written in place of P dp."* (EULER means that if dZ = N dy + P dp 
and we write - p  dP for P dp then the equation N dy - p dP = 0 is the one  that 
renders extreme f Z dx.) The challenge contained in this passage undoubtedly 
impressed LAGRANGE. I do not, however, think that mentioning his quotation 
of the passage provides an adequate explanation of how he arrived at his new 
method. Instead, such an explanation will be found in a Comparative examination 
of the analyses of the two men. LAGRANGE must have noticed that the the symbol d 
was being used in two ways in the derivations of the Methodus Inveniendi. He came 
up with the idea of using a new symbol ~ to denote the second type of differential. 
He then experimented with the new symbol in a formal and algebraic way, using 
such facts, assumed or discovered, as ~ dy = d ~y, ~ dFy = d ~Fy etc. The em- 
ployment of the ~ led him naturally to consider the integral of the variation over 
the entire length of the interval. Using integration by parts he was able to derive 
with ease results EULER had obtained only with difficulty. By symbolic manipula- 
tion alone LAGRANGE devised an algorithm that revolutionized the study of the 
calculus of variations. 

EULER responded to LAGRANGE'S letter in September 1755 and a lengthy cor- 
respondence ensued. These letters shed light on the two men's understanding of  
the processes of the calculus of variations. They are also interesting as a study 
of the interaction of two talented but different mathematicians. 'EULER in his 
first response draws attention to a fact LAGRANGE had nowhere explicitly men- 
tioned, namely,  that his method depends on simultaneously varying all of the 
ordinates y, not just one, as EULER had done. EULER comments on a further 
feature of LAGRANGE'S analysis which differs from his own. In the Methodus 
Inveniendi Z is a function of x , y , p ,  etc., where p = dy/dx; in LAGRANGE'S 
letter Z is a function of x, dx, y, dy, etc. Where EULER varies p, LAGRANGE varies 
dy. Commenting on this difference, EULER states that LAGRANGE is letting dx be: 
unity, and not x, as LAGRANGE had, apparently by a "slip of the pen", written. 
According to the procedures of the 18 th century LEmNlzian calculus, if y is a 
function of x, then dx is to be held constant in all calculations. Thus when LA- 
GRANGE said x is constant, he really meant to say dx is constant, the constant 

4 I have used the translation from the Latin of this passage which appears in GOLD- 
STINE [1980, 111]. 
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being unity. Given this assumption, his results are exactly in accord with those 
of the Methodus lnveniendi. 

In fact, EULER was mistaken in suggesting LAGRANGE had made a "slip o f  
the pen". When LAGRANGE said x is constant, he meant bx is zero. As he makes 
clear in a later letter ([1755b]), the fact that he works with dy and not p simply 
reflects a more flexible and algebraic approach to the calculus. EtJLER interpreted 
integration geometrically as the formal infinite sum of infinitesimal products. 
Thus, for example, f Z dx equals Z dx + Z ' d x  + . . . .  and it is therefore 
important to place Z dx in the integrand. LAGRANGE, while not rejecting this 
interpretation, nevertheless did not feel in practice that it should place any re- 
striction on his use of the calculus. It was for him not a matter of great importance 
whether one wrote f p dx, as EULER would have done, or simply f dy. 

A third point EULER raises in his letter concerns the step which takes LAaRANGn 
from equation (10) to (11). This, of course, is the inference sanctioned today by 
the fundamental lemma of  the calculus of  variations. EUL~R observes that the 
method of maxima and minima permits us to conclude only that 

(18) f (N - dP + d2Q - etc.) by = 0. 

He seems therefore to be suggesting some further reasoning is needed to arrive 
at (I 1), a suggestion clearly connected to his observation that LAGRANCE is in 
the &process simultaneously varying all the ordinates y. Unfortunately, there 
is a tear in the letter at this place, and EULER turns to some concluding remarks 
of  a general nature. 

Before considering LAGRANGE'S response to EULER'S criticism let us examine 
more closely his reasoning in passing from (10) to (11). LAGRANaE states that (11) 
follows by the "common method of maxima and minima." He apparently believed 
that with equation (10) he had reduced the problem in the calculus of variations 
to one in the common or ordinary differential and integral calculus. According 
to the rules of this calculus, d and f are inverse 'operators' :  d f V  = f dV = V. 
I f  Z is a maximum or minimum we clearly have db f Z = 0, or, d f 6Z = 0. 
But f bZ = f (N - dP + d2Q - . . . )  by. Hence df  bZ = 0 implies, cancelling 
by, that N - dP + d2Q - ... = 0, which is equation (11). 

(LAGRANGE'S reasoning as I have reconstructed it is unsatisfactory. The 
integral in (10) is a definite one from the initial value of x to x = a. The step 
d f V = V would need to be valid for f V equal to the definite integral from the 
initial value to an arbitrary intermediate value of x. This fact would lead for the 
variational problem to the conclusion that the quantity by is identically zero.) 

LAGRANaE ([1755b]) agreed with EULER'S criticism of the step (10) to (11). 
However, the basis of his agreement was not that there was anything deficient 
in his reasoning, but rather that equation (18) was a more general consequence 
of (10); (11) itself was in turn simply one of several results one could derive from 
(18). The interest of the other results presented by LAGRANGE is, however, unclear, 
a fact noted by EULER himself in his next letter ([1756]). In this letter, EULER 
advises his young contemporary to exercise caution in applying the &method, 
an apparent reference to LAGRANGE'S penchant for unrestrained algebraic manip- 
ulation. As for equation (11), EUL~R now treats it as a self-evident consequence 
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of the variational analysis. With EULER'S letter discussion of the point in their 
correspondence ends. 5 

d) Lagrange's letters of 20 November 1755 and 5 October 1756 

In the year following the communication of his discovery to EULER, LAGRANGE 
continued to work in the calculus of variations. By October 1756 he had arrived 
at a revised approach to the subject, an approach that would become the basis 
for his first published presentation of the variational calculus in 1760. LAGRANGE'S 
methodological shift was inspired by his attempt to apply the 0-method to the 
principle of least action in dynamics. A letter of EULER to LAGRANGE (24 April 
1756) and the Registers of  the Berlin Academy (May 1756) reveal that LAGRANGE 
had submitted a memoir  on the principle of  least action to the Berlin Academy; 
the memoir, now lost, received the favorable attention of the Academy's  President 
PIERRE DE MAUPERTU1S. AS we shall see in I ( f ) ,  LAGRANGE would go on to make 
extensive use of  variational techniques in mechanics. 

In the letter of 5 October 1756 LAGRANGE takes ideas f rom his dynamical 
researches and applies them to the celebrated brachistochrone problem. Assume 
a bead slides f rom rest along a smooth stiff wire joining two points in a vertical 
plane. The brachistochrone problem is to find the shape of the wire that mini- 
mizes the time of descent. I f  we let the initial point be the origin of  a rectangular 
co-ordinate system, the x-axis be directed vertically downward and the x - y  plane 
be the plane of descent, then the time of descent is, up to a constant of  propor- 
tionality, 

ds 
(19) : . f - ~ ,  

where ds is the differential element of path length and the integral is evaluated 
f rom s = 0 to its final value. (19) is derived f rom the proportionality of  v = ds/dt 

to I/x, the expression for this example of  what was known during the 18 th century 
as the law of conservation of vis viva (later, mechanical energy). The curve that 
minimizes the time of descent is the cycloid: the curve traced by a point on the 
perimeter of  a circle as it rolls without slipping along a line (in this case, the 

5 The closest statement that I have been able to find in EULER'S published treatises 
concerning the fundamental lemrna appears in his [1764b, 187]. EtJL~R was influenced 
in this memoir by his earlier approach in the Methodus lnveniendL He obtains by 
LAGRANCE'S variational method the necessary condition (*) f dx ~y(N - dP/dx + . . . )  = O. 
He interprets the integral in (*) as the sum of all variations dx @ ( N  -- dP/dx d- . . .)  
which result when a single value of y is varied. In the latter case (*) reduces to 
dx 6y(N -- dP/dx -t- ...) = 0 and the equation ( N  -- dP/dx -t- ...) ---= 0 follows. Since 
this argument holds for each ordinate y the equation ( N  -- dP/dx -t- ...) ----- 0 is valid 
throughout the entire interval. 
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y-axis). Geometers Of the period knew that the cycloid is given by the differential 
equation 

ay Vl /a x (20) 
dx x '  

where a is a constant equal to the diameter of the generating circle. (For a dis- 
cussion of equation (20) and the parametric representation of the cycloid in terms 
of its generating circle see GOLDSTINE [1980, 32-33].) 

