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1. Introduction 

The calculus of variations was established as a distinct branch of analysis 
with the publication in 1744 of EULER'S Methodus inveniendi curvas lineas. EULER 
succeeded in formulating the variational problem in a general way, in identify- 
ing standard equational forms of solution and in providing a systematic tech- 
nique to derive them. His work included a classification of the major types of 
problems and was illustrated by a wide range of examples. 

EULER'S treatise was the culmination of a line of research that had begun 
a half-century earlier with the publication of two papers by JAKOB BERNOULLI in 
the Acta eruditorum. BERNOULLI'S pioneering researches were continued by his 
brother JOHANN and by the English mathematician BROOK TAYLOR. EULER'S 
initial investigations in the 1730s began from a study of the work of these men. 

Ironically EULER'S entire approach to the subject would be set aside with the 
appearance of LA~RAN~E'S &method in the 1750s. This method, which very 
quickly became standard, involved a variational process that was fundamentally 
different from EULER'S and that established the subject along new and different 
lines. There is a family resemblance shared by the techniques of the BE~NOtJLLIS, 
TAYLOR and EULER that distinguish them from those employed in the post- 
Lagrangian stage of the subject. 

From a larger historical perspective it is clear that the Methodus inveniendi 
capped and completed the first phase in the development of the calculus of 
variations. The treatise was nevertheless by no means a straightforward product 
of earlier research. In its basic organization and direction it represented a sub- 
stantial break with the then established tradition, including EuL~R's own pre- 
vious work in the subject. 

The present paper is concerned to identify some significant characteristics of 
the BERNOULLIS' and TAYLOR'S theory and to document the substantial achieve- 
ments of EULER'S variational calculus that preceded the Methodus inveniendi. 
The intent is to illuminate the earlier developments and to explain how and for 
what reasons the subject assumed the form that it did in the treatise of 1744. In 
order to orient the discussion and to provide a basis of reference we begin by 
laying out in summary the salient points of the subject as it is developed in the 
Methodus inveniendi. We then turn to an examination of the BERNOULLIS' re- 
search, with consideration of the ways in which their approach was similar to 
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and differed from EULER'S. A study of TAVLOR'S solution to the isoperimetric 
problem will reveal its special significance in the background to his investiga- 
tions. Finally, we discuss in some detail EULER'S variational papers of 1738 and 
1741 that were published as memoirs of the St. Petersburg Academy of Science. 
We conclude with some reflections on the early history of the calculus of 
variations. 

2. Euler's Theory of 1744 

2.1 The problems considered by EULER in the Methodus  inveniendi fall naturally 
into three groups. 

I. Presented in Chapter 2, these problems are the most basic ones, in which 
no side condition or special relation among the variables is assumed. 

II. Presented in Chapter 3, these involve certain variational integrals in 
which a variable appears in the integrand that is connected to the other 
variables of the problem by means of a differential equation. In the modern 
subject this problem is an instance of the very general "problem of LAGRANGE". 

IlI. Presented in Chapter 5, these involve a side condition that is formulated 
in terms of a definite integral. The isoperimetric problem is the classical repre- 
sentative of this class of problems. 

EULER'S theory is based on his derivation of the variational equations for 
these three classes of problems. 

I. We are given a curve in the plane joining the points a and z (Figure 1). The 
curve represents geometrically the analytical relation between the abscissa x and 
the ordinate y. Let M, N, O be three points of the interval A Z  infinitely close 
together. We set A M  = x, A N  = x', A O  = x", and M m  = y, N n  = y', Oo = y". 

The differential coefficient or derivative p is defined by the relation dy = p dx. 

EULEe presented the relations 

(1) 

y l  __ y 

P -  dx 

y,, _ y' 
pr__ 

dx 

which give the values of p at x and x' in terms of dx and the differences of the 
ordinates y, y' and y". 

Suppose now that Z is some expression composed of x, y and p. (EULER also 
employs the symbol Z to denote the endpoint of the interval AZ; the context 
however always makes the usage clear.) The definite integral ~Z dx correspond- 
ing to the interval from A to Z is 

(2) ~ Z d x ( A  to M) + Z d x  4- Z ' d x  + . . . ,  
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Figure 1. 

where Z, Z ' , . . .  are the values of Z at x, y, p; x', y', p'; . . . .  Suppose the given 
curve joining a to z is such that (2) is a maximum or minimum. Increase the 
ordinate y' by the infinitely small quantity nv, obtaining in this way a compari- 
son curve amvoz. The change in the value of the integral calculated along the 
given and comparison curves must by hypothesis be zero. The only part of the 
integral that is affected by varying y' is Z dx + Z'dx. EULER wrote 

dZ = M d x  + Ndy  + Pdp 
(3) 

dZ '  = M'dx  + N'dy '  + Udp '  . 

He proceeded to interpret the differentials in (3) as the infinitesimal changes in 
Z , Z ' , x , y , y ' , p , p '  that result when y' is increased by nv. Evidently dx = O, 
dy = 0 and dy'  = nv. From (1) we see that dp and dp' equal nv/dx and - nv/dx 
respectively. Hence (3) becomes 

tz~ 
dZ = P ' ~  

(4) dx 
n v  

dZ '  = N " n v  - P " - -  
dx 

Thus the total change in ~ Z d x  (A to Z) equals (dZ + dZ ' )dx  
= n v . ( P  + N ' d x - P ' ) .  This expression must be equated to zero. We set 

P ' - P  = dP and replace N '  by N. We therefore obtain N d x -  dP or 

(5) N - --dn = O , 
dx 

as the final equation for the curve. 
In later mathematics (5) would be written as O f / O y -  d(Of/@')/dx = 0 and 

become widely known as the EULER or EULER-LAGRANGE equation of the varia- 
tional problem. 

II. In Chapter 3 EULER moved to a new set of examples. Here it is typically 
required to render extreme an integral of the form y Zdx,  in which Z is now 
a function of x, y, p = dy/dx and a new v a r i a b l e / / =  y [Z] dx, where [Z] itself is 
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a function of x, y, p and ~ [Z] dx is to be evaluated from the initial abscissa A to 
A M  = x. (This problem was motivated in part by examples in which Z depend- 

ed on x, y, p and the length of path s = ~o , f i  + f d x . )  Increase y' by nv. As 
before the changes dp, dy', dp' equal nv/dx, n v , -  nv/dx respectively. Let us 
calculate the corresponding changes in 17. We have 

17 = ~ [ z ]  dx 

/7' = ~ [Z] dx + [Z] dx 
(6) 

17"= ~ [z] dx + [z] dx + [z'] dx 

17" = ~[Z] dx + [Z] dx + [Z']  dx + [Z"]  dx, etc. 

Suppose d[Z] = [M] dx + [N] dy + [P]dp. The changes in [Z], [Z'],  [Z"], are 

d . [Z] dx = nv . dx ( [ ff~]x ) 

( cP'3) 
(7) d - [ Z ' ] d x = n v . d x  I N ' ] -  dx ) 

d . [ Z " ] d x = O ,  etc. 

Hence the changes in 17, 17', 17", 17%. . .  equal 

d . 1 7 = 0  

(8) ( du'3  
d . 1 7 " = n v . d x  IN']  dx J 

d. 17" = d. 17'" = d. 17 ~ = etc., 

where we have used the fact that d[P] = [ P ' ] -  [P]. 
We now calculate the change in ~ Z d x  + Z dx + Z 'dx  + etc. that results 

when y' is increased by nv. Suppose dZ = M dx + N dy + P dp + L dlL The 
part of the change that arises from the variation of y', p and p' is, as before, 

When y' is increased by nv all of the quantities 17, 17', 17" , . . .  are varied. The 
total change in ~Zdx  + Z d x  + Z 'dx  + etc. due to these variations is 

(10) L dx.  dH + Udx .  dII' + U'dx.  d17" + etc. 

Substituting the values of d17, dII', d17", . . ,  given by (8) into (10) yields 

(11)  n v . d x ( L ' [ P ] ) +  n v . d x ( [ N ' ] - ~ x ] ) ( L " d x + L ' " d x + U ~ d x + e t c . ) .  



The Origins of Euler's Variational Calculus 107 

Replace [L']  and [N'] by [L] and [N] and set L ' d x  + L " d x  + Li~dx + etc. 
equal to H -  ~L dx, where H is the integral of Z from A to Z. With these 
substitutions (11) becomes 

d [P3 
(12) n v . d x ( H -  f L d x ) ( [ N ]  - dx ] + nv .dx(L[P])  , 

which we may rewrite (using d(SLdx ) = L dx) as 

- 2 ;  

By adding (13) and (9) and equating the resulting expressions to zero we obtain 
the final equation for the problem 

dP 
(14) 0 = N - dxx + [N](H - ~Ldx) - d[P](H dx - ~Ldx) 

EULER continued in Chapter 3 to consider examples that are somewhat more 
involved, although the basic technique is the same. He concluded with a de- 
tailed account of two examples involving the motion of a particle in a resisting 
medium: the first is simply the problem of the brachistochrone adapted to the 
case where the motion takes place in a resisting medium; the second involves 
determining the trajectory of a particle descending through the medium between 
two points in such a way that its terminal velocity is a maximum. 

l ie  In Chapters 5 and 6 EULER turned to the classic isoperimetric problem that 
was so prominent in the work of earlier researchers. The extremalization of 
~oZdx(AZ = a)is carried out subject to the condition that So [ZJdx = constant 
znust also be satisfied in the variational process. EULER referred to this as 
a problem of "relative" maxima or minima, in contrast to the "absolute" 
problems that had been investigated in Chapters 2 and 3. He noted that 
a distinct variational problem would arise for each choice of constant in the 
side condition. 

Up to this place in the treatise EULER had employed a variational procedure 
that involved changing a single ordinate of the extremalizing curve, so that 
a comparison arc was obtained that differed from the actual one at a single 
point. To handle the isoperimetric problem he introduced a new variational 
process. We now vary two successive ordinates y'  and y" by the amounts nv 
and oco respectively. (The recognition that it is necessary to vary two ordinates 
when there is a side-condition present in the form of a definite integral orig- 
inated with JAKOB BERNOULLI.) Hence we now have: change in p is nv; change in 
p' is (oo0 - nv)/dx; change in p" is - oo/dx; changes in p'", pi~, . . ,  are zero. The 
change in ~oZdx becomes 

N - �9 n v .  d x  + N '  - d x ,  
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where N'  and P'  denote the values of N and P at x', y', p'. Similarly the change 
in the integral to [Z] dx is 

( 1 6 )  ( [ N ] _ ~ x ] ) . n v . d x  + ( [ N ,  ] d i P ' ]  dx ) . oo9 . dx . 

