
CHAPTER 12

LEONHARD EULER, BOOK ON THE
CALCULUS OF VARIATIONS (1744)

Craig G. Fraser

In this book Euler extended known methods of the calculus of variations to form and
solve differential equations for the general problem of optimizing single-integral varia-
tional quantities. He also showed how these equations could be used to represent the posi-
tions of equilibrium of elastic and flexible lines, and formulated the first rigorous dynamical
variational principle.

First publication. Methodus inveniendi lineas curvas maximi minimive proprietate gau-
dentes, sive solutio problematis isoperimetrici latissimo sensu accepti, Lausanne and
Geneva: Bousquet, 1744. 320 pages.

Later edition. As Euler,Opera omnia, series 1, vol. 24 (ed. Constantin Carathéodory),
Zurich: Orell Fussli, 1952.

Partial German translations. 1) Chs. 1, 2, 5 and 6 inAbhandlungen über Variationsrech-
nung (ed. Paul Stäckel), Leipzig: Engelsmann, 1894 (Ostwald’s Klassiker der exakten
Wissenschaften, no. 46). 2) App. 1 inAbhandlungen über das Gleichgewicht . . . (ed.
H. Linsenbarth), Leipzig: Engelsmann, 1910 (Ostwald’s Klassiker, no. 175).

Related articles: Newton (§5), Leibniz, Euler and Lagrange on the calculus (§4, §14, §19).

1 INTRODUCTION

Euler’sMethodus inveniendi was the first of a series of books that he wrote on calculus in
the 1740s and the years that followed; notable later works were theIntroductio of 1748 on
infinite series and theInstitutiones of 1755 and 1768–1774 on the differential and integral
calculus (§13, §14). Although theMethodus inveniendi was published in 1744, it was com-
pleted by 1741, and was written when Euler was a young man in his late twenties and early
thirties at the Academy of Sciences in Saint Petersburg. Born in 1707 to a pastor in Basel in
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Switzerland, he had quickly showed his mathematical abilities, especially under the tute-
lage of Johann Bernoulli (1667–1748). His career fell into three parts, all served under
some kind of monarchical support. The first and third parts were passed at the (new) Acad-
emy in Saint Petersburg: from 1727 to 1741 (when he wrote theMethodus inveniendi), and
from 1766 to his death in 1783. In between he worked at the Academy in Berlin, where he
wrote the other two writings that feature in this book. Apart from this trio, he was extra-
ordinarily prolific, contributing importantly to virtually all areas of mathematics of his day
[Thiele, 1982].

TheMethodus inveniendi is of two-fold interest for historians of mathematics. First, it
was a highly successful synthesis of what was then known about problems of optimization
in the calculus, and presented general equational forms that became standard in the cal-
culus of variations. Euler’s method was taken up by Joseph Louis Lagrange (1736–1813)
20 years later and brilliantly adapted to produce a novel technique for solvingvariational
problems (§16). The two appendices to Euler’s book applied variational ideas to problems
in statics and dynamics, and these too became the basis for Lagrange’s later researches.
Second, in Euler’s book some of his distinctive contributions to analysis appear for the first
time or very nearly the first time: the function concept, the definition of higher-order deriv-
atives as differential coefficients; and the recognition that the calculus is fundamentally
about abstract relations between variable quantities, and only secondarily about geomet-
rical curves. TheMethodus inveniendi is an important statement of Euler’s mathematical
philosophy as it had matured in the formative years of the 1730s.

2 ORIGINS AND BASIC RESULTS

The early Leibnizian calculus consisted of a sort of geometrical analysis in which differen-
tial algebra was employed in the study of ‘fine’ geometry (§4.2). The curve was analysed
in the infinitesimal neighbourhood of a point and related by means of an equation to its
overall shape and behaviour. An important curve that was the solution of several varia-
tional problems was the cycloid, the path tracedby a point on the perimeter of a circle as it
rolls without slipping on a straight line. This curve appeared on the frontispiece of Euler’s
Methodus inveniendi (Figure 1) and was a kind of icon of the early calculus. The cycloid
possessed a simple description in terms of the infinitesimal calculus. Let the generating
circle of radiusr roll along thex-axis and let the vertical distance be measured downward
from the origin along they-axis (Figure 2). An elementarygeometrical argument revealed
that the equation of the cycloid is

(
ds

dy

)2

= 2r

y
, (1)

whereds =√(dx2+ dy2) is the differential element of path length.
The cycloid was most notably the solution to the brachistochrone problem. Consider a

curve joining two points in a vertical plane and consider a particle constrained to descend
along this curve. It is necessary to find the curve for which the time of descent is a mini-
mum. Let us take the origin as the first point and let the coordinates of the second bex = a
andy = b. We assume the particle begins from rest. By Galileo’s law the speed of a particle
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Figure 1.

in constrained fall when it has fallen a distancey is
√
(2gy), whereg is an accelerative

constant. We have the relations

ds

dt
=√

2gy or dt = 1√
2gy

ds =
√

1+ y ′2dx√
2gy

. (2)
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Figure 2.