LAGRANGE'S variational method leads (as we shall see) directly to equation 
(20). A more general problem is obtained by supposing the second endpoint is 
not fixed but i s  free to move along a line. The curve that minimizes the time is in 
this situation the cycloid which cuts the line normally. LAGRANGE had claimed 
at the end of his original letter to EULER that he had established this fact by his 
0,method; in a letter of 20 November 1755 he provides an explicit demonstration. 
He apparently felt the demonstration unsatisfactory and set about searching for 
an alternate method. The search, which was conducted in conjunction with his 
dynamical investigations, culminated in success in his letter of 5 October 1756. 

In his first analysis of the brachistochrone problem, contained in the letter 
of 20 November 1755, LAGRANGE includes a diagram to illustrate his solution 
(see Figure 2). The curve AQN is the path of quickest descent to the line BNn. 
Th e curve an is an arbitrary comparison curve whose endpoint lies on BNn. 
AP and PQ are the x and y co-ordinates of a typical point Q on the curve AQN. 
LAGRANGE assumes the speed of the particle at Q is a function of x and y. I shall 
present his analysis for the case where the speed is proportional to t/x. We begin 
by applying ~ to the expression for the  time of descent: 

a, ¢x - f - d  ay + 

,4 ' ¸  0 

i " t 

M 

8 

Fig. 2 
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(21) gives the variation of  of f(ds/l/x) for a comparison curve whose final point 
corresponds to the abscissa AM. The final point of the comparison curve an, 
however, corresponds to the abscissa Am. Hence to find the true "differential" 
or variation of f(ds/I/x) it is necessary to subtract ds/1/x from (21): 

LAGRANGE now equates (22) to zero and concludes immediately that 

dy 
(23) ads i/x - O, 

a result justified by the remark that "nothing arising from the indeterminate 6y 
enters into [(23)]". (Note that (23) reduces to dy/ds l/x = constant, which leads 
directly to  the cycloidal equation (20).) LAGRANGE next sets the part of (22 
outside the integral sign equal to zero: 

dy ds 
ds I/ x @ = I/ x-- ' 

from which he obtains 
(24) dy t~y = ds 2 . 

He writes dy = rt, Oy = rn, ds = rN. (24) then becomes 

(25) (rt) (rn) - (rN) 2, 

a relation which leads by elementary geometry to the final conclusion that the 
angle rNn is a right angle. 

Equation (22) is the expression, for the integral f(ds/I/x), of the variation 
in the non-parametric variable endpoint problem. LAGRANGE was presumably 
capable of developing his analysis into a more general theory. However, he 
soon hit upon an easier method for dealing with this class of problems. In the 
letter of 5 October 1756 LAGRANGE explains that in his investigation of the 
principle of least action he found it necessary to vary in the t3,process both the x 
and y co-ordinates. Such an approachis  natural in dynamical problems where x 
and y are treated as functionally dependent on a third variable, the time. LAGRANGE 
discovered that there were also advantages in applying the same approach to the 
usual problems of the calculus of variations. He illustrates this fact using the 
brachistochrone problem. When both x and y are varied the variation of f ds/I/x 
becomes 

(26) 

( d y  dx d s )  
af j-~Sx = f d-~xtSdY + d--ff-~dx 2x-~'-~ax 

dy dx d s  ax) 
/ 

O, 

LAGRANGE equates the coefficients of 0x and 0y under the integral sign to zero. 
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He notes that the resulting equations, when reduced, are one and the same: 

(27) a dy 2 = x ds 2 , 

where a is a constant of  integration. (The equation corresponding to Oy leads 
immediately to (27); the equation corresponding to Ox if multiplied by 2 dx/(ds I/x) 
and integrated, also yields (27).) LAGRANGE assumes the part outside the integral 
sign is also zero: 

dy dx  
(28) ds I/x Oy + d ~  ~x = O. 

(He sometimes refers to this part as the "constant member" of  the expression 
for the variation given in (26).) If  the final point is fixed, then ~x and ~y are zero 
and the terms in (28) vanish separately. Assume now that the endpoint is free 
to move along a line. Let d X  and d Y  be the differential abscissa and ordinate 
elements of  the line at the endpoint. Clearly ~ x : ~ y  = dX:  dY. Hence (28) 
becomes 

(29) dy d Y  + d x d X =  O, 

which, LAGRANGE notes, proves that the desired curve cuts the line normally. 
LAGRANGE has discovered that the analysis of boundary conditions in prob- 

lems where the endpoint is variable is facilitated if the curve is represented para- 
metrically. 6 He also noticed in particular examples that when a (two-dimensional) 
curve is treated parametrically, the two resulting EULER-LAGRANGE equations 
reduce to the single equation one obtains when the curve is treated non-para- 
metrically. LAGRANGE, however, was unable to verify this fact "a  priori", in a 
completely general manner, and he appeals to EULER for enlightenment on the 
subject. Unfortunately, with LAGRANGE'S letter communication between Turin 
and Berlin was disrupted for three years by the Seven-Years' War. In LAaRANGE'S 
next exposition of  the calculus of variations, contained in his paper of 1760, 
attention would be focussed solely on the parametric problem. 

A final point concerning LAGRANGE'S analysis in both letters involves the 
step from equation (22) to (23) and (26) to (27). This step is not adequately 
explained. In his original announcement of the variational method the step cor- 
responded to the one sanctioned today by the fundamental lemma; in my earlier 
discussion I provided a reconstruction for his reasoning. In the brachistochrone 

6 To treat a variational problem parametrically is to assume the solution is in- 
dependent of the choice of parameterization. A possible source of confusion concerning 
LAGRANG~'S own development of the subject arises from the fact that the dynamical 
problem is often regarded as the non-parametric problem par excellence: the temporal 
variable is privleged in the sense that only one configuration of the system is possible 
for each value of the time. It nevertheless remains true historically that it was dynamical 
examples that gave LAGRANGE the idea of treating parametrically the usual extremalizing 
curves of the variational calculus. Certainly, he never discusses in detail the differences 
between the two approaches. Thus he never draws attention to the restrictions Z must 
satisfy in the parametric case. (A possible exception is Problem II of [1760a] where he 
states that Z is an "algebraic" function of the variables x, y, z, dx, dy, dz, ...) 
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problem with variable endpoints, however, the situation is more complicated 
because the terms outside the integral sign no longer vanish separately. What 
precisely LAGRANGE'S reasoning was in this case is unclear and will be the subject 
of discussion in the next section. 

e) Lagrange's first published paper (1760) 

LAGRANGE'S first published account of the calculus of variations, contained 
in the Memoirs of the Turin Academy for 1760-61, has the title "Essai d'une 
nouvelle mtthode pour determiner les maxima et les minima des formules intt- 
grales indtfinies" ([1760a]). LAGRANGE announces at the beginning that the 
central problem of this branch of mathematics is "to find the very curve for 
which a given integral expression is a maximum or a minimum in relation to all 
other curves." In the memoir he develops the subject from the parametric view- 
point enunciated for the brachistochrone problem in his letter of 5 October 1756. 
The memoir is followed by a much longer one on the application of the variational 
calculus to the principle of least action in dynamics. 

LAGRANGE begins in the memoir by considering the definite integral f z  of 
an expression Z. (The adjective "indefinite" in the memoir's title modifies "form- 
ulas" and not "integral".) Z is a function of x, y, z, dx, dy, dz, d2x, d2y, d22 . . . . .  
and the problem is to find the relation among these variables that maximizes or 
minimizes f z .  We have first the analytic statement of this condition: 

O Z = n O x  + p O d x  + qOd2x  + rOd3x  + . . .  

(31) + NOy + P O d y  + Q 3 d 2 y  + R d d a y  + ... 

+ v~z + o)~dz  + z ~ d 2 z  + o ~ d 3 z  + . . . .  

LAGRANGE substitutes (31) into (30), interchanges the d and ~ and integrates by 
parts: 

(32) (A) 

f (n - dp + d2q  - d3r  + ...) Ox 

+ f ( N -  dP + d2Q - d3R + . . . )~y  

+ f(~ - do + d2z - d30 + . . . ) 6 z  

+ (p - dq + dZr - ...) ~x + (q - dr + ...) d ~x + (r - ...) d 2 ~x + ... 

+ ( P - d Q  + d 2 R - . . . ) O y + ( Q -  dR + . . . ) d d y +  ( R - . . . ) d 2 O y + . . .  

+ (o) - dZ + d2~ - ...) ~z + (Z - de  + ...) d,Sz + (~ - ...) c1 ~ ~z + . . . .  O. 