The expression in (159 is by hypothesis equal to zero. The expression in (16) is 
equal to zero because to [Z] dx is unvaried in the variational process. Let us 
denote N d x -  dP by dA and [N] d x -  d[P-I by dB. Equating (15) and (16) to 
zero, we obtain 

(17) 
dA .  nv. dx + dA' .  oco. dx = 0 

dB . nv . dx + dB' . oo  . dx = 0 

Using dA' = dA + ddA and dB' = dB + ddB (17) may be written 

(18) 
d A .  nv + (dA + ddA).  oco = 0 

dB,  nv + (dB + ddB). 0o9 = 0 . 

Eliminating nv and o09 from (18) we obtain 

(19) 
ddA ddB 

dA dB ' 

which may be immediately integrated 

(20) dA = C dB , 

where C is an arbitrary constant. 
Noting that dA = N d x - d P  and dB = [ N - l d x - d [ P ] ,  we see that the 

equation for the problem is simply N - dP/dx + C([N] - d[P]/dx)  = 0. Hence 
(20) formulates what later became known as "EuLER'S rule": the extremalization 
of ~ o Z d x  subject to Jo [Z] dx --constant leads to the same equation as the free 
problem of extremalizing the integral to (Z + C [Z] )dx ,  where C is an undeter- 
mined coefficient or constant "multiplier", 

In Proposition 5 of Chapter 5 EULER extended this rule to the case treated 
in Chapter 3 where a variable of the form /7 = ~o[Z]dx appears in the 
integrand function Z = Z(x ,  y, p,/7). We must extremalize to Z dx subject to the 
condition that to [Z] dx is constant in the variational process. The relevant 
equation from Chapter 3 is (14). The equation that results in the present 
situation is 

(21) O = N + ( ~ + H - ~ L d x ) [ N ]  d ( P + ( ~ + H - ~ L d x ) E P ] )  
dx 

where c~ is an undertermined coefficient. EULER'S justification of the proposition, 
and the central place that this type of problem occupied in earlier variational 
research, will be discussed in detail in section 5 of this paper. 
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2.2 Two analytical features of EULER'S theory distinguished it from the work of 
earlier continental researchers: the variational problem is formulated in terms of 
a general integrand of the form Z(x, y, p); the derivation involves the differential 
of Z and is explicitly carried out in terms of the partial derivatives of this 
function. One characteristic that situated his approach generally within the 
established tradition was his systematic dual use of the d-symbol. This letter is 
used to denote the usual calculus-differential of a variable as well as to denote 
the change in a variable that results from the variational process. Nowhere did 
he distinguish these two quite different meanings or comment on the dual 
character of the symbol. In this respect his practice was solidly in line with 
earlier research in the subject. 

In surveying the Methodus inveniendi as a whole, Chapter 3 emerges as the 
centre of the treatise; the narrative reaches its highest and most concentrated 
level in the technical exposition of problems with auxiliary differential equa- 
tions. The remaining chapters are more heterogeneous in their choice of topics 
and the exposition as a whole - particularly in Chapters 5 and 6 - is less 
incisive. One should note especially the secondary position the historically 
prominent isoperimetric problem occupies in EULER'S organization of the 
subject. 

There are significant parts of EULER'S treatise that have not been discussed 
here. Thus the many examples which he presents provide full and detailed 
illustration of the theory. In addition, the material in Chapters 1 and 4 is of 
considerable interest for an historical understanding of the conceptual founda- 
tions of eighteenth-century analysis. 1 Nevertheless, the points that are essential 
for understanding the basic structure of his variational theory have been set 
forth, and we can proceed to an examination of the earlier history. 

3. The Papers of Jakob and Johann Bernoulli (1701, 1719) 

3.1 In 1697 JAKOB BERNOULLt published in the Acta Eruditorum his solution for 
the curve of quickest descent, the so-called brachistochrone. Here he introduced 
the technique of varying the curve at a single point in order to obtain a com- 
parison curve; the condition that the difference of the time along the actual and 
comparison curves is zero led for the case where the speed is proportional to 
the square root of the vertical distance to the differential equation of the 
cycloid. At the end of the memoir he raised the isoperimetric problem as 
a subject of further investigation, one that was offered as a mathematical 
challenge to readers of the journal. With this announcement the problem 
became the primary focus of research in variational mathematics. JAKOB appar- 
ently believed that examples like the brachistochrone in which there is no side 

1 A discussion of this material will be presented in the author's forthcoming study of 
the origins and development of LAGRANGE'S analysis. 
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condition present were relatively straightforward, and that the interesting and 
substantial mathematical question was posed by the isoperimetric problem. The 
personal tension between the brothers BERNOULLI, and the way in which the 
problem was regarded as a test of mathematical capability, also undoubtedly 
contributed to the emphasis placed on it. Certainly the first general theory was 
developed around its study, and all the significant contributions until at least 
the 1730s concerned its solution. 

JAKOB developed his analysis in an important memoir published in 1701 in 
the Acta Eruditorum. This memoir was preceded in the previous year by 
a related paper in the same journal. These researches originated in draft studies 
carried out in 1697, at the same time he was composing the paper on the 
brachistochrone, and are contained in his scientific notebook the Meditationes. 

It is well known that JOHANN BERNOULLI came to accept his brother's ideas 
following the latter's death in 1705. In 1719 he published an article in the 
memoirs of the Paris Academy of Sciences in which he basically rewrote JA~:OB'S 
paper, deriving in somewhat clearer form and with a stronger geometrical 
emphasis the general relations of the theory and illustrating it with several 
additional examples and problems. There is a theoretical and conceptual unity 
to JAKOB'S memoir of 1701 and JOHANN'S of 1719 which make it appropriate to 
consider them together. We will therefore concentrate on an exposition of 
JAKOB'S paper, mentioning instances where his brother clarified or significantly 
elaborated upon his work. 

3.2 JAKOB'S variational researches were part of his larger investigation by means 
of the calculus during the 1690s of geometrical and mechanical problems. The 
characteristic approach during the period involved selecting one of the variables 
of a problem and assuming that the differential of this variable is constant. On 
this basis the differentials of the other variables were calculated and the requi- 
site equation or formula was derived. Thus in the formula for the radius of 
curvature one obtained different expressions, depending on whether one took 
the abscissa, the ordinate or the path-length as the independent variable. 2 

JAKOB'S approach to the problem of isoperimeters followed a similar pattern. 
He analyzed the curve relative to an orthogonal coordinate system in which an 
arbitrary point was specified in terms of the abscissa y, the ordinate x and the 
length of path z (Figure 2). (Note that the convention adopted here is the 
reverse of EULER'S, where x is the abscissa and y the ordinate.) From the very 
beginning he developed his investigation around two cases: where the differen- 
tial dy is assumed to be constant; and where the differential dz is assumed 
constant. (In his preliminary study in the Meditationes he also considered the 
case where dx is constant. This possibility introduced nothing essentially new, 
and was not pursued in the published memoir of 1701. JOMANN on grounds of 
completeness included this case in his paper.) 

2 BOS ]-1974] provides an account of the early Leibnizian calculus with detailed 
consideration of the formula for the radius of curvature. 
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Figure 2. 
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As we remarked earlier, a distinctive feature of early variational mathematics 
was the dual use of the symbol d. It was employed to indicate the customary 
calculus-differential of a variable as well as to indicate the change in a variable 
that results from the given variational process. Thus for example when JAKOB 
made the abscissa y the independent variable this decision had implications for 
both the differential and variational processes. It meant that the usual differen- 
tial dy was constant, and that the calculations leading to the equation of the 
problem were to be carried out relative to this assumption. It also meant that 
the variational process was such that the abscissa .y was not varied in obtaining 
the comparison curve. Understood in this sense it meant that dy was equal to 
zero for all values of y. 

BERNOUI~LI'S approach to isoperimetric problems was based on obtaining 
a comparison arc to a given curve by varying two successive points on it. 
Suppose again that we are considering a variational process in which the 
abscissa y is independent, so that the ordinate x is the variable which is altered. 
It is clear that in order to preserve the condition of constant length it is 
necessary to disturb the curve at two successive ordinates. The isoperimetric 
condition yields one equation involving the two variational increments. The 
coefficient of each increment will be a differential expression in the variables y, x 
and z. The particular variational problem under consideration will furnish 
another such equation. Using these two equations one eliminates the two 
increments to obtain the final differential relation of the problem. The latter, 
which may be analyzed to yield information about the nature of the curve, is 
regarded as the solution of the problem. 

BERNOUI~LI'S investigation was divided into two parts, one for the case where 
y is taken as the independent variable and one for the case where z is the 
independent variable. Two different variational theories issue forth from these 
cases. 
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(i) dy is constant 
In Figure2 the hypothetical extremalizing curve is ABFGCD,  where 

y = AH,  x = HB and z = AB. B, F, G and C are successive points on the curve. 
In order to preserve the condition of constant length we vary the curve at two 
points, which JAKOB takes as F and G. The values of the ordinates K F  and LG 

are f and g respectively. These are altered by the amounts df and dg, giving 
rise to the desired comparison curve. 

At the beginning of the paper JAKOB established in his Theorem 4 a relation 
which expresses the fact that the variation of the path-length 

~ox/1 + (dx/dy)2dy is zero. In Problem 1 he applied the theorem to maximize 
or minimize the area under the curve A P R S Q V  (Figure 2). The ordinate 
F = H P  is some given function of the abscissa A H  = x. The derivative of this 
function with respect to x is denoted by h. The equation JAKOB obtained as 
solution is 

(22) hdzdddx - 3hddxddz - dhdzddx = 0 , 

where we have substituted " =  " for the symbol " ~ "  which JAKOB used to 
denote equality, a 

Detailed descriptions of JAKOB'S solution to Problem 1 are available in 
literature. 4 It is sufficient here to note that the basic idea is simply the one 
generalized by EULER in his derivation of "EuLER'S rule" in the opening part  of 

Chapter 5 of the Methodus inveniendi. The condition ~o x/1 + (dx/dy)~dY = con- 
stant leads to the equation 

dx + dg = 0 . 