Hence the total time of descent is given by the integral

T = 1√
2g

∫ a

0

√
1+ y ′2√
y

dx. (3)

The problem of the brachistochrone is to find the particular curvey = y(x) that minimizes
this integral.

Following Johann Bernoulli’s public challenge in 1696 solutions to this problem were
devised by his elder brother Jakob, by Johann himself and by Isaac Newton and G.W.
Leibniz. They all showed that the condition that the time of descent is a minimum leads to
(1) and, with the exception of Leibniz, concluded that the given curve is a cycloid. Johann’s
solution was based on an optical–mechanical analogy that is well-known today from its
description by Ernst Mach in hisDie Mechanik in ihrer Entwicklung historisch-kritisch
dargestellt (1883). Although of interest, his solution did not provide a suitable basis for
further work in the subject.

Jakob Bernoulli’s solution on the other hand was illustrative of the ideas that would
develop into the calculus of variations. He considered any three pointsC,G andD on the
hypothetical minimizing curve, where the points are assumed to be infinitesimally close to
each other. He constructed a second neighbouring curve identical to the first except that
the arcCGD was replaced byCLD (Figure 3). Because the curve minimizes the time of
descent it is clear that the time to traverseCGD is equal to time to traverseCLD. Using
this condition and the dynamical relationds/dt ∝√y Bernoulli was able to derive (1).

Jakob Bernoulli also investigated problems in which the minimizing or maximizing
curve satisfied an auxiliary integral condition. The classical isoperimetric problem was
the prototype for this class of examples. His idea was to vary the curve at two successive
ordinates, thereby obtaining an additional degree of freedom, and use the side constraint to
derive a differential equation. Although Jakob died in 1705, some of his ideas were taken
up by Brook Taylor in hisMethodus incrementorum of 1715. Taylor skillfully developed
and refined Jakob’s conception, introducing some important analytical innovations of his
own. Stimulated by Taylor’s research, and concerned to establish his brother’s priority,
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Figure 3.

Johann, then thirty-eight, also adopted Jakob’s methods and developed them along more
geometric lines in a paper that was published in 1719.

In two memoirs published in the St. Petersburg Academy of Sciences in 1738 and 1741,
Euler extracted from the various solutions of Jakob and Johann Bernoulli, as well as the
researches of Taylor, a general approach to single-integral variational problems. These
investigations were further developed and became the subject of theMethodus inveniendi,
of which the contents is summarised in Table 1. Its title may be translated ‘The method of
finding plane curves that show some property of maximum or minimum, or the solution of
isoperimetric problems in the widest accepted sense’.

Euler realized that the different integrals in the earlier problems were all instances of
the single form ∫ b

a

Z
(
x, y, y ′, . . . , y(n)

)
dx, (4)

whereZ is a function ofx, y and the firstn derivatives ofy with respect tox. He de-
rived a differential equation, known today as the Euler or Euler–Lagrange equation, as a
fundamental condition that must be satisfied by a solution of the variational problem.

Table 1. Contents by Chapters of Euler’s book.

Part Page Content
Ch. 1 1 ‘Method of maximum and minimum’ in general.

Ch. 2 32 Differential equations for the optimizing curve.

Ch. 3 83 Side conditions in the form of differential equations.

Ch. 4 130 Resolution of various problems.

Chs. 5–6 171 Isoperimetric problems.

App. 1 245 Elastic curves.

App. 2 311 Principle of least action. [End 320.]
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Figure 4.