(30) ~ f z = f ~ z  = O, 

where 
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LAGRANGE presents two consequences of (32). The first is "the indefinite equa- 
tion,,: 

(n - dp + dZq - dar + . . .)  ~x 

(33) (B) + (N  - dP + dZQ - d3R + . . .)  3y 

+ (v - d~o + d2z - d30 + . . .)  Oz = O. 

The second is "the determinate equation": 

(34) (C) 

(p - dq + d2r - . . . )  ~x + (q - dr + . . .)  d ~x + (r - . . . )  d 2 ~x + . . .  

+ ( P -  dQ + d 2 R - . . . ) 6 y  + ( Q -  dR + . . . ) d O y  + ( R - . . . ) d  2 o y + . . .  

+ (o~ - d z + d20 - . . . )  oz + (g - do + . . .)  d Oz + (O - . . . )  d2 6z + . . . .  O. 

The expression in (34) is to be evaluated at the beginning and end of the integral 
f z  to produce an equation of the form M'  - ' M  = 0. LAGRANGE notes that 
when there is no relation among x, y, z, dx, dy, dz, . . .  (33) becomes 

n - dp + d2q - dar + . . . .  O, 

(35) N - dP + dZQ - d3R + . . . .  0, 

v -  dco + d2z - d30 + . . . .  O. 

When there is a relation among the variables x, y, z, we reduce the latter to the 
smallest possible number (one or two) that can be independently varied and 
equate to zero the coefficients of the variations of the reduced variables. 

LAGRANGE goes on in the memoir to provide a parametric analysis of both 
the brachistochrone problem and several examples from Chapter Three of EU- 
LER'S Methodus Inveniendi. In appendices he presents a detailed study of two 
problems: the first is to find surfaces of minimum area that are bounded by a 
given curve and enclose a given volume; the second requires determining poly- 
gons of a given number of sides that possess maximum area. (LAGRANGE in this last 
problem applies the formalism of the differential, integral and variational calculus 
to the investigation of finite differences and sums.) The reader may consult GOLD- 
STINE ([1980]) for a detailed description of these results. I shall concentrate on 
one question: the step which takes LAGRANGE from (30), the assertion that the 
variation of the definite integral f z  is zero, to equations (33), (34) and (35). 

Equations (33), (34) and (35) are the EULER-LAGRANGE equations and end- 
point relations for the general parametric variable endpoint problem. I briefly 
review their modern derivation. Assume for simplicity that x ,  y, and z are in- 
dependent. Equation (32) is valid for the subset of curves with fixed endpoints, 
where the terms outside the integral sign in (32) are zero. We therefore apply the 
fundamental lemma and obtain (35). (35) remains valid when we expand the 
class of curves to ~he original Set. Hence the integral terms in (32) are zero, and 
(34) follows immediately. We W.ould not today present a relation of the form 
(33). Rather, when x, y, z are not independent, we would first reduce the variables 
in (32) and derive the reduced counterpart to (35). 
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The modern derivation of (34) and (35) was developed in the second half of 
the 19 th century. Before then, researchers in the calculus of variations presented 
a diverse set of arguments to justify the passage from equation (32) to (33), (34) 
and (35). It is interesting how many of these arguments can be traced back to 
LAGRANGE'S various treatises. (A survey of these developments leading up to 
the 20 th century is provided in HUKE [1931].) What I wish to emphasize here is 
that the modern derivation involving the fundamental lemma, is not a correct 
interpretation of LAGRANGE'S procedure in the memoir of 1760. The modern 
derivation involves concepts, ideas and underlying structure absent in his presen- 
tation of the variational calculus; it would be a historical error to describe his 
analysis in terms of this theory. 7 

What then was LAGRANGE'S reasoning? Notice first that (33) and (34) are 
presented conjointly as consequences of (32). Furthermore, LACRANGE uses the 
adjectives "indefinite" and "determinate" respectively to describe (33) and (34). 
The reconstruction I shall now provide for his reasoning is taken from a treatise 
published in 1810 by one of LAGRANGE'S close admirerers, the English mathe- 
matician ROBERT WOODHOUSE. Consider the following passage from WOOD- 
HOUSE'S A Treatise on lsoperimetrical Problems and the Calculus of Variations 
(modified inessentially to fit LAGRANGE'S presentation): 

For  the formula [(32)] is composed of two parts: one, affected by the integral 
sign, expresses the sum of all the separate variations throughout the whole 
extent of the curve or integrated quantity; the other part, independent of the 
integral sign, is affected only by the variations at the extreme points, and 
therefore cannot by any combination with the other (which by changing 
Ox, Oy, & , . . .  may be varied at will) form a sum equal to nothing. Hence 
since ~ f z  must = 0; each part separately, the one under the integral sign f ,  
the other not affected by it, must = 0. 

[1810, 90] 

(Although this passage comes from the chapter devoted to LAGRANGE'S devel- 
opment of the calculus of variations, WOODHOUSE makes no reference to LA- 
GRANGE'S original derivation; his treatise is not historical in this sense.) WOOD- 
HOUSE'S argument reappears in the writings of 19 th century authors (see, for 
example, CARLL [1890, 41--42]). A version of it was enthusiastically advanced 
by ERNST MACH in his classic The Science of Mechanics; A Critical and Historical 
Account of its Development ([1883, 537]). It is, I contend, the most plausible 
reconstruction of the reasoning underlying LAGRANGE'S original derivation. 

I have devoted space to LAGRANGE'S reasoning because I believe an apprecia- 
tion of the patterns of inference involved in his derivations is essential to an 
historical understanding of his work. As we shall see in the next section, such 

7 In my article ([1983]) I incorrectly interpret LAGRANGE'S derivation of the dynamical 
equations from the principle of least action in terms of the fundamental lemma. This 
interpretative error in no way affects the other conclusions of that article. See our dis- 
cussion in I(f). 
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an appreciation is also of substantive concern for evaluating his contributions 
over the next three decades to the foundations of the calculus of variations. 

f) Lagrange's treatises on mechanics 1760-1788 

LAGRANGE'S contributions to the foundations of mechanics can be traced in 
his memoir on least action ([1760b]), in two memoirs he composed on the subject 
on the Moon's  libration for prize competitions of the Paris Academy of Sciences 
([1764], [1780]), and in the Mdchanique Analitique of 1788. Each of these treatises 
provides a general method for deriving the equations of motion of an arbitrary 
system of bodies: in the memoir of 1760, from the principle of least action; in 
the remaining three treatises, from a generalization of the principle of virtual 
work. I have explored this subject in detail elsewhere ([1983]) from the viewpoint 
of the history of dynamics. I shall here concentrate on the question of what 
LAGRANGE'S foundational researches in mechanics reveal about his evolving 
conception of the calculus of variations. 

To understand LAGRANGE'S use of the variational calculus in the dynamical 
memoir of 1760 it is sufficient to examine his derivation of the equations of motion 
of a single particle. He begins with the principle of least action 

(35) b f v  ds = O, 

which asserts that the 'action' f v ds is a minimum. (I assume the particle has unit 
mass; v is the speed and ds = v dt.) By the law of conservation of vis viva we 
have 

(36) ½ v 2 = constant - f (P dp + Q dq + ...),  

where P, Q . . . .  are the forces acting on the particle and p, q . . . .  are the particle's 
distances from the force centers. LAGRANGE takes the variation of each side of 
(36) and obtains, after some reductions: 

(37) vi~v = - P @ -  Q b q - . . .  

Combining (35) and (37) he eventually derives an equation of the form 

(38) f ( d )  + ? V d t ) "  b ;  + -~" b ;  = O, 

where I have used vector notation to facilitate the description of his procedure. 

( r  = (x, y, z) is the position vector of the particle, ~ = (x, j~, k) is the velocity, 

b-I: = (Ox, by, Oz) is the variation of r ,  and VV = (OV/Ox, ~V/~y, ~V/~z) is the 
gradient of  the potential V. Details of how (38) follows from (35) and (37) are 
provided in FRASER [1983].) Since (38) is valid "whatever values one supposes 
for the differences bx, @, Oz", LAGRANGE obtains as the final result the three 
equations 

d~ + (~V/~x) at = O, 

(39) dy + (aV/ay) dt = O, 

dk + (OV/Oz) dt = O. 
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He subsequently remarks that we may suppose the endpoints are "given in posi- 
tion", i.e., fixed, so that 6x = 6y = 6z = 0 at the initial and final configurations. 
Hence each of the terms 5c 6x, ~ tSy and ~ 6z in the part of (38) outside of the 
integral sign is zero. 