The variational integral is ~ o Z d y  where Z = Z(x)  and dZ = Ndx .  Setting the 
variation of this integral equal to zero we obtain the equation 

(24) i df + ( n  + d n )  d g =  0 . 

Eliminating df and dg from (23) and (24) gives 

dN \dzJ  
(251 - 2 d x  

\dz/ 

Because dy is constant, we have by differentiating dz 2 = dy 2 + dx 2 the relation 
dxd2x = dzd2z. Use of the latter makes (25) after some reductions become 

3 BERNOULLI had used the symbol " =  " in the Meditationes, but in his published 
writings preferred to use DESCARTES'S "30 ". 

4 See [GoLDSTINE 1980, 50-55] and [FEIGENBAUM 1985, 53-56]. 
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(26) N d 3 x d z  - 3Nd2xd2z  - d N d 2 x d z  = 0 . 

Noting that c?Z/#x = N = h, we see that this is simply equation (22), JAKOB'S 
stated solution to Problem 1. 5 

In Problem 2 JAKOB proceeded to maximize or minimize the area under 
a curve whose ordinate is a function of the path-length z = AB.  Again the 

condition that So x/1 + (dx/dy) 2 dy = constant provided by means of Theorem 
4 one of the relations needed in the solution. The other was obtained by setting 
the variation of given integral equal to zero. Eliminating the variational in- 
crements from these equations JAKOB eventually arrived at the final equation 

(27) hdx (dz)2dddx = 2hdzZ ddx 2 + hdx 2 ddx 2 + dhdxdz2 ddx , 

where h is now the derivative of the integrand function with respect to z. 
The ultimate development of this part of JAKOB'S investigation would be 

achieved by EULER in his paper of 1741. It should be noted that it is not 
possible to interpret JAKOffS derivation of (27) in terms of the variational theory 
presented in Chapter 5 of the Methodus  inveniendi. We discuss this point in 
greater detail in section 5. 

(ii) dz is constant 
In JAKOffS second method the path-length is taken as the independent 

variable. In Figure 2 we now have B F  = F G  = GZ; in addition the points F and 
G are varied in such a way that the distances B F ,  F G  and G Z  remain unaltered. 
The situation is depicted in somewhat greater detail in the diagram (Figure 3) 
provided in JOHANN'S paper, in which Babce  is the actual curve, Bagie  the 
comparison curve, and where ab = bc = ce and ab = ag = 9i = ie. In Theorem 
5 JAKO~ obtained an analytical relation that expresses the condition that the 
length of the arc B C  (ae in JOHANN'S account) is unchanged in the variational 
process. He then applied this theorem in Problem 3, the hanging-chain problem. 
Given a flexible heavy line of definite length suspended between two points it is 
necessary to determine the shape it will assume in static equilibrium in order 
that its centre of gravity be at the lowest point possible. JOHANN in turn 
extended the method to give an alternative solution to his brother's Problem 2. 
He also applied it to solve the brachistochrone problem supplemented with an 
isoperimetric condition. There was therefore a definite cluster of examples in 
which the method was employed. 

This part of the BERNOULLIS' theory was taken up by neither TAYLOR nor the 
EULER; to my knowledge it did not become a common part of later variational 
research. It is therefore rather anomalous within the history of the subject. In 
order to understand the basic idea it will be useful to consider the method from 

5 In obtaining (26) from (25) we use the following relations, derivable in a straight- 
forward way by calculation: d(dx/dz)=(d2xdy2/dz3), and da(dx/dz)=(d3xdy2dz2 
-- 3(d2x)2 dy2 dx)/dz5" 
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a more formal mathematical viewpoint. Consider any problem in which the 

isoperimetric condition ~ox/1 + (dx/dy)2dy = constant is present. Because the 
total path-length is unchanged in the variational process, we have the freedom 

to interpret the problem in such a way that z = ~ , , / 1  + (dx/dy)2dy becomes the 
independent variable. Consider the example of the hanging chain. Let p = p(y) 
be the function that gives the weight of the chain from A to B (Figure 2). Let 

p ' =  dp/dy. It is necessary to maximize the integral ~oXp'(y)x /1  + (dx/dy)~dy 

subject to the side condition ~ox/1 + (dx/dy)ady = constant. We set z = ~ 

x/1 + (dx/dy)Zdy and make z the independent variable. Let q = q(z) be the 
weight of the chain from A to B. Let h = dq/dz. The variational problem now 
becomes one of maximizing ~0 xhdz( l  = total length of string), where y is now 
a dependent variable and x is given in terms of y and z by means of the 
differential equation dy 2 + dx 2 = dz 2. 

There are two ways of proceeding to the solution of this problem. We could 
do as JAKOB and JOHANN did and vary two points of the extremalizing curve in 
such a way that each element of the path-length is unaltered. We then obtain 
one equation of condition, which JAKOB presented in his Theorem 5. The 
condition that the variation of ~oxhdz  is zero leads to another equation. By 
eliminating the variations of the ordinates from these two equations we arrive 
at the final differential relation of the problem. JAKOB obtained the latter in the 
form 

(28) dqdyadddx + 3dqdxddx 2 = dy2ddqddx . 

Using the relation d2ydy = - d2xdx (obtained by differentiating 
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@ 2 +  d x 2 =  dz 2 with dz constant) he integrated (28) 

(29) ddx:dqdy 3 = +_ 1 : adz 2 , 

where a is a constant of integration. 6 
The solving procedure just outlined is in its general form similar to the 

earlier one in which the abscissa was taken as the independent variable. It is 
however necessary to note that in the present case there is a plausible alterna- 
tive approach to the solution. It would be possible to use a variational process 
in which only one value of the abscissa is altered, and in which each of the 
successive values of the ordinate is changed. In this case one would obtain 
a situation like the one depicted in Figure 4, in which the points c, e and so on 
are displaced along their respective ordinates. Although EULER never pursued 
the BERNOULLIS' second method, he did develop a formal general version of such 
a variational process in Chapter 3 of the Methodus inveniendi. Understood from 
the viewpoint of his theory the BBRNOUI~I~m' method amounts to a procedure for 
reducing a problem in which an isoperimetric condition is present to one in 
which there is no integral side condition but in which the variables of the 
problem are connected by means of a differential equation. In terms of the 
organization of the Methodus inveniendi it would involve the reduction of the 
isoperimetric problem, treated in Chapter 5, to the class of problems invest- 
igated in Chapter 3. 

In the "Eulerian" approach just outlined the variational integral for the 

hanging chain is of the form ~ xhdz where x = ~o x/1 - ( d y / d z ~  dz. The appro- 
priate diagram here is Figure 4, where the dependent variable y is varied only at 
the single point b and where the auxiliary variable x is changed at b at each 
successive point of the curve. The relevant equation of solution is given by (14), 
in which we replace x by z and /7 by x: 

(301 hdz = 0 .  

Integrating this equation yields 

i c dx 
(31)  hdz- dy ' 

z 

where c is a constant. We now combine (30) and (31), set h = dq/dz, and use the 
fact that dydZy + dxdZx = O, obtaining 

d2x c 
(32) dqdy 3 - dz 2 , 

6 JAKOB [1991, 232] had obtained this equation in the Meditationes for the case 
where q = z. It should be noted that in his notebook he considers the hanging chain in 
his first example; the result that would later be presented as Problem 1 is given in the 
fifth example. 
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a b =  bc  = c e =  e f =  f g =  . . . 

a b =  a g = g i  = i j = j k  = k l =  . . . 

l 
~ C  

an equat ion the same as BERNOULLI'S (29). 7 
It  must  be emphasized that  the preceding analysis is not  an acceptable 

interpretat ion of the BERNOULLIS' theory, which was based on a different varia- 
t ional process than the one involved in the derivation of equat ion (32). For  
example, in the Eulerian procedure, (32) is obtained directly and not  as a result 
of elimination of variations from two separate equations. There is no evidence 
that  the alternative analysis which we have proposed ever occurred as a possi- 
bility to the BERNOULLIS. Furthermore,  EULER did not  himself carry out  the 

7 It should perhaps be noted that one could also employ such an alternative 
variational process (suitably modified) in the BERNOULLI' first method in which dy 

is taken as constant. Consider the solution to JAKOB's Problem 1. We let z - - z ( y )  be 
the dependent variable, x becomes an axiliary variable given in the form 

x = SYox/(dz/dy) 2 -  l dy. We apply equation (14) from Chapter 3 of the Methodus 

inveniendi. In this equation x becomes y, y becomes z and / /becomes  x so that we have. 

where h is the derivative of the integrand function with respect to y. We can reexpress 
this equation in the form 

The result is identical with the solution that would result from an application of 
"EULER'S rule" to the example treated as an isoperimetric problem. 

There is however an important difference between this case and the one involved in 
the BERNOULLIS second method. In the latter the whole mode of formulating the 
question naturally suggests an alternative treatment along the principles of Chapter 3 of 
the Methodus inveniendi. 
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derivation of (32); our account indicates only how such a derivation would 
proceed using the theory of Chapter 3 of the Methodus inveniendi following the 
reduction suggested by the BERNOULLIS' second method, s The latter can perhaps 
best be seen as something of a curiosity within the history of mathematics. 

Despite the peripheral character of this part of the BERNOULL~S' work some 
of the issues concerning the nature of the isoperimetric variational process 
which have arisen in our discussion will come up aga in- - in  a different histori- 
cal and mathematical set t ing--when we consider EVLER'S papers of 1738 and 
1741. 

4. Taylor's Research (1715) 

4.1 Although JOHANN faithfully presented JAKOB'S solutions tO the three 
isoperimetric problems he also imparted his own particular direction to the 
subject. His approach was more geometric, referring at each stage of each 
derivation to the various relations that subsisted among the parts of the curve. 
In his attempt to clarify his brother's analysis he identified explicit general 
equations and properties which were intended to formulate the underlying 
principles of the subject. 

JOHANN'S paper was motivated in large path by the appearance in 1715 of 
the English mathematician BROOK TAYLOR'S Methodus incrementorum. In Pro- 
position 17 of that treatise TAYLOR had presented a solution to the isoperimetric 
problem that incorporated the results contained in Problems 1 and 2 of JAKOB'S 
1701 paper. TAYLOR did not mention JAKOB, although he would later acknowl- 
edge his paper as the general source of his own solution. JOHANN took exception 
publicly to what he saw as a failure to credit his brother's work. In his paper of 
1719 he wished to establish the precedence and mathematical significance of 
JAKOB'S ideas. 