In Chapter 2 Euler developed his derivation of this equation (for the casen = 1) with
reference to Figure 4, in which the lineanz is the hypothetical extremizing curve. The let-
tersM, N , O designate three points of thex-axisAZ infinitely close together. The letters
m, n, o designate corresponding points on the curve given by the ordinatesMm, Nn, Oo.
Let AM = x, AN = x ′, AO= x ′′ andMm = y, Nn = y ′, Oo = y ′. The differential coef-
ficient p is defined by the relationdy = p dx; hencep = dy/dx. We have the following
relations

p = y
′ − y
dx

, p′ = y
′′ − y ′
dx

. (5)

The integral
∫ b
a Z dx was regarded by Euler as an infinite sum of the form· · · + Z,

dx + Z dx + Z′ dx + · · ·, whereZ, is the value ofZ at x − dx, Z its value atx and
Z′ its value atx + dx, and where the summation begins atx = a and ends atx = b. It is
important to note that Euler did not employ limiting processes or finite approximations. Let
us increase the ordinatey ′ by the infinitesimal ‘particle’nv, obtaining in this way a com-
parison curveamvoz. Consider the value of

∫ b
a Z dx along this curve. By hypothesis the

difference between this value and the value of
∫ b
a Z dx along the actual curve will be zero.

The only part of the integralthat is affected by varyingy ′ is Zdx +Z′ dx = (Z+Z′) dx.
Euler wrote:

dZ =M dx +N dy + P dp, dZ′ =M ′ dx +N ′ dy ′ + P ′ dp′. (6)

He proceeded to interpret the differentials in (6) as the infinitesimal changes inZ, Z′, x,
y, y ′, p, p′ that result wheny ′ is increased bynv. From (5) we see thatdp anddp′ equal
nv/dx and−nv/dx. (These changes were presented by Euler in the form of a table, with
the variables in the left column and their corresponding increments in the right column.)
Hence (6) becomes

dZ = P · nv
dx
, dZ′ =N ′ · nv − P ′ · nv

dx
. (7)
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Thus the total change in
∫ b
a Z dx equals(dZ + dZ′) dx or nv · (P + N ′ dx − P ′). This

expression must be equated to zero. Euler setP ′ − P = dP and replacedN ′ by N . He
therefore obtained 0=N dx − dP or

N − dP
dx

= 0, (8)

as the final equation of the problem.
Equation (8) is the simplest instance of the Euler differential equation, giving a con-

dition that must be satisfied by the minimizing or maximizing arc. Noting thatN andP
are the partial derivatives ofZ with respect toy andy ′ respectively, we may write (8) in
modern notation as

∂Z

∂y
− d

dx

∂Z

∂y ′
= 0. (9)

He also derived the corresponding equation when higher-order derivatives ofy with respect
to x appear in the variational integral. This derivation was a major theoretical achievement,
representing the synthesis in one equational form of the many special cases and examples
that had appeared in the work of earlier researchers.

3 FOUNDATIONS OF ANALYSIS

Near the beginning of his book Euler noted that a purely analytical interpretation of the
theory is possible. Instead of seeking the curve which makesW an extremum one seeks
that ‘equation’ betweenx andy which among all such equations when introduced into (1)
makes the quantityW a maximum or minimum (p. 13). He wrote:

Corollary 8. In this way questions in the doctrine of curved lines may be re-
ferred back to pure analysis. Conversely, if questions of this type in pure analy-
sis be proposed, they may be referred to and solved by means of the doctrine
of curved lines.
Scholium 2. Although questions of this kind may be reduced to pure analysis,
nevertheless it is useful to consider them as part of the doctrine of curved lines.
For though indeed we may abstract from curved lines and consider absolute
quantities alone, so these questions at once become abstruse and inelegant and
appear to us less useful and worthwhile. For indeed methods of resolving these
sorts of questions, if they are formulated in terms of abstract quantities alone,
are very abstruse and troublesome, just as they become wonderfully practical
and become simple to the understanding by the inspection of figures and the
linear representation of quantities. So although questions of this kind may be
referred to either abstract or concrete quantities it is most convenient to formu-
late and solve them by means of curved lines. Thus if a formula composed of
x andy is given, and that equation betweenx andy is sought such that, the
expression fory in terms ofx given by the equation being substituted, there
is a maximum or minimum; then we can always transform this question to the
determination of the curved line, whose abscissa isx and ordinate isy, for
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which the formulaW is a maximum or minimum, if the abscissax is assumed
to have a given magnitude.

Euler’s view seems to have been that while it is possible in principle to approach the
calculus of variations purely analytically it ismore effective in practice to refer problems
to the study of curves. This conclusion could hardly have seemed surprising. Each of the
various examples and problems which historically made up the subject had as its explicit
goal the determination of a curve; the selection of such objects was part of the defining
character of this part of mathematics. What is perhaps noteworthy about Euler’s discussion
is that he should have considered the possibility at all of a purely analytical treatment.