In passing from (38) to (39) LAGRANGE is following the procedure established 
in the preceding mathematical memoir. Unfortunately, the situation here is not 
quite analogous to the earlier one. LAGRANGE is supposing that the integrand 
in (38) is zero; then, because the variations t3x, t3y, and t3z are arbitrary, he con- 
cludes that their coefficients are zero. However, t~x, dy and dz are not in this case 
arbitrary: they must satisfy the energy relation (37). This relation combined with 
the other conditions of the problem (in particular, the (unmentioned) condition 
that the time is not varied in the ~3-process) will in general limit the class of varia- 
tions and render illegitimate the inference from (38) to (39). LAGRANGE'S deriva- 
tion falters at its final step. 

Despite this difficulty LAGRAlqGE is nevertheless able to obtain the cor- 
rect equations of motion. I have explained this fact elsewhere ([1983]) by showing 
that his procedure reduces in practice to the one associated today with 'HAMILTON'S 
principle'. Interesting though this fact may be for the history of mechanics, it 
is not of central concern here. For our purposes, LAGRANGE'S variational 
treatment of the particle's motion illustrates how wrong it would be to inter- 
pret the step (38) to (39) in terms of the fundamental lemma. Thus, for example, 
LAGRANGE turns to the endpoint conditions only after he has derived (39). In 
addition, he is clearly not concerned with the kind of examination of the class 
of  comparison arcs that would be necessitated by the use of this lemma. 

In the memoir of 1764 on lunar libration LAGRANGE replaces the principle 
of least action by the general principle of virtual velocities as the fundamental 
axiom of mechanics. (In later mechanics the term 'virtual work' would replace 
"virtual velocities'. LAGRANGE'S axiom is often referred to as 'D'ALEMBERT'S 
principle' in today's texts.) This principle may be written 

(40) Z m r .  t37 = S f f .  t57, 

where m, -r, :r, t3-f, ~" are the mass, position vector, acceleration, virtual displaces- 
ment and external force for a typical particle of the system. LAGRANGE expresses 
the work function in terms of the variation of the potential so that (40) becomes 

(41) S m r . ~ 7 +  t 3 V = 0 .  

He provides a general demonstration that Z'm~. ~ may be expressed in the 
,form Z(d(OT/~(li)/dt - OT/~qt), where T is one half the vis viva, i.e, the kinetic 
energy, and q~ are independent co-ordinates which completely describe the sys- 
tem. (41) therefore yields the Lagrangian dynamical equations of motion. 

I shall describe LACRANGE'S procedure for the case of a single particle with 
one degree of freedom. We first express ½ v z in terms of the generalized co-ordinate 
q and the time derivative (/ of q: 

.(42) ½ v2 = f (q ,  ~1). 
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Taking the variation of each side of (42) we obtain 

(43) v tSv=~.tS-r= (~q)Sq q- (-~)t50. 
LAGRANGE integrates (43) by parts: 

(44) -~'~7-- f~" d~'= (~-qq) Dq- f (  d('~q~f)dt ~qq ~q" 

He proceeds to argue that (44) "must be identical and consequently it is necessary 
that the algebraic part of the first member be equal to the algebraic part of the 
second, and the integral part be equal to the integral part." Hence "removing 
the integral sign" LAGRANGE concludes that 

(45) r " ~7 = ( 'd (j~)dt ~ )  Oq" 

In passing from (44) to (45) LAGRANGE seems to be saying that the arbitrariness 
of the virtual displacements (treated analytically as variations) and the extended 
nature of the integration process together imply that the parts of (44) inside and 
outside the integral signs cannot depend on each other. His reasoning here is 
similar to that involved in the step from (32) to (33) in the preceding mathematical 
memoir. However, in the earlier analysis equation (32) at least signified the fact 
that the variation of a definite, assignable quantity is zero. In equation (44), by 
contrast, integration is used as a transformational device to express the quantity 

r - ~ F  in terms of the new variable q. (If LAGRANGE knew of the fundamental 
lemma he could have easily converted the demonstration into one acceptable 
today. It would consist of deriving HAMILTON'S principle from the principle of 
virtual work and then using the fundamental lemma to obtain the equations of 
motion from HAMILTON'S principle.) 

LAaRANaE soon discovered an alternate derivation of the dynamical equa- 
tions that did not involve the use of integration. In his second memoir of 1780 
on lunar libration be replaces the above argument by one based on the following 
relation: 

(46) ~ .  37 - d(P • ~7) ½ Or2. dt 
(46) is obtained commuting d and 0, a fact LAGRANGE now refers to as the "funda- 
mental principle of the calculus of variations." The derivation itself is more 
or less standard today and it would be unnecessary to describe it (see GOLD- 
STEIN [1950, 16--18]). 

LAGRANGE founds his classic Mdchanique Analitique of 1788 on the general 
principle of virtual work. Beginning with this principle he provides two deriva- 
tions of the Lagrangian equations of motion ([1788, 216-223] = [(Euvres 11 
(1888), 325-331]). The first is taken directly from the memoir of 1780; the second 
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is a version of the derivation of the memoir of 1764. I shall describe the second 
derivation. Assume 05 is a function of the variables x, y, z . . . .  and their derivatives 
)?, ~, ~, ... (I have modernized slightly LAGRANGE'S notation, using ' . . . '  in place 
of his '&c', and replacing his differentials dx, dy, dz by ) ,  ~, 3. In addition, I 
present his derivation for the case where 05 contains no differentials of x, y and z 
higher than the first.) Consider the expression 

805 \8)?] 005 d 005 d 

~ x  dt dx + Oy dt ~Y + Oz dt dz + . . .  

which LAGRAN6E writes in the form 

(47) A S x +  B8y  + C 8 z + . . .  

LAGRAZ~GE wishes to show that (47) remains invariant under transformation of 
coordinates. Thus if we express x, y, z . . . .  in terms of a new set of variables 
~, % % . . . ,  (47) becomes 

(48) 
where 

A'  8~ + B '  8~v + C' &p + . . . .  

A' = . . . . .  B' 805 \ 8~)1 C' -- 805 d 
0~ ' = O~p dt ' ~ dt " . . . . .  

LAG~NGE'S demonstration of this fact begins by expressing 805 in terms of the 
two sets of variables and their variations and equating the resulting expressions. 
The equation thus formed is integrated by parts to yield 

(49) f (A 8x  + B O y  + C Oz + . . . )  + Z = f (A' 8~ + B' 8~p + C" 8q) + . . . )  + Z ' ,  

where 

Z =  Ox + 8y + bz + . . .  

and 

Z ' =  8 8 +  8 ~ +  - ~  8 ~ +  .... 

LAGRANGE differentiates each side of (49) and transposes terms: 

(50) A Sx + B 8y + C r}z + . . .  - A '  8~ - B" S7~ - C' Sq) - . . .  = dZ '  - dZ ,  

a result that "must be identical and valid whatever the variations or differences 
indicated by the let ter  &" He proceeds as follows 

Thus since the second member of [(50)] is an exact differential relative 
to the characteristic d, the first member must be one also relative to the same 
characteristic, independent of the characteristic 8; which is not possible be- 
cause the terms of the first member contain simply the variations 8x, 8y, 
8z . . . . .  8~, 8~o, 8~ . . . .  , and nowhere the differentials of these variables. 
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Whence it follows that for [(50)] to be valid the two members must be 
zero separately; which gives the two identical equations 

[(51)] A ~x + B ~y + C~Sz + . . . .  A' (5~ + B' cg~p + C' ~0~ + .. .  

dZ = dZ" 

which may be useful on different occasions ([1788, 223] = [O!uvres 11 (1888), 
330-331]). 

LAGRANGE illustrates the usefulness of (51) by applying it to the dynamical case 
where # = ½ ( ~ 2  + ~ 2  +~2)  and A =3c, B = y , C = J ~ ,  thereby deriving the 
Lagrangian equations corresponding to the co-ordinates ~, ~v, % ... 

LAGRANGE'S derivation of  equation (51) is a curious one. Although it seems 
to be a version of the argument from the memoir of 1764, there is an important 
difference. In the earlier treatise LAGRANGE appeared to be reasoning from the 
extended nature of the integration process when he passed from (44) to (45). 
In the present derivation, by contrast, integration plays an inessential role: LA- 
GRANGE could have arrived at (50) simply by using properties of the differential d 
and rearranging terms. As for the final step from (50) to (51), it seems to me to 
be an unusual but  valid way of arriving at the desired result. 

