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Introduction 

The pub l ica t ion  o f  J. L. LAGRANGE'S Mdcanique Analytique in 1788 has long 
been recognized as an  impor t an t  event  in the  h is tory  o f  science. A l though  no t  
an exhaust ive account  o f  mechanica l  science o f  the per iod,  the treat ise remains  
impressive in its a t t empt  to present  this subject  f rom a unified v iewpoint ;  it  
represents  the cu lmina t ion  o f  a dist inctive line o f  deve lopment  whose origins 
extend back  to  LAGRANGE'S very ear ly researches.  Thus the basis o f  the Mdcanique 
Analytique, a genera l iza t ion  o f  the pr inciple  o f  v i r tual  work,  first appea red  in 
a memoi r  LAGRAN~E composed  in 1763 for  a prize compe t i t ion  o f  the Paris  
A c a d e m y  of  Sciences. This memoir ,  devoted  to the as t ronomica l  p r o b l e m  of  
lunar  l ibra t ion ,  in tu rn  hera lded  a shift in his a p p r o a c h  to pr inciples  and  methods .  
He  had  previous ly  endeavored  to found  dynamics  on ano ther  mechanica l  law, 
the celebrated pr inciple  o f  least  act ion.  This  research was closely associated with 
his work  in the calculus o f  var ia t ions  and  was presented  to the Tur in  A c a d e m y  
o f  Sciences in 1760. LAGRAN~E'S interest  in founda t iona l  quest ions was therefore  
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an early one, having passed through two stages by 1763, when he was twenty- 
seven years old. 

The M~canique Analytique and the basic facts of  LAGRANGE'S prior shift f rom 
the principle of  least action to the principle of  virtual velocities are reasonably 
well known. What  is perhaps less known is the extent to which the later treatise 
is anticipated in his early researches. The following study will focus on the latter 
and in so doing at tempt to contribute to an understanding of  the development 
of  LAGRANGE'S thought. My goals are three: i) to examine in the writings of  EULER 
and D'ALEMBERT the immediate antecedents to each of the two stages in LAGRANGE'S 
early approach to the foundations of  mechanics; ii) to describe these stages in 
sufficient detail to elucidate the basic theory involved; iii) to investigate some of  
the reasons for his shift in approach. Since my interest lies primarily in the area 
of  principles and methods I confine our discussion to a consideration of LA- 
GRAN6E'S treatment of  the mechanics of  mass points and rigid bodies. This re- 
striction, though unwelcome in a broader study, will nevertheless I hope permit 
the accomplishment of  the above goals. 

Part One: The Principle of Least Action (1760) 

Section 1: Background 

The Memoirs of  the Turin Academy for the years 1760-1761 contain two 
papers by the young Italian geometer J. L. LAGRANGE: "Essai d'une nouvelle 
m6thode pour determiner les maxima et les minima des formules ind6finies" 
and "Application de la m6thode expos6e dans le m6moire pr6c6dent ~ la solution 
de diffdrentes probl6mes de dynamique. ''1 The theory presented in these memoirs 
actually originated several years earlier in LAGRANGE'S first important  work in 
mathematical science. In a letter of  1755 to LEONHARD EULER the nineteen-year- 
old LAGRANGE explained that he had derived a general method for treating those 
problems which had appeared in EULER'S classic treatise of  1744 Methodus In- 
veniendi lineas curvas maximi minimive proprietate gaudentes (Method of finding 
curved lines which show some maximum or minimum property) 2. The branch 
of  mathematics that studies such problems later became known as the calculus of  
variations and it was LAGRANGE'S achievement to give the subject its characteristic 
methods and symbolism. In particular, he introduced a new calculus based on 
the symbol ~ which provided a powerful tool for attacking the following general 
problem: given an expression involving several variables and their derivatives, 
to find the functional relation between these variables which makes the definite 
integral of  the given expression an extremum. 

1 Miscellanea Taurinensia 2 1760-1761 (1762) = Oeuvres de Lagrange 1 (1867) 
pp. 335-362, 365-468. Throughout this study I adopt the following convention in 
attaching a date to a work: if the work was presented to a scientific academy for inclusion 
in its publications, I give the year of presentation; if submitted for a prize competition, 
the year set for the competition; if published independently, the year of publication. 

2 LAaRANGE'S letter to EULER appears in the former's Oeuvres 14 (1892) p. 138-144. 
The Methodus Inveniendi appears in EtJL~R'S Opera Omnia I 24, C. CARATn~ODORY, ed. 
(Bern, 1952). 
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EULER immediately recognized the importance of LAGRANGE'S work and 
the two men became regular correspondents. LAGRANGE soon applied his energies 
to the analysis of  a problem in dynamics that EULER had investigated in an 
appendix to the Methodus lnveniendi. The problem consisted of deducing the 
motion of a particle from a variational law, a law which by the 1750's was known 
as the principle of  least action. We learn from the Registers of the Berlin Academy 
that LAGRANGE had in May of 1756 submitted a memoir  to the Academy on the 
subject of  the principle. 3 Although this memoir  is lost, it is possible to trace 
LAGRANGE'S subsequent progress in his letters to EULER. 4 Thus it becomes clear 
that the two memoirs of  1760 evolved from what was originally intended as a 
single treatise on dynamics introduced by an exposition of the mathematical 
method of variations. We also learn that LAGRANGE was very proud of  what 
he had accomplished, which in his view was to have generalized and completed 
EULER'S earlier research by making the principle of  least action the basis of  
dynamics. 

I t  is clear that during the 1750's EULER was the preeminent influence on LA- 
GRANGE'S investigation of the use of  variational techniques in mechanics. I shall 
therefore devote the remainder of  this section to a brief survey of EULER'S re- 
search in this subject. The emphasis will be on those aspects that would have 
been suitable to have influenced LAGRANGE'S approach to the principles and 
methods of mechanics. 

EULER'S most extensive contributions to variational mechanics appear in 
memoirs concerned with problems in statics. In appendix one of the Methodus 
Inveniendi EULER presents what C. TRUESDELL has called "the first treatise on 
any aspect of  the mathematical theory of elasticity. ' ' s  Using ideas and suggestions 
of  JAMES and DANIEL BERNOULLI, EULER obtains important  results on the equili- 
brium properties of thin elastic bands. These results are derived from the condition 
that a certain quantity, what we would today call the potential energy function 
of the system, be a minimum. EULER, however, did not in this treatise fully under- 
stand the significance of this function, which, moreover, was introduced in rather 
arbitrary ways into the solution of problems. He would later return to this subject 
in two memoirs presented to the Berlin Academy of Sciences in 1748. 6 In these 

3 EDUARD t~ MARIA WINTER Die Registres der Berliner Akademie der Wissensehaften 
1746-1766 (Berlin, 1957) p. 223. 

4 See the following letters in Oeuvres de Lagrange 14 (1892): 19 May 1756 (pp. 154- 
156); 4 August 1758 (pp. 157-159); 28 July 1759 (pp. 159-161). 

5 EULER'S appendix is titled "Additamentum I De eurvis elasticis" and appears in 
his Opera Omnia I 24 pp. 231-297. It is analyzed in detail by C. TRUESDELL in "The 
Rational Mechanics of Flexible or Elastic Bodies 1638-1788", EULER'S Opera Omnia II 
112 (Orell Ftissli, 1960) pp. 199-219. 

6 "Recherches sur les plus grands et plus petits qui se trouvent dans les actions des 
forces" M~moires de l'aeaddmie des sciences de Berlin 4 1748 (1750) pp. 149-188 = 
Opera Omnia II 5 (1957) pp. 1-37. 

"Reflexions sur quelques loix g6n&ales de la nature qui s'observent dans les effets 
des forces quelconques" M~moires ... de Berlin 4 1748 (1750) pp. 189-218 = Opera 
Omnia II 5 (1957) pp. 38-63. 
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memoirs he develops more explicitly the basis of his method-- 'Maupertuis 's  
law of res t ' - -and applies it to further problems in elasticity and hydrostatics. 

Of more direct interest for the background to LAGRANGE'S dynamical memoir 
of 1760 is EULER'S research on the principle of least action. The second appendix 
of the Methodus Inveniendi contains a remarkable application of techniques from 
the calculus of variations to the analysis of  the motion of a particle moving in 
a plane and acted upon by central forces. 7 In particular, EULER shows that the 
path obtained, if one assumes the integral of the velocity of the particle multiplied 
by the differential element of arc length is a minimum, is the same as that yielded 
by a direct calculation using known methods. The extremal property invoked 
here by EULER was also the basis of a memoir published by MAUPERTUIS in the 
same year (1744). 8 Although MAUPERTIUS'S analysis was less exact than EULER'S 
it was he who coined the term 'action' to refer to the product of mass, velocity 
and length; subsequently it became customary to attribute the principle to him. 

EULER resumed his investigation of the principle of  least action in November 
1751 in a memoir presented to the Berlin Academy: "Harmonie entre les prin- 
cipes g6n6raux de repos et de mouvement de M. de Maupertuis. ' '9 This treatise 
contains a nice summary of EULER'S ideas on variational methods in mechanics; 
in addition, I shall argue, it was a probable source of inspiration for LAGRANGE. 
Before proceeding to an examination of the memoir it is first necessary to com- 
ment on the conditions under which it was written. In 1751 the celebrated K6NIa 
affair had disrupted the life of the Berlin Academy. The controversy centered 
on K6NIG'S criticism of MAUPERTUIS'S dynamical principle and his additional 
claim that the principle had in any case first appeared in a letter of LEIBNIZ to 
HERMANN in 1707. Details of this troublesome affair have been well documented 
in the literature and require no further comment here, except to mention that 
EULER vigorously defended MAUPERTUIS, the president of the Academy, through- 
out the affair. 1° Thus the memoir contains repeated affirmations of the truth 
and importance of the principle of least action as well as of its priority in the work 

7 This appendix is titled "Addititamentum II De motu projectorum in medio non 
resistente, per methodum maximorum ac minimorum determinando" and appears in 
the Opera Omnia 124 pp. 298-308. A detailed recent account of it is contained in H. GOLD- 
STINE'S A History of  the Calculus of  Variations from the 17th through the 19th Century 
(Springer-Veflag, 1980) pp. 101-109. 

8 MAUPERTIUS "Accord de diff6rentes loix de la nature qui avoient jusqu'ici paru 
incompatibles" MOmoires de l'acaddmie des sciences de Paris 1744 pp. 417-426. This 
memoir was followed by another one in 1746: "Les loix du mouvement et du repos 
d6duites d'un principe metaphysique" Mdmoires de l'acaddmie des sciences de Berlin 
1746 pp. 267-294. Both memoirs are reprinted in EUL~R'S Opera Omnia II 5 (1957) 
pp. 274-302. 

9 M(moires de l'acaddmie des sciences de Berlin 7 1751 (1753) pp. 160-198 = Opera 
Omnia II 5 pp. 152-176. The main argument of this memoir had been briefly sketched 
by EULER in the concluding article of his earlier (1748) treatise "Reflexions sur quel- 
ques .. 2' (Ol). cit. n. 6 p. 63). 

lo For an account of the controversy see P. BR~JNET'S l?tude Historique sur le Prin- 
cipe de la Moindre Action (Paris, 1938). Further details and references may be found 
in J. O. FLECKENSTEIN'S introduction to EULER'S Opera Omnia II 5 (1957) pp. vii-1. 
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of MAUPERTUIS. In point of fact, EULER'S praise seems rather extravagant given- 
that his own intellectual debt in the way of variational methods would appear 
to lie elsewhere, in the work of JAMES and DANIEL BERNOULLI. 1~ 

The memoir is written in a more discursive and general fashion than EULER'S 
earlier treatises. Its purpose is to show that the principle of least action may be 
"harmonized", i.e., deduced, from the law of rest; since the latter is well established 
and is "subject to no opposition", the dynamical principle will have been vin- 
dicated. The discussion therefore begins with a description of the law of rest 
followed by an explanation of  how it entails the principle of least action. The 
memoir concludes with some interesting reflections on conditions of equilibrium 
in constrained systems. 

EULER introduces the law of rest for the case of a single mass M attracted 
to fixed centers by forces that are functions of the distances to these centers. 
Let z, z', z", ... denote these distances and V ~-- V(z),  V '  = V'(z ') ,  V "  = V"( z" ) ,  . . .  

the magnitudes of the corresponding forces. Consider the following expression: 

(1) f Wdz + f  V'dz' + f  V"dz" + e t c . .  

The law of rest states that in equilibrium this quantity must be an extremum, 
i.e. a maximum or a minimum. Expressed analytically the condition becomes 

V d z  + V ' d z '  + V " d z "  + . . . = O ,  

If  M belongs to a larger system, we form an expression similar to (l) for each 
mass. The law of rest then states that the sum of all these expressions must be 
an extremum. 

Note that (1) is simply minus the work function of the system, i.e. the potential 
energy (the minus sign results from the fact that V, V', V" are magnitudes and 
the forces are attractive). MAUPERTUIS had first presented the law of rest in 1740 
for tile case in which the force functions have certain special forms (V( z )  = z n, 

V'(z ' )  = z 'n, . . . .  n an integer)? 2 He had demonstrated its validity in several 
examples by showing that it followed from accepted principles of equilibrium. 
EULER himself considered the law well established by his own earlier researches, 
where he had demonstrated its "truth by an infinity of entirely different cases." 

EULER now proposes that that the word "effort" be used to describe (1). 
He observes that the effort will be a maximum when a slight disturbance serves 
to destroy the equilibrium; otherwise--and this he says is the more usual case-- 
it will be a minimum. ~3 EULER proceeds to argue that the law of rest may be 

it A discussion of the relation of EULER'S research to that of the BERNOOLLIS is 
contained in C. TRUESDELL'S "The Rational Mechanics of Flexible or Elastic Bodies 
1638-1788" (op. cir. n. 5 pp. 199-203). 

~2 "Loix du repos du corps" MOmoires de l'acaddmie des sciences de Paris 1740 
pp. 170-176. This memoir is reprinted in EULER'S Opera Omnia II S (1957) pp. 268-273. 

13 EULER uses the example of a cone resting on a surface to illustrate this distinction: 
if the cone rests on its base the "effort" will be a minimmm; if it rests on its point the 
"effort" "will be a maximum. See Opera Omnia II 5 p. 173. 
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generalized to motion. Since this argument is important,  and since its plausibility 
depends on quite general considerations, I quote in whole the relevant passage: 

Having established the principle for rest, or equilibrium, what is more 
natural than to maintain that this same principle is also valid in the motion 
of bodies, solicited by similar forces ? For  if the intention of Nature is to 
economize as much as is possible in the sum of the efforts, she must also extend 
herself to motion, provided that we take the efforts, not only as they subsist 
in an instant, but in all the instants together which the motion lasts. Thus the 
effort, or the sum of the efforts, being for any instant of  motion = tg, and 
letting the element of  time = dt, it is necessary that the integral formula 
f ~ dt be a minimum. So that if in the cases of  equilibrium the quantity 
must be a minimum, the same laws of Nature seem to require that in motion 
this formula f ~ dt be the smallest. 14 

Although EULER in this passage refers only to a minimum, it is clear f rom his 
other comments that what in fact is involved is an extremum. Indeed, he later 
states that if a quantity Z is a maximum, - - Z  will be a minimum, so presumably 
something is always "economized" in nature. We shall, incidentally, follow EULER 
in denoting the potential or "effort" by the symbol ~ .  

EULER'S next step is to derive the law of conservation of vis viva. He does 
so for the case of  a single particle M. Assume T is the tangential component  
of  the sum of  the forces acting on 3"/. F rom the "principles of  mechanics" we 
have the relation 

(2) M du = T dt, 

where u is the speed. This of  course is NEWTON'S second law, which, however, 
had only received its first general formulation by EULER in the previous year. 15 
Multiplying (2) by u = ds/dt and integrating yields the conservation of vis 
viva : 

1 
"- f  M u  2 = constant + f T ds 

o r  

1 
(3) - ~  Mu 2 = constant - -  ~b. 

