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3 It must be observed that the instruments intended for the combinatorics are mostly traditional, static and 
trite; the instruments for analysis powerfully embody innovation.

4 And in the Elementa nova matheseos universalis (written between 1684 and 1687): “Tradetur et 
Synthesis et Analysis, sive tam Combinatoria, quam Algebra.” (Leibniz VE, 987).

5 In this way, if the specific knowledge that enters in a logical calculation is already set up, it will be easier 
to coordinate this particular specimen of the art to the general frame of the universal characteristic.

C R A IG  G . FR A S E R

THE BACKGROUND TO AND EARLY EMERGENCE 

OF EULER’S ANALYSIS

I Introduction

In cultivating analysis Euler is sometimes seen as someone whose primary achieve
ment was the development of tendencies in the Leibnizian school. Typical here is 
Bourbaki’s statement (Bourbaki 1974, 246) that he carried “the Leibnizian for
malism to an extreme” thereby “completing the work of Leibniz”. A somewhat 
different view is expressed by Boyer (Boyer 1939, 243) who calls attention to 
Euler’s originality: “Most of his predecessors had considered the differential cal
culus as bound up with geometry, but Euler made the subject a formal theory of 
functions which had no need to revert to diagrams or geometrical conceptions”1.

The present paper is devoted to a study of the role of analysis in the back
ground to and early development of Euler’s mathematical research. Euler’s Meth- 
odus inveniendi lineas curvas of 1744 (Euler 1744), the first systematic treatise 
on what would later become known as the calculus of variations, is here identified 
as the locus classicus for the initial emergence of a fully analytical conception of 
the calculus. The work contained many of the technical and notational innova
tions that would be elaborated in his mid-century textbooks on infinitesimal anal
ysis. In addition, in chapter four of the treatise Euler developed the subject in a 
way that exhibited its analytical character at a deeper theoretical level.

To understand the origins of Euler’s programme we first provide a survey of 
analytical conceptions in earlier mathematics. We then turn to a consideration of 
the relevant parts of the Methodus inveniendi, ending with a discussion of the 
mathematical and philosophical character of his approach to analysis.

II Analytical Methods in Early Modern Mathematics

It is possible to trace a continuous development in European mathematics that 
begins in the thirteenth century and leads by 1700 to the extensive employment of 
symbolic methods. Techniques of analysis came to play an important role in such 
distinct areas as the theory of determinate equations, arithmetic, coordinate ge
ometry and the calculus. Our survey will focus on the emergence of the concepts
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of equation and variable, and on the question of the degree to which symbolic 
methods formulated essential mathematical features of the subject under study.

II. 1 A nalytic A rt

The concept of analysis and the name itself became part of early modem mathe
matics largely as a result of the work of Francis Viete. His essay of 1591, In 
artem analyticen isagoge (1591a), initiated a series of researches by himself and 
such contemporaries of his as Marino Ghetaldi and Thomas Harriot that together 
contributed to the widespread employment in the seventeenth century of symbolic 
mathematical methods.

A substantial historical literature, deriving from the work of Jakob Klein (Klein 
1934-1936), emphasizes Viete’s modernity as a mathematician. It is suggested 
that his notion of specious logistic involved a theoretical widening of the concept 
of magnitude to include both arithmetic and geometric quantity. In adapting ideas 
from Diophantus’s arithmetic to the realm of geometric analysis he was led to 
generalize Diophantus’s concept of species. According to Klein {ibid., 166-167), 
“the eidos concept, the concept of the ‘species’, undergoes a universalizing exten
sion while preserving its tie to the realm o f numbers. In the light o f this general 
procedure, the species, or as Viete also says, the ‘forms of things’f...] represent 
‘general’ magnitudes simply”2.

Associated with this general concept of number, it is suggested, there emerged 
in his analytic art, with its use of symbols to represent unknowns and parameters, 
a structural, syntactic approach to mathematics3. Because the terms of his system 
could be given different interpretations in arithmetic and geometry the purely 
combinatorial properties of operations performed on analytical expressions were 
exhibited as an object of interest.