Although LAGRANGE'S use of integration to derive (51) is avoidable, it is by 
no means clear that he himself appreciated or recognized this fact. From the 
memoir of  1760 through the two memoirs on l~bration to the Mdchanique Ana- 
litique, one can discern an increasing tendency on his part to view the calculus 
of variations in terms of its formal properties. Thus in this last work he sets forth 
the following two "fundamental principles" of the subject: the first asserts that 
d and ~ commute;  the second is the analytic device of integration by parts. The 
elevation of the latter to a central place indicates the importance LAGRANGE 
had come to attach to the purely algorithmic role of integration in his variational 
method. 

(H) Part Two 

a) Introduction 

The decade 1780 to 1790 was a critical one in LAGRANGE'S career. We know 
from a letter ([1782]) he wrote to LAPLACE that he had essentially completed his 
masterpiece, the Mdchanique Analitique, by 1782, an event that reportedly left 
him exhausted. In 1783 the three most important people in his adult life died: 
his wife and cousin, VITTORIA CONTI, whom he had married in 1767; D'ALEMBERT, 
his closest friend; and EULER, his first mentor. His position as director of the 
mathematical class of the Berlin Academy became uncertain in 1786 as a result 
of the changed circumstances following the death of FREDERICK the Great. In 
1787, responding to a generous offer from the French government, LAGRANGE 
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travelled to Paris to become a pensionnaire of the Academy of Sciences. He re- 
mained there until his death in 1813. 

LAGRANGE'S decision to move to Paris would have important consequences 
for his future approach to the foundations of the differential, integral and varia- 
tional calculus. As a result of the French Revolution a new school, the t~cole 
Polytechnique, was established in Paris in 1795 to train engineers. LAGRANGE 
was called upon to deliver lectures on mathematics and mechanics at the ]~cole. 
Out of these lectures grew his two major didactic works: Thdorie des fonctions 
analytiques ([1797]) and Lefons sur le calcul des fonctions ([1806]). 8 In these 
treatises he presents his celebrated attempt to base the differential and integral 
calculus on a theory of TAYLOR power series. In addition, for the first time he 
explicity addresses the question of the foundations of  the calculus of  variations. 

LAGRANGE'S interest in foundations reflected a broader concern for rigor that 
had developed at the end of the 18 th century within European mathematics. The 
reasons for this concern and LAGRANGE'S own contributions have been discussed 
in the literature (see GRABIYER [1981]). In the variational calculus his research 
centered on two topics: an analytical definition of the variation; a general 
demonstration that the EULER-LAGRANGE equations follow from the vanishing 
of  the first variation. LAGRANGE'S explicit treatment of these topics constitutes 
a departure from his earlier work, where his understanding of fundamental pro- 
cesses can be inferred only indirectly in the course of investigations devoted to 
the solution of specific problems. His later approach also reflects, we shall see, 
the distinctive style that characterizes the didactic works composed during his 
Paris period. 

b) The Eighteenth Century Background 

The origins of LAGRANGE'S later theory may be traced in 18 th century investi- 
gations devoted to establishing criteria for when differential expressions are 
integrable. Assume f is a function of x. y and y '  = dy/dx. Geometers of the 
period were concerned with the question of when there exists a primitive function 
F = F(x, y) such that, for all y = y(x), dF/dx = f As I noted in my initial 

8 LAGRANGE'S Mdeanique Analytique is also included in the section of his Oeuvres 
titled "Ouvrages Didactiques". In addition, there is evidence that his early transition 
from the principle of least action to the principle of virtual velocities, the fundamental 
axiom of the M~c~anique Analitique, was influenced by his teaching duties at the Turin 
Artillery School in the late 1750's and early 1760's. (For details on this subject see FRASER 
[1983].) I nevertheless believe there are reasons for distinguishing this treatise from the 
didactic works composed when he was in Paris. The Mkchanique Analitique was written 
during LAGRANGE'S Berlin period, when his professional responsibilities were exclusively 
for research. In addition, it seems extremely unlikely that his lectures to artillery students 
at Turin were sufficiently advanced to have included a derivation of the Lagrangian 
equations of motion. (Indeed, these equations can only be located with difficulty in his 
memoir of 1764 on libration, a memoir that was itself an advanced monograph for 
specialists.) 
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discussion of the mathematical theory, a necessary and sufficient condition for 
the existence of F is that the EULER-LAGRANGE equation 

~f d \By ] 
(1) ~y dx  - o,  

be an identity in x, y and y'. In the general casefwi l l  be a function of x, y, y', . . . .  
y(n), F will be a function of x, y, y', ... y(n-1), and condition (1) becomes 

( 2 )  - -  + . . .  + ( - 1 ) "  - - = 0 .  
ay dx a~" 

The fact that the identity (1) is a necessary and sufficient condition for the 
existence of a primitive may be shown directly, with no reference to the calculus 
of variations. This fact, however, was not well understood during the period under 
consideration here; the whole matter became clarified only much later (see the 
account in II(d)). During the 18 th century, discussion of the condition tended to 
occur in expositions of the variational calculus. Indeed, geometers of the period 
came to believe that there was a profound connection between integrability and 
the foundations of the calculus of variations. 

In the Methodus Inveniendi (1744) EULER is careful to specify that the quantity 
Z dx in the integral f Z dx of a typical variational problem "cannot  be integrated". 
Discussion of the point forms the subject of the opening proposition of Chapter I 
of the treatise ([1744, 16-17]). EULER observes here that if f Z dx is a maximum 
or minimum then Z is integrable only when a specific relation between x and y 
is assumed. What he means is that there can be no primitive of Z which works 
for all y = y(x). I f  such a primitive existed, f Z dx would depend only on the 
values of x and y at the endpoints, and would, therefore, be the same for all curves 
which coincide with the actual curve at these points. In this, the degenerate case, 
f Z dx would not be a maximum or minimum, a conclusion which contradicts 
the initial assumption. 

Twenty-five years later, in 1770, EULER returned to the question of integrability 
in an appendix on the calculus of variations to the third volume of his Institutiones 
Calculi Integralis ([1770, 410-411]). In Theorem 3 § 92 he considers an expression 
V involving x, y and p = dy/dx. He wishes to show that a necessary and suf- 
ficient condition that V dx be integrable, independent of any relation between 
x and y, is the identity 

dP 
(2) N d x -  O, 

where N and P are defined by the relation dV = M dx + N dy + P dp. The 
demonstration is verbal, rather sketchy, and involves ideas from the calculus 
of variations. I f  (2) holds, the variation of f v dx will not depend on any inter- 
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mediate values of x any y. EULER is appealing here to the fact that in his earlier 
result 

( dP._~x) '~y dx + ,Sy P, (3) ~ f V dx = f k u  - 

the integral term on the right side will be zero. He concludes from this fact that 
a primitive must exist. Conversely, let us assume the existence of a primitive. 
The variation of this primitive will clearly depend only on the values of x, y and 
6y at the endpoints. EULEg implicitly assumes in this situation that the variation 
must vanish. Hence the integral term on the right side of (3) is zero. Equation (2) 
is presented as a self-evident consequence of this last fact. 

EULER'S use of ideas from the calculus of variations to show that (2) is a suffi- 
cient condition for the existence of a primitive is unconvincing. Indeed, 18 th 
century geometers were never able to provide a satisfactory demonstration of 
this result. His argument for the necessity of (2) is plausible but still involves the 
variational calculus. In 1765 the French geometer the Marquis DE CONDORCET 
had provided a direct demonstration of necessity in his treatise Du CalcuI Intdgral. 
In Problem I of Part One CONDORCET considers a function V of x, y, dx, dy. 
He supposes dx is held constant and sets p = dx, p" = dy. Assume there exists 
a function B such that d B =  V. We then have 

dB dB 
v = dB  : + = p ' .  ay (4) 

CONDORCET writes 

(5) 

and differentiates (4) 

dV = Np + N'p'  + P'  dp',  

(dB) [dB~, d8 , 
(6) dV = d p + d  yyy)p + 

By equating the coefficients of p '  and dp" in (5) and (6) he obtains 

(7) N -  dP" = O, 

which is the desired necessary condition. 
CONDORCET'S demonstration is essentially the proof  we would present today, 

with one important qualification: he has not shown why he is able to equate 
the coefficients of p' in (5) and (6). To justify this step he needs to use the fact 
(as he would have expressed it) that d dB/dy dx = d dB/dx dy. (Using partial 
derivatives we see that N'  = ~V/~y = ~((OB/~x) p + (~B/~y) p')/~y = (~2B/ 
ey ~x) p + (~2B/~yZ) p'. On the other hand d(~B/~y) = (~2B/~x ~y) p + (UB/  
~ya) p,. Since O2B/~x ~y = ~ZB/~y ~x we have N'  = d(~B/~y).) I have, to be 
fair, only presented his analysis for the elementary case, and it is possible the 
more general treatment which appears in the original treatise had the effect of 
obscuring CO•DORCET'S understanding of details. 