Let us now multiply (3) by dr: 

1 
- -  M u  ds = (constant) dt --  ~ tit. 
2 

14 Opera Omnia II  5 p. 156. 
15 "D6couverte d'un nouveau principe de m6canique" M&noires de l'acad~rnie des 

sciences de Berlin 6 1750 (1752) pp. 185-217 ---- Opera Omnia II 5 (1957) pp. 81-108. 
In both this memoir and the one presently under consideration EULER for some un- 
explained reason employs special units (they do not appear in his earlier treatises). 
In describing his analysis we do not follow him in this choice of units. The interested 
reader will find an explanation of them in C. TRUESDELL'S essay "Rational Fluid Mechan- 
ics 1687-1765" published in EULER'S Opera Omnia II 12 (1954) pp. xli-xliv. 
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We integrate this equation to obtain the final relation 

1 
(4) - -  M u d s  = (constant) t --  ~ dt. 

2 

With (4) we have reached a critical point in EULER'S analysis. He wishes to examine 
the extremal properties of  the quantities appearing in this equation. He states 
that terms like (constant) t do not enter into "the consideration of maxima or 
minima." EULER is therefore envisaging a variational process in which time itself 
is not varied. 16 Hence (4) combined with the fact that f ~ dt is a maximum 
or minimum implies that f M u d s  (ignoring the factor of-~) is respectively a 
minimum or maximum. EULER calls the quantity f M u d s  the "act ion";  he has 
shown that this quantity is an extremum. This is simply MAUPERTUIS'S dynamical 
principle. It  is, however, important to note that EULER'S treatment is new and that 
he is the first to designate the action by the expression f Mu  ds. 

The previous analysis applied to a single mass M. To extend the argument 
to arbitrary systems it would be necessary to generalize (3), the law of conserva- 
tion of vis viva. EULER states that to do this it is sufficient to examine the motion 
of two bodies M and N attached to the ends of  a massless rigid rod and attracted 
to a single fixed center. His approach here is in keeping with the spirit of  the memoir, 
which is to suggest general lines of  development through the consideration of 
special cases. In the example at hand I shall merely outline EULER'S solution. 
At a given instant consider the tangents to the paths of  the two bodies. In each 
case we take the projection onto the tangent of  two forces: i) the external force 
to the fixed center, and ii) the force of  tension in the rod maintaining rigidity. 
The values obtained are equated to M du/dt, N dv/dt (u, v being the speeds of  
M and N). We proceed to multiply each side of  the equations thus formed by u 
and v respectively, multiply both by dt, add the resultant relations and integrate 
to obtain 

1 1 
- ~  Mu  2 + - ~  Nv 2 = C -- ~b, 

where ~0 is the sum of  the efforts and C is a constant. 
With the presentation of this result EULER ends his discussion of the principle 

of  least action. The remainder of the memoir  consists of  an analysis of  equili- 
brium. EULER shows that the static rule of  composition of  forces follows from the 
law of rest and he proceeds to derive conditions of  equilibrium in simple machines. 
The latter investigation, though not relevant to LAGRAI~GE'S work on least action, 
is of  interest for his later approach to foundations and we shall return to it in 
Part  Two. 

To conclude I repeat that the principle of  least action appears in two places 
in EtlLER'S research : in 1744, in an appendix to a treatise on the calculus of  varia- 
tions, and in 1751, in a memoir  devoted to justifying the principle as a general 
law of  dynamics. In his treatise of 1760 on least action LAGRANGE refers only to 
the earlier appendix. There is, however, considerable evidence to suggest he was 
also familiar with EULER'S later research. First, it is reasonable to assume he had 

16 ~EULER also drew explicit attention to this fact in the memoir of 1748 "Reflexions 
sur quelques loix . . ." (op. cit. n. 6 p. 63). 



204 C. FRASER 

access to the recent published memoirs of the Berlin Academy of Sciences? 7 
Second, his choice of  notation in presenting the principle is identical with that 
employed by EULER in the memoir of 1751, an unlikely coincidence in the absence 
of any contact. Third, he does refer to the memoir in his piece of 1764 on libration. 
Finally, there is a deeper sense in which his treatment of least action is closer to 
EULER'S later account. The last point will be developed in more detail in the next 
section. 

Section 2: The Basic Theory 

i) Introductory Remarks  

The appearance of LAGRANGE'S treatise "Application de la m&hode expos6e 
darts le m6moire pr6c6dent ~t la solution de diff6rentes probl6mes de dynamique" 
in the Turin Miscellanea marks the first publication of his work in variational 
mechanics. As its title announces it will apply results from the "preceding me- 
moir" on the calculus of variations to dynamics. It would, however, be wrong to 
suppose that the treatise is intended only as an illustration of how these mathe- 
matical techniques may be employed in mechanics. Its very length--103 pages 
compared to 27 for the previous memoir--belies such a conclusion. The young 
LAGRANGE'S own conception is better revealed in his letters to EULER, where he 
emphasizes that he has constructed a general foundation for all of dynamics. 
LAGRANGE'S stress on the mathematics may simply reflect the great importance 
he attached throughout his career to his earliest work in the calculus of varia- 
t ions? s 

LAGRANGE opens the memoir with a reference to the second appendix of EULER'S 
Methodus Inveniendi and a statement of his own generalization of the principle 
of least action: 

General Principle. Let there be as many bodies as one would wish M, M', M",  
. . . ,  which mutually interact in any manner, and which are moreover, if one 
wishes, animated by central forces proportional to any functions of these 
distances; let s, s', s", ... denote the spaces travelled by these bodies in time t 
and let u, u', u", ... be their speeds at the end of this time; the formula 

Mfuds+M'fu'ds+M"fu"ds"+... 
will always be a maximum or a minimum. 19 

17 For example, in Problem VIII of the memoir of 1760 LAGRANGE takes up the 
study of the motion of a rigid body. Although he makes no reference to EULER, his 
treatment is simply a reworking by his own variational method of theory that had ap- 
peared originally in EULER'S "D6couverte d'un nouveau principe de m&anique", pub- 
lished in the Memoirs of the Berlin Academy for the year 1751 (op. cit. n. 15). 

is In a letter to D'ALEMBERT dated 20 November 1769 LAGRANGE states that he 
considers his work in the calculus of variations to be his finest contribution to mathe- 
matics. See LAGRANGE'S Oeuvres 13 (1882) p. 154. 

19 Oeuvres 1 (1867) p. 365. 
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I should note at this point that LAGRANGE throughout the memoir proceeds 
very formally, with little in the way of explanation, and it is often difficult to 
ascertain the precise basis of his understanding. However, the intended meaning 
of the principle of least action seems clear. Given two configurations of the system, 
the bodies move in such a way that the (first) variation of the quantity f X M u  ds 
is zero. Hence the principle allows us to choose the actual motion from among all 
possible ones. In LAGRANGE'S treatment this means obtaining the differential 
equations that describe the motion; once these equations are derived he regards 
the problem as solved. When there are constraints in the system LAGRANGE 
proceeds in one of two ways: i) the constraints are replaced by the forces to which 
they give rise and no restriction is placed on the variation; or ii) we ignore 
these forces but require that the variations be compatible with the constraints. 
In actual practice LAGRANGE tends to follow the second approach. 

Our subsequent discussion of the theoretical foundations of  the memoir 
is divided into two parts. We begin with LAGRANGE'S analysis of the motion 
of a single particle (Problem I). A detailed study of this problem will permit 
a deeper understanding of his method and some of the issues associated with it. 
We then turn to LAGRANGE'S presentation of the principle of least action for 
arbitrary dynamical systems (Problem II) and examine his attempt to relate 
it to other general laws of  mechanics. 

ii) Problem I: The Motion o f  a Single Particle 

Before embarking on a study of Problem I it is first necessary to review briefly 
the mathematics of LAGRANGE'S d process. 2° Although this process is ostensibly 
introduced as a means for effecting the comparison of curves in space, it is none- 
theless presented in a very formal manner. The symbol ~ has properties analogous 
to the usual d of  the differential calculus. Thus d(xy) = x dy -k y 6x etc. In 
addition, d and d are interchangeable (they commute) as are 0 and the integral 
operator f .  The interchangeability of  the d and the 6 is important because it 
is used in LAGRANGE'S most basic analytic device: integration by parts. As an 
example we would have 

f (y ddx) = f (y d6x) = y 6x -- f (6x dy). 

Note finally that in considering arcs in space LAGRANGE proceeds parametrically: 
if the path followed by the particle is represented by three spatial co-ordinates 
x, y, z, these variables must be understood as functions of an (unspecified) in- 
dependent parameter. 

Problem I consists of  finding the motion of  a particle M attracted to fixed 
centers by forces P, Q, R . . . .  that are functions of the distances p, q, r . . . .  to 
these centers. For  simplicitly we shall assume only the forces P and Q are present. 

20 For a detailed account of the researches of both ]~ULER and LAGRANGE in the 
calculus of variations see H. GOLDSTINE'S M History of the Calculus of Variations ... 
(op. cit. n. 7). 



206 C.  FRASER 

LAGRANGE begins his analysis with the principle of  least action 

(1) 0 ( f  u = 0, 

where u denotes speed, ds ---- u dt and the mass M cancels. LAGRANGE then writes 

O(u ds) = u Ods + Ou ds, 

and interchanges the f and 0 to obtain 

(2) f (u (~ds -k Ou ds) = O. 

He now lays down the conservation of vis viva in the form 

1 
- -  u z = const -- f (P de q- Q dq), (3) 2 

a result which "all geometers know." Let us take the variation of each side of  
(3): 

(4) u (~u = --O f (P dp @ Q dq). 

After some manipulations from the calculus of variations (to which we return 
later) LAGRANGE transforms the right side of  (4) to obtain 

(5) u 0u = - -P  0p --  Q 0q. 

Recognizing that u Ou dt = 6u ds, we combine (2) and (5) to arrive at the follow- 
ing important relation, designated (A) in the original text: 

(6) (A) f ( u O d s - - P d t O p - - Q d t O q ) = O .  

LAGRANGE proceeds to evaluate the integrals f u 0d~ and f (P tit Op + Q dt Oq) 
separately. In each case he expresses the analysis in terms of the Cartesian posi- 

tion co-ordinates x, y, z of M. Since ds = ~/dx 2 + @2 + dz 2 ' we obtain after 
some reductions the result 

(7) f u Ods = f ((u dx/ds) dOx -k (u dy/ds) dOy -k (u dz/ds) dOz), 

where we have used the fact that dO = 0d. Integrating the right side of (7) by 
parts yields 

(8) f u Ods = -- f (d(u dx/ds) Ox -k d(u dy/ds) 6y -~ d(u dz/ds) 6z) 

-k (u dx/ds) Ox -k (u dy/ds) Oy -k (u dz/ds) 6z. 

LAGRANGE turns now to the integral f (P dt @ + Q dt Oq). In Cartesian co- 
ordinates we have 

Op = (~p/~x) 6x + (~p/Sy) @ -k (~p/Oz) Oz, 

with a similar expression for 0q. 21 Hence 

(9) P 0p + Q 0q = H O x  + ~o 0y + ~ 0 z ,  

21 For reasons of notational convenience I have departed from the original text and 
used partial differentials to denote the coefficients of 6x, 6y and 6z. 
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where 
H = P(Sp/Sx) -1- Q(Sq/Sx), 

o) -~ P(Sp/~y) + Q(Sq/#y), 

7 t = P(~p/Sz) + Q(Sq/Sz). 

Integrating (9), we may write 

(10) f (P dt 61) + Q dt (gq) = f ( i i  6x + ~o 6y + ~ 6z) dt. 

Using the results contained in (8) and (10) and substituting into (6), LAGRANGE 
arrives at his second important relation, designated as (B) in the original: 

(1l) (B) f {(d(u dx/ds) + H dt) Ox + (d(u dy/ds) + ~o dt) by 

+ (d(u dz/ds) + ~P dt) Oz} + (u dx/ds) c}x + (u dy/ds) @ 

+ (u dz/ds) dz = O. 

Since (11) is valid "whatever values one supposes for the differences Ox, by, dz,, 
LAGRANGE obtains as the final result the following three equations: 

d(u dx/ds) + I I  dt = O, 

(12) d(u dy/ds) + e) dt = O, 

d(u dz/ds) + ~ dt = O. 

He subsequently makes the important remark that he is "supposing the extrem- 
ities be given in position", i.e. he is assuming the variations of  the co-ordinates 
at the endpoints are zero. Since the terms in (I 1) outside the integral sign are 
to be evaluated at these points they will be zero and thus do not affect the in- 
ference from (11) to (12). 

I have described LA6RAN6E'S derivation in such detail because it is the model 
for all subsequent problems presented in the memoir. Before turning to a critical 
analysis of his method let us briefly summarize what he has done. Equations (12) 
are simply the Newtonian equations of motion for a single particle, expressed 
however in terms of a potential function. In vector notation they would be written 

r 

where V is the potential (per unit mass), i.e. minus the work function for the 
system. To pass from (1l) to (12) and obtain these equations LAGRANGE has 
invoked the so-called 'fundamental lemma of the calculus of variations'i 22 

22 This term is a modern one. H. GOLDSTINE has remarked that the fundamental 
lemma "is certainly not as self evident as Lagrange seemed to feel it to be." (A History 
of the Calculus of Variations, p. 288). The first rigorous proof of the lemma, due to DU- 
BOIS-REYMOND in 1879, is described by GOLDSTINE on pages 289-293 of his book. 
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allowing him to conclude that  the coefficients of 6x, @, 6z in the integrand of 
(11) are zero. 

I t  is interesting to compare LAGRANGE'S treatment of  the principle of  least 
action here with EULER'S earlier analysis in the memoir  of  1751 "Harmonic  
entre les principes g6n6raux de repos et de mouvement" .  E~JLER started from the 
assumption that  the time integral of  the potential is an extremum and used this 
fact and the law of conservation of vis viva to establish the principle. LAGRANGE 
on the other hand begins with the principle and uses the conservation of vis viva 
to bring the variation of the potential into the action integral. In addition, while 
EULER'S account is general and suggestive, LAGRANGE'S method is specifically 
directed to the derivation of equations of  motion. 

Despite these differences there is an important  similarity in the two approaches. 
Both EULER and LAGRANGE assume that time is not varied in the variational 
process. EULER drew explicit attention to this fact and it is implicit in all of  
LAGRANGE'S procedures. Both men also assume the validity of  the law of conser- 
vation of vis viva; LAGRANGE further requires that the variation of the total energy 
be zero (used to get equation (4) above). Because LAGRANGE develops his analysis 
in greater detail it is possible to arrive at a more precise estimation of his method. 
Recall that he had assumed that the variations of  the co-ordinates vanish at the 
endpoints. This imposes an additional restriction on the class of  variations. Now 
it must be said that the principle of least action developed in this way has some 
important  drawbacks. The restrictions described above when taken together 
sharply limit the range of possible variations. This fact, though not fatal in itself, 
does render problematic the last step in the derivation, the inference f rom (11) 
to (12). Furthermore this difficulty cannot be dismissed simply as a quibble over 
rigor for elementary examples reveal that the class of  admissible ~x, @, dz is 
not large enough to support  such an inference. 23 

The difficulty I have described in LAGRANGE'S account of  the principle of  
least action was noticed neither by him nor his contemporaries. Indeed, his for- 
mulation became standard in French mechanics and appears in the treatises of  
LAZARE CARNOT, LAPLACE and POISSON. 24 In the 19 th century LAGRANGE'S treat- 
ment was critically evaluated by various researchers at various times; by the end 

23 Thus the point at issue here is more serious than the question of rigor raised in 
the preceding note. The conditions of LAGRAN~E'S anlysis require that the endpoint, 
total energy and time all remain unvaried. Furthermore, because the variation of the 
potential (6V) is given by ~ V" ~7, the varied motion must be accomplished by the 
introduction of frictionless constraints. In the case of a particle moving freely under the 
action of no forces, or a particle falling from rest under the action of gravity, these 
conditions imply that all comparison arcs must coincide with the path the particle 
actually follows. In other situations one would have to examine the particular force 
law under consideration and investigate the mathematical question of how extensive 
is the class of comparison arcs. 