Klein’s essay and the historical writings it has inspired have resulted in a 
renewed interest in Viete’s algebra and have led to a better appreciation of his role 
in early modem mathematics. We will however argue in what follows that sugges
tive and informative as Klein’s essay has been, his whole thesis must be qualified 
at certain fundamental points.

The widening of the concept of magnitude that is attributed to Viete had al
ready taken place and was well assimilated within algebraic practice at least a 
century before he wrote. Algebra was known as “the art of the thing and the 
power” or “the great art” or “the greater part of arithmetic”. The progress of 
symbolic methods consisted of the replacement of the largely rhetorical proce
dures inherited from Islamic mathematicians by ones that used a syncopated or 
partial formalism in the solution of problems involving the determination of an 
unknown quantity. Study of quadratic, cubic and quartic equations led to the in
troduction of expressions denoting the roots of non-square numbers; thus magni
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tudes traditionally regarded as geometrical entities were denoted as numbers within 
the confines of what was essentially an arithmetical algebra.

In emphasizing the radical character of the Vietan concept of magnitude, Klein 
has overlooked the full mathematical significance inherent in the assimilation 
(well established by 1590) of surd numbers into arithmetical algebra.He is to be 
sure aware of this earlier tradition, writing that “the new number concept [...] 
already controlled, although not explicitly, the algebraic expressions and investi
gations of Stifel, Cardano, Tartaglia, etc.” {ibid., 178). Nevertheless he concludes 
of the cossist school that “in its whole mode of operating with numbers and number 
signs, its self-understanding fails to keep pace with these technical advances. This 
algebraic school becomes conscious of its own ‘scientific’ character and of the 
novelty of its ‘number’ concept only at the moment of direct contact with the 
corresponding Greek science, i.e., with the Arithmetic of Diophantus” {ibid., 148). 
To this one may reply in two ways. Self-consciousness on the part of researchers, 
however significant, is not necessary in order for important conceptual advances 
to take place; the latter may be, as they were for the cossist algebraists, logical 
concomitants of technical developments within the subject itself. Second, if in
deed an explicit awareness of conceptual advance is present it is necessary to 
show how this influenced and shaped the direction of mathematical research.

Another difficulty with Klein’s thesis is that it understates the extent to which 
Viete situated his notion of species within a classical Euclidean theory of magni
tude. He seems to have regarded the general magnitudes of his specious logistic as 
geometrical entities. He uses the words “ducere” and “adplicare”, terms denoting 
geometric operations, in his definition of the multiplication and division of mag
nitudes (writing for example, “magnitudinem in magnitudinem ducere”), and re
tains dimensional homogeneity as a fundamental principle. His vision of a general 
theory of quantity applicable to either number or line segments was already real
ized in Elements V, a part of the Euclidean canon that he drew upon in chapter 2 
of his Analytic Art. (Advocates of the notion of “symbolic magnitude” never ex
plain how book V of the Elements—a general theory of magnitude without sym
bols in the Vietan sense—is possible.)

Certainly Viete showed a stronger interest in mathematical method than had 
earlier researchers. To attribute to him a radical new syntactic or structural con
ception of mathematics seems however doubtful. He viewed analysis not as an 
autonomous subject but as an “art”, as a tool in solving problems, be they ones in 
geometry, the theory of equations or Diophantine arithmetic. The content of math
ematics was for him not a system of relations but a set of concrete problems in 
these subjects. His notational innovations were developed within this historically 
particular programme of research. His technical vocabulary and fondness for for
mal categories indicate the continued influence on him of scholastic thought. In
congruous mathematical elements were contained in his attempt to adapt ideas
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from Diophantine arithmetic, essentially a work of rational number theory, to the 
art of algebra as it was employed in the solution of geometrical problems.