CO~DORCET notes that if V = A dx + B dy then (7) reduces to the known 
condition for exact differentiability: dB/dx = dA/dy. He further comments that 
there is an accord between his investigation and the work of EULER and LAaRANGE 
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in the calculus of variations, an accord "founded on an analytical identity between 
the two questions". Unfortunately, his explanation of this "analytical identity" 
reduces to little more than the observation of the formal similarity provided for 
the two cases by the presence of the EULER-LAGRANGE equation. 

CONDORCET'S Du Calcul In tdgral is written at a lower level than the treatises 
of the great mathematicians of  the period. Nevertheless, by treating integrability 
independently of the calculus of variations, and suggesting the resulting theory 
may be fundamentally connected to that subject, CONDORCET provided the in- 
spiration for LAGRANGE'S later research. 

c) The New Foundations 

In the Thdorie des fonctions analytiques and L e¢ons sur le calcul des fonctions 
(hereafter referred to as Thdorie and Le¢ons) LAGRANGE attempts using a theory 
of TAYLOR power series to provide a basis for the calculus which avoids considera- 
tion of infinitesimal quantities. His program is strongly algebraic, with a relative 
lack of concern for questions of convergence and uniqueness; it has been dis- 
cussed in detail in the literature (see GRABINER [1981] and OVAERT [1976]). A 
sense for LAGRANGE'S approach, as well as an understanding of the immediate 
background to his work on integrability and the calculus of variations, may be 
obtained through a brief description of the notations he introduces in the two 
treatises. If  f is a function of x then the "first derived function" or derivative 
of f with respect to x is defined to be the coefficient of i in the TAYLOR series 
expansion of f ( x  + i). LAGRA~GE uses the notation f ' (x)  to indicate this deriva- 
tive. Higher order derivatives are defined to be the coefficients of i2/2, i2/6, i4/24, 
. . .  in this expansion and are denotedf ' (x) ,  f '"(x),  f(4)(x) . . . .  Suppose now t h a t f  
is an expression involving x, y, z, where y and z are functions of x. I indicate 
the correspondence between LAGRANGE'S notations and the ones we employ 
today: 

of df 
f ' (x)  - ax '  If(x, y, z)]' = ~x '  

f ' ( Y ) -  8y'  [ f ' ( Y ) ] ' -  dx 

~2f a2f 9 
f " ( Y )  -- ?):2' f ' " ( Y '  Z) = ay OZ" 

These quantities, like the derived functions o f f ,  are defined by their place in a 
TAYLOR power series. Thus f ' (y)  and f ' (z)  are the coefficients of i and j in the 
TAYLOR expansion of f (x,  y + i, z + j); f ' " (y ,  z) is the coefficient of /j, etc. 

9 LAGRANGE is not entirely consistent in the two treatises in his use of notation; 
I have described the latter as it is employed in his presentation of the theory of integrabil- 
ity and the calculus of variations. 
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LAGRANGE'S choice of notation, involving primes, commas and parentheses, re- 
flects his basic goal: to free the calculus f rom all reliance on infinitely small enti- 
ties, represented by the symbols df, dx and dy, and thereby to avoid the geometric 
interpretations and logical difficulties that were characteristic of  traditional pre- 
sentations of  the subject. 

i) Thdorie des fonctions analytiques (1797) 

In § 170-§ 183 of the Thdorie LAGRANGE considers a function f of  x, y, y' ,  y" ,  
. . . .  where y is a function of x and y' ,  y" ,  .. .  are the derived functions of  y with 
respect to x. He wishes to show a necessary and sufficient condition for the 
existence of a primitive o f f ,  independent of any relation between x and y, is that 
the EULER-LAGRANGE equation, 

(8) f ' ( y )  - [f ' (y ' ) ] '  + [ f" (y") ]"  - . . .  = 0, 

be an identity. I shall describe his analysis for the elementary case in which 
f = f (x ,  y, y')  and (8) becomes 

(9) f ' ( y )  - [f'(y')]" = O. 

He begins by replacing y by y + co, where co is any function of  x, and expands 
f ( x ,  y + co, y '  + co') in a series 

(10) f (x ,  y + co, y" + co') = f ( x ,  y, y') + P + Q + g + . . . .  

where P = cof'(y) + co'f'(y'), Q = ½co2f,,(y) + coco,f,,,(y,y,) + ½co,=f,,(y,), R =  
part  of  the expansion containing third degree terms in co and co', and so on. 
Suppose now that f ( x ,  y, y') has a primitive. Then f ( x ,  y + co, y '  + co') will 
have one also, as will f ( x ,  y + co, y '  + co') - f ( x ,  y, y') = P + Q + R + . . .  
LAGRANGE states "it  is easy to see that each of the quantities P, Q, R, etc. must 
separately be a prime function [i.e., the derived function of a primitive], since 
these quantities are composed of different dimensions of  the indeterminate co 
and its derived function co', it being impossible, by the nature of  derived functions, 
that the primitive functions of  P, Q, R, etc. be mutually dependent." In partic- 
ular, P = coT(Y) + co'f'(Y') has a primitive, which, LAGgANGE says, will be of  
the form o~ + coil, where ~ and fl are functions of  x. Thus o¢' + o9/.3' + co'/3 = 
o)f'(y) + co'f'(y'), from which we obtain the relations o d =  0, /3 = f ' ( y ' ) ,  
fl' = f ' (y) .  Equation (9) is an immediate consequence of these last relations. 

Suppose conversely that (9) holds independently of  any relation between x 
and y. Clearly then P = cof'(y) + co'f'(y') has a primitive, namely coT(J). But 
if P has a primitive so will the function obtained by replacing y by y + co in P. 
(In today's  notation this function equals co ~f/~y(x, y + co, y' + co') + co'Sf/~y" 
(x, y + co, y '  + co').) I f  we expand this function in a TAYLOR series the parts 
of  the resulting expansion consisting of dimensionally homogeneous terms in o~ 
and co' will each separately have a primitive. The series equals P + 2Q + . . . .  
where 2Q = co2f,,(y) + 2coco'f ""(y, y') + co,2f,,(y,) is the part  of the expansion 
of dimension two in co and co'. Hence 2Q and therefore Q has a primitive. We 
may in turn apply the same procedure to Q to obtain a series of  the form 
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Q + 3R + . . . .  thereby ensuring the existence of a primitive for R. In this way 
LAGRANGE establishes the existence of a primitive for each of the parts P, Q, R, 
etc; in (10). Hence f (x ,  y + co, y' + o9") - f (x ,  y, y') has a primitive. LAGRANGE 
sets y = --co in this last relation and notes that f (x ,  0, 0), a function of the 
single variable x, has a primitive. He therefore arrives at the desired final result, 
the existence of a primitive for the original function f ( x ,  y, y'). 

LAGRANGE'S study of integrability in the Thdorie is closely connected with 
his derivation in that treatise of the EULER-LAGRANGE equations in the calculus 
of variations. His treatment of this last subject, however, is unsatisfactory, 
and I shall describe it only briefly. The problem~is now to find the particular 
function y = y(x) which renders the primitive, i.e., integral, of  f (x ,  y, y') 
evaluated between definite limits a maximum or minimum. LAGRANGE argues 
correctly that a necessary condition for this to be the case is that the primitive 
of the quantity ogf'(y) + og'f'(y') (o9 a small function of x) be zero. (Clearly for 
small o9 the primitive of ogf'(y) + og"f'(y') dominates in the primitive of the ex- 
pansion of f (x ,  y + o9, y L +  o9,) _ f (x ,  y, y'). Hence for small co the primitive 
of cof'(y) + og"f'(y') must be always positive or always negative. Let co = io¢, 
where o¢ is a function of x and i is a small constant. The primitive of cof'(y) + 
og"f'(y') will be multiplied by i, and since i can be positive or negative, this primi- 
tive must equal zero.) LAGRANGE sets this primitive equal to o~ + coil and con- 
cludes (as he did for the case I described earlier involving the existence of a general 
primitive) t h a t f ' ( y )  - [f '(y')] '  = 0. In this last step he appears to be evaluating 
the primitive between the initial limit and an arbitrary intermediate value of x. 
However, his procedure here is, unlike the earlier case involving the existence of 
a general primitive, completely illusory. Thus he has not shown why he is able 
to set the primitive equal to oc + flco, a step that can be justified only by assuming 
in advance the validity of the EULER-LAGRANGE equation for the function y of x 
that solves the variational problem. (LAGRANGE iS, however, more successful in 
the Thdorie in his investigation of the second variation and the so-called LEGENDRE 
condition. See GOLDSTINE [1980, 145-147].) 

ii) Le¢ons sur le calcul des fonctions (1806) 

In the Le(ons  LAGRANGE separates his investigation of integrability from 
his treatment of the calculus of variations, expands his presentation of each 
of these subjects, and discusses the connection between them. In the twenty-first 
lesson he provides a new proof  that (8) is a necessary condition for the existence 
of  a primitive and uses this proof  as a model in the following lesson for his deri- 
vation of the EULER-LAGRANGE equations in the variational calculus. This subject 
is now systematically developed using the power series techniques he had em- 
ployed in the differential and integral calculus. 