24 LAPLACE'S formulation appears in the Mdcanique Cdleste V. 1 (Paris, 1799) = 
Oeuvres de Laplace 1 (Paris, !878) pp. 23-26, 72-73. For LAZARE CARNOT see Principes 
fondamentaux de l'dquilibre et du mouvement (Paris, 1803) pp. 218-221. Polsson's discus- 
sion is contained in his Traitd de Mdcanique (Paris, 1811) V. 1 pp. 460-463, V. 2 pp. 304- 
306. 
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of  the century a rather involved body of literature had accumulated. 25 Among 
these later developments one is of particular interest here: JAcom's formulation 
in 1842 of the principle that bears his name. 26 I mentioned earlier that EULER 
had presented the principle of least action in two places, the first in the Methodus  
lnveniendi of 1744 and the second in the "Harmonie entre . . ."  of 1751. JACOBI'S 
principle, in which the parameter time is eliminated from the analysis, is a direct 
generalization of the first of these treatments. LAGRANGE'S principle of least 
action, where this parameter is retained but not varied in the 6-process, is a general- 
ization of the second. Though there is no evidence that JAcom was influenced 
by EULER we do know he departed from LAGRANGE for reasons related to the 
difficulty described in the previous paragraph. 27 

I f  one sought an explanation for the reason LA6RAN6E proceeds in the way 
he does, it would probably be found in the very strong formalistic tendency 
which characteristizes all of his work in the exact sciences. In applying his b- 
process to the principle of least action LAGRANGE appears to be guided more by 
his success in algebraic manipulation than by any physical or geometric insight? s 
Given its goal, the derivation of equations of motion, LAGRANGE'S method is 
indeed quite successful. In fact, from a formal point of view it is very similar to 
the method associated with the later variational law known as 'HAMILTON'S 

25 A partial list of those during the 19 th century who concerned themselves with 
LA6RANG-E'S formulation of the principle of least action would include O. RoomG-UES. 
W. R. HAMILTON, C .G . J .  JACOBI, M. OSTROGRADSKY, 1. TODHUNTER, E.J.  ROUTH, 
A. MAYER and P. JOURDAIN. A large number of lesser known figures also contributed 
to the discussion over the principle. JACOm and OSTROG-RADSKY were especially critical of 
LAGRANG-E; TODHUNTER and JOURDAIN defended him. JOURDAIN in particular attempted 
at some length (mistakenly in my view) to justify LAG-RANG-E'S treatment of the principle. 
Additional details with references will be found in the following two sources: 

Abhandlungen i~ber die Prinzipien der Meehanik yon Lagrange, Rodrigues, Jacobi und 
Gauss; PI-IILIP E. B. JOURDAIN, Ostwald's Klassiker Nr. 167 (Leipzig, 1908). 
Etude Historique sur le Principe de la Moindre Action PIERRE BRUNET (Paris, 1938). 
26 JACOm'S formulation appeared in the sixth in a series of lectures delivered at the 

University of KOnigsberg in 1842-1843. These lectures were published posthumously 
in Vorlesungen [iber Dynamik (Berlin, 1886). The sixth lecture appears on pages 43-51. 

27 JACOBI states that a difficulty exists in the usual textbook presentations of the 
principle, "even in the best, in those of Poisson, Lagrange and Laplace." (Ibid., p. 44.) 
His solution is to eliminate at the outset the parameter time from the integral given by 
the principle. 

2s In particular, LAGRANG-E fails to notice that the formal interchangeability of 
the d and the 6 operators presupposes that time is an independent unvaried parameter. 
Thus if the examples in note 23 had occurred to him at all, it is likely he would have 
permitted paths traversed in different times, without realizing this creates difficulties 
for his analysis. In this regard his solution to the bracbistochrone problem in the previous 
mathematical memoir is interesting. In this problem, where it is of course necessary 
to vary the time, LAG-RANGE nevertheless appears to treat this variable as an independent 
parameter. He is, however, able to obtain the correct equations relating the spatial 
co-ordinates. This is because the integrand in the problem, V dx 2 + dy 2 + dz2/~x, is 
such that it is immaterial--from a formal point of view--whether one adopts time 
as the parameter, or, as a correct procedure would require, another independent variable 
in terms of which time is expressed. 
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principle'. In  terms of the steps described above there is no difference from 
equation (6) onward. I t  is surprising how much of the theory normally associated 
with this principle may be found in LAGRANGE'S memoir. To give one example, 
he is able to apply his method to obtain what are in fact instances of  the celebrated 
'Lagrangian'  equations of  motion, the discovery of which is usually attributed 
to his work of a later date. 29 I shall document this point at greater length in 
Section 3 when we examine some of the subsequent problems presented in the 
memoir. 

I take up now another issue which emerges f rom LAGRANGE'S analysis of  
Problem I, an issue that  may have important  implications for his future approach 
to the foundations of  mechanics. In describing the derivation of the equations 
of  motion I skipped over the manipulations which allowed LAGRANGE to set 

f (P dp + Q dq) equal to P 6p + Q ~q and therefore to pass from (4) to (5). 
I now examine in more detail this step in his derivation. LAGRANGE notes that 

f (P dp + Q dq) = f b(P dp + Q dq) --- f (6P dp + P 6dp + 6Q dq -t- Q ddq). 

He then interchanges the d and 6 and integrates by parts to obtain 

f (P dp + Q dq) = P ~p + Q 6q + f (~P dp -- dP ~p q- ~Q dq -- dQ ~q). 

I t  was assumed at the start that P and Q are functions of  p and q respectively. 
Hence 

6P -~ (dP/dp) ~p, dP = (dP/dp) dp. 

Thus OP dp --- dP 6p, and the corresponding result 6Q dq -~ dQ 6q follows 
in the same way. Consequently 6 f (P dp + Q dq) = P 6p + Q ~q, which is 
the desired equivalence. 

What  LAGRANGE has done here in effect is to show that f (P dp + Q dq) 
is a finite function o f p  and q whose variation equals P Op + Q Oq. He is, how- 
ever, aware that  this is a special case (P, Q must be functions of  p, q respectively) 
and that  the final equations (12) are more general. He later comments at some 
length on this matter. Thus he shows that if  we assume the forces are functions 
of  both  p and q, P = P(p, q), Q = Q(p, q), then the equivalence ~ f (P dp + 
Q dq) = P 6p + Q ~q reduces to the condition that P dp + Q dq be an exact 
differential: 

ep/~q = eQ/~p?O 

29 Many authors write as if these equations first appear in theM~chanique Analitique 
of 1788. The procedure required to obtain them was first presented in 1764 and they 
were explicitly introduced in their modern form in 1780. See the discussion in Part Two 
Section 2. 

an As before we have 

6 f (P dp .% O dq) = P 6p + Q 6q -1- f (6P dp -- dP 6p + 6Q dq - dQ 6q). 
Now de = (sP/Op) dp + (~P/~q) dq and oe = (OP/~p) cSp + (SP/Oq) 6q, with similar 
expressions for dQ, 6Q. By substituting these values into the expression under the integral 
sign in the right side of the above equation and collecting terms we obtain: 

6P dp -- dP 6p + 6Q dq -- dQ 6q = 
(eP/aq -- eQ/ep) dp ~q + (SQ/~p - 8P/aq) 6p dq. 

If  oP/~q -- ~Q]Op : 0, this quantity will be zero. Q.e.d. 
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I f  this is not the case, LAGRANGE adds, his procedure will not lead to the true 
equations of  motion and the variational method is inapplicable. 

This difficulty is mentioned by LAGRANGE in several places and he appears 
to be bothered by it. In modern terminology we see that he is aware that the 
success of  his approach depends on the existence of a potential function for the 
system. Thus it will not always be possible to derive the equations of  motion 
from the condition that the variation of a definite integral is zero. al Though this 
restriction on the generality of  his method is clearly undesirable, LAGRANGE 
emphasizes that even when the method fails we can still recover some of the results 
presented in the course of  the derivation. He may be hinting here at the future 
direction of his own approach to the foundations of  mechanics. We discuss this 
point in more detail in Part  Two. 

LAGRANGE concludes his study of the motion of a particle with an interesting 
illustration of  the power of  his method. He shows how it may be applied to 
derive the equations of  motion when the particle's position is specified in cylindri- 
cal co-ordinates r, qb ,z. The variables r and q~ furnish the polar representation 
of the point (x, y) in the x-y  plane and z is as usual the perpendicular distance 
to this plane. Rather than describe LAGRANGE'S derivation I simply present the 
final three equations he obtains: 

d(ur 2 dc~/ds) + ~o dt = O, 

(13) d(u dr/ds) - -  ur ddp2/ds + H dt = O, 

d(u dz/ds) + ~ dt = O. 

This result may be rewritten in the more familiar form 

d(r2•)/dt + OV/Odp = O, 

d(b)/dt  - -  r 6  2 + a V / &  = O, 

d(})/dt + # V / &  = O, 

where V is the potential expressed in terms of the variables ~, r and z. Note that 
(13) are simply the 'Lagrangian'  equations of  motion corresponding to these 
variables. LAGRANGE will use these equations later in deriving the so-called "law 
of  areas". 

LAGRANOE subsequently remarks that an advantage of his method is the 
freedom it permits in choosing co-ordinates to describe the motion. He further 
shows how the method may be modified to handle cases in which the particle 
is constrained to move on a surface. Since these two features of  his approach- -  
ability to deal with constraints and flexibility in the choice of  co-ordinates--arise 
again later I postpone discussion of them. LAGRANGE ends his account with 
some comments on how he has improved upon EULEg's analysis in the Methodus 
Inveniendi (EULER had only considered motion in a plane and had used special 
co-ordinate systems). 

al It is important to note that this difficulty would remain even if we were to follow 
our earlier suggestion and interpret LAORANCE'S procedure in the sense of 'HAMILTON'S 
principle'. 
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iii) Problem H: The General Dynamical System 

With the presentation of Problem I LAGRANGE had established the basic 
outline of his variational method. The purpose of Problem II is first to show 
what modifications must be introduced into this method in the general case and 
second to demonstrate how the principle of least action may be used to derive 
other general laws of mechanics. The two laws LAGRANGE chooses to discuss 
were known during his time as the theorem on the center of gravity and the law 
of areas. These results later became known as the principles of linear and angular 
momentum. 

LAGRANGE begins Problem II with the following characterization of an 
arbitrary dynamical system: it consists of "several bodies", each acted upon 
by forces to fixed centers, which may also be subject to "any mutual forces of 
attraction." In the subsequent analysis it becomes clear that there are some 
restrictions on these mutual forces; they must, for example, be functions of the 
distances which separate the bodies. In addition, it is only later that LAGRANGE 
explains the important role the notion of constraint plays in his conception of 
a dynamical system. 

LAGRANGE continues by showing how his variational method leads in the 
general case to the equations of motion. Most of the steps in the derivation are 
a straightforward generalization of Problem I. LAGRANGE begins with the principle 
of least action 

(14) <3 f -rm~ui dsi = O, 

and interchanges the 6 and f to obtain 

(15) f [~miui cSdsi + Xmiui 6ui dt] = O. 

The quantity Zmiui ~dsi is expressed in terms of Cartesian co-ordinates and sub- 
stituted into (15) to yield 

(16) f [~mi(~ci cSxi @ Yi (}Yi + "zi <gzi) + Zmiui dUll = O, 

where it is assumed the variations of the co-ordinates are zero at the initial and 
final configurations. The expression Zmiui Ou~ is now related to the forces in the 
system by means of the law of conservation of vis viva. It is here that the deriva- 
tion differs from LAGRANGE'S earlier analysis of a single particle. Thus, in addition 
to the external forces to fixed centers, we must also consider the mutual actions 
of the particles in the system. I shall describe LAGRANGE'S procedure for the 
case of two masses M and M'.  Conservation of vis viva is laid down in the form 

(17) Mu a + M'u '2 ---= const -- 2 M  f (P dp + Q dq + . . . )  

-- 2M' f (P' dp' + Q' dq' + . . . )  -- 2MM' f r df . 

The appearance of the last term on the right side of (17) is a consequence of the 
interaction of M and M'. M M ' F  denotes the magnitude of the force arising from 
this interaction (LAGRANCE is tactily invoking the equality of action and reac- 
tion) and f denotes the distance between M and M'.  Let us take the variation of 
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each side o f  (17): 

(18) M u  Ou + M ' u '  du' = - - P M  dp - -  M Q  (Sq - -  . . .  - -  M 'P"  @'  

- -  M ' Q '  dq' - - . . .  - -  2 M M ' F  ~f. 

In  the general case, where more than two particles are present, there will be 
addit ional terms in (17) and (18) corresponding to the additional particles. These 
equations will hereafter be unders tood to refer to this case. 

By combining (16) and (18) we would obtain a single equation relating the 
accelerations and the forces. LAGRANGE does not  do this, apparent ly because o f  
the notat ional  difficulty in expressing (18) in a suitable general form. Instead 
he describes verbally the remaining steps o f  the analysis. I f  the particles are sup- 
posed completely free, we express the right side of  (18) in terms of  the variations 
c~xi ,@i, 6zi, substitute into (16), and in the equation thus formed set equal to 
zero the coefficients o f  the variations. I f  there are constraints in the system (rigid 
rods, inextensible strings, fixed surfaces, etc.) we use the relations that  describe 
these constraints to reduce the variations dxi, @i, ~zi to a smaller set that  may  
be independently varied. The coefficients o f  the reduced variations are then equated 
to zero to yield the equations o f  motion.  The advantage o f  this approach is o f  
course that  it obviates the need to consider the forces o f  constraint,  a2 

LAGRANGE proceeds to derive the theorem on the center o f  gravity for  the 
case where the system is completely free. aa He assumes that  three external forces 
parallel to  the x, y and z axes act on the system. I f  P, Q and R denote the accelera- 
tions per unit  mass arising f rom these forces, then the external force acting on 
a mass m will equal (raP, mQ,  mR) .  LAGRANGE now chooses a given particle, 
call it rnl = (xl, Yl, zl), and expresses the co-ordinates o f  each particle m i 
(i > 1) as follows: 

xi = xl  + x~, y~ = y~ + y;, zi = zl + z~. 

The purpose o f  this device is to obtain a description o f  the system which depends 
only on the relative positions of  the particles. In  particular, we may assume that  

32 It is important to note that the constraints may be of two types. First, there will 
be connections among the particles (rigid rods etc.) which give rise to mutual forces. 
We then have the choice of i) retaining these forces in the analysis, in which case the 
variations are independent, or ii) using the conditions imposed by the connections to 
eliminate some of  the co-ordinates and thereby reduce the number of independent 
variations, in which case the forces of constraint are eliminated from the analysis. There 
is, however, another type of constraint, one that is exterior to the system; an example 
would be when some of  the particles are constrained to move on fixed surfaces. The 
forces arising from these constraints have no place in LAGRANGE'S conception of a dyna- 
mical system. Thus it would be necessary to follow the second course described above, 
in which these forces do not appear. 

33 The words "completely free" are intended here to exclude the second type of 
constraint described in the preceding note. Mutual forces of constraint are permitted. 
However, they must be retained in the analysis and the variations dxi, 6yi, c~z i will be 
independent. 
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their mutual actions depend on x~, y~, z~ and not on Xl, y~, z 1. We now take the 
variations of  the previous decompositions: 

Because the system is free we are permitted to assume the variations 6xa, dYa, 6z~ 
are independent of 6x~, Oy;, dz~. Consider the terms of equation (18) corresponding 
to the mutual forces. Clearly these terms will involve only the variations 6x;, Oy;, 6z;. 
The external forces in turn give rise to the following expressions: 

maP ~xi @ m~Q ~yi + miR ~zi 

or 
maP Oxa q- mlQ (3ya + m lR  Oza + miP Ox~ + miQ Oy~ -k maR dz~. 

We proceed to substitute these expressions into (16) and form the coefficients 
of  6xa, @1, 6z~. Because the latter are independent their coefficients are equal to 
zero: 

~ m i x  i - -  (,~mi) P = O, 

(19) ~ m i J ;  i - -  (•mi) Q = O, 

Xmi'zi - (,Smi) R = O. 

Equations (19) express the desired theorem: the center of gravity of the system 
moves as would a single (unit) mass acted upon by the three forces P, Q and R. 
This result is one form of  the principle of  linear momentum. 