The basic variational problem of maximizing or minimizing (4) involves the selection
of a curve from among a class of curves. In the derivation of (8) the variablesx andy
are regarded as the orthogonal Cartesian coordinates of a curve. Each of the steps in this
derivation involves reference to the geometrical diagram in Figure 4 above. In Chapter 4,
however, Euler returned to the point of view that he had indicated at the beginning of
the treatise. In the opening proposition the variational problem isformulated as one of
determining that ‘equation’ connecting two variablesx andy for which a magnitude of the
form (4) (given for the general case where higher-order derivatives and auxiliary quantities
are contained inZ) is a maximum or minimum. In his solution he noted that such variables
can always be regarded as orthogonal coordinates and so determine a curve. The solution
then follows from the theory developed in thepreceding chapters. In the first corollary he
wrote:

Thus the method presented earlier may be applied widely to the determina-
tion of equations between the coordinates of a curve which makes any given
expression

∫
Zdx a maximum or a minimum. Indeed it may be extended to

any two variables, whether they involve an arbitrary curve, or are considered
purely in analytical abstraction.

Euler illustrated this claim by solving several examples using variables other than the
usual rectangular Cartesian coordinates. In the first example he employed polar coordinates
to find the curve of shortest length between two points (Figure 5). We are given the points
A andM and a centreC; it is necessary to find the shortest curveAM joiningA andM. Let
x be the pole angleACM andy the radiusCM. Because the differential element of path-
length is equal to

√
(dy2+ y2dx2) the formula for the total path-length is

∫
dx
√
(yy +

pp), wherepdx = dy and the integral is taken fromx = 0 to x = � ACM. Herex does
not appear in the integrandZ of the variational integral, so thatdZ = N dy + P dp. The
equation (8) givesN = dP/dx so that we havedZ = dP p + P dp and a first integral is
Z+C = Pp, whereC is a constant. SinceZ =√(yy + pp) we have

C +√
(yy + pp)= pp√

(yy + pp), i.e.,
yy√

(yy + pp) = Const.= b. (10)

Let PM be the tangent to the curve atM andCP the perpendicular fromC to this tangent.
By comparing similar triangles in Figure 5 we see thatMm :Mn=MC : CP. SinceMm=
dx/

√
y2+ p2,Mn= y dx andMC = y it follows thatCP= y2/

√
y2+ p2. HenceCP is

a constant. Euler concluded from this property that the given curveAM is a straight line.
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Figure 5.

In the second example Euler displayed a further level of abstraction in his choice of
variables. Here we are given the axisAC with the pointsA andP , the perpendicular line
PM and a curveABM joiningA andM (Figure 6). Given that the areaABMP is some given
constant value we must find that curveABM which is of the shortest length. Euler set the

Figure 6.
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abscissaAP= t , the ordinatePM = y and letx equal the area under the curve fromA toP .
We havedx = y dt and the variational integral becomes

∫ √
(dy2+ dx2/yy) dx. Because

x does not appear in the integrand we obtain as before the first integralZ = C + pP .
Substituting the expressions forZ andP into this integral we obtain

√
(1+ yypp)
y

= C + ypp√
(1+ yypp). (11)

Letting dx = y dt , we obtain after some further reductions the final equationt = c ±√
(bb− yy). Hence the desired curve is the arc of a circle with its centre on the axisAP at

the footP of the ordinate corresponding toM.
A range of non-Cartesian coordinate systems had been employed in earlier mathematics

but never with the same theoretical import as in Euler’s variational analysis. Here one had a
fully developed mathematical process, centred on the consideration of a given analytically-
expressed magnitude, in which a general equational form was seen to be valid independent
of the geometric interpretation given to the variables of the problem. Thus it is not at all es-
sential in the reasoning employed in the derivation of (9) that the lineAZ be perpendicular
to Mm (Figure 4); indeed it is clear that the variablex need not be a length nor even a co-
ordinate variable in the usual sense. As Euler observed in the first corollary, the variables
of the problem are abstract quantities, and Figure 4 is simply a convenient geometrical
visualization of an underlying analytical process.

Euler and later 18th-century analysts broke with the geometrical tradition, but they did
not thereby adopt the point of view of modern real analysis. Euler’s understanding was
very different from our outlook today, in which the expressionZ that is to be optimized
is any quantity whatsoever formulated in terms of the functiony = y(x) and its deriva-
tives. For Euler, the quantities and relations of analysis are always ‘given’: they arise from
definite problems in geometry,mechanics or some other areaof mathematical science. He
developed an abstract interpretation of the variational formalism—the fundamental objects
of study were relations between variables ‘given in analytical abstraction’—but his point of
view was structured as well by tacit assumptions concerning the logical status of the prob-
lems of the subject as things that were given from without. The notion that at the outset
one could consider any expressionZ defined according to logically prior and autonomous
criteria was quite beyond Euler’s conceptual horizons and was foreign to the outlook of
18th-century analysis.