To show that the identity of the relation f ' ( y )  - [f'(y')]' = 0 is a necessary 
condition for the existence of a primitive for f (x ,  y, y'), LAGRANGE again expands 
f ( x ,  y + co, y '  + o9') in a series and uses the (assumed) fact that the part of 
this series containing linear terms in o9 and co', cof'(y) + co'f'(y'), must also have 
a primitive. He writes coT(y) + o9~¢'(y') = (N - P ' )  co + (Pco)', where N = f ' ( y )  
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and P = f '(y') .  Since (Pco)' has a primitive, ( N -  P')oJ must have one also. 
Because co is arbitrary, LAG~NGE says, "it  is easy to convince oneself" that 
N - P '  or f ' (y )  - [f ' (y ')] '  is (identically) equal to zero. (LAG~NGE'S reasoning 
is apparently this. He has shown that (N - P ' )  co has a primitive U. If  U is not 
identically zero, it must contain co; hence its derivative will contain a term of 
the form (~U/~co) co'. Clearly, however, ~U/~co must equal zero and so U cannot 
contain co, a contradiction. Thus U is identically zero.) 

LAGRANGE'S proof  of necessity, like his earlier demonstration in the Th~orie, 
depends on the assumption that if f (x ,  y, y') has a primitive then the linear part 
of the expansion of f (x ,  y + co, y' + co') must also have a primitive. His proof  
of sufficiency, which also requires this assumption, is simply a more detailed 
version of the argument that had appeared in the Th~orie. In the L e¢ons LAGRANGE 
provides some discussion of specific examples. Thus if f (x ,  y, y') satisfies (9) it 
will be of the form ~(x,  y) + y'~b(x, y), where ~ and q~ satisfy the condition 
7J'(y) = q~'(x). More generally, if f = f (x ,  y, y', . . . ,  y(")) satisfies (8) then it will 
be of the form k~(x, y, y', . . . .  y( , -  1~) + y(,O q)(x, y, y', . . . .  yO,- 1~). LAGRAYGE 
continues by examining the conditions f will satisfy in the general case and ends 
with the following comments: 

The problem we have just resolved concerning the equations of condition, 
which must hold in order that a given function of several variables and their 
derivatives have a primitive function independent of any relation between 
these variables, has an intimate connection with another more important 
problem, which has exercised the geometers for nearly a century. It is the 
famous problem of isoperimeters, which, taken in all its generality, consists 
in finding the equations which must hold between variables, in order that the 
unknown primitive function of a given function of these variables and their 
derivatives be a maximum or minimum. 

The same forms of equations resolve the two problems, but with this 
difference, that, in the first, the equations must hold identically, and be veri- 
fied alone, whereas in the second problem, they become equations among the 
variables necessary for the existence of the maximum or minimum. 

[1806, 383] 

To this statement LAGRANGE adds the remark that he will show in his subsequent 
investigation of the calculus of variations the reason for the identity of results 
in the two problems. He prepares this investigation by closing the lesson with a 
selective survey of 18 th century developments in the variational calculus. 

LAGRANGE opens the twenty-second lesson with the observation that the 
traditional method of variations, "founded on the use of the combination of the 
characteristics d and ~", requires at base the consideration of infinitely small 
quantities. He proposes to extend his algebraic program to the calculus of varia- 
tions by providing an alternate development of this method which avoids infini- 
tesimals. He does so using a definition for the variation first introduced by EULER 
([1771]) in a memoir presented to the St. Petersburg Academy of Sciences. Eu- 
LER'S definition is essentially the modern one. Let y = X(x) be a function of x. 
Consider a class of comparison functions y = X(x, t) parameterized by the 
variable t; y = X(x) corresponds to t = 0. (X(x, t) might equal X(x) + tY(x), 
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where Y(x) is some function of x.) EULER defines the variation •y of  y to be 
(dy/dt) dt, where (dy/dt) is to be evaluated at t = 0. In modern notation we 
would write 6y = (By~St)!t=o dt. I f  Z is an expression involving x, y and the 
derivatives of  y with respect to x, the variation of Z is defined to be the (partial) 
derivative of  Z with respect to t evaluated at t = 0 multiplied by dt. 

LAGRANGE takes EULER'S definition and expresses it in terms of his own power 
series presentation of the calculus. Suppose y = ~v(x) is a function of x. LAGRAN~E 
considers a comparison class of  functions y = q~(x, i), where y = ~(x) cor- 
responds to i = 0, and expands ~(x , i )  in a series: y + ij~ + (i2/2) j) + 

(i3/3 • 2 ) y  + ... (The dot is used to distinguish differentiation with respect to i 
f rom differentiation with respect to x, the latter being denoted by a prime.) The 
quantities y, j;, j~ . . . .  in this expansion are to be evaluated at i = 0. The variation 
of  y is defined to be the value of ~ at i = 0. I f  U is an expression involving 
x, y and the derivatives of  y with respect to x, U will become a function of 
i when y = q~(x) is replaced by the comparison function y = ~(x, i). LAGRANGE 

expands U i n a  series, U +  U + ( 1 / 2 )  U + ( 1 / 3 . 2 ) U + . . . ,  and defines the 

first, second, third, etc., variation of U to be the quantity U,/_)-, U, etc., evaluated 
at i = 0 .  

Suppose now that V = f (x ,  y, y') and we wish to find the function y = y(x) 
which renders the primitive of  V evaluated between definite limits a maximum 
or minimum. LAGRANGE argues, as he had in the Thdorie, that a necessary condi- 

tion for this to be the case is that the primitive of  12 evaluated between these 
limits be zero for all possible values ofj~ (possible, that is, within the (unmentioned) 

restriction that ~ be small). He notes that  12 = Nj~ + Pj/, where N = f ' (y)  
and P = f ' (y ')  and rewrites 12 as follows: 12 = (N - P ' )  j~ + (PJ0'. He observes 
that  (P~)' has a primitive (namely, P~) regardless of  the value of j~. He continues 
as follows: 

. . .  by contrast, [the expression (N - P')j~], being multiplied by j~, cannot 
have a primitive function unless we give particular values to the variation j): 
thus, as this variation must remain indeterminate it will be impossible for the 

primitive of  12 to be zero, unless the [expression (N - P'))~] disappears, 
which will give the equation independent of  j~ 

N - P ' + Q " - R ' " + . . .  = 0 .  

This equation contains the necessary relation between the variables x and y 
for the existence of the maximum or minimum and is what we shall call the 
general equation of the maximum or minimum. 

[1806, 404] 20 

By modelling this derivation after the earlier one, in which the relation N - P '  ~ 0 
was shown to be the consequence of  the existence of a primitive, LAGRANGE 

so LAGRANGE presents the derivation for the general case, in which V i s a  function 
of higher-order derivatives y ' ,  y ' ,  .... Thus in the original treatise he obtains the equa- 
tion N -- P '  + Q" - R" '  + ... = 0. I have described his analysis for the elementary 
case in which Q = R . . . . .  0. 
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believed he had established the reason for the identity of results in the two cases. 
He refers in this connection to the 18th-century work of EULER and CONDORCET 
and concludes with the comment that his own analysis "leaves nothing to be 
desired" on the subject. 

LAGRA~GE continues in the lesson by considering a range of special topics 
in the calculus of variations; problems with variable endpoints, the parametric 
problem, problems with more than one independent variable, etc. It  is worth 
emphasizing that his treatment in the Thdorie and L efons is almost entirely non- 
parametric. In particular, the parametric and variable endpoint problems which 
had occupied such an important place in his early development of the variational 
calculus here play no role at all. It is rather to the theory of integrability that 
LAGRANGE turns for guidance in presenting the foundations of this subject. 

d) An assessment 

Three points concerning LAGRANGE'S analysis described in the preceding 
section require assessment: the first is his definition of the variation; the second 
is his derivation in the Le¢ons of the EULER-LAGRANGE equation in the calculus 
of variations; the third is his demonstration in the Thdorie that the identical 
vanishing of this equation is a sufficient condition for the existence of a primitive. 