LAGRANGE turns now to a demonstration of the law of areas. He first specifies 
the position of each particle using cylindrical co-ordinates qbi, ri, z~. By beginning 
with equation (15) above and expressing the quantity Zrngug ~dsi in terms of these 
co-ordinates we obtain 

(16') f [Zm~{(d(r2dp~)/dt) dc~ + (;i - -  r i~  2) (~r @ Zi (~Zi) -1- -~miu~ (~uil = O, 

where it is assumed the variations Mpi, Or~, bz i are zero at the initial and final 
configurations. The right side of equation (18) must now be expressed in terms 
of  q~i, ri, zi and their variations; by substituting for Zrniu i (}ui into (16') we would 
obtain as before a single equation. 

LAGRANGE now supposes the system is completely free or contains a fixed 
point about which it is free to turn. I f  completely free, we take any point in space 
as the origin of our co-ordinate system; if there is a fixed point, we take the origin 
to coincide with this point. In either case LAGRANGE assumes the external forces 
"converge" at the origin, i.e. have directions which pass through it. This given, 
he isolates for special attention the angle q~l corresponding to the mass m~ and 
expresses the remaining angles qb i (i > 1) as follows: 

so that 

We may assume: i) qb a and t#~ are independent; ii) the terms of equation (18) 
arising from the mutual forces do not contain q~ or dq~a. Furthermore, though 
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this is neither mentioned nor explained by LAGRANGE, because the external 
forces pass through the origin the terms in (18) corresponding to these forces 
involve only the variations 6r i and ~zi. Thus there are no terms in (18) containing 
6~bl. We may therefore take the coefficient in (16') of  this variation and set it 
equal to zero: 

•mi(d(r24i)/dt) = 0 
o r  

(20) d(Zmir2dpi)/dt : O. 

Equation (20) is integrated twice with respect to time to yield the final result, 
the so-called law of areas: 

(21) f S, rnir 2 ddp : Ht,  H : constant. 

LA~RAN~E describes this result verbally as follows: the sum of the masses m,. 
multiplied by the areas swept out in a given time by the radii r,. is directly propor- 
tional to time. He refers to earlier versions of  the theorem which had appeared 
in the writings of  D'ARcY, DANIEL BERNOULLI and EULER. While today we see 
that (21), or more directly (20), is equivalent to the principle of  angular momen- 
tum, s'~ LAGRANGE himself was apparently unaware of its full generality. Thus 
he had unnecessarily restricted its applications to the case where each of the ex- 
ternal forces passes through the origin, as 

Despite the fact that LAGRANGE devotes some space to demonstrating the 
theorem on the center of  gravity and the law of areas he nevertheless makes no 
use of  these results in any of  the subsequent problems of the memoir. The presen- 
tation of these laws here is apparently intended to provide evidence for the de- 
ductive power of  his variational method, as further support for his claim to have 
established in the principle of  least action a general foundation of  dynamics. 

Section 3: Some Applications 

The remainder of  the memoir  consists of  an application of the theory developed 
in Problems I and I I  to a wide range of  particular dynamical systems. LAGRANGE 
investigates the interaction through gravity of  freely moving particles, particles 
joined by strings and strings loaded with arbitrarily many masses. In the later 
sections he examines the behavior of  continuous media, flexible bodies and ques- 
tions in fluid mechanics. In each case he begins with the principle of  least action 
and applies his variational method to obtain the differential equations of  motion 
which describe the system. 

s4 The quantity 2:mir2@ is (except for a change of sign) the z component of the angu- 
lar momentum vector. Because the external forces pass through the origin their torque is 
zero. Equation (20) states that in this situation 2Jrnir~ i is constant in time. By symmetry 
we would obtain similar results for the x and y components of the angular momentum 
vector. 

35 This and other criticisms of LACRANGE'S formulation appear in C. TRUESDELL'S 
"Whence the law of moment of momentum ?" Essays in the History of  Mechanics (Sprin- 
ger-Verlag, 1968) pp. 239-271. 
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LAGRANGE seldom refers to the work of his contemporaries and he only rarely 
comments on the importance of his own research. However, many of the problems 
presented here were developed again later in the Mdehanique Analitique of 1788. 
At  the conclusion of Section Five, Part Two of that treatise LAGRANGE describes 
the significance of what he has accomplished: 

These different examples comprise nearly all the problems on the motion 
of  a body or a system of bodies that the Geometers have solved; we have 
chosen them on purpose so that one may better judge the advantages of  our 
method, by comparing our solutions with those found in the works of  Messr. 
Euler, Clairaut, d 'Alembert  etc., in which one arrives at the differential equa- 
tions only by reasonings, constructions and analyses often rather long and 
complicated. The uniformity and the swiftness of  the course of  [our] method 
are what should principally distinguish it f rom all the others, and what we 
wished especially to show in these applications. 36 

To be sure, LAGRANGE is referring here, not to the principle of  least action, but 
rather to a later method, one that we shall examine in Part  Two. Nevertheless, 
the passage cited is a quite accurate summary of  the results presented in the 
memoir  of  1760. Thus the variational method of this memoir  also has the virtue 
of  being "uniform and swift" and leads for problems of constrained mass point 
dynamics to the same 'Lagrangian '  equations of  motion. The account which follows 
will document this assertion in greater detail as well as focus on some aspects 
of  LAGRANGE'S research that are of  particular interest for his future work on 
foundations. 

In Problems IV and V LACRAN6E takes up examples which had appeared 
in JEAN D'ALEMBERT'S Traitd de Dynamique of 1743; the problems are even 
numbered in the same way in the two treatises. 37 I shall concentrate on Prob- 
lem IV, which concerns a system consisting of a body joined in a plane to two 
other bodies by inextensible strings. I t  is required to find the motion of the system 
when forces act on the first body. This example is typical of those which appear 
both in D'ALEMBERT'S Traitd as well as in a similar treatise composed by CLAIRAUT 
in 1742. 38 The analysis of  such problems was presented by the leading geometers 
of  the period not so much to display new results (though this did happen) as to 
illustrate the application to dynamics of  new principles and methods. In D'ALEM- 
BERT'S case the solution to Problem IV was quite intricate, involving a complicated 

36 Mdcanique Analytique (1788) pp. 336-337. 
37 D'ALEMBERT Traitd de Dynamique (1743) pp. 86-119; (1758) pp. 126-183. 
38 CLAmAUT "Sur quelques principes qui donnent la solution d'un grand nombre 

de probl6mes de dynamique" M&noires de Mathdmatique et de Physique de l'Acad&nie 
Royale des Sciences de Paris de l'Ann~e 1742 (1745). Although there is considerable 
overlap between this memoir and D'ALEMBERT'S TraitS, CLAIRAUT does not actually 
treat Problem IV. The latter is nevertheless representative of the problens which do 
appear in the memoir. CLAIRAUT states that these problems "have nearly all been pro- 
posed by the savants Messr. Bernoulli and Euler" (p. 213). 
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application of his difficult and famous principle, a9 In contrast, LAGRANGE'S 
solution is a model of  simplicity. He first specifies the position of the three bodies 
M, M',  M "  using four parameters:  the x and y co-ordinates of  M and two vari- 
ables ~b, ~b' that fix the angles between a given reference line and the strings joining 
M to M '  and M to M "  (see diagram). He then applies his variational method 
and derives four equations of  motion corresponding to the four parameters. I 
shall not present these relations; they are in fact what one would obtain by writing 
down the 'Lagrangian '  equations for the the system. *° Of  greater interest than 
this particular result is the fact that his method would lead to such equations in 
any other problem involving the constrained motion of  particles. 4~ Although 
LAGRANGE does not compare his solution with those of  his contemporaries, he 
must have been impressed by the superiority of  his own method in dealing with 
this type of  problem. 

~ M ~ 

M' 

M 
M = (x, y) (Note: No Diagram in the Original.) 

Fig. 1 

LAGRANGE continues in Problem IV by examining several modifications in 
the system: M is constrained to move on a fixed curve, M is replaced by a ring 
through which the string is free to slide, the strings are replaced by rigid rods; 
etc. He then turns to Problem V and generalizes D'ALEMBERT'S earlier analysis 
in the Traitd of the small oscillations of a heavy hanging cord. D'ALEMBERT had 
arrived at important  results in his investigation of this problem; LAGRANGE 

39 I discuss D'ALEMBERT'S principle in Part Two Section 1. 
40 LAGRANGE starts with the following relation: 

(15) f (~miv i t~ds i -J- ~miv i Ov i dt} = O. 

He then calculates dsi in terms of the four variables x, y, 4,, 4 '  and transforms the quan- 
tity S m i v  i •ds i using his variational method. This step in the derivation corresponds in 
modern analysis to the calculation of d(OT/Oqi)/dt - -  ~Z/8qi. The quantity Z m i v  i Ov i dt 
is now related to the work or potential function by means of the law of conservation of 
vis viva. This step corresponds to the calculation of ~V/~qi. The two steps are then com- 
bined to yield the final equations of motion. The entire procedure is similar to the deri- 
vation of the Lagrangian equations from HAMILTON'S principle, with the following 
difference: LAGRANCE does not begin with the integral f ( T  -- V) tit and therefore needs 
the equation of energy to bring the variation of the potential into the integrand. 

~1 Thus Problem IV illustrates the two major strengths of LAGRA~G~'S variational 
method: its ability to deal with constraints and the freedom it permits in the choice of 
co-ordinates to desribe the system. 
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in turn is successfully able to extend these results in ways worthy of note. 42 Though 
he makes no reference to D'ALEMBERT, his treatment is once again f rom the view- 
point of  clarity and elegance a considerable advance. 

We move now to LAGRANGE'S analysis in Problem VII I  of  the general motion 
of a rigid body. This subject would occupy a significant place in his future research 
and it is worthwhile to summarize briefly the context of  these early researches. 
Interest in rigid bodies during this period stemmed first f rom their intrinsic value 
as a n  idealized description of  an important  class of  physical objects. More speci- 
fically, a theory of rigid bodies was becoming increasingly necessary in celestial 
mechanics to analyze effects (precession, nutation) that could not be treated by 
the methods of  traditional mass point dynamics. Although D'ALEUBERT had used 
results about  rigid bodies in his work in theoretical astronomy, the true founda- 
tions of  the subject were laid by EULER in three important  memoirs submit- 
ted to the Berlin Academy between 1750 and 1758. 43 In the first of  these me- 
moirs EULER lays down the principle of  linear momentum as his fundamental 
dynamical axiom and derives for a general rigid body the 'EuLER' equations of  
motion relative to space fixed axes. In the later memoirs he introduces the concepts 
and terminology that have since become standard, the notions of  principal axis, 
moment  of  inertia, Eulerian angle, etc. , and obtains the equations of  motion with 
respect to reference axes fixed in the rigid body. 

In Problem VIII  LAGRANGE develops using his variational method much of 
the theory that  had appeared in the first of EULER'S three memoirs. I shall 
outline his solution for the case where the body is free to move about  a point O 
located at its center of  gravity. Given a Cartesian reference frame fixed in space 
with origin at O, the variation of the position of each mass element dm is expressed 
in terms of its Cartesian co-ordinates and three infinitesimal angles representing 

,2 We outline LAGRANGE'S solution and its relation to D'ALEMBERT'S earlier research. 
LAGRANGE begins by setting up the differential equations for the motion of n bodies 
attached to a string fixed at one end. He then turns to the case in which the string is 
vertical, the bodies are acted upon by gravity, and the oscillations are small and smooth. 
The equations he obtains, when there are only two bodies and the motion is planar, 
are equivalent to those contained in § 98 of D'ALEMBERT'S Traitd (1743, p. 97). LAGRANGE 
proceeds to the passage to the limit and derives the partial differential equations of the 
heavy hanging cord. The two dimensional form of the latter, which reduce to a single 
equation, appears in § 110 of the Trait~ (1743, p. 117); its derivation by D'ALEMBERT 
had constituted one of his most important achievements. Indeed, C. TRUESDELL has 
stated that the appearance of this equation marks "a turning point in the whole history 
of mechanics: the first general statement of  the law of  motion of  a continuous medium." 
(See TRUESDELL'S "The Rational Mechanics of Flexible or Elastic Bodies 1638-1788" 
in  EULER'S Opera Omnia II 112 p. 187.) LAGRANGE, unlike D'ALEMBERT, extends his 
analysis to the case in which the cord is elastic. TRUESOELL comments on the significance 
of  this last result in the previously cited study (p. 373). 

43 EULER "Ddcouverte d'un nouveau principe de mdcanique" M~moires de l'aca- 
ddmie des sciences de Berlin 6 1750 (1752) pp. 185-217 = Opera Omnia 15 5 pp. 81-108. 

"Recherches sur la connoissance mdcanique des corps" Mdmoires de ... Berlin 14 
1758(1765) pp. 131-153 = Opera omnia II  8 pp. 178-199, 

"Du mouvement de rotation des corps solides autour d'un axe variable" Mdmoires 
de ... Berlin 14 (1765) pp. 154-193 = Opera Omnia I I  8 pp. 200-235. 
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infinitesimal rotations about the x, y and z axes. LAGRANGE uses the symbol " S "  
to denote summation over the mass elements that make up this body and eventually 
obtains by his method three equations (the 'EuLER' equations) corresponding 
to the three angles of  rotation. The values for the moments and product of inertia 
in these relations appear as unnamed analytical quantities; furthermore, because 
the reference co-ordinate system is fixed in space these quantities are functions 
of time. 

LAGRAN6E proceeds to prove the following result. If  we assume the rotation 
of  the body occurs only about one of the axes, say the x-axis, and if the moment 
of the external forces is zero, then: i) the angular velocity of rotation is constant; 
ii) the products of  inertia Sxy dm and Sxz dm vanish. Having demonstrated this 
result, he adds that conversely we may use the conditions Sxy dm =O,  Sxz dm = 0 
to determine an "axis of  rotation", i.e. one about which the body will turn with 
constant velocity in the absence of any external moment. Unfortunately, no details 
are provided on the steps necessary to arrive at such a determination. Indeed, 
the remaining theory developed by LAGRANGE is rather incomplete and (as we 
shall see later) would undergo considerable elaboration in his future treatises. 

With this survey of LAGRANGE'S research on rigid body analysis I conclude 
our discussion of  the memoir. It would be in a treatise on celestial mechanics 
devoted to a problem in this subject that he would initiate the next stage in his 
approach to the principles and methods of mechanics. Before turning to an exam- 
ination of these later developments I briefly smnmarize the discussion thus 
far. The young LAG~ANGE, influenced by EULER and motivated by his own 
successful research in the calculus of variations, had attempted to establish in 
the principle of  least action a general foundation for dynamics. Though his 
treatment of  the principle is susceptible to criticism and though he himself was 
aware of certain of its limitations, it nevertheless led him to a powerful method 
for solving problems of concern to the geometers of the period. Despite this 
promising beginning LAG~NG~ would abandon least action as the basis of his 
approach. For  details on why this change occurred and discussion of his new 
method we move now to Part Two. 

Part Two: The General Principle of Virtual Velocities (1764) 

Section 1: Background 

In 1762 the Paris Academy of  Sciences set as its prize competition for the 
year 1764 the following subject: 

If  one can explain by some physical reason why the Moon always presents 
to us nearly the same face; and how one can determine by observation and 
theory if the axis of  this planet is subject to some proper motion, similar to 
that which we distinguish in the axis of the Earth, and which produces the 
precession of the equinoxes and nutation. 44 

44 This statement is taken from the introduction to LAGRANGE'S winning submission; 
See note 46. 
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By choosing this subject the Academy was demanding a physical analysis of the 
astronomical phenomenon of lunar libration: the apparent and real irregularities 
in the motion of  the Moon which cause it to reveal to us over the course of time 
slightly more than one half of  its surface. The theory of libration had attracted 
the attention of  NEWTON, CASSINI and D'ALEMBERT, with no conclusive results 
forthcoming, a state of affairs which led to the Paris competition. 4s LAGRANGE 
composed a memoir on the subject, submitted it to the Academy in August of  
1763, and was subsequently awarded the prize. His winning submission was titled 
"Recherches sur la libration de la Lune dans lesquelles o n  tfiche de r&oudre 
la Question propos6e par l'Acad6mie royale des Sciences, pour le Prix de l'ann6e 
1764. ,,46 It marks one of  the first in an extensive series of investigations in celestial 
mechanics which would occupy LAGRANGE for the remainder of  his life. 