FEIGENBAUM [1985, 53--63] has made a detailed comparative study of 
TAYLOR'S Proposition 17 and JAKOB'S Problems 1 and 2 in which she shows the 

I 

s It should be noted that quite apart from the question of the underlying variational 
process, we have in the BERNOULLIS' second method a systematic formal procedure for 
solving a certain class of isoperimetric problems. Applied to the hanging-chain problem, 
it leads in a straightforward way to the equation of solution. Nevertheless neither EULER 
nor (to my knowledge) modern researchers make use of this approach. EULER presented 
his solution of the hanging-chain problem in w 73 of Chapter 5 of the Methodus 
inveniendi, where it is treated as a conventional isoperimetric problem and solved in the 
usual way by an application of "EULER'S rule". 

It should be noted more generally that the reductive approach in question here 
would lead for EULER's theory to instances where the integrand in the expression for the 
auxiliary variable / /  is given by , f l  -p2 .  No such instances are listed in Section V of 
CARATHI~ODORY'S [1952, lvi-lxii] "Vollst/indiges Verzeichnis der Beispiele Eulers in der 
Variationsrechnung". 
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precise points of similarity and difference in the work of the two authors. 
A similar study of TAYLOR and JOHANN'S paper of 1719 would be of some 
interest. 9 Since our primary concern is in the later development of the subject 
we shall only describe TAYLOR'S solution in enough detail to allow a com- 
parison with EULER'S work. 

4.2 In Proposition 17 it is necessary to determine the curve A B C  of given 
length which maximizes or minimizes the area under a curve abc, where the 
ordinate E b  of abc is "composed in any given way" of the abscissa D E  = z, the 
ordinate E B  = x and the path-length A B  = v (Figure 5). The area is regarded as 
being "described" by the segment E b  of the line E B .  In its general outline 
TAYLOR'S solution was modelled after JA~ZOB BERNOULLfS. He allowed two 
successive ordinates to vary. The isoperimetric condition furnished one equa- 
tion, and the condition that the area under abc is an extremum furnished 
another equation. By eliminating the two variational increments from these 
equations he obtained the final relation of the problem expressed in terms of 
Newtonian fiuxions of the variables. 

TAYLOR introduced his variational process in his preliminary Lemma 4. In 
Figure 6 the points E and F of the extremalizing curve are assumed to partake 
of an upward and downward motion. TAYLOR set A E  = d, E F  = c, F G  = f and 
B E  = a, I F  = b, H G  = c. He used fluxional dot notation to denote changes that 
result from the given variational process. He developed his analysis in terms of 
the fluxional variations d and d. It is not difficult to see that ci is the ftuxional 
variation of the ordinate at E; d is minus the fluxional variation of the ordinate 
at F. Let y = 2/~ where 2 and i are the usual Newtonian fluxions of x and v. 
Using the isoperimetric condition he arrived at the equation 

(33) ~ - ~ + y 

In Proposition 17 he calculated the variation in the area under the curve 
abc (Figure 5). The part of this area under consideration is 

(34) ~P + ~P' + ~ P " ,  

where P, P '  and P"  denote the values of the ordinate corresponding to the 
points A, E and F (Figure 6) respectively of the extremalizing curve. (Note that 
the point A in Figure 6 corresponds to the point B in Figure 5.) Clearly the 
fluxional variation j6 is equal to zero. Hence the total variation in the area is 

9 In its larger scope and stronger geometric emphasis JOHANN'S approach was 
distinguished from TAYLOR'S. Nevertheless, he had seen the Englishman's solution when 
he wrote his paper, and the question arises as to its possible influence. Certainly 
JOHANN'S "first fundamental equation" is simply a statement in differential form of the 
result (equation (33) above) obtained by TAYLOR in Lemma 4. 
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(35) ~/6' + ~/6". 

Because the area is a maximum or a minimum, (35) is equal to zero: 

(36) /6, + 15, = 0 . 

TAYLOR proceeded to express the fluxional variation of P in terms of the 
variations 3, 2 and ~ and the partial derivatives Q, R and S of P with respect to 
z, x ad v: 

(37) /6=QYc + R2  + S~ . 

Using this formula he obtained the following values for the changes in P '  and 
r':  

/5, = Rd + Sa~ 
(38)  /6"  = - R '~  - S r  

By expressing the variations d and / in terms of ~i and ~ he now reduced (36) to 

(39) 

a 

R + S -  
d 

a R,+S,C 
f 
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Note that a/d = y and c/ f= y" = y + 2)~ + y;. Substituting these values into (39) 
and equating (39) and (33), he obtained 

p R + S y  
(40) 

p + ) ) -  R' + S ' (y  + 2p + y) ' 

He set R ' =  R + l~ and S '=  S + S. Entering these substitutions into (40) he 
arrived at the final equation of the extremalizing curve: 

(41) Rp - Ry + ~yp + 2S9~ - Syy = 0 .  

In corollaries TAYLOR considered the two cases in which v is absent and in 
which x is absent from the expression for P. He went on to suppose that the 
abscissa z is also absent, an assumption that leads for the cases in question 
directly to JAKOB BERNOULLI'S Problems 1 and 2. (Although he didn't mention 
BERNOULLI or refer to the equations he had obtained.) FEmENBAUM [1985, 
61--62] describes the results TAYLOR reached in these corollaries. We conclude 
our account by indicating how one would obtain JAKOffS equation (27) from 
TAYLOR'S (41). We are considering the case where P is a function of v alone so 
that R = 0. (41) becomes 

(42) SY~9 + 2S~9~9 - Syy =- 0 . 

In terms of the notation used by JAKOB BERNOULLI we have h = S and 
dx/dz = y and (42) becomes 

dhdx d ( d x )  ( d ( d x ' ] ~ ]  2 dx d 2 [ d x \  
(43) d y d z d y _  + 2 h \ d y \ d z J ]  h d z ~ y a ~ d z )  = 0  " 

Because dy is constant we have dzd2z = dxd2x. Using this relation and perform- 
ing the necessary differentiations in (43), one obtains JAKOB'S equation (27). l~ 

4,3 TAYLOR formulated his solution to Proposition 17 in the idiom of the 
fluxional calculus and employed kinematic imagery in introducing the requisite 
infinitesimal processes. Nevertheless, he showed a stronger sense than did 
JOHANN BERNOULLI for the underlying analytical character of JAKOB'S investiga- 
tion. JOHANN emphasized and developed further the geometric aspects of the 
subject; his derivation of the variational equations was carried out in detailed 
reference to the infinitesimal geometrical elements of a diagram. He introduced 
explanatory principles and commentary that were intended to clarify the nature 
of his brother's method. 

10 TAYLOR ended his discussion with Corollary 5. Although not directly relevant to 
the question of the development of the isoperimetric theory this result is of some interest 
from the viewpoint of the larger history of the calculus of variations. It formulates what 
later became known as the inverse problem: given an equation of the form (41), it is 
necessary to find a quantity P such that the problem of maximizing or minimizing the 
area under the curve with general ordinate P gives rise as solution to (41). 
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TAYLOR'S exposition by contrast was a model of concision. He proceeded 
directly to a single equation that combined the separate results contained in 
JAKOB'S first two problems. In his solution he introduced fundamental modifica- 
tions into the latter's theory. He shifted the overall mathematical approach 
away from the question of the specification of the progression of the variables 
(in which a given solution was understood to involve a suitable determination 
of the independent variable) to a study of the structure of the integrand 
function. The latter was explicitly treated as a function of several variables in 
his equation (37). By working with the fluxion of this function and carrying out 
the derivation in terms of its partial derivatives (given by (37)) he established 
new analytical criteria for the organization and investigation of variational 
problems. 

5. Euler's Papers (1738, 1741) 

5.1 EULLR'S earliest interest in variational mathematics originated in his study 
of the problem of the curve of quickest descent in a resisting medium, He 
proposed this problem in 1726 in what apparently was his very first publication 
in science. In 1740 he published a solution in which he corrected and extended 
earlier work carried out by JAKOB HERMANN. More generally he was during the 
1730s interested in the mechanical question of motion in a resisting medium, 
a topic that was treated extensively in his Mechanica anaIytica of 1736. 

Although these early researches involved questions of maxima and minima 
they stood apart from the main line of variational work that had begun with 
JAKOB BERNOULLI'S papers of 1697 and 1701. EULER was investigating a specific 
example using methods that were suited to the problem at hand but which were 
not otherwise generalizable. Sometime in the middle 1730s he became interested 
in the theory developed by the BERNOULLIS and TAYLOR. He contributed two 
papers on the subject to the St. Petersburg Academy of Science. Although they 
were published in 1738 and 174l the research presented in them seems to have 
been completed several years earlier. 11 

At the beginning of the paper of 1738 EULER proposed a classification of 
variational problems according to the number of side conditions that are 
present. If there are no such conditions we have the free or "absolute " problem, 
examples of which are the brachistochrone or the surface of revolution of 
minimum resistance. Next we have problems in which a side condition in the 
form of a definite integral is present. The traditional isoperimetric problem is 

i1 In a letter to MAUPERTUIS dated March 16, 1746 EULER stated that he had 
written the Methodus inveniendi (excluding the two appendices) while he was still in St. 
Petersburg. Since he left for Berlin on June 19, 1741 this would mean that the work was 
completed by the spring of 1741. The paper of 1741 must therefore have been completed 
sometime earlier. See CARATHI~ODORY's [1952, xi, w 3] discussion. 
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the standard here, and EULER mentioned in this connection the names of JAKOB 
and JOHANN BERNOULU, TAYLOR and HERMANN. 12 Further classes of problems 
will be obtained by adding a second, third, and so on, condition. 

EULER ran into difficulties in his investigation of the free variational problem 
in the case where the variables in the integrand are connected by means of 
a differential equation. The prototype for this problem occurs when the integ- 

rand function contains the path-length s = ~o~/1 + pZdx(p = dy/dx). An im- 
portant example concerns the motion of a particle in a resisting medium, 
a subject that was of particular interest to him. 