Viete’s conceptual advances, the introduction of distinct symbols for variables 
and parameters and the adoption of an operational formalism, represented a sig
nificant contribution to mathematical method. They provided an orderly and uni
form notation for handling the material on algebraic identities and polynomial 
equations that had appeared in Cardano’s Ars Magna (Cardano 1545), and per
mitted the emergence of “the first consciously articulated theory of equations” 
(Mahoney 1973, 36). Perhaps most important mathematically, his notational sys
tem allowed one to investigate the relationship between the coefficients of a poly
nomial and the structure of its roots; it must be said however that this last line of 
investigation developed slowly and only became established in the later eight
eenth century.

Of considerable conceptual significance, particularly for the later development 
of the calculus, was the idea of a function. The notion of a general expression/(A) 
defined in terms of the variable A was present in embryonic form in Viete’s sys
tem, where the square of the magnitude denoted by the symbol A was denoted by 
an expression (“A quadratus”) that itself contained A. Instead of the “res” and the 
“census” of traditional algebra, separate terms denoting distinct entities, one now 
had a notation that reflected the underlying operations performed on the magni
tudes being represented. That the functional idea could only receive a somewhat 
limited development by Viete was a consequence of the fact that he viewed his 
symbol “A” not as a variable in the full sense but as an unknown, an object whose 
value was to be determined in the course of the solution of a problem (Boyer 1956, 
60). His definition of an equation, “the coupling of an unknown magnitude with a 
known” reflected this particular perspective.

II.2 T heory of Numbers

The figures of Euclidean plane geometry are coherent unitary objects whose iden
tity is defined in terms of certain universal attributes, such as being three-sided or 
being right-angled. Results in geometry become theorems by virtue of the inher
ent generality of figures as mathematical objects. As commentators from Leibniz 
to Frege have emphasized, whole numbers—the objects of arithmetic—are differ
ent sorts of things, possessing particular individual characteristics4. Propositions 
in Euclidean arithmetic (Elements VII, VIII and IX) are formulated in terms of 
classes of numbers, such as being prime, being perfect, or being a member of a 
geometric progression. These classes are delineated rhetorically, without the aid 
of symbolic notation.

It is ironic that Viete turned to Diophantus’s Arithmetic, a work of rational 
number theory, as a source of inspiration for developing methods in algebra and
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geometry, the sciences (for him) of continuous magnitude. An opposite sort of 
irony characterized Pierre Fermat’s extensive researches in theoretical arithme
tic5. In his study of geometry he adopted Viete’s system of notation, using it to 
formulate mathematically the idea of coordinate geometry. He also studied the 
Arithmetic carefully and greatly extended the results contained there, in the proc
ess laying the foundation of modem number theory. Throughout these latter re
searches he employed a predominately rhetorical mode of presentation. Although 
he used hindu-arabic numerals and some signs for arithmetic operations, his state
ment and demonstration of theorems were presented in words without the aid of 
symbolic notation.

The style of Fermat’s writings is illustrated by a comparison with Euclid, whose 
mode of expression in number theory was also rhetorical. Consider Euclid’s asser
tion (Elements IX, 36) that a number of the form 2P_1(2P-1) is perfect if 2P-1 is 
prime6: “If as many numbers as we please beginning from an unit be set out con
tinuously in double proportion, until the sum of all becomes prime, and if the sum 
multiplied into the last make some number, the product will be perfect”.

Consider now Fermat’s original statement of what is known as Fermat’s little 
theorem, the assertion (in modem mathematical language) that p  divides aP~l- 1, 
where a and p are relatively prime numbers7: “Without exception, every prime 
number measures one of the powers -1 of any progression whatever, and the expo
nent of the said power is a submultiple of the given prime number -1 ” (Fermat, 
TH, V. 1, 209).