4 LATER DEVELOPMENTS: LAGRANGE, EULER
AND THE CALCULUS OF VARIATIONS

In his book Euler had noted the somewhat complicated character of his variational process
and called for the development of a simpler method or algorithm to obtain the variational
equations. Lagrange’s first important contribution to mathematics, carried out when he
was 19 years old, consisted of his invention of theδ-algorithm to solve the problems of
Euler’sMethodus inveniendi. He announced his new method in a letter of 1755 to Euler,
and published it as [Lagrange, 1762] in the Proceedings of the Turin Society. His algorithm
permitted the systematic derivation of the variational equations and facilitated the treatment
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of conditions at the endpoints. His innovation was immediately adopted by Euler, who
introduced the name ‘calculus of variations’ to describe the subject founded on the new
method. Lagrange’s new approach originatedin his (tacit) recognition that the symbold
was being used in two distinct ways in Euler’s derivation of (8). In (8) and the final step by
which it is obtained,d was used to denote the differential as it was customarily used and
understand in Continental analysis of the period. The differentialdx was held constant; the
differential of any other variable equalled the difference of its value atx and its value at an
abscissa a distancedx from x. By contrast, the differentialsdx, dy, etc. that appear in (6)
were interpreted by Euler as the changes inx, y, etc. that result when the single ordinate
y is increased by the ‘particle’nv. Thus the ‘differentials’dy ′ dp, dp′ equalnv, nv/dx,
−nv/dx; the ‘differentials’dx, dy, dp′′, etc. are zero.

The young Lagrange had the perspicacity to recognize this dual usage and invented the
symbol ‘δ’ to denote the second type of differential change. Using it he devised a new ana-
lytical process to investigate problems of maxima and minima. Although the purpose of his
method was to compare curves in the plane, it was nonetheless introduced in a very formal
manner. The symbolδ has properties analogous to the usuald of the differential calculus.
Thusδ(x+ y)= δx+ δy andδ(xy)= xδy+ yδx. In addition,d andδ are interchangeable
(dδ = δd) as ared and the integral operation

∫
.

The δ-process led to a new and very simple derivation of the Euler equation (8). It is
necessary to determiney = y(x) so that

δ

∫ b

a

Z dx = 0, (12)

whereZ = Z(x, y,p) andp = dy/dx. Applying theδ operation to the expressionZ we
obtain

δZ =Nδy + Pδp. (13)

Note that here all of the ordinates are simultaneously being varied, and not just one, as had
been the case in Euler’s analysis. Because theδ and

∫
are interchangeable we have

δ

∫ b

a

Z dx =
∫ b

a

δZ dx =
∫ b

a

(Nδy + Pδp)dx (14)

and alsoδp= δ(dy/dx)= d(δy)/dx. An integration by parts gives rise to the identity

∫ b

a

Pδp dx =
∫ b

a

P
d(δy)

dx
dx = Pδy|ba −

∫ b

a

dP

dx
δy dx. (15)

Hence the conditionδ
∫ b
a
Z dx = 0 becomes

Pδy|ba −
∫ b

a

(
N − dP

dx

)
δy dx = 0. (16)
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We suppose thatδy is zero at the end valuesx = a, b. (16) then reduces to

∫ b

a

(
N − dP

dx

)
δy dx = 0. (17)

From (17) we are able to infer the Euler equation

N − dP
dx

= 0. (18)

Euler took up Lagrange’s new method in his writings of the 1760s and 1770s. In a paper
published in 1772 he presented what would become the standard interpretation of theδ-
process as a means for comparing classes of curves or functions. We assume thaty is a
function ofx and a parametert , y = y(x, t), where the given curvey = y(x) is given by
the value ofy(x, t) at t = 0. We defineδy to be ∂y

∂t
|t=0dt . (It would be logically more

consistent to defineδy = ∂y
∂t
|t=0t , and require thatt be small. Euler apparently useddt

rather thant so as to indicate explicitly that the multiplicative factor is small.) One way of
doing this, Euler explained, is to sety(x, t)= X(x)+ tV (x), wherey(x)= X(x) is the
given curve andV (x) is a comparison or increment function; hence we haveδy = dt V (x).
In this conception the variation of a more complicated expression made up ofy(x, t) and
its derivatives with respect tox is obtained by taking the partial derivative with respect tot ,
settingt = 0 and introducing the multiplicative factordt . In later variational mathematics
the parameter ‘ε’ would often be used instead of ‘t ’.
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