The basis of LACRANGE'S memoir consists of a joining together of two mechan- 
ical principles: the statical rule of virtual velocities and the dynamical axiom 
known as 'D'ALE~mERT'S principle'. I shall hereafter refer to the union of these 
two laws as the 'general principle of virtual velocities'. This principle would become 
the fundamental axiom of LAGRANGE'S Mdchanique Analitique of 1788; its appear- 
ance in the piece of 1764 on libration marks a turning point in his approach to the 
foundations of mechanics. 

LAGRANGE does not in any of  his published treatises discuss the circumstances 
which led him to adopt a new mechanical method to analyze lunar libration. How- 
ever, one clue to his changing direction appears in a letter to EULER, dated 
24 November 1759, where he writes: 

I have myself composed some elements of mechanics and of  the differential 
and integral calculus for the use of my students, and I believe I have developed 
the true metaphysics of their principles, as much as this is possible. 47 

In earlier correspondence LAGRANGE had informed EULER that he had substan- 
tially completed his memoir on least action. The announcement contained in the 
passage quoted would therefore appear to refer to something new, something 
developed in connection with his teaching duties at the Royal Artillery School 
of  Turin. Certainly by 1763 LAGRANGE had thoroughly worked out the basis of 
his new apprOaCh and he took the Opportunity provided by the Paris competition 
to display his latest results to the French scientific community. Thus although 
his memoir is devoted to a problem in celestial mechanics it also contains much 
additional detail on the theoretical workings of his new method. To give one 
example, he provides in outline form the procedure required to obtain the 'La- 
grangian' equations of motion, thereby anticipating by some twenty-five years 
his presentation in the Mdchanique Analitique. 

4s For a survey of 18 th century research on lunar libration see ROBERT GRANT'S 
History of  Physical Astronomy (London, 1852) pp. 72-76. 

46 The memoir was received by the Paris Academy on 9 August 1763 and was pub- 
lished in 1777 in Prix de l'Acaddmie royale des Sciences de Paris tome IX  1764 = Oeuvres 
de Lagrange 6 (1878) pp. 5-61. The delay in publication has obvious implications for 
the dissemination of LAGRANGE'S ideas, a topic which we do not consider in this article. 

47 Oeuvres de Lagrange 14 (1892) p. 173. 
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In  Section 3 I discuss in more detail the reasons for LAGRANGE'S shift f rom 
least action to the general principle of  virtual velocities. Of  greater significance 
for the immediate background to the memoir  is the emergence of JEAN D'ALEM- 
BERT as a new and important  influence on LAGRANGE. In his earliest work on the 
principles and methods of mechanics LAGRANGE appears to have been guided 
almost exclusively by the writings of  EULER. The only ones during this period 
who could be said to rival the latter as innovators in dynamical theory were 
DANIEL BERNOULLI, CLAIRAUT and D'ALEMBERT; it was to this last savant that  
LAGRANGE would turn for inspiration in setting down the foundations presented 
in the prize memoir. Although D'ALEMBERT would later assume a personal role 
in assisting the career of  his younger contemporary,  his influence was by all 
accounts at this time of a general intellectual character. .8 

The importance of the French geometer will become evident in the emphasis 
of  the following account, where we examine the earlier history of the principle 
of  virtual velocities and of 'D'ALEMBERT'S principle'. Rather than at tempt a detailed 
study of  this subject I shall simply describe the relevant sections of  those treatises 
that LAGRANGE actually cites in his prize memoir. Consideration of these writings 
will therefore serve both as an introduction to the place of  the two principles in the 
18 th century mechanics as well as a brief survey of the immediate theoretical back- 
ground to LAGRANGE'S own research. 

The concluding sections of  EULER'S "Harmonie  entre les principes g6n6raux 
de repos et de mouvement"  (1751) contain a clear and succinct presentation 
of many of the ideas involved in virtual work arguments. 49 EULER wishes to 
show that the equilibrium properties of  simple machines are a consequence of  
MAUPERTUIS'S law of rest. In each case he uses the fact that the potential or 
"effort" is an extremum to obtain a condition for equilibrium. This condition 
is then expressed in terms of the infinitesimal displacements experienced by the 
bodies of the the system when the latter is subjected to a small disturbance about  
its equilibrium state. I shall illustrate EULER'S procedure by describing his 
analysis of  the inclined plane. In the diagram the body O lies on the inclined 
plane E F G  and is supported by a force at B. Let B denote the magnitude of this 
force and A the weight of  O. O A  = x designates the vertical distance from O 
to the base FG;  O B  = y is its distance to B. In this situation EULER states that 

,s The correspondence between LAGRANGE and D'ALEMBERT presented in the 
former's Oeuvres 13 did not begin in earnest until 1764. The letters prior to this date 
are few and formal and contain nothing of interest for our subject. At the end of his 
life LAGRAN~E reportedly stated that D'ALEMBERT and EULER were (in that order) the 
most important early influences on him. However, because of the difficulty of D'ALEM- 
BERT'S treatises, he strongly advised anyone then taking up the study of mathematics 
to turn to EULER: "quand on voulait 6tre g6om6tre, il fallait 6tudier Euler." (These re- 
marks are attributed to LAGRANGE in a letter that appeared in the Moni teur  Universalis 
(1814) pp. 226-228. The letter, which is identified only by the initials L.B.M.D.G., is 
a commentary on DELAMBRE'S 61oge of LAGRANGE. ]~ have relied on excerpts from it 
reprinted in an Essay Review by I. GRATTAN-GUlNESS: "Recent researches in French 
mathematical physics of the early 19th century", Annals  o f  Science 38 (1981) pp. 663- 
690, p. 679.) 

49 EULER Opera Omnia II 5 (1957) pp. 168-172. 
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A 

Fig. 2. EULER'S Fig. 10 (1751) 

the "effort" will equal A x  + By. The condition that it be an extremum is there- 
fore A dx -t- B dy = O. His analysis continues as follows: 

Let the body O change infinitely little its position on the inclined plane and 
let it arrive at o, having advanced the space Oo = ds. Draw from the point o 
onto OA the perpendicular oa, and from O onto Bo the perpendicular Ob; 
after this change it is clear that Oa = - -dx  and ob = dy. Now because the 
angle Ooa = Y we will have Oa = ds (sin y), and the angle Oob = EO B = 6 
will give ob = ds (cos 6), so that dx = --ds (sin y) and dy = ds (cos 6). 
Then in the state of equilibrium it is necessary that - - A d s  (sin ~) q- B ds (cos 6) 
= 0 or A (sin y) = B (cos 6); or that the force Ob will be to the weight O 
as the sine of the elevation of the inclined plane is to the cosine of  the angle 
E O B  which the direction of the force OB makes with the inclined plane, and 
this same proposition is derivable from the ordinary principles of  statics, s° 

From the viewpoint of the history of the principle of virtual velocities EULER'S 
approach is somewhat atypical in that he begins with an expression for the poten- 
tial and uses as his starting point the condition that this function be an extremum. 
A more traditional statement of the principle appears in the last chapter (Chap- 
te r lV)  of 9'ALEMBERT'S Traitd de Dynamique (1743, 1758). D'ArEMBERT is 
attempting here to furnish a demonstration of the law of conservation of vis viva. 
In a general scholium at the end of the chapter he summarizes his main result: 

It  follows from all we have said until now that in general the conservation 
of vis viva depends on this principle, that when the powers [puissances] are 
in equilibrium, the velocities of  the points where they are applied estimated 
in the directions of  these powers are in inverse ratio to these same powers. 
This principle has long been recognized by geometers as the fundamental 
principle of equilibrium; but no one that I know has yet demonstrated the 
principle or shown that the conservation of  vis viva necessarily results from 
it. 51 

so 1biol. pp. 170-171. 
sl Traitd de Dynamique (1743, pp. 182-183), (1758, p. 267). 
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(It is worth emphasizing here that D'ALEMBERT attaches no specific name to 
the principle and that the phrase "virtual velocity" only received widespread 
acceptance through the later work of LAGRANGE.) The formulation of the principle 
contained in this passage finds a simple illustration in the previous example of  
the inclined plane. Assume the small displacement ds experienced by O results 
from a hypothetical velocity u = ds/dt imparted to O. EULER'S result 

- - A d s  (sin)J) -k B ds (cos 8) = 0 
may be rewritten 

u (sin ~,) : u (cos 8) = B : A, 

which for this particular example is the analytical formulation of D'ALEMBERT'S 
statement of  the principle. In the general case, a system of particles in equilibrium 
is assumed subjected to a small disturbance, so that each mass mi of the system 
experiences an infinitesimal displacement dsi. I f  ~ is the velocity corresponding 

to this displacement and ~ is the sum of the forces acting on mi, the general state- 
ment of  the principle becomes 

Z '~ -u~  = 0. 

Note that the system will normally be constrained (as is the case in all the ex- 
amples D'ALEMBERT considers) and that the 'virtual velocities' ff~ must then be com- 

patible with the constraints; in this situation P~ refers only to the applied (non- 
constrain0 forces acting in mi. 

D'ALEMBERT'S use of  the principle of  virtual velocities to demonstrate the 
conservation of vis viva .is of  direct interest for LAGRANGE'S memoir  of  1764. 
Indeed, as we shall see in the next section, LAGRANGE takes up this demonstration 
and gives it a simple analytical formulation. Let us now, however, turn to the 
dynamical axiom known as 'D'ALEMBERT'S principle'. Interpretation of this 
principle is, in contrast to the previous statical law, surprisingly difficult. 52 Our 
discussion, while remaining faithful to D'ALEMBERT'S original formulation, shall 
emphasize only those aspects of  his treatment that are necessary for an apprecia- 
tion of LAGRANGE'S later work. 

In the Traitd de Dynamique D'ALEMBERT presents the following general rule 
for determining the motion of a system of bodies. At a given instant we assume 
the "mot ions"  a, b, c, ... are "impressed" on the bodies A, B, C . . . . .  Because 
of the mutual actions in the system, A, B, C , . . .  actually follow the motions 

~, b, 3 . . . . .  We proceed to form the decompositions a = ~ + ~, b ---- b + fl, 

s2 As a result of the work in recent decades of C. TRUESDELL and I. SZAB6 much of 
the confusion surrounding D'ALEMBERT'S principle has been removed (see TRUESDELL'S 
"The Rational Mechanics of Flexible or Elastic Bodies 1638-1788" in EULER'S Opera 
Omnia II 112 (1960) pp. 186-192, and SZAB6'S Geschichte der mechanischen Prinzipien 
(Basel, 1977) pp. 31-43). However, even the account of these authors is, in the opinion 
of this writer, in need of qualification w.ith respect to D'ALEMBERT'S original formula- 
tion and use of his principle in the Traitd. Further discussion of this point may be found 
in my Ph. D. dissertation The Approach of Jean d'Alembert and Lazare Carnot to the 
Theory of a Constrained Dynamical System (University of Toronto, 1981), Chapters One 
and Two. 
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c ---- 3 + • . . . .  , in which c~,/3, 7 . . . .  designate the "lost motions". "D'ALEMBERT'S 
principle" asserts that the lost motions, if applied alone, produce equilibrium in 
the system. His general rule for solving all problems of dynamics consists in 
this: 

Decompose the motions a, b, c . . . .  impressed on each body into two others 

h, a ;  b,/3; ~, 7, ---, which are such that if the motions h,/~ ~ . . . .  were impressed 
alone on the bodies they would retain these motions without interfering with 
each other; and that if the motions a, /3, 7 . . . .  were impressed alone the 

system would remain at rest; it is clear that h, b, ~ . . . .  will be the motions the 
bodies will take by virtue of  their action. 53 

Such is the original statement of D'ALEMBERT'S celebrated principle. I now 
describe how it is interpreted in the large collection of problems that make up 
Chapter III of  the Traitd. First, the term "body"  must be understood to mean point 
mass or corpuscle and "mutual  action" refers only to changes in motion arising 
from the constraints in the system. This given, let v denote the velocity of  the 
body A at time t. In the next instant dt the forces acting on A would, if this body 
were free and unconstrained, impart to it the increment of velocity dv Cl). The 
quantity v + dv (I) then represents the "impressed motion":  a = v + dv (I). 
Because A is connected to the other bodies, it actually acquires during dt the 
increment dv and the "actual velocity" at the end of this instant equals v + dr: 

---- v + dr. Hence the decomposition a ----- h + ~ becomes 

(*) (v + dv ~1~) ~- (v + dv) + dv ~L), 

where ~ = dv ~L) designates the motion "lost" to the constraints. Similar de- 
compositions will obtain for the rest of  the bodies in the system. O'ALEMBERT'S 
principle asserts that the quantities dv <L), if  applied alone to each of these bodies, 
produce equilibrium. In any given problem the principle is used to derive differen- 
tial equations of motion. We begin with an appropriate statical law and obtain 
a relation among the m dv <L) (m : mass). This fact combined with decomposition 
(*) eventually leads to a relation among m dv <l) and m dr. A knowledge of  the 
forces is assumed given and m dv <I) will therefore be a determinate function of  
whatever co-ordinates are used to describe the system. By expressing dv in terms 
of  the differentials of these co-ordinates we obtain as the final result the equations 
of  motion. 

By its nature the previous account cannot convey the intricate character 
of D'ALEMBERT'S solutions to the individual problems presented in the TraitS.  s* 
That he himself was aware of  difficulties in the principle's original statement is 
evidenced by the fact that in his later treatises on hydromechanics and theoretical 

sa Traitd (1743, p. 51) (1758, pp, 74-75). 
54 Two circumstances contribute to the intricacy of these solutions. First, the 

entities appearing in decomposition (*) are represented geometrically by line segments. 
Second, in many problems D'ALEMBERT does not hold dt constant (that is, time is not 
the independent variable); thus, for example, the line segments which designate dv 
do not represent increments of velocity acquired in equal increments of time. A more 
detailed discussion of this subject is contained in the reference cited at the end of note 52. 
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astronomy he provides a somewhat simplified version of it. s s Assume once again 
that A is an arbitrary body in a given system. Let v and v + denote the velocities 
of  A at times t and t q- dt respectively. D'ALEMBERT forms the relation 

v = v +  + u ,  

which we shall write as 
v = v + - - d v .  

The velocity of  A at time t + dt, if this body were free and unconstrained, would 
be v + dv (I) (the "impressed motion"), or, using the previous relation, v + - -  
dv + dv (°. By assumption the actual velocity of A at time t + dt is v +. Hence 
--dr  + dv (n applied respectively to each body in the system must be such as 
to produce equilibrium. (D'ALEMBERT regards this argument as a "demonstrat ion" 
of  his principle? 6) In any given problem we now invoke as before an appropriate 
statical law and obtain a relation among - -m  dv and m dv u). By focusing directly 
on the latter two quantities D'ALEMBERT has avoided the explicit decomposition 
that so complicated the original statement of  his principle, s7 Although its appli- 
cation to particular problems remains difficult, the formulation described here is 
clearer and is the one LAGRANGE would later develop and present as "D'ALEM- 
BERT'S principle". 

Section 2: The Basic Theory 

LAGRANGE'S prize memoir  may be divided into two parts. The first part  
is devoted to establishing the equations which describe the motion of the Moon 
about its center of  gravity when subject to the gravitational action of the Earth 
and the Sun. I t  is here that he outlines in a series of  scholia and remarks the basis 
of his new method. The second part  is devoted exclusively to the astronomical 
problem of lunar libration. Given certain assumptions about  the figure of  the 
Moon LAGRANGE is able to provide a satisfactory explanation for why the same 
side of  the Moon always faces the Earth. 

In this section we focus on the theory developed in the first part  of  the memoir.  
LAGRANGE uses his formulation of the astronomical problem to illustrate his 
method and it will be necessary as background to consider some of these astro- 
nomical details. An understanding of  his explanation of libration is not required 
in what follows; for completeness and because of its considerable intrinsic interest, 
I summarize LAGRANGE'S main result in an appendix. 