In his rhetorical expression as well as in his interest in integral rather than 
rational solutions Fermat seemed to be looking past Diophantus to the arithmetic 
books of Euclid’s Elements as a source of inspiration. In 1657 he explicitly criti
cized the use of geometrical considerations in arithmetic (presumably because 
they entailed conceptions of continuous magnitude) and, appealing to Euclid, urged 
that “arithmetic redeem the doctrine of whole numbers as a patrimony of its own”8. 
Although many problems of rational arithmetic reduced to ones of whole-number 
arithmetic it was also the case that certain interesting questions in the latter sub
ject became trivial when the class of permissible solutions was extended to ration
al numbers. It is very possible that his disinclination to use literal notation derived 
from a desire to emphasize the autonomy of whole-number arithmetic.

There is it must be noted some evidence that Fermat privately employed alge
braic methods in his arithmetic researches, and some of his correspondents sus
pected him of having done so. His contemporary Descartes made use of formulas 
to express arithmetical results. Nevertheless, in all of his extant writings, in all of 
the different phases of his research, Fermat did not employ symbolic algebraic 
notation.

The awkwardness of rhetorical formulations and the need for more and more 
detailed statements of results eventually imposed restrictions on the sort of theory
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that could be developed. Fermat’s decision not to give a fuller account of his 
researches may have derived in part from the demands that such a mode of expo
sition entailed. The concept of an arithmetic variable—an entity that could as
sume any of a given set of whole-number values—was central to the progress of 
number theory as it was to develop after him. It enabled one to reify in formulas 
expressions and relations that could then be studied or manipulated at will in the 
course of the investigation.

It should nevertheless be remembered that at the most fundamental level it 
was numbers and their properties, and not any system of relations embodying 
these properties, which constituted the fundamental subject of the theory of num
bers. The role of the variable was not an essential one; each symbolic statement 
could always be re-expressed in terms of a proposition about classes of numbers.

II.3 C o o r d in a te  G e o m e t r y9

Euclid and Apollonius had derived results about curves that express relations of 
equality between magnitudes associated with these figures, relations that are valid 
for an arbitrary point taken on the perimeter of the curve. In Elem ents HI, 36 one 
is given a point D  outside of a circle and asked to draw from it two lines; the first 
DB  is tangent to the circle and the second D CA  cuts the circle at the points C and 
A (fig. 1). Euclid showed that the square on DB  is equal to the rectangle on D C  
and DA. In book I of the Conics Apollonius introduced the ellipse as the section 
obtained by intersecting a plane with an oblique circular cone (fig. 2). Such a cone 
is formed by the lines joining the perimeter of a circle to a point not in the plane of 
the circle. Let PP' be a given axis through the centre of the ellipse and let Q  be a 
point on the perimeter of the ellipse. Consider the line VQ of intersection of the 
plane of the ellipse and the plane of that circle through V which is parallel to the 
base; Q  is the point where the line meets the ellipse. The line VQ is called an 
“ordinate”. In I, 15 Apollonius showed that the rectangle on P V  and V P ’ is in a 
given constant ratio to the square on VQ.

In these propositions the curve is introduced and the given relation is then 
exhibited as a property satisfied by it. The relation represents one of several prop
erties and is not regarded as defining or definitively expressing the curve. The 
primary purpose of the results is found in the solution of other problems. In E le
m ents IV Euclid used III, 36 in his construction of the regular pentagon. In Conics 
III Apollonius employed the theory of the earlier books in his investigation of the 
problem of the locus to three and four lines.

This last problem is of great historical significance for the later development 
of coordinate and projective geometry and possesses in its own right certain points 
of conceptual interest. Consider four lines given in position in the plane. It is 
necessary to determine the locus of points P  such that the rectangle formed by the
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Figure 2

distances from P  measured in given directions to the first two lines is in a speci
fied ratio to the rectangle formed by the distances measured in given directions to 
the other two lines. (In the case of three lines one of the rectangles becomes a 
square.) It turns out that the locus is in every instance a conic section. In the same 
book Apollonius provided a detailed discussion of the problem, developing results 
that would (at least in principle) form the basis for a complete solution10.