To understand the point at issue here consider the variational integral 
So Z(x,  y, p, s)dx, where it is assumed that no isoperimetric condition is present. 
The correct general equation of solution is the one derived in Chapter 3 of the 
Methodus inveniendi, given as equation (14) above: 

dP 
(14) 0 = N - dxx + [N](H - j L d x )  - dx - ~  

d [P] (H  f ~ 

In the case at hand 17 = s, IN] = 0, [P]  = dy/ds, H - j L d x  = j a L d x  and (14) 
becomes 

(44) 0 = N - ~ x + L ~ s  s -  L d x  d ~ s = 0 .  

In w of his paper of 1741 EULER obtained the solution 

(45) 
dP dy O=N- +La- 

in which the term involving the integral ~xLdX is missing. 
The error committed by EULER is a significant one and vitiates a substantial 

part of the theory that he developed in the two papers. It would arise whenever 
the integrand contains a variable H which is connected to the other variables of 
the problem by a relation of the form /7 = to [Z] dx. An explanation of its 
origin is readily available. Consider examples in which the integrand contains 
the path-length s but which are not subject to any integral side condition. The 
problems are treated by EULER by a process involving the variation of a single 
ordinate. Traditionally when such problems had been considered an isoperime- 
tric condition had always been assumed and the requisite process involved the 
variation of two ordinates. Now it turns out for problems in which the vari- 
ables are related by a differential equation that the calculation of the variation 
proceeds differently, depending on whether or not an isoperimetric condition is 
assumed. Consider the example presented in the preceding paragraph. When we 
calculate the variation according to the traditional procedure of varying the 

12 In introducing his analysis of the isoperimetric problem in w of his paper of 
1741 EULER referred once again to this group of researchers. 
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ordinates y' and y" by the amounts nv and o~o we obtain as the coefficient of nv 
the term 

(46) N'dx  - dP + L'q dx - L"dq dx , 

where q = dy/ds, L' and N'  are the values of L and N at x'  and L" is the value 
of L at x". Implicit in the calculation of (46) is the assumption that 

~ox/1 + p2 dx = constant. (The derivation of this result is presented in detail 
below in the analysis leading to equation (56). Note that a result equivalent to 
a special case of (46) (where P = 0) is contained in TAYLOR'S equation (39).) 
When we perform the same calculation in the case where there is no isoperime- 
tric condition we obtain as the coefficient of nv 

(47) N'dx  - dP + L 'qdx  - d q ( L ' d x  + L'"dx + U~dx + . . . )  

Here the variation of the single ordinate y' leads for the variable s to a change 
in its value at each of the successive values x', x " , . . .  ; thus there are changes in 
~o Zdx  over the entire interval fi'om x to a, not just in a neighbourhood of x. 

The crucial fact here is that in the isoperimetric problem because of the 

condition I0 x/1 + p2 dx = constant the variation of the value of ~o Q dx will be 
limited to a neighbourhood of x. All earlier work - most prominently JAKOB 
BERNOULLI'S Problem 2 and TAYLOR'S Proposition 17 - in which s was em- 
ployed as a variable concerned such a problem. In his derivation of (45) EUL~R 
was considering the free problem and was using a single-ordinate variational 
process. Nevertheless he continued to assume that (46) provides the correct 
expression for the variation. Neglecting the higher-order term and setting 
N ' =  N, L ' =  L, we have expression that appears in (45). 

It should be noted that for variational integrals of the form ~o Z(x,  y, p) dx, 
in which there are no auxiliary variables such as s in Z, the coefficient of nv is 
the same expression in both the one-ordinate and two-ordinate variational 
processes. There is (it would seem) no obvious reason why EUL~R should have 
been aware that this situation changes when s occurs in Z. It was then a major 
revelation when he realized that its presence leads to an integral term in the 
variational equation. Sometime between the completion of the main body of the 
second paper and its publication in 1741 he arrived at this understanding. An 
explanation and derivation of the correct equation is sketched by him in the 
last four paragraphs of the paper. He presented there in outline form the 
derivation that is developed in more detail in Chapter 3 of the Methodus 
inveniendi, reproduced by us above in section 2.1 in the analysis leading to 
equation (14). It should be noted that this material is highly incongruous in 
relation to the main content of his paper of 1741. CARATHI~ODORY'S [-1952, XXX] 
conjecture that these paragraphs were inserted in the paper at a later date just 
prior to its publication, at a time when work on the Methodus inveniendi was 
already well under way, seems extremely plausible. 

Recognition of the error that he had committed seems to have galvanized 
EULER and led to an intense burst of research activity in variational mathe- 
matics. In the Methodus inveniendi he rejected the traditional organization of the 
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subject, concentrating in Chapters 2 and 3 on the detailed development of the 
free problem and assigning the historically prominent isoperimetric problem to 
a secondary position at the end of the treatise. 

5.2 Although EULER'S papers of 1738 and 1741 contain an important  error, 
there is also much of interest in them; in several respects the analysis is 
substantially superior to the corresponding treatment in the Methodus  

inveniendi. In the case of the traditional isoperimetric problem he arrived at 
a consistent theory, one that represented the elegant development of the 
BERNOULUS' and TAYLOR'S theory. Indeed if one is interested in the complete 
mathematical explication of JAKOB'S Problems 1 and 2 it will be found in 
EULER'S paper of 1741 and not in his more famous Methodus  inveniendi. We 
turn now to an examination of this subject. 13 

EULER'S approach was based on the further development of the idea that 
underlies the isoperimetric rule ("EULER'S rule"), outlined subsequently by him 
in Chapter 5 of the Methodus  inveniendi and described by us above in sec- 
tion 2.1. (In what follows we adhere to the notation employed in the papers of 
1738 and 1741, which differs somewhat from that of the Methodus  inveniendi.) 

Assume we wish to extremalize to Qdx  subject to a side condition given in the 
form of a definite integral. Let oabcd (Figure 7) be the proposed extremalizing 
curve. We have OA = x, OB = x' ,  OC = x",  OD = x " ,  . . . .  Aa  = y, Bb = y',  

Cc = y ' ,  Dd --- y"' ,  . . . .  We vary the two successive ordinates y '  and y"  by the 
amounts bfi and - c 7 ,  obtaining in this way a comparison curve oaflTd. The 
calculation of the change in the integral ~o Qdx along the two curves leads to an 
equation of the form 

(48) P . b f i - ( P  + d P ) ' c  7 = 0  . 

13 In his influential historical essay CARATHI~ODORY 1-1952] fails in my view to give 
a just estimation of the theory contained in EULER'S papers of 1738 and 1741. In essence 
he sees the passage from the earlier papers to the treatise of 1744 as one from error to 
truth. In reference to the 1738 memoir he writes (p. xxix): "So erhielt er die auBerorden- 
tlich komplizierten Formeln, die in zwei Tabelten auf p, 28 und 32 verzeichnet sind. 
Schon die Umst/indlichkeit dieser Formeln h~itte ihn stutzig machen sollen." The paper 
of 1741 is dismissed in a similar summary fashion: "Auch die zweite Arbeit E56 yon 1736 
ist mit solchen unhaltbaren Resultaten gespickt." 

One point that CARATHt~ODORY makes (referring to the last part of the memoir of 
1738) is that EULER'S analysis is not easily adaptable to the case where there is more 
than one side condition present. However it is not clear why this should be regarded as 
a particular weakness of the theory that is set forth in the papers of 1738 and 1741. The 
fact is that when auxiliary variables (such as the path-length) occur in the variational 
integrand it becomes difficult to handle multiple side conditions. No progress on this 
question is made in Chapters 5 or 6 of the Methodus inveniendi. What is really needed is 
a general method of multipliers, and this was beyond the scope of the theory in its 
pre-Lagrangian phase. (See also notes 17 and 18.) 
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Similarly the change in the integral that appears in the side condition leads to 
~he equation 

(49) R .  b f i  - ( R  + d R ) . c 7  = 0 . 

By eliminating b f i  and c7 and solving we obtain P + C R  = 0 as the equation of 
the problem. 

In the two papers there is considerable internal development and refinement 
of the analysis. In the first EULER summarized his various results in the form of 
tables, material that was synthesized in the later work in a single formulation 
and derivation. It is of some interest to follow his efforts as a study in the 
formation and evolution of a mathematical theory. In the case where the 
integrand Q is of the form Q = Q ( x ,  y ,  p ) ( p  = d y / d x )  the resulting value for P is 
precisely the expression that appears in the canonical EELER equation for the 
free variational problem. One is able to observe in the two papers his gradual 
progress in identifying the standard general forms and equations of the subject. 

When the integrand Q also contains the path-length, the derivation of the 
expression for P is rather more complicated. The tables in the paper of 1738 
contain various partial results that he was able to obtain. In w167 of his 
paper of 1741 he successfully handled the subject in a single general derivation. 
For some reason (which we discuss below) he chose not to include this material 
in Chapter 5 of the M e t h o d u s  i n v e n i e n d i .  

Again we are dealing with the curve o a b c d  depicted in Figure 7, where 
O A  = x ,  A a  = y and o a  = s. We have O B  = x ' ,  O C  = x " ,  O D  = x ' " ,  . . . .  

A a  = y ,  B b  = y ' ,  C c  = y " ,  D d  = y ' " ,  . . . , o b  = s ' ,  o c  = s " ,  o d  = s ' " ,  . . . .  We are 
given the integral ~ o Q d x  where (2 is composed of x , y , p  = d y / d x  and 
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S =  5 o ~ l  + p2dx and where d Q =  N d x  + M d y  + V d p  + Lds .  Let q=dy/ds.  
Increase the ordinates Bb and Cc by the amounts bfl and - c ?  to obtain the 
comparison curve oafl~d. The resulting variation of the values of the variables 
are presented by EULER in the table 

(50) 

ds = 0 

dy = 0 

dx = 0 

b~ 
de = 

ds' = q . bfi 

dy'  = bfi 

dx '  = 0 

bfl - c~ 
d p ' -  

dx  

ds" = - dq .  bfi - q ' .  c? 

dy" = - c'y 

dx" = 0  

dp" c? 
dx  

It is implicitly assumed that the changes dy'", dy iv, . . . .  dp'", d p i ~ , . . . ,  ds'", ds ~, 

. . .  are zero. The only entries in this table that require some explanation are 
those for s. We have 

x 

s = ~ ` / 1  + pZdx  
0 

(51) s ' =  i ` / 1  + 02dx + ` / 1  + p a d x  
0 

, " = i , / 1  + dx + , / 1 +  p2 ax + , /  l + 
0 

Noting that q = d y / d s = p / , / l + p 2 ,  we see that the change in s = d s = 0 ;  
change in s ' = d s ' = q . b f i ;  change in s " = d s " = q . b f i + q ' . ( - c  7 - b f i ) =  

- (q' - q ) .  bfl - q ' .  c7 = - dq.  bfl - q ' .  cy. Summarizing, 

ds = 0 

ds' = q .  bfl 
(52) 

ds" = - dq .b f i  - q ' . c 7  

ds'" = dfl v = . . . .  0 

We turn now to the calculation of the change in the integral 5o Qdx induced 
by the variation. We have 

~ i (53) ~ Q d x =  Q d x + Q d x + Q ' d x +  + Q " d x +  . . . .  
0 0 

The variational process results only in changes to the quantity 

(54) 

We have 

(55) 

(2 dx  + Q'dx  + Q" dx . 

dQ dx = V .  b fl 

dQ 'dx = L 'q  d x .  bfi + M ' d x .  bfi - V ' .  bfl - V ' .  c7 

dQ"dx  = - L " d x d q . b f i  - L " q ' d x . c 7  - M " d x . c ?  + V" .c7 
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Summing these expressions and equating the result to zero, we obtain 

(56) ( -  d V +  L ' q d x  + M ' d x  - L ' d x d q ) b f l  = ( -  dV'  + L ' q ' d x  + M"dx )c7  . 