55 TraitO de l't~quilibre et du Mouvement des Fluides (Paris, 1744) pp. 70-71. 
Reeherehes sur la Prdcession des Equinoxes, et sur Ia Nutation de l 'Axe de la Terre 

clans le Syst£me Newtonien (Paris, 1749) pp. 35-36. 
Essai d'une Nouvelle Th~orie de la R~sistance des Fluides (Paris, 1752) pp. 1-3. 
s6 For a critique of the idea underlying this sort of "proof" see G. HAMEL'S Theo- 

retisehe Mechanik (Berlin, 1949) pp. 217-225. 
5v Unfortunately, this gain is mitigated by the fact that D'ALEMBERT'S procedure 

still requires the decomposition v = v + + u to arrive at a value for --dr. This awkward 
calculation of the acceleration through the consideration of geometrically represented 
finite velocities is avoided in LAGRANGE'S later treatment. 
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To analyze the Moon's rotational motion LAGRANGE first chooses a Cartesian 
reference flame X --  Y -- Z fixed in space with origin at the Moon's  center of 
gravity. The X --  Y plane is taken parallel to the plane of the ecliptic; the X- 
axis points to the first point of Aries on the celestial sphere. In this way each 
mass element o~ of  the Moon may be specified by co-ordinates X, Y, Z. The element 
o; is acted upon by the gravitational forces of the Earth and the Sun, which, 
because of  the choice of  reference system, now revolve about the Moon. If  R 
and R' denote the respective distances from o~ to these bodies then the "forces" 
exerted on ~ are given in magnitude by 

E S 
R2, R, 2 (E ---- mass of the Earth, S ---- mass of the Sun) 

and are directed along the respective lines joining ~ to the Earth and Sun. Note 
that the gravitational constant is here taken to be unity. The quantities E/R 2, 
SIR '2 must be assumed multiplied by this unit and therefore actually represent 
accelerations. LAGRANGE further supposes that the quantities d2X/dt 2, d2y/dt 2, 
d2Z/dt 2 may be regarded as "accelerative forces" acting on ~ in the directions 
of  the X, Y and Z axes. He continues as follows: 

... it is necessary, by the general principle of Dynamics, that these last forces 
taken in the opposite direction and combined with the forces E/R 2, SIR "2 
hold the system of all the points c~, that is the entire mass of the Moon, in 
equilibrium about its center of gravity supposed fixed. 5s 

LAGRANGE'S next step is to invoke a "principle generally true in statics" to 
obtain a suitable equilibrium condition. Assume we "vary infinitely little the 
position of the Moon about its center" so that the quantities X, Y, Z, R and R' 
become 

X q - ~ X , Y + ~ Y , Z + ~ Z , R + ~ R ,  and R ' + ~ R ' .  

The statical principle applied to the "powers" 0~ d2X/dt 2, o~ daY/dr 2, o¢ d2Z /d t  2, 
ocE/R 2 and c¢S/R '2 leads to the following general equation, designated (A) in 
the original: 

(1) (A) (1/dt 2) f ~(d2X aX + d ~ Y ~ Y + d2Z ~Z) + E f (o, ~R/R ~) 

+ s f  n'/R '2) = O, 

where the symbol " f "  here denotes a summation over the mass elements 0¢. 
Equation (1) forms the basis for LAGRANGE'S analysis of the Moon's  rotational 
motion. 

LAGRANGE subsequently observes that the statical law being invoked here is 
none other than the principle of virtual velocities: 

if any system of as many bodies or points as one wishes, each acted upon by 
any powers whatever, is in equilibrium and an arbitrary small motion is given 

5s Oeuvres 6 (1873) p. 8. 
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to this system, by virtue of which each point traverses an infinitely small 
space, the sum of the powers, each multiplied by the space that its point of  
application traverses following the direction of this same power, will always 
be equal to zero. 59 

In a scholium following the presentation of (1) he embarks upon a more detailed 
discussion of the history and significance of this and the previous dynamical 
law; here appear the references to EULER and D'ALEMBERT which we examined 
in the previous section. In particular, LAGRANGE shows how D'ALEMBERT'S 
demonstration of the conservation of viv viva may be given a simple analytical 
formulation. Assume the bodies m, rn ' , . . ,  are attracted to centers by "forces 
quelconques" P, Q . . . . .  P',  Q', . . . ;  let p, q . . . . .  p', q', ... denote their respective 
distances to these centers. (LAGRANGE does not elaborate further on the nature 
of these forces but it is at least clear that they do not  arise from the constraints 
in the system.) By the "general principle of dynamics" these forces are in equili- 
brium with the "forces" 

- - m  (dr~dr), - -m ' (d v ' / d t )  . . . .  , 

where v = ds/dt,  v'  = ds ' /dt  . . . .  are the directed speeds of m, m' ,  . . . .  The quan- 
tities v, v', ... are now regarded as "virtual velocities" and the statical principle 
gives 

- -rn  (dv/dt)  ds + m P ( - - d p )  + m Q ( - - d q )  + . . .  

- -m ' (dv ' / d t )  ds'  + m ' P ' ( - - d p ' )  + m ' Q ' ( - - d q ' )  + . . . .  O, 

which, when integrated, yields the desired result: 

(2) my 2 ÷ m 'v  '2 + . . .  ---- rnV  2 + m ' V  '2 + . . .  - -  2m f (P dp + Q dq ÷...) 

- - 2 m '  f (P'dp'  ÷ Q'dq '  ÷ ...) --, . . . .  

V, V', ... here being the initial speeds of m, m', . . . .  
Of greater interest than this result itself is the comparison its demonstration 

affords with D'ALEMBERT'S earlier analysis. D'ALEMBERT had first isolated for 
special attention the quantities m dv (L), where dv (L) represents the incremental 
speed or velocity lost by m to the constraints. The collection (m dv (L)} was then 
regarded as a new set of external "powers", which, when applied to the system, 
produces equilibrium. The statical rule in conjunction with the decompositions 
furnished by his dynamical principle led in the particular cases he examined to 
the desired result. 

D'ALEMBERT'S idea of combining these two principles is of course at the base 
of LAGRANGE'S procedure. D'ALEMBERT, however, never succeeded in avoiding 
the cumbersome decompositions required by his principle, though, as we saw 
in the previous section, he did in bis later work arrive at an improved formulation. 

s9 IbM. pp. 8-9; p. 10. 
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LAGRANGE'S fundamental achievement was to free the principle from all reliance 
on geometric considerations, involving the awkward representation of finite and 
infinitesimal quantities, and to derive from it a simple and general analytical 
method for the solution of constrained dynamical problems. At the conclusion 
of the scholium he provides a concise summary of his new method: 

Moreover the principle of Statics which I have just described, being combined 
with the principle of Dynamics given by M. d'Alembert, constitutes a type 
of general formula which includes the solution of  all problems concerning 
the motion of  bodies. For  we will always have an equation similar to (A) 
[equation (1) above], and the whole difficulty will further consist only in 
finding the analytical expression of the forces which we suppose act on the 
bodies and of the lines along which these forces act, by employing in these 
expressions only the smallest possible number of  indeterminate variables, 
so that their differentials designated by the ~ be one and the other entirely 
independent; after which, equating to zero separately the terms which are 
each multiplied by the differentials of which I speak, we will have at last as 
many particular equations as is necessary for the solution of the Problem, 
as we shall see in the Articles which follow. 6° 

We return to LAGRANGE'S formulation of the astronomical problem and 
examine how he uses it to illustrate his new method. In LAGRANGE'S investigation 
the problem of the Moon's  rotational motion is reduced to a question in rigid 
body dynamics: given a rigid body free to rotate about its center of gravity and 
acted upon by external central forces (in this case the gravitational attractions 
of the Earth and the Sun) we must use relation (1) to derive differential equations 
which describe its motion. To do this, LAGRANGE introduces three angles ~, e 
and co that specify the orientation of the Moon relative to the Cartesian reference 
frame. The positions of the mass elements of the Moon are given internally by a 
second, spherical, reference frame which remains fixed in that body. LAGRANGE 
then presents formulas that express the Cartesian co-ordinates X, Y, Z of each 
mass element oc in terms of the parameters ~, e, o) and its spherical co-ordinates. 
Notice that the latter remain constant in time; in addition, they do not enter into 
the variations involved in the principle of virtual velocities. The variation of 
the Moon's  position required by this principle will therefore be completely deter- 
mined by the variations ~ ,  de, &o. The parameters ~z, e, co thus represent for 
this particular problem the "smallest number of indeterminate variables" needed 
in the application of his method. In modern parlance they are simply a set of 
'Eulerian angles' serving here as 'generalized co-ordinates' to describe the system. 

LAGRANGE proceeds to calculate the values of d2X " (}J,~ -t- d 2 Y 6 Y -f- dZZ  ~Z  
and E dR /R  2 + S dR ' /R  '2 in terms of the angles ~, e, co and their variations. 
After a lengthy series of computations he obtains an expression for d 2 X  d X  + 
d 2 Y ~ Y + d 2 Z  d Z  of the form 

60 Ibid. p. 12. 
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where f ,  g, h are functions of re, e, co and their first and second derivatives. A 
separate computation is applied to the quantity E dR/R  E q- S 8R' / 'R  z to obtain 
a corresponding expression of the form 

f *  8re + g* 8e + h* &o. 

By substituting these values into relation (1), simplifying and setting the coeffi- 
cients of the variations of the angles equal to zero, LAGRANGE arrives at three 
second order differential equations in the variables re, e and co. These equations 
constitute the basis for his subsequent investigation of the Moon's  oscillatory 
motion. 

From our point of view the most interesting step in LAGRANGE'S analysis 
concerns his calculation of the quantity d 2 X  8X  @ d 2 Y" 8 Y  + d2Z  8Z. To 
obtain a value for this quantity he proceeds directly, using the relations connecting 
X, Y, Z to z~, e, co and performing the necessary differentiations; the desired 
expression is ultimately arrived at through a very involved computation. In an 
extended "Remark"  LAGRA?qGE describes an alternate method which leads to 
the same result, a method which "though indirect is nevertheless preferable by 
its simplicity and generality. ''61 Indeed, the method in question would lead for 
any particular problem to the 'Lagrangian' equations of motion, or, more 
accurately, to the part of these equations involving the kinetic energy function. 
Since LAGRANGE wishes only to give "an idea of the method" he restricts his 
discussion to the example at hand. To simplify the description of his procedure 
and to emphasize its generality I shall in what follows employ modern notation. 

Assume the system is completely specified by the independent variables 

q~, q2 . . . . .  LAGRANGE shows that to arrive at an expression for ~ - 8 ~  (i.e., 
(dZX 8X  + d z Y 8 Y + d2Z  8Z)/dt  2) in terms of these variables, their variations 
and their derivatives it is sufficient to calculate the value of-fv~ 2 (v = speed of ~): 

1 
- -  I ) 2  = f (  . . . .  qi  . . . .  , q ,  ")" (3) 2 . . . . . .  

Given (3) the desired expression becomes 

(4) r . 6-7 = Z(d(6f/#~t,)/dt --  ~f/6q,} 8ql. 

LAGRANGE does not employ partial differentials in his analysis; instead, as was 
customary during the period, the quantities ~f/~qi and 6f/#qi appear as the coef- 
ficients of 8q and 8q respectively in the expanded expression for 8( 1 v 2) = 8f  
This, however, is only a matter of notation, and it is clear that the next step in 
the analysis--a summation of (4) over 0~--would lead to the usual expression 
involving the kinetic energy in the Lagrangian equations of motion. LAGRAN~E 
himself emphasizes that the above device is applicable in "the solution of all 
Problems of Dynamics which one would wish to treat by our method. ''62 

The justification presented by LAGRANGE for this new device is of interest 
in connection with his earlier and later work on the foundations of mechanics. 

61 Ibid. pp. 16-18. 
62 Ibid. p. 18. 
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Beginning with (3) above he obtains 

(5) v 6v = Z(~f/Oqi) 6qi + Z(~f/~q) 6qi. 

Using the relation ~ .  6~ = v 6v and the fact that the d and 6 are interchangeable 
he integrates (5) by parts:  

(6) ~ . ~ f  - -  f ( ; ' .  67)  dt ----- X(~f/Oqi ) 6qi - -  f Z{d(~f/#(7i)/dt - -  ~f/#q~} 6qi dt. 

LAGRANGE proceeds to argue that "this equation must be identical and conse- 
quently it is necessary that the algebraic part  of  the first member be equal to the 
algebraic part  of  the second, and the integral part  be equal to the integral part. ''63 
Hence "removing the integral sign" he concludes that  

(4) P .  67 = Z(d(~f/~q~)/at - -  ~f/#q,} 6qg. 

LAGRANGE'S appeal here to ideas f rom the calculus of  variations in what is 
essentially an analysis formulated in terms of  differential principles is not wholly 
justified ("it is easily understood that . . .") .  Indeed,  the basis of  the demonstra- 
tion, the inference f rom (6) to (4), seems more an inappropriate carry over f rom 
his earlier treatment of  the integral principle of  least action. In a memoir  of  1780 
LAGRANGE would return to the method outlined above and develop it in greater 
detail. 64 Although much of this later material consists merely of  formal elaboration 
of  ideas already present here, it does contain one substantive advance. LAGRANGE 
replaces the argument described in the preceding paragraph with a demonstra- 
tion based on the following relation: 

(7) P . 6r  ~ = d (P  . 6 7 ) / d t  - - ~  6v~. 65 

This equation is obtained f rom the interchangeability of  the d and the 6, a fact 
LAGRANGE interestingly refers to as "the fundamental principle of  the calculus 

63 Ibid. p. 17. 
6* "Th6orie de la libration de la lune, et des autres ph6nom6nes qui dependent de 

la figure non sph6rique de cette plan6te" Nouveaux Mdmoires de l'Aead~mie royale des 
Sciences et de Belles Lettres de Berlin 1780 ~ Oeuvres 5 (1870) pp. 5-122. 

6s This relation is considered very important by the German physicist GEORG HA- 
MEL. Multiplying it by c~ and summing over the mass elements of the system we obtain 
what HAMEL calls the "Zentralgleichung" or central equation. HAMEL regards this equa- 
tion as important because it establishes a relation between an invariant of the second 
order and two invariants of the first order. HAMEL'S work on Lagrangian mechanics 
appears in 

"Die Lagrange-Eulerschen Gleichungen der Mechanik" Zeitsehrift fiir Mathematik 
und Physique 50 (1904) pp. 1-57. 
"Uber die virtuellen Verschiebungen in dee Mechanik" Mathematisehen Annalen 
59 (1904) pp. 416-434. 

HAMEL'S remarks on the invariance properties of the central equation appear in 
Theoretisehe Meehanilc (Springer-Verlag, 1949) p. 223. 
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of  variations. ''66 The demonstration itself is often presented today and it would 
be unnecessary to describe it. 67 We shall, however, return in the next section to 
the question of  the changing role of  the calculus of  variations in LAGRANGE'S 
approach to the foundations of  mechanics. 

The previous discussion focused solely on LAGRANGE'S treatment of  the 
quantity (d2X dX + d 2 Y ~ Y ÷ d2Z dZ)/dt 2, involving the 'kinetic reaction' or 
'force of  inertia'. The other major step in the analysis, the calculation of  
E dR~R2+ S d R ' / R  '2, though of direct importance for his solution to the 
astronomical problem of  lunar libration, is of  less interest f rom the viewpoint 
of  the principles and methods of mechanics. I t  is, however, possible to make 
some general observations on the treatment accorded to the forces in LAGRANGE'S 
new method. Recall first his statement of  the conservation of vis viva: 

(2) mv 2 ÷ m'v "2 ÷ . . . .  m V  2 + m 'V  '2 ÷ . . .  --  2m f (P d p ÷  Q dq ÷ ...) 