LAGRANGE'S definition of the variation in terms of coefficients in a TAYLOR 
power series suffers from the drawback associated with his power series approach 
to the differential and integral calculus: he has not provided a theory to deal 
with questions of existence, convergence and uniqueness. The construction of 
such a theory would require the formulation of a new basis for the calculus, a 
basis that would need to be prior to and more fundamental than the series ap- 
proach itself. 

LAGRANGE'S derivation of the equation N - P '  = 0 in the calculus of varia- 
tions should, I think, be regarded as an interesting failure. He assumes that since 

the definite integral of the first variation I k of V is zero there must be a primitive 

for I) which works for all variations ~ of y. In particular, the term ( N  - P')  

in the expression for l k must have a primitive and this can happen only if 

N - P" = 0. It is, however, simply not true that a general primitive of l ? must 
exist. Although ~ is arbitrary, y will be a particular function of x; the conditions 
of the variational problem in no way require the existence of such a primitive. 

LAGRANGE'S derivation is nevertheless interesting because of the motivation 
underlying it. LAGRANGE was impressed by the appearance of the same equation 
in the calculus of variations and the theory of integrability. It is important 
to note that for him (unlike EULER) the two subjects were separate. We see 
today that if a primitive F = F(x, y) of  f ( x ,  y, y')  exists then the integral 

b 
I = f f ( x ,  y, y')  dx  has the same value for all functions y of x with prescribed 

a 

values at the endpoints. Thus I has a stationary value and the equation N - P '  = 0 
follows for all y = y(x)  from the variational analysis. (This was, in fact, the 
argument advanced by EVLER in 1770 which I described in II(b).) For LAGRANGE 



18 6 C. F ~ s ~ g  

by contrast, the variational problem made sense only when I has a maximum 
or minimum; indeed, he needed this condition to show the first variation of I 
is zero. In his development of the two subjects the appearance of the same equa- 
tion was explained by the structural similarity between its derivation in each 
case. 

LAGRANGE'S demonstration that the identical vanishing of N -  P" is a 
sufficient condition for the existence of  a primitive is more difficult to evaluate. 
The argument depends on two assumptions: that the expression f (x ,  y + o, y" + 
o~') may for arbitrary functions o) be expanded in a series about x, y, y'; that if 
f (x ,  y, y') possesses a primitive then so will each part in the expansion of 
f (x ,  y + % y" + el)  containing dimensionally homogeneous terms in • and 
a/.  The second assumption seems especially to be one which requires more ex- 
planation. The whole demonstration strikes me as an analytical tour de force, 
as an example of LAGRANGE'S remarkable adroitness at algebraic deduction. 
(LAGRANGE'S proof  of necessity in the Lefons also depends on the above two 
assumptions. He had constructed this proof  so that it would serve as a model 
for his subsequent derivation of the EVLER-LAGRANGE equation in the calculus 
of variations. In later mathematics necessity was established using the method of 
either CONDORCET or EtlLER described in Section II(b).) 

Whatever the merits of LAGRANGE'S demonstration, it served to inspire later 
researchers in the theory of  integration. These researches are surveyed in TOD- 
HUNTER [1861, 505--530]. TWO approaches to the problem of establishing sufficiency 
developed. The first, involving ideas from the calculus of variations, was based 
on the proof  presented by EULER in 1770 in the Institutiones Calculi Integralis, 
described earlier in II(b). The second followed LAGRANGE in attempting to prove 
sufficiency directly. 

b 

EULER had noted that if N - P ' ~  0 then the variation ~ f f(x, y, y')dx 
a 

will depend only on the values of x, y, y '  and @ at the endpoints. He concluded 
from this that a primitive must exist, apparently on the grounds that the integral 

b 

f f(x, y, y') dx will, by varying b, depend only on the values of  x and y at the 
a 

upper endpoint and must, therefore, be a specifiable function of these variables. 
EULER'S demonstration was resuscitated in the nineteenth century by BERTRAND 
([1841]) and has enjoyed an occasional popularity since, appearing most recently 
in COURANT & HILBERT [1953, 194]. It would seem to be a rather unsatisfactory 
way of proving the desired result. 

Attempts at establishing sufficiency directly in the 19 tb century were many 
and varied. I shall describe an unexceptional demonstration due to CAMILLE 
JORDAN ([1896, 479-480]) which appeared at the end of the century in a textbook 
for students at the F, cole Polytechnique. Before doing so I must comment briefly 
on my own presentation of LAGRANGE'S theory. For  expository reasons I have 
described his analysis for the elementary problem, in which f is a function of 
x, y and y'. In the original treatise he tends to work with the function f = 
f (x ,  y, y', . . . .  y(~)); n = 1 is treated as a special case. By approaching the question 
of  integrability at this level of generality LAGRANGE may have missed a simple 
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proof  of sufficiency. He knew in the elementary problem that the relation 
N - P '  ~ 0 impliesf  to be of the form 7Y(x, y) + y'q)(x, y), where ~ and q~ 
satisfy the condition ~ ' (y )  = ~'(x),  i.e., 87tlSy = 8~18x. ALEXIS CLAIRAUT 
had shown as early as 1739 that this condition is sufficient f o r f t o  be an integrable 
function of x and y. Indeed, CLAIRAUT showed how to integrate f by reducing 
the problem to one in the theory of a single ordinary differential equation. (A 
discussion of CLAIRAUT'S analysis appears in KATZ [1981].) It is surprising that 
LAGRANGE nowhere refers to CLAIRAUT'S result. In any case, CAMILLE JORDAN 
showed that the identity 

(11) 
~f 
® + dx z ... + ( - 1 ) "  dx------£~-O 

is a sufficient condition for the existence of a primitive for f (x ,  y, y', . . . .  y(n)) 
using a generalization by induction of CLAIRAUT'S idea. If  f satisfies (11) identi- 
cally then it follows that the coefficient of y(Zn) in (11), 82f/Sy(,,) 8y(,O, is zero. 
Hence f is of the form ~(x ,  y, y' ,  . . . .  y(n-1)) + y(")qb(x, y, y' ,  . . . .  y(n-1)). 
Define the function U as follows: 

y(n--1) 

(12) U = f q~(x, y, y', . . . .  y(,,-1)) dy(,,-1). 
0 

Then 8U/Sy ( ' -I)  = q) and so we have 

dU 8U ( ~ y )  y, ( ~ ) y ( ~ - l ' : + ~ y ( ~ ) .  
(13) dx - 8x + + "'" + 

Let f t  = f -  (dU/dx). Then f~ is a function of x, y, y' ,  . . . .  y(n-l). Because 
dU/dx has the primitive U it must satisfy an equation of the form (11). (We are 
assuming necessity here; as I mentioned earlier, this may be shown using the 
method of either EULER or CONDORCET described in II(b).) In addition, f by as- 
sumption satisfies (11). Hence f l  satisfies (11). Sinceft  is a function of x, y, y', . . . .  
y(~-l) we conclude by the induction hypothesis that fa has a primitive. (For 
n = 1, f t  is a function of x alone and the result follows from the theory of one- 
variable differential equations.) We therefore obtain the final result, the existence 
of a primitive for f itself. 

Condusion 

In studying the work of LAGRANGE we have before us a career spanning six 
decades. We are able to see changes and developments in LAGRANGE'S approach 
to analysis arising from considerations connected to the mathematics itself as 
well as to the wider circumstances of his professional life. LAGRANGE'S contribu- 
tions to the calculus of variations, although only a small part of his overall work 
in the exact sciences, provide such a case study. In the first stage his motivation 
stemmed from a desire to construct a general theory applicable with ease to a 
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range of particular examples. Questions of  rigor are treated only incidentally 
in the course of  obtaining definite results. In the second stage, by contrast, the 
demands of pedagogy and an emerging concern for rigor during the period 
prompted a self-conscious exploration of the foundations of  the variational 
calculus. At each stage LAGRANGE'S strongly formal and algebraic style is 
manifested in its own distinctive way. 

LAGRANGE'S passage f rom the first to the second stage might be characterized 
more broadly as a transition f rom a context of discovery to a context of  justifica- 
tion. This transition is reflected in the intended audience for his work in each 
case: in the first, a very small group of geometers at the forefront of  research in 
mathematics;  in the second, a much larger class of  students eager to learn f rom 
an eminent practitioner. I t  would be interesting to determine whether one can 
as a general principle in the history of mathematics distinguish two approaches 
to rigor, arising respectively f rom research and teaching. The account of  LA- 
~RANGE'S work presented in this article may be regarded as a study in support  
of  such an investigation. 
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