Following the standard procedure we set A = (-- d V  + L' q dx + M ' d x  
- L ' d x d q ) ,  B = ( -  dV'  + L ' q ' d x  + M ' d x )  and calculate dP/P  = (B - A)/A: 

dP 
m (57) p 

- d d V  + L'dxdq + dxd(L'q + M' )  

- d V  + dx(L'q + M ' )  

This equation may be immediately integrated to yield 

(58) 
L d x  dq 

P = e~-av+ax(Lq+U)(-- d V  + d x ( L q  + M)) . 

The expression for P in (58) is the general one that obtains for an arbitrary 
variational integrand of the form Q(x, y, p, s). Equation (58) replaces several of 
the many special results EULER had derived in his paper of 1738. He proceeded 
in w 32 to extend (58) to the case where the integrand Q contains in 
addition to x, y, p and s the higher-order derivative r defined by dr = pdx. 14 It 
was clear how the result could be further extended to include arbitrary high- 
er-order derivatives. 

5.3 It should be noted that (58) and the process by which it is derived must be 
interpreted differently, depending on whether or not the variable s is present in 
(2. If s is not present then L = 0 and P reduces to the standard form 
( - d V  + Mdx) .  Here it is not necessary that the distances oabcd and oaflTd be 
equal. The. expression for P may be used in conjunction with any other given 
integral side condition of the form ~o W(x, y, p)dx -- constant. EULER provided 
just such an example to illustrate (58). He considered curves A M  (Figure 8) for 
which the area A Q M  possesses some given common value. Among this class it 
is necessary to find the one that experiences the least resistance as it moves 
through a fluid in the direction of the axis AB. Let AQ = y  and Q M  = x. 
Analytically the problem becomes one of minimizing the integral [.odx3/ds 2 
(the resistance) subject to the side condition Y o x p d x  = constant. EULER 
calculated the value of P for each of these integrals, multiplied 
one of these values by a constant and added it to the other, and equated 
the resulting expression to zero in order to obtain the equation of the 
proNem. 

When s is present in Q (L + 0) then the derivation presupposes by contrast 

that the side condition ~o x / I  + p2 dx = constant holds for the variational pro- 
cess. Assumed in EULER'S analysis in this case is the fact that the changes in 

14 The value for P that EULER obtained in this case is 
L, dx  2 dq 

P = e Y a a w - a v ~ q ~ 5  [ d d W -  dVdx + dx2(Lq + M)] . 
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s'", s ~v, s~ , . . ,  are zero. In the case of the 

So x/1 + pZdx = constant the value for R in (49) is 
Hence the equation of the problem is 

integral condition 

- dq where q = dy/ds. 

(59) 
L dx dq 

e~-av+a~(cq+M)(- dV + dx(Lq + M)) = c dq , 

where c is a constant. 

5.4 Equation (59) is a generalization of the result contained in TAYLOR'S equa- 
tion (41) and hence also of JAKOB BERNOUL~I'S Problems 1 and 2. It is worth 
emphasizing that if one wishes to interpret the early theory in terms of later 
variational mathematics it is EULER'S paper of 1741 and not the Methodus 
inveniendi that provides the appropriate work of reference. The parallels be- 
tween EULER'S analysis leading to (58) and TAYLOR'S derivation of (41) are 
especially striking. Thus equations (54), (55) and (56) correspond respectively to 
TAYLOR'S (34), (38) and (39). The calculations that are involved in obtaining (38) 
are in essence the same as those in obtaining (55). 

It would however be incorrect to regard EULER'S analysis as simply a recast- 
ing or extension of TAYLOR'S result. There is an important conceptual difference. 
In EULER'S theory one is directed toward calculating P, the expression in 
closed form for the quantity that appears as the coefficient of the increment b/~ 
in the variational process. The quantity P becomes a central conceptual element 
of the theory. In TAYLOR'S derivation by contrast the coefficients of the varia- 
tional increments had no special status and were simply analytical expressions 
that appeared in the elimination by means of which the final equation was 
obtained. 

It is because of this conceptual difference that it is not possible to compare 
directly equation (59) and TAYLOR'S (41). Nevertheless it is straightforward to 
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derive the latter from the former. We are here dealing with the special case 
where Q is a function of y, x and s. 15 (58) becomes 

Ldq  

(60) p = e J L ~  (Lq + M ) d x  , 

and the variational equation is 

c Ldq  

(61) eJL~T-~ff(Lq + M ) d x  = c dq . 

Dividing (61) by Lq + M,  taking logarithms of each side of the resulting 
equation and differentiating we obtain, after some reductions, 

d M  dq d2q dL dq 2 L ( d q ~ 2  L q d 2 q  
(62) 

dx dx M ~Sx2 + -~x q dx  + \ dx ] ~ x  2 = 0 "  

Noting that y = q, R = M and S = L, we see that this is precisely TAYLOR'S 
equation (41) 

(41) I ~  - R.9 + Sy9 + 2S9p - Syy  = 0 . 

5.5 EULER'S theory was of course considerably more advanced than TAYLOR'S, 
including (among other things) cases in which the variational integrand contains 
the derivatives of y with respect to x. In w 27 he considered a body moving from 
the points A to M (Figure 9) in a resisting medium under the action of an 
arbitrary force. It is assumed that the body possesses a given terminal velocity 
at M, and it is necessary to find the curve of quickest descent. (Earlier in the 
paper in w 16-w 18 he had considered motion in a resisting medium in which no 
side condition was assumed; the equation he obtained was derived from (45) 
and was therefore incorrect.) In the course of presenting a partial solution he 
calculated P for two integrals, one giving the terminal velocity and the other 
the time of descent. To illustrate his procedure we present his calculation of 
P for the time of descent. We have (Figure 9) A P  = x, P M  = y, A M  = s. - P 
and Q are the horizontal and vertical components respectively of the force. The 
medium exerts a resistance R that acts tangentially; R is taken to be a function 
of x, y and s. The integral in question is 

(63) f : d x x / ( l  + pp ) 

where the quantity v designates one half of the square of the speed, v is 

15 EULER had explicitly considered this case at the end of w 22 of his i738 paper. 
It should be noted that although TAYLOR employed fluxions there is one significant 

similarity of notation. TAYLOR used superscripts or primes to denote the values of 
a quantity at successive values of the independent variable, a notation that was also 
followed by EULER. 
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a function of x, y and s and is given by the equation dv  = Q d x  - P d y  - R d s J  6 

The values of L, M and V corresponding to the integrand in (63) are 

(64) L - R x f l f  + pp  M - P x / 1  + pp  V - P 

2vx/v ' 2 v ~  ' x/v(1 + p p )  

We have as well 

(65) d V  - 
dp  p dv  

(1 + p p ) ~  2 v ~ - p p )  

16 EULER did not present the derivation of the relation dv = Q d x  - P d y  - R d s .  It 
may be obtained as follows. Equating forces and accelerations we have the equations 

d2x dx  

dt 2 - Q - dss R 

a~yy= _ p a y  e 
dt 2 ds " 

Multiplying these equations by dx / d t  and dy /d t  respectively and summing, we obtain the 
desired relation. 
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Hence the expression for P given by (58) is 17 
R dx dp 

~(Pdx+Qdy),/l+pp- 2Vap ( 2vdp ~ 
(66) P = e ,/,1 . . . .  (Pdx  + Qdy)x/1 + pp - ~ /  . 

In  w 28 EULER proceeded to obtain P for a very extensive class of variational 
integrals. His analysis is of  some interest as an indication of the range and 
sophistication of  his theory. The variational integral is now ~oQ(~oRdx)dx,  
where d Q = L d s + M d y + N d x + v d p  and d R = E d s + F d y + G d x + l d p .  
The part  of this integral that  will be altered is 

(67) Q dx ~ R dx + Q'dx ~ R'dx + Q" dx ~ R"  dx . 

The changes in the terms occurring in (67) are 

d. Q d x ~ R d x  = V . b f i ~ R d x  

d .Q'dx~R'dx  = L 'qdx .b f i~R 'dx  + M ' d x b f i ~ R ' d x  - V'(bfi + c~/) 

�9 ~ R'dx + Q 'I dx .  bfl 

(68) d. Q " d x f R " d x  = - L"dxdq .  bf i~R"dx - L ' q ' d x . c T ~ R ' d x  

- M " d x . c T ~ R " d x  + V" .co/~R"dx + Q"Idx .b f i  

+ Q"(E'q + F' )dx  2. bfi - Q"I'dx(dfl + c~) . 