--2m' f (P'dp' + Q'dq' ÷. . . )  - - . . . .  
In presenting this result he had commented that it "comprises ... the conser- 

vation of vis viva taken in all its extension." This claim combined with his reticence 
about  specifying the nature of  the forces would suggest LAGRANGE understood 
(2) to include cases in which the forces are not integrable, i.e. in which the quan- 
tities f (P dp ÷ Q dq ÷ ...) . . . .  are not finite functions of  p, q . . . . .  Now it was 
precisely the existence of such cases which had compelled him in the memoir  
of  1760 to restrict the application of the principle of  least action. This principle 
had required the validity of  (2) in the strong sense, in which the forces are inte- 
grable. While it is indeed true that (2) would hardly be of  interest otherwise, the 
important  point is that his new method no longer requires this equation for its 
application; it will be valid regardless of  the nature of  the forces. In addition, 
conservation in the strong sense when it does hold will be a consequence of the 
general principle of  virtual velocities. These considerations would appear to be 
of  evident importance for LAGRANGE'S decision to abandon least action as the 
basis of  his approach and will be discussed again in the following section. 

The remainder of  the memoir  is with one exception devoted to the astronomical 
problem of lunar libration. The exception concerns another long scholium con- 
sisting this time of a discussion of  rigid body theory. LAGRANGE had previously 
shown that the study of the Moon's  motion is conserably simplified if one assumes 
this body possesses an axis about  which it would turn with constant angular velocity 

66 Oeuvres 5 (1870) p. 21. The derivation of LAGRANGE'S equations contained in 
the memoir of 1780 is reproduced in the M(ehanique Analitique (1788): Following the 
presentation of this derivation LAGRANaE writes: "What has just been found in a parti- 
cular manner could have been found as simply and more generally by the method of 
variations." He proceeds to present an expanded version of the argument which had 
appeared in the memoir of 1764. The passage quoted might suggest that LAGRANGE now 
considered the derivation of 1780 to be non-variational. However, in presenting it he 
again uses the interchangeability of the d and 6 and the latter is once again referred to 
as a "fundamental principle of the calculus of variations." In addition, the alternate 
argument seems to involve a no more genuine application of the calculus of variations; 
it strikes this reader as being as inappropriate in 1788 as it was in 1764. 

67 See for instance H. GOLDSrEIN'S Classical Mechanics (Addison-Wesley, 1950) 
p. 16-18. 
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in .the absence of external forces. He deduced that a necessary condition for this 
to be the case is 

S = 0 ,  T = 0 ,  

where S, T denote the products of inertia with respect to the axis of rotation, 
expressed in terms of  a spherical co-ordinate system in which this axis coincides 
with the polar axis. (It may be recalled that this result had been derived in a 
different setting in the memoir of  1760.) In the scholium LAGRANGE shows it 
is unnecessary to postulate the existence of an axis of constant rotation in order 
to conclude the products of  inertia vanish. That is, he furnishes a general algebraic 
proof  that every rigid body possesses such an axis, and, moreover, that there exist 
two additional mutually perpendicular axes with the same property. This result 
had in fact been established by EULER in a memoir presented in 1758 to the 
Berlin Academy. 68 It is, however, important to note that EULER'S analysis was 
motivated by topological considerations; in contrast, LAGRANGE'S treatment 
in the scholium is exclusively algebraic. Although LAGRANGE does not develop 
his study of  rigid bodies any further here, he would return to this subject ten years 
later in an important paper that laid the foundations for the modern approach 
to rigid body analysis. 69 Interestingly, THOMAS HAWKINS has argued that this 
later treatise, which is also completely algebraic in character, led, through CAUCHY 
in the 19 th century, to the creation of modern spectral theory. 7° 

6s In "R¢cherches sur la connoisance m6canique des corps" (1758) (op. tit. n. 43) 
EULER introduces the concept of 'moment of inertia' of a rigid body about a given line. 
He defines a 'principal axis' to be that line through the center of gravity for which the 
value of the moment of inertia is an extremum. This condition leads to two equations 
in the angles defining the position of the axis. EULER shows these equations also follow 
from the condition that the rigid body be free to rotate about the given axis with constant 
angular velocity in the absence of external forces. Through an analysis of the two equa- 
tions he is able to establish the location of one principal axis. He proceeds to show 
that there are two other such such axes and that all three are mutually perpendicular. 

LAGRANGE'S demonstration, though analagous to EULER'S, contains a difference 
in emphasis: the purpose of the scholium is to show that the existence of a 'principal 
axis' (this terminology is not employed) is independent of dynamical considerations. 
LAGRANGE takes the algebraic condition that the products of inertia vanish to be the 
defining property of such an axis and his subsequent discussion is devoted solely to a 
study of the equations which arise from this condition. 

69 "Nouvelle Solution du probl6me du mouvement de rotation d'un corps de figure 
quelconque qui n'est anim6 par aucune force accel6ratrice", Nouveaux Mdmoires de 
l'Acaddmie royale des Sciences de Berlin 1773 (1775) = Oeuvres 3 (1869) pp. 579-616. 

70 THOMAS HAWKINS "Cauchy and the Origins of Spectral Theory" Historia Mathe- 
matica 2 (1975) pp. 1-29. HAWKINS describes how LAGRANGE in 1773 introduced ortho- 
gonal transformations and solved the problem of reducing a general quadratic form to 
the sum of square terms by solving the corresponding eigenvalue problem. This approach 
completely superseded his earlier analysis. It is therefore ironic that the approach to 
quadratic forms which became standard in the first decades of the 19 th century (due to 
POISSON and HACHETTE and described by HAWKINS p. 19 (ibid.)) is essentially the same 
as LAGRANGE'S earlier method of 1764. (Although LAGRANGE was dealing with the deter- 
mination of the principal axes of an arbitrary rigid body, it is not difficult to show that 
his solution is mathematically the same as the reduction of a general (positive definite) 
quadratic form in three variables.) 
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Section 3: Reflections on Lagrange's Shift 

Perhaps the most interesting fact to emerge from the previous study is LA- 
GRAN6E'S remarkable shift f rom the integral principle of  least action to the differ- 
ential principle of  virtual velocities. Although he never discusses the reasons for 
this shift it is possible on the basis of  circumstantial and technical evidence to 
arrive at a plausible explanation for it. I t  is first clear that I.AGRANGE had com- 
pleted the transition to the general principle of  virtual velocities by 1763. From 
1756, when he first submitted a memoir  on least action to the Berlin Academy, 
until this year, LAGRANGE was active in the formation and subsequent delibera- 
tions of  the Academy of  Sciences at Turin. During this period he was engaged 
in research on a wide range of subjects: the propagation of  sound, the integral 
and differential calculus, the method of variation of arbitrary constants in theore- 
tical astronomy as well of  course as the calculus of  variations and the foundations 
of  mechanics. In addition, he had since 1755 been involved in the teaching of  
courses on mathematics and mechanics at Turin's Royal Artillery School. 71 
Earlier I cited a letter LAGRANGE wrote to EULER in 1759 in which he announced 
that  he had in connection with these teaching duties arrived at the "true meta- 
physics" of  the principles of  mechanics. I suggested that he may have been 
referring to the foundations later set down in the memoir  of  1764. There is in 
fact considerable evidence to support this conjecture. A course in mechanics at 
an elementary level would almost certainly have begun with an exposition of 
statics. In contrast, LAGRANGE'S research on the principle of least action was de- 
voted to advanced problems in dynamics. Neither in the memoir  of  1760 nor in 
the MdcaniqueAnalytique does he at tempt to develop a theory of statics from this 
principle. F rom a pedagogical viewpoint it would have been natural to begin with 
a study of equil ibrium--and the principle of  virtual velocities was during this 
period the most widely accepted law of s tat ics--and then proceed to a study of  
motion. 

Any presentation of the principle of  least action to students would also 
undoubtedly have necessitated as motivation some mention of its background, 
including MAUPERTUIS'S and EULER'S claims for its metaphysical significance. 
Throughout  his career LAGRANGE exhibited a marked reluctance to discuss philo- 
sophical claims of any sort. I t  is an interesting fact that the term "least action" 
never actually appears in the memoir  of  1760, despite his use of  this phrase in earlier 
correspondence with EULER. In the Mdchanique Analitique LAGRANGE would 
sarcastically dismiss those who employ such terms, stating that they act 

as if  these vague and arbitrary denominations comprise the essence of  the 
laws of  mechanics and can by some secret virtue establish in final causes the 
simple results of  the known laws of mechanics. 72 

71 The lecture notes for this course have been lost. For the suggestion that they may 
have constituted a sort of 'first draft' of the Mdcanique Analytique I am indebted to a 
conversation with Professor RENt TAXON. 

72 Mdehanique Analitique (1788) p. 187. LAGRANGE is referring in particular to 
D'ARcY and MAUPERTUIS. 
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LAGRANGE'S disdain for teleological speculation was shared by his older 
contemporary D'ALEMBERT. In the second edition of the Traitd de Dynamique 
(1758) D'ALEMBERT cautions against the use of principles based on "final causes", 
warning that they may be "only simple mathematical consequences of  a few 
general formulas. ''Ta This apparent negative reference to the principle of  least 
action coupled with his own alternate approach to the foundations of mechanics 
must surely have influenced LAGRANGE'S decision to take up the principle of  
virtual velocities. Furthermore,  the occasion for his presentation of the new method 
based on this principle--a prize competition of the Paris Academy--would  cer- 
tainly have been felicitous at a time when D'ALEMBERT was one of its leading 
members. 74 

There are, finally, some technical considerations of  direct relevance for 
LAGRANGE'S shift. I noted in the preceding section that the principle of least 
action is less general than the principle of  virtual velocities; the former had re- 
quired for its application the condition that the forces be integrable. Furthermore,  
LAGRANGE was aware of  this fact, even bothered by it. To delve into this matter 
more deeply recall that his derivation of equations of  motion from the integral 
principle had consisted of two steps: the first led to a suitable expression involving 
the acceleration; the second led by means of a potential function to an expression 
involving the forces. The restriction on LAGRANGE'S method arose f rom the second 
step, which required the integrability of  these forces. I t  is clear that a shift to the 
differential principle would remove this restriction; the remaining difficulty would 
then consist of  adapting the treatment contained in the first step to the new setting. 
LAGRANGE had claimed in his treatise on the principle of least action that certain 
of  the steps remain valid when the principle itself fails. The theory developed 
in the memoir  of  1764 may be viewed as the successful translation of this claim 
into the general method there presented. Thus the principle of  virtual velocities 
besides possessing the advantages described in the previous paragraphs, would 
also lead in practice to the resolution of any problem susceptible to solution by 
the integral method. 

I turn now to another issue related to the preceding one: the changing role 
of  the calculus of  variations in LAGRANGE'S approach to the foundations of  
mechanics. His transition to the principle of  virtual velocities clearly depended 
on his ability to apply to this principle techniques originally developed in the 
calculus of  variations. T h e  fundamental problem of this branch of mathematics 
is the determination of a function for which the variation of a certain integral 
is equal to zero. LAGRANGE'S later method, however, was based on a differential 

73 Traitd (1758) p. xxx. 
74 D'ALEMBERT, however, was not on the committee set up to judge the competition. 

He would later communicate to LAGRAN~E his opinion of the latter's winning submission 
in the following remarkable passage: "I  read your piece on the libration of the Moon 
and I said as did John the Baptist: ~< Opportet ilium crescere, me autem minui. >>" See 
Oeuvres de Lagrange 13 (1882) p. 10. (The Latin quotation is a reference to John 3:30, 
in which JOHN THE BAPTIST sets forth his judgement of JESUS: "Fie must increase but I 
must decrease.") 
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principle; the few traces of  the integral approach which are present in the memoir  
of  1764 would be replaced by more direct procedures in his subsequent treatises. 
The question therefore arises as to precisely in what  sense his later treatment is 
variational. The answer to this question would appear to lie in LAGRANGE'S own 
conception of the nature of  mathematics, That is, though it is indeed possible to 
interpret his later method non-variationally, it is nevertheless true that he himself 
regarded the techniques he employs as ones taken from the calculus of  variations 
and governed in application by the principles of this science. 75 LAGRANGE more 
than anyone else during the 18 th Century viewed mathematics as an internally 
consistent formalism; any application of the formalism was, ipsofacto ,  an applica- 
tion of the mathematics itself. This formalistic tendency became more pronounced 
as his career progressed and received its most famous illustration in his cele- 
brated attempt to found the differential calculus on a theory of formal power se- 
ries. 76 I t  is also interesting that LAGRANGE'S last work in science, an important  
contribution to the theory of perturbations in celestial mechanics, was developed 
using techniques and methods based on the algebraic procedures of  the calculus 
of  variations. 77 

Appendix: Lagrange's Analysis of Lunar Libration (1764) 

The subject set by the Paris Academy for the prize competition of 1764 con- 
sisted of two parts:  the first demanded a physical explanation for the equality 
of  the Moon 's  period of rotation and its sidereal period of revolution about  the 
Earth; the second demanded an investigation Of the precession and nutation of 

75 LAZARE CARNOT, the French statesman, mathematician, and father of SA~I 
CARNOT, had also based mechanics on the general principle of virtual velocities in his 
treatise Essai sur les machines en g~ndral (1783). CARNOT was influenced strongly by 
D'ALEMBERT'S Traitd de Dynamique and appears to have worked independently of 
LAGRANGE. Although the Essai contains some variational results, in genesis and sub- 
stance the approach of this treatise is non-variational. Unlike LAGRANGE, who always 
worked with displacements, CARNOT takes the notion of virtual velocity (what he calls 
"geometric" velocity) quite seriously and attempts to develop his analysis using this 
concept. In his later treatise Principes fondamentaux de l'~quilibre et du mouvement 
(1803) CARNOT would situate his own work in relation to LAGRANGE'S better known 
system. Further details may be found in my Ph. D. dissertation, op. cit. note 52. 

76 Thdorie des fonctions analytiques contenant les principes du calcul differentiel, 
ddgagds de route considdration d'infiniment petits, d'~vanoMssants, de limites et de fluxions, 
et r~duit a l'analyse algdbrique des quantities finies (Paris, 1797) = Oeuvres 9 (1881). 
LAGRANGE'S approach to the foundations of the calculus was of course abandoned by 
subsequent researchers. However, JUDITH W. GRABINER has recently argued that his 
theory was of direct importance for CAUCHY'S later successful rigorization of the calculus. 
See GRABINER'S The Origins o f  Cauchy's Rigorous Calculus (M.I.T. Press, 1981). 

77 This research involved the method of variation of arbitrary constants and appears 
in the second (1811, 1816) and later editions of the M~canique Analytique (V. 1 Sect. 5, 
and V. 2 Sect. 6 (Chap II), Sect. 7 (Chap. I)). LAGRANGE'S reference to the calculus of 
variations is contained in V. 1 Sect. 5 § 1. 



236 C. FRASER 

the Moon 's  axis of  rotation. LAGRANGE in his winning submission provided what 
came to be regarded as the definitive answer to the first of  these parts. His analysis 
of  the motion of  the Moon 's  axis of  rotation was, by his own later admission, 
less successful, 78 The following account will focus solely on his explanation of 
the equality of  the Moon 's  periods of  rotation and revolution. 79 

Reasoning from hydrostatical considerations LAGRANGE concludes that the 
Moon in its original fluid state had acquired through the action of the Earth and 
its own rotational motion the shape of an almost spherical ellipsoid with three 
unequal axes. This ellipsoidal solid represents the figure acquired by the Moon 
when it solidified. Two of the axes lie in the elliptical section formed by the 
Moon 's  equatorial plane; the longer of  the two is directed to the prime meridian, 
the latter being that which is constantly pointed very nearly to the Earth. Given 
these assumptions and the relations furnished by his variational method LAORANGE 
deduces a single equation which describes the oscillations of the prime meridian 
about  its mean position. These oscillations are of  two types. The first is a conse- 
quence of the variable velocity of  the Moon in its orbit about  the Earth and 
produces the so-called libration in longitude. This libration is an optical pheno- 
menon independent of  any variation in the Moon 's  rotational velocity. The 
second is a consequence of  the Moon 's  non-spherical shape; it produces the phy- 
sical libration and reflects actual changes in this rotational velocity. LAGRANGE 
shows that both the optical and physical libration given by his equation are small 
and periodic. In addition, he shows it is no longer necessary to assume that in 
the beginning the velocities of  rotation and revolution were exact ly  equal; any 
original difference, if small, would remain small. LAGRANGE regards this last fact 
to be the crux of  his explanation. Thus he has avoided the "paradox" ,  against all 
laws of chance and suggestive of  divine design, involved in the assumption of 
original exact equality. 