Summing these expressions and equating them to zero, we obtain 

(69) b f i ( -  d. V ~ R d x  + (L'q + M ' ) d x ~ R ' d x  - L"dxdq~R"dx  + Q"Idx  

Hence 

+ Q"(Eq + F)dx 2 - d .  Q' Idx)  

= c 7 ( -  d. V '~R'dx  + (L 'q '  + M " ) d x ~ R ' d x  + Q"I 'dx)  

~7 The calculation that EULER presents of P is correct, as is his corresponding 
calculation of this quantity for the integral that expresses the terminal speed. He suggests 
at the end of the solution that the equation of the problem will be obtained by taking 
a multiple of one of these expressions, adding it to the other and setting the result to 
zero. There is however a serious difficulty with this argument. The theory employed in 

the calculation of P presupposes the isoperimetric condition ~o x/1 + p2 dx = constant. 
Hence in finding the curve of quickest descent (as this problem is formulated here) it is 
necessary to take into account two side conditions: one asserting that the terminal speed 
is given; the other that the path-length is constant. In order to handle this sort of 
problem it would be necessary to extend the theory to the case where there is more than 
one side condition present. He had considered multiple side conditions in w 38-{} 39 of 
his paper of 1738 and had made some progress in obtaining special results. Nevertheless 
he did not adapt the analysis to the case at hand, the curve of quickest descent through 
a resisting medium. 
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dP 
(70) 

P 

-dd .  vJ R dx + dx d(L' q + M')~R'dx - Q"(Eq + F)dx 2 + L"dx dqjR"dx + Q"dI dx + d. Q'I dx 
-- d. VfRdx + (L'q + M')dxSR'dx + Q"Iax - L"dxdq[R"dx -- d.Q'Idx 

Integrating (70), we obtain the desired formula for P: 

(71) 

Q dI dx + L dx d q f R  dx - Q (Eq + F)  dx 2 

p = e~-d.V.IRd~+(Lq+M)d~gdx+Ordx (-- d" V ~ n d x  + (Lq + M ) d x ~ R d x  + Qldx)  . 

Equation (71) encapsulates in a single general formula the numerous special 
results that EULER had listed in tabular form in w of his paper of 1738. ~s 

5.6 To conclude our discussion of the paper of 1741 we consider another more 
direct way in which (59) may be generalized. Although EULER did not present 
the result which follows it is a very natural and straightforward extension of his 
theory. We simply reformulate his derivation by replacing s in Q by /7, where 
I I = ~ o ~ [ Q ] d x  and [Q] = [Q](x, y, p). Q is now of the form Q(x , y ,p ,  II). We 
have dQ = N dx + M dy + Vdp + L d l I  and d[Q] = [ N ] d x  
+ [ m ]  dy + [ V] dp + [-L] dII. We assume that ~o [Q] dx = constant holds in the 

variational process. The values for the variation of 17 are 

dH = 0 

d/7' -- [ V ] .  bfi 
(72) 

dH"  -= [V]  .bfl + [ M ' ] d x . b f i  + [ V ' ]  . ( -  c7 - bfi) 

= ( [ M ' ]  dx - d [ V ] ) ,  bfi - [ V ' ] .  c7 

a 
Because of the condition ~o [Q]dx -- constant it follows that dFl'" = d l l i ~ , . . .  
are zero. 

We next calculate the change in ~oQdx.  Because d y ' " = d y  ~ 
. . . . .  dp"  = dp i~ - - . . .  = dl l ' "  = d/7 i~ = . . . .  0 it follows that this change 

will involve only the terms Q dx, Q'dx and Q"dx. We have 

dQ dx = V.  b fl 

(73) d Q ' d x  = L ' [ V ] d x . b f l  + M ' d x . b f i -  V ' . b f l -  V ' . c 7  

18 The general difficulty discussed in the previous note arises again in connection 

with EULER'S derivation of (71). He is assuming that ~o x/1 + pa dx and ~o R dx are both 
held constant in the variational process. However, in order to make this assumption it 
would be necessary to use a process in which three ordinates are varied. One way of 
salvaging the analysis would be to suppose that Q and R do not contain s. By 
calculating the value of P for ~a o R dx and combining it with (71) one would arrive at the 
final differential equation of the problem. The solution thus obtained would embody 
a result of some interest and generality. 
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dQ"dx  = - L"dx  d [ V ] .  bfl + L " d x Z [ M ' ]  �9 bfl - L " [ V ' ]  

i! q V t !  d x . c T -  M d x . c y  + .c  7 

Summing these expressions and equating the result to zero, we obtain the 
equat ion 

(74) ( -  d V  + L ' [ V ] d x  + M ' d x  - L " d x d [ V ]  + L " d x Z [ M ' ] ) . b f l  

= ( -  dV '  + L " [ V ' ] d x  + M " d x ) . c  7 

We set A = - d V +  L ' [ V ] d x  + M ' d x -  L " d x d [ V ]  + L ' d x 2 [ M ' ] ,  B = - dV '  

+ L " [ V ' ] d x  + M " d x  and calculate dP/P = (B - A)/A; (74) becomes 

dP 
(75) 

P 

- d d V +  L ' d x d [ V ]  - L ' [ M ] d x  2 + d x d ( L ' [ V ]  + M ' )  

- d V +  d x ( L ' [ V ]  + M ' )  

Let us define the variable q by means of the relation 

(76) dq/dx = - [M]  + d [ V ] / d x  . 

Integrat ing (75), we see that the expression for P given in (58) now assumes the 
more  general form 

L dx dq 

(77) p = e~-dv +a~(L~V~+~) (- -  d V  + d x ( L [  V] + M ) )  . 

Equat ion  (59) in turn becomes 

(78) 
L dx dq 

eS -aV+dx(Ltvl+~t)(_ d V  + d x ( L [ V ]  + M ) )  = cdq . 

5~7 We turn now to the subject of the isoperimetric theory as it was developed 
in the Methodus  inveniendi. None  of equations (58) to (78) or any of  the 
accompanying  analysis appear  in Chapter  5 of that  treatise. 19 EULER began his 
investigation of the isoperimetric problem there with a derivation of "EULER'S 
rule" for the case where there are no auxiliary variables such as /7 in the 
variational integrand. The case where such variables do appear  is covered in 

19 There is one significant piece of circumstantial evidence that EULER had explicitly 
considered something like the derivation of (78) when he wrote the Methodus inveniendi. 
In presenting the isoperimetric rule in Chapter 5 he used the notation dA for N d x  - dP, 
where Z is the variational integrand and N = c~z/@, P = Oz/Op (p = dy/dx). On the face 
of it this notation seems somewhat odd, since there is no particular technical or 
conceptual significance for the quantity A (the integral of Ndx --dP) within the theory 
that is developed in Chapter 5. However, as equation (76) indicates, such a definition 
would emerge naturally in the course of generalizing equation (58). The notation in 
Chapter 5 may therefore be the vestige of a more complete isoperimetric theory that he 
finally decided to omit from the treatise. 



134 C.G. FRASER 

Proposition 5, which in the present notation is formulated as follows. Given 
Q = Q ( x , y , p , / 7 )  with /7=~o[Q]dx we must maximize or minimize ~oQdx 
subject to the condition that to[Q]  dx = constant in the variational process, z~ 
We have as before d Q = N d x + M d y +  V d p + L d / 7  and d [ Q ] = [ N ] d x  
+ [M]dy + [V-]dp + [L]dH. The equation that is presented as solution is 

(79) O = M + (a + H -  ~Ldx)[M] d(V + (a + H -- SLdx)[V]) 
dx 

where e is a constant or "multiplier". His justification of (79) was simply to 
extend "EuLER'S rule" by fiat to the class of problems that he had investigated 
in Chapter 3. Thus the equation for the free variational problem of extremaliz- 
ing ~oQdx is 

d(V + (H - ~ Ldx)[V])  
(80) 0 = M + (H - ~Ldx)[M] - dx 

The variational equation for the condition ~o[Q]dx = constant is 

d[V] 
(81) 0 = [M] dx 

Using "EULER'S rule", we combine these two results and obtain (79) as the 
resulting equation. 

Although the equation which EULZR arrived at is the correct one his demon- 
stration ("solutio") is spurious. The flaw in the preceding attractively simple 
argument is that the derivation of (80), presented in Chapter 3 of the Methodus 
inveniendi, is based on a one-ordinate variational process. The application of 
"EULER'S rule" by contrast presupposes an underlying two-ordinate variational 
process. In the two-ordinate process the terms which appear as coefficients of 
the increments no longer take the form of (80). EULER'S reasoning is both 
logically and mathematically unsatisfactory. 

What is needed to establish Proposition 5 is a theory to handle variational 
integrals of the form ~oQ(x,y,p,/7)dx with /7 = ~o[Q~dx in which the side 
condition ~o[Q]dx = constant is present. Although he had developed precisely 
such a theory in his paper of 1741 he did not include it in the treatise of 1744. 
Let us examine how such a derivation would proceed. We begin with (78): 

L dx dq 
(78) eS-aV+dx~LW~+M) (-- dV + dx(L[V]  + M)) = cdq . 

We integrate (78) and obtain 
- L d q  

(82) i Ldx  + c~ = ce f -~+M+Ltvl , 
x 

20 We present EULER's Proposition for the case where only the first-order derivative 
p appears in the integrand function Z. 
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where c~ is a constant  of integration. Combin ing  (78) and (82) we obtain  

(83) M - dx  + L [ V ]  = L d x  + o~ d-~ 

Recall f rom (76) that  dq/dx = - [ M ]  + d[V] /dx .  Hence (83) becomes 

(84) M - d~x + L [ V ]  + L d x  + o~ [M]  dx = 0 , 

which m a y  be writ ten in the form 

(85) M +  L d x + c ~  [ M ] - d x x  + L d x + c ~  [V]  = 0  . 

(85) and (79) are identical, and thus the equat ion EULER obta ined in P ropo-  
sition 5. 21 

The preceding derivat ion is a fairly natura l  and direct appl icat ion of the 
theory that  EuI~Zl~ had himself developed in his paper  of 1741. His failure to 
include it in Chap te r  5 consti tutes a substantial  weakness in the treatise and 
requires some comment .  Fol lowing the recognit ion of the error  that  he had 
commi t ted  in deriving the equat ions for the free var ia t ional  p rob lem his re- 
search seems to have crystallized along lines that  were significantly different 
f rom those of established research. In the course of this shift he seems to have 
mental ly  rejected the earlier isoperimetric theory that  involved integrands con- 
taining the pathlength as a variable. It  is possible that  he regarded the whole 
theory as mis taken or flawed because of the circumstances associated with the 
par t icular  error  that  he had commit ted.  

It  should be noted that  equat ion (79) is correct; there is as well a certain 
at tract ive symmet ry  in the appearance  in it of the multiplicative term 
H -  SL dx. There is at times in EuI, E~'s variat ional  writings (and perhaps  more  
generally in his work  in analysis 22) a tendency to derive equat ions and to 

21 This derivation clearly brings to light the spurious character of EULER's demon- 
stration of Proposition 5. There arc two constants involved in the derivation, c and c~. 
c is the constant that arises in "EULER's rule"; ~ is a constant of integration that appears 
in the course of the derivation. If L = 0, that is, if the integrand does not contain/7, then 
c = ~. If however L 4= 0 then the two constants are distinct and have distinct meanings 
within the derivation. It is clear therefore that when L :r 0 ~ can not play the role of the 
constant in "EULERs rule". 

a2 This tendency is apparent in EULER'S work on the summability of infinite series, 
discussed in [BARBEaU & LEAH, 1976]. It is also present in his research on partial 
differential equations of the 1730s and 1740s. DEMIDOV (1982, 329) characterises EULER'S 
contributions to the latter subject in the following way (p. 329): "A formal-analytical 
approach combined with the use of clever tricks for reducing differential equations to 
integrable forms; lack of any geometric interpretation either of equations or their 
solutions." 
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consider their application to individual examples, with only a limited considera- 
tion of the character of the underlying theory. 

The overall result of this situation is that the Methodus inveniendi possesses 
a somewhat ahistorical character in relation to earlier research in the subject. 
The historical meaning of the early theory was determined in the final analysis 
by its ultimate development and articulation, and this took place not in the 
1744 treatise but in EULER'S earlier papers. 

6. Overview 

The early development of the calculus of variations is a story with a some- 
what complicated structure: different sources and authors, different methods, as 
well as different objects (namely variational problems differing as to the nature 
of the integrand and auxiliary conditions). Table 1 provides a synoptic overview 
of the work of the BERNOULLIS, TAYLOR and EULER. As we have seen, various 
notations were employed by the early authors; for purposes of comparison one 
standard notation has been used in Table 1. 

Table 1. Synoptic overview of the early history. Note: The early researchers used several 
different notational systems. Throughout this table, x denotes the abscissa, y the ordinate 

and s the path-length, f is the integrand function 

x is the independent variable 

Integrand function Comments 

JAKOB BERNOULLI 
(1701) 

TAYLOR (1715) 

JOHANN BERNOULLI 
(1719) 

General formulation of theory, 
but integrand functions as 
such do not appear. 

Problem 1, f= f (y )  
Problem 2, f=f(s) 

Fluxional notation and 
techniques employed. 
Appearance of general 
integrand function. 

Proposition 17, f =f(x, y, s) 

General integrand functions 
do not explicitly appear. 

Problem 1, f= f ( y )  
Problem 2, f=f(s) 

Isoperimetric side condition is 
formulated in terms of 
geometrical diagram. 
Associated equation of 
condition is derived 
analytically. 

Isoperimetric side condition is 
formulated analytically. The 
associated equation of 
condition is derived 
analytically. 

Isoperimetric side condition is 
formulated in terms of 
geometrical diagram. 
Derivaion of associated 
equation of condition is 
carried out in reference to the 
elements of this diagram. 
In Problem 5 an isochronic 
integral side condition is 
introduced. 
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Table 1. (Contd.) 

x is the independent variable 

Integrand function Comments 

EULER (1738) 

EULER (1741) 

EULER (1744) 

JAKOB BERNOULLI 
(1_701) 

f = f ( x ,  y) 

f =  g(x, y) x/1 + y,2 

f = f (x, y, s) 
f =  g(x, y, s)x/1 + y,2 

f = f ( x ,  y, y', y") 
f = f ( x ,  y, y', y", s) 

f = f (x, y, y', . . . .  y("~) 
f = f (x ,  y, y', . . . .  y("), 17), 

dH/dx = 9(x, y, y', . . . .  
y("), H). 

General integrand functions 
do not explicitly appear. 

Problem 3, f =  yg(s) 

For the free problem: correct 
variational equation for 
f = 9(x, y) and 
f =  9(x, y)x/1 + y,2: incorrect 
equation for f =  9(x, y, s) and 
f = g ( x , y , s ) , / 1  + y,2. 

For the isoperimetrie problem: 
correct variational equation 
for all cases. 

For the free problem: correct 
variational equation for 
f = f (x ,  y, y', y"); incorrect 
equation for 
f = f ( x ,  y, y, y", s). 
For the isoperimetric problem: 
correct variational equation 
for all cases. 

Correct variational equations 
derived for all cases. 
In Chapter 2 for the free 
problem with integrand 
f = f ( x ,  y, y ' , . . . ,  y("~). 

In Chapter 3 for the free 
problem with integrand 
f = f ( x ,  y, y', . . . .  y(")), II), 
where d17/dx = 9(x, y, y', . . . .  
y("), 17). 

In Chapter 5 equations that 
correspond to those of 
Chapters 2 and 3 are derived 
in the ease where integral side 
conditions are present. 

In obtaining comparison 
curve the path-length to each 
point is unaltered. A two- 
point variational process is 
employed in which both the 
ordinate and abscissa of each 
of the two varied points are 
altered. 

(Continued) 
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Table 1. (Contd.) 

x is the independent variable 

Integrand function Comments 

JOHANN BERNOULLI 
(1719) 

General integrand functions 
do not explicitly appear. 

Problem 2 (alternate solution), 

f = f(s) x/1 -- (dy/ds) 2. 

Problem 3 (hanging chain), 
f =  yg(s) 

Problem 4 (brachistochrone 
with isoperimetric condition). 
f =  k / ~  (x/1 -- (dy/ds) 2) 

In obtaining comparison 
curve the path-length to each 
point is unatered. A two-point 
variational process is 
employed in which both the 
ordinate and abscissa of each 
of the two varied points are 
altered. 

7. Conclusion 

7.1 One conclusion that emerges fairly directly from our  study concerns the 
relative importance of JOHANN BERNOULLI and TAYLOR in the background  to 
EULER'S research. Established his tor iography places emphasis on the role of 
BERNOULLI'S paper of 1719 in the development of the subject. I t  was for reasons 
of its alleged importance that WOODHOUSE [18101 devoted an entire chapter  to 
it. More  recently, FELLMANN & FLECKENSTEIN [1970], GOLDSTINE [1980] and 
FEI~ENBAUM [1985] have affirmed the value of JOHANN'S research. 23 

It is clear however  that the links connecting EULER'S research and TAYLOR'S 
were much stronger. 24 The essential analytical innovations that  distinguished 

23 FELLMANN 8,:: FLECKENSTEIN [1970, 53] write: "Soon after publication of Jakob's 
Analysis magni probIematis isoperimetrici (1701), Johann must have felt that his brother's 
judgement was valid, although he never said so. Only after having been stimulated by 
Taylor's Methodus incrementorum (1715) did he produce a precise and formally elegant 
solution of the isoperimetric problem along the lines of Jakob's ideas (M~moires de 
l'Acad6mie des sciences, 1718). The concepts set forth in this paper contain the nucleus 
of modern methods of the calculus of variations." GOLDSTINE [1701, 51] claims: 
"Jakob's 1701 paper is somewhat pedantic and tedious, but he was perhaps trying to lay 
the groundwork for the subject of the calculus of variations in a systematic way. In any 
case Johann's paper in 1718 is a more readable account of Jakob's work." FEIGENBAUM 
[1985, 49] suggests that the solution to the isoperimetric problem presented by JOHANN 
is one "considered remarkable, both then and now, for its simplicity and elegance." 

24 WOODHOUSE [1810, 29 30] calls attention to TAYLOR'S equation (37) and briefly 
remarks on EULER'S adoption of this mode of expression, FEIGENBAUM [1985, 63] also 
mentions (37) and suggests that it had some importance for the later development of the 
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EULER'S approach from the BERNOULLIS' were provided by TAYLOR. The con- 
siderable part of the BERNOULLIS' theory that was neglected by TAYLOR also 
failed to be taken up by EULER. At the level of specific technical detail there 
were substantial similarities in their derivation of the isoperimetric variational 
equations. 

That an English mathematician, a member of a distinct and competing 
mathematical tradition, should have this importance for what is primarily 
a continental European development may seem surprising. It is however im- 
portant to appreciate the extent to which TAYLOR'S mathematical interests 
were defined by continental research. In a recent article FEIGENBAUM 
[1992] draws attention to a certain tension that existed between TAYLOR and 
the English mathematical establishment. She observes (p. 393), "Although the 
language and notation of TAYLOR'S book were Newtonian, not only did he 
propose what he considered to be a more sound foundation for the fluxional 
calculus based on finite increments, but the subject matter, physical applica- 
tions, and the analysis he employed were all more characteristic of continental 
mathematics." 

7.2 Our study has also revealed some significant anomalies in the early history 
of the variational calculus. The first concerns the special character of a very 
considerable part of the BERNOULLIS' investigation. The theory associated with 
JAKOB'S Problem 3, reproduced and developed further by JOHANN, was not 
taken up by subsequent mathematicians; it became and remains today a relic 
from the formative years of the creation of the calculus. Another anomaly is 
provided by EULER'S curious decision not to include much of the isoperimetric 
theory of his paper of 1741 in the Methodus inveniendi. The latter was a work 
composed with a conspicuous absence of historical spirit. The early develop- 
ment of the subject did not exhibit the orderly and cumulative character that is 
sometimes associated with the history of the exact sciences. 

7.3 The organization of the subject adopted by EULER in the Methodus 
inveniendi was taken over by LAORANCE when he introduced his c~-algorithm in 
the 1750s. LAGRANGE developed his new method exclusively in reference to the 
examples of Chapters 2 and 3 of EULER'S treatise. The result was that in the 
later eighteenth century the isoperimetric theory became somewhat mar- 
ginalized within variational mathematics. In his late treatise, the Lefons sur le 
calcul des fonctions of 1806, LAORANGE formulated the method of multipliers, 
a powerful theoretical tool that provided a unified approach to the various 

subject. There are two reasons why a more detailed appreciation of TAYLOR'S work has 
not appeared in the literature. First, interest has centred primarily on continental 
research, especially JOHANN BERNOULLI'S paper of 1719; second, historians have tended 
to focus on EULER's Methodus inveniendi to the exclusion of his earlier variational 
writings. 



140 C.G.  FRASER 

problems of the subject. This method forms the basis for the modern  perspec- 
tive on the problems and techniques considered in the present paper. 2s 
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