Before continuing with a more detailed account of  LAGRANGE'S result I 
comment  briefly on D'ALzMBERT'S curious role in the background to his research. 
The suggestion that librafion could be explained by assuming the Moon possesses 
a long axis pointed to the Earth had originated in NZWTON'S Principia Mathe-  
matica. 8° D'ALEMBERT had considered this suggestion and rejected it, aparently 

78 "Th6orie de la libration de la lune" Nouveaux M~moires de l'Acad~mie royale des 
Sciences de Berlin 1780 (1782) = Oeuvres 6 (1870) p. 9. 

79 To facilitate the description of LAGRANGE'S main result I depart from his 
analysis in several non-essential ways. First, I use such terms as moment and product 
of inertia to designate what appear in the original text as unnamed analytical entities. 
Second, I assume (as does LAORANOE eventually) that the action of the Sun on the Moon 
is negligible. Finally, I present his result for the special case in which the Moon is 
assumed to be an ellipsoid of uniform density. (This case is actually treated in a series of 
scholia.) At the end I show how his analysis would apply under less restrictive condi- 
tions. 

8o Book III Proposition xxxviii. LAGRANGE remarks in a scholium that his explana- 
tion of libration (based on the assumption that the Moon in its original formation had 
acquired the shape of a triaxial ellipsoid) may be regarded as a commentary on this 
proposition. See Oeuvres 6 p. 47. 
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on  the basis  o f  a surpr is ing oversight.  81 Meanwhi le ,  he became interested in in- 
vest igat ing the ro t a t iona l  mo t ion  o f  the Ear th  under  the a s sumpt ion  tha t  this 
body  is an  e l l ipsoid  with three unequal  axes. (The more  cus tomary  as sumpt ion  
was tha t  i t  is an obla te  e l l ipsoid  o f  revolut ion.)  The results  o f  his invest igat ion,  
presented  in a memoi r  to  the Paris  A c a d e m y  in 1756, were based  on  three differ- 
ent ia l  equat ions ,  s2 N o  one to  m y  knowledge  fol lowed D'ALEMBERT'S p roposa l  
concerning  the Ear th .  Nevertheless ,  as LAGRANGE explici t ly observes in the in t ro-  
duct ion  to his piece on l ibra t ion ,  the equat ions  which fo rm the basis  o f  his in- 
vest igat ion are fo rmal ly  ident ical  to those which had  appea red  in D'ALEMBERT'S 
memoi r  o f  1756. To be sure, LAGRANGE'S me thod  for  ob ta in ing  these equat ions  
differs f rom D'ALEMBERT'S and his app l ica t ion  o f  them to the M o o n  v io la ted  the 

81 D'ALEMBERT'S discussion of lunar libration appears in his Recherches sur Diffd- 
rens Points Importans du Systdme du Monde Seconde Partie (Paris, 1754) pp. 243-261. 
On page 256 he states that certain geometers have attempted "to explain why the Moon 
always presents to us the same face by supposing this planet is elongated in the direction 
of the line which goes from the Earth to the Moon."  He proceeds to argue against this 
explanation. He considers a rigid rod with equal masses P and p attached to each end. 
The rod rotates about its center G, revolving at the same time in a circular path of radius 
r under the action of gravity about a heavy body A. The system thus defined is taken to 
represent the motion of the Moon about the Earth according to the Newtonian hypothesis. 

D'ALEMBERT'S Figure 46 (1756) 

The variables z and u denote the angles made by the lines GA and PGp with a fixed 
reference line AE. The variable k = z --  u therefore represents the ' l ibration'  experienced 
by the rod. D'ALEMBERT derives the following differential equation to describe this system: 

(*) d2k/dt 2 = --(3A/2r a) sin (2k). 

He proceeds to argue that the solution to (*) (involving elliptic integrals) is inconsistent 
with the assumption that k remain small. His argument, however, is based on a mis- 
guided choice of  initial conditions. He assumes the rod has no initial angular velocity 

about its center. Thus when t ~ 0, k = 0 and /t = 0; consequently /~ = ~, The latter 
quantity is not small and it is indeed clear that equation (*) will not lead in this situation 
to small stable values for k. LA~RANGE'S later account of libration would assume that 

--  h = / c  is initially small (but not zero!). 
82 "Recherches sur la pr~cession des 6quinoxes et sur la terre dans l 'hypoth6se de 

la dissimilitude des M6ridiens". Presented to the Academy in December 1756 and pub- 
lished in Histoire de l'acaddmie royale des Sciences de Paris. Avec les mdmoires de ma- 
thdmatique et de physique 1754 (Paris, 1759) pp. 413-428. 
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latter's own views on libration. 8a He was, however, apparently able to derive 
some benefit from the work of  his older contemporary in devising the explana- 
tion set forth in the prize memoir. 

We move now to a closer examination of LAGRANGE'S theory. With reference 
to the discussion in Part Two Section 2, the three angles n, e and co which specify 
the Moon's  position relative to the ecliptic Cartesian co-ordinate system are 
defined as follows: n is the inclination of the lunar equator to the ecliptic; e is 
the angular distance measured along the ecliptic from the first point of Aries to 
the equatorial descending node; co is the angular measured along the lunar 
equator from the descending node to the prime meridian. The quantity e + co 
therefore equals the celestial longitude of the prime meridian. 84 LAGRANGE assumes 
that the quantity n is small (thus its square may be neglected) and that the polar 
axis is a principal axis for the Moon viewed as a rigid body. Of the three general 
equations which correspond to the parameters ~z, e and co he makes use in his 
explanation of  libration only of  the last one, corresponding to co. He derives the 
following expression for the kinetic part of this equation: 

(1) .(2 = (d(dco -t- de)/dr 2) C, 

where 
C = the moment of inertia of the Moon about its polar axis. 

The part arising from the gravitational action of the Earth is shown to be given 
by the expression: 

(2) --(3E/r 3) D' = --(3E/2r 3) (B --  A) sin [2@ -- (e -+- co))], 

where 
E = mass of the Earth 
r = distance from the Moon to the Earth 

A = moment of inertia of the Moon about the equatorial axis which is directed 
to the prime meridian 

B = moment of  inertia of the Moon about the equatorial axis which is perpendi- 
cular to the direction of the prime meridian 

= true celestial longitude of  the Earth as seen from the Moon. 

s3 Unlike LAGRANGE, D'ALEMBERT does not use the principle of virtual velocities 
in his analysis. He relies instead on other equilibrium properties of rigid bodies. Although 
his theory is based on his dynamical principle, the latter had appeared in many of his 
treatises, and there is no evidence to suggest the memoir of 1756 was of any particular 
significance in influencing LAGRANGE'S approach to the foundations of mechanics. 

84 LAGRANGE'S decision to measure e from Aries to the equatorial descending node 
requires some explanation. From observation it was known that the following three 
planes constantly intersect in a line: i) the plane of the Earth's orbit about the Moon; 
ii) the plane parallel to the ecliptic passing through the Moon's center; iii) the plane of 
the Moon's equator. In addition, it was known that ii) lies intermediate between i) and 
iii). (It is these observational facts that LAGRANGE unsuccessfully attempts to explain 
in the concluding parts of the memoir.) Hence the distance from Aries to the ascending 
node of i) is equal to e, the distance from Aries to the descending node of iii). Since 
LAGRANGZ assumes the prime meridian is the one which is always pointed very nearly 
to the Earth, the quantity e q- co will be approximately equal to the Earth's true longitude 
as seen from the Moon. 
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By adding (1) and (2) we obtain  the desired equat ion corresponding to ~o: 

(3) (d(de + do~)/dt 2) C - -  (3E/2r  3) (B  - -  A )  sin [2(r - -  (e q- w))] = 0. 

LAGRANGE now introduces several simplifications into (3). Let  n denote  the mean  
mot ion  of  M o o n  in its orbit  abou t  the Earth.  We have by KEPLER'S third law 

E 
n2 --/,3 

where we have assumed i) the M o o n ' s  mass  is negligible in compar i son  to the 
Ear th 's ,  and ii) the M o o n ' s  orbit  is approx imatey  circular in the sense that  a 'a / r  3 

(a '  = length of  semi-major  axis o f  the M o o n ' s  orbit) is a small quant i ty  of  the 
second order. In  addition, because the pr ime meridian always points  very nearly 
to the Earth,  the quant i ty  0 = ~ - -  (e + co) is small. Hence sin [2(r - -  (e + 09))] 
= sin 20 = 20 and &o -]- de = d~ - -  dO. Equat ion (3) then becomes 

or, dividing by C, 

(4) 

((d2~ - -  d20) /d t  2) C - -  3n2(B - -  A) 0 = 0, 

d2,p d20 
dt  2 dt  2 (3n2(B - -  A ) / C )  0 = 0. 85 

Recall  that  ~ designates the true longitude of  the Ear th  as seen f rom the M o o n ;  
r therefore equals L + 180 °, where L is the true longitude of  the M o o n  in its 
orbi t  abou t  the Earth.  Using the equat ion of  the center LAGRANGE expresses L 
in terms of  the M o o n ' s  mean  mot ion  n: 

(5) L = l - -  a sin ( n m t ) ,  

where l is the lunar  mean  longitude, a is a constant  numerical ly equal  to twice the 
eccentricity of  the lunar  orbit,  m (a number  which differs "very  little f rom uni ty")  
is the ratio of  the mot ion  of  the lunar  mean  anomaly  to the lunar  mean  mot ion  
and where we have retained only the first te rm ( - - a  sin (nmt ) )  in the expansion 
given by the equat ion of  the center. We therefore have 

d2~, d 2 L  
- -  - -  an2m 2 sin ( n m t ) .  

dt  2 dt  2 

Substi tuting this value for  d2~/dt  2 into (4) yields 

(6) d 2 0 / d t  2 + (3n 2 B - -  A ) / C )  0 - -  anZm z sin ( n m t )  = O. 

85 In passing from (3) to (4) LAGRANGE replaces dt by dV,  where V in his analysis 
equals nt. Thus (4) appears in the original text as 

d2~ --  d20 --  ( 3 M / H ) d V  2 = O. 

(I have expressed LAGRANGE'S M and H in the language of moments of inertia as 
B -- A and C.) The subsequent relations are presented as differential equations in the 
variable V. I have not followed LAGRANGE in this convention. 
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We now assume that the Moon is an ellipsoid of  uniform density and that the 
major equatorial axis is the one directed to the prime meridian. The quantities 
A and B therefore represent the values of  the Moon 's  moments of  inertia about 
its major and minor equatorial axes. LACRAN~E had earlier shown in this situation 
that B is greater than A. Hence 3n2(B - -  A) /C  > O, and (6) may therefore be 
integrated "by  known methods" to yield 

0 = Q sin (n ~/3(B - -  A) /C  t) ~ (am2/(m 2 - -  3(B --  A)/C))  sin (nmt) ,  

where Q is a constant and we have assumed 0 = 0 when t = 0. By letting 
h = 3(B - -  A) /C and m2/(m 2 - -  h) = h/(m 2 - -  h) + 1 we express this result as 
follows: 

(7) 0 ----- Q sin (n #ht)  - -  (ah/(m 2 --  h)) sin (nmt) - -  a sin (nmt).  

Equation (7) furnishes the oscillations of  the prime meridian about  its mean 
position. These oscillations are of  two types. The first, given by the term - - a  sin (nmt), 
is a consequence of the Moon 's  variable velocity in its orbit about  the Earth; 
it produces the libration in longitude and is a purely optical effect. The second, 
given by the terms Q sin (n ]/ht) and --(ah/(m 2 -  h) )s in  (nmt), is a physical 
consequence of  the non-spherical shape of the Moon;  it produces the physical 
libration and reflects actual variations in the Moon 's  rotational motion. Note 
that  the Moon, though not spherical, is very nearly so. Hence h = 3 ( / / - -  A) /C  
and therefore --(ah/(m 2 - -  h)) sin (nmt) are small quantities. The term Q sin (n ]/ht) 
is periodic with period 360°/n ]/h and maximum amplitude Q. Although observa- 
tion would be required to determine the precise value of Q, it is clear f rom the 
fact that the total physical libration remains small that Q itself is also small, s6 

LAGRANGE proceeds to calculate ~o + e as a function of time. By definition 
we have c o + e = v - - 0 .  Using v = L - k - 1 8 0  ° and (5) we obtain 

o ) + e = l + 1 8 0  ° - a s i n ( n m t ) - 0 .  

Substituting the value for 0 given by (7) into this relation yields 

(8) co + e = l + 180 ° - -  Q sin (n ~ht) + (ah/(m 2 - -  h)) sin (nmt).  

We now differentiate (8) with respect to time: 

(9) d(~o + e)/dt -~ n --  Q n ~h cos (n ~ht) + (ahnm/(m 2 --  h)) cos (nrnt), 

where we have used dl/dt = n. By setting t = 0 we arrive at the initial value for 
d(o) + e)/dt: 

(10) d(o) + e)/dt],=o = n(1 - -  Q ~h + ahm/(m z - -  h)). 

Equation (10) furnishes the initial velocity of  the Moon 's  rotation relative to the 
fixed stars. Since Q and h are small it is clear that this velocity is almost equal to 

86 LAGRANGE tacitly assumes Q is small, providing no further discussion of the mat- 
ter. In fact, the Moon's physical libration was never actually observed during the 18 th 
century (GRANT M History of  Physical Astronomy (London, 1852) p. 75). Observational 
astronomers of the period were unable to distinguish this libration from the more notice- 
able libration in longitude. Q and h would therefore have to be very small. 
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n, the magnitude of the Moon's  mean motion about the Earth. However, it need 
not be exactly equal to n; Q, though small, is an arbitrary constant whose precise 
value is a matter for observation. Thus (d(co + e)/dt)It=0 could in principle take 
on any value whatever so long as this value is close to n. LAGRANGE regards this 
fact to be the crux of his explanation. He notes that until now astronomers have 
assumed the Moon's  rotational motion is uniform. To explain the fact that the 
Moon always reveals the same face to the Earth these astronomers have therefore 
needed to suppose the Moon's  initial rotational velocity was exactly equal to n, 
a supposition LAGRANGE considers "very difficult to understand". He summarizes 
this point, and his analysis as a whole, as follows: 

It seems to me that the preceding Theory furnishes a completely simple solu- 
tion to this paradox, or, better said, this paradox does not arise in the Theory I 
have just given for the rotation of the Moon. Thus I may, in this regard, flatter 
myself in having fully satisfied the first part of the question proposed by the 
Academy. s7 

I present a final observation on LAGRANGE'S analysis. In the derivation of 
equation (7) the assumption that the Moon is an ellipsoid of  uniform density 
was used only at the end, to ensure that B --  A is greater than zero. In making 
this assumption I have departed slightly from LAGRANGE'S own presentation; 
he actually considers this case in a series of scholia. In the more general case we 
need only suppose that the axes which lie in the equatorial plane are principal axes 
and that the physical constitution of the Moon is such that B -- A > 0. 88 This 
last point is important and is not fully articulated by LAGRANGE. I f  B -- A < 0, 
the integration of (6) will not lead to small periodic values for 0. If  B -- A = 0, 
equation (7) with h = 0 would be a possible solution; however, we would then 
be faced in equations (9) and (10) with the "paradox" LAGRANGE wishes to avoid. 
The crucial condition B -- A > 0 and its relation to the physical constitution 
of the Moon emerge clearly in LAGRANGE'S analysis only when he turns to the 
case where this body is assumed to be an ellipsoid of uniform density. 
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87 Oeuvres 6 (1878) p. 45-46. 
88 In the general case LAGRANG~ actually assumes these axes are almost principal 

in the sense that the product of inertia f ~xy is a very small quantity. This assumption 
leads to an additional small term in (7). Nothing of consequence hinges upon this 
assumption and I have thought it unnecessary to describe it. 
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