In book VII of his C ollection  Pappus called attention to the three and four line 
problem and discussed the work of earlier geometers11. He also raised the question 
of the nature of the locus when the number of lines exceeds four. The distances 
that appear in this problem are magnitudes that are assumed to vary while the 
relation expressed by the locus condition itself continues to hold. (This relation 
was expressed in two forms by Pappus, in terms of the ratio of figures or solids, 
and for the more general case in terms of compound proportions.) What logically 
distinguishes these magnitudes within the problem is that they vary, and that the 
locus is produced in consequence of their variation. The concept of a variable 
would therefore seem to be implicitly present in Pappus’s formulation.

The Collection became available in Western Europe in 1588 in Commandi- 
no’s Latin translation (Commandino 1588). When Descartes began to study the 
locus problem in 1632 he did so having already had some grounding in Vietan 
algebra and the theory of equations. His G eom etrie (1637) may be seen as a fairly 
natural development arising from the application of algebraic methods to a prob
lem of current interest. His approach to the investigation of the locus was very 
simple. Let AB be one of the lines that are given in position, C be a point on the 
locus and CB the line segment that is to be drawn from C to AB. Descartes took 
AB  and CB as his given reference lines and let x=AB  and y= C B  (fig. 3). (Notice 
that the problem is especially suited to coordinate methods, because the line seg
ment CB from C to AB  is always drawn at the same angle to AB.) He calculated
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Figure 3

the various distances of the problem in terms of x  and y and proceeded to express 
the locus condition as an indeterminate equation in these variables.

In the original locus problem there were as many variable magnitudes as there 
were lines given in position. In Descartes’ geometry by contrast the problem was 
reduced to the consideration of two variables connected by means of an equation. 
His theory opened up the possibility—at least in principle—that continuous vari
ation could be studied by examining how one variable changes with respect to the 
other within such a relation.

The last question however was one that Descartes never pursued. His investi
gation remained firmly centred on the classical problem of constructing solutions 
to geometrical problems. His interest in equations was based primarily on the role 
they played in such solutions. Within this programme it was necessary to deter
mine points on a curve by means of acceptable instruments of construction (Bos 
1981).The curve enjoyed a dual status, as something that was a solution to a geo
metrical problem and as something that could itself be used as a tool in the con
struction of a solution. The study of indeterminate equations yielded information 
about the associated curves, while determinate equations could be solved to obtain 
particular points on the curve.

Fermat’s writings from the same period demonstrate a better appreciation of 
the general methodological character of coordinate geometry. In his Ad locos et 
solidos isagoge of 1637 (TH, I, 4, 91-110) he enunciated the principle that to any 
equation in two variables there corresponds a curve in the plane, one given by 
means of the graphical method of his coordinate system12. He was however prima
rily interested in geometrical loci problems, in which the final equation is always
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an algebraic or polynomial relation. His continued interest in restoring Greek 
mathematical works indicated the strong classical character of his investigation.

Throughout the early history of coordinate geometry there seems to have been 
little interest in the mathematical investigation by means of graphical techniques 
of arbitrary relations among magnitudes, abstractly considered. The familiar mod
em use of graphs to represent the behaviour of virtually any two related quantities 
that are found anywhere was notably absent during the period.

II.4  T he C alculus

II.4.1 E q u a t i o n s

While established research in coordinate geometry remained centred on geomet
rical construction a whole new line of investigation was opened up with the grow
ing interest in quadrature and tangent problems. Early work on what later became 
the calculus was connected with the programme of study set forth in Van Schooten’s 
Latin edition of Descartes’s Geometrie (Descartes, 1659-1661). Out of these de
velopments came a new part of mathematics, one that soon achieved considerable 
prominence as an area of research13.The relevant history has been well document
ed in the literature. Our discussion will be confined to two examples which illus
trate some of the conceptual and technical issues associated with the role of the 
equation in the early calculus.

The first example involves a comparison of Wallis’s A r i t h m e t i c a l  in f in i to r u m  

(1656) and Newton’s researches on infinite series from the 1660s. Wallis was a 
proponent of the new analysis and employed symbolic notation freely in his book. 
His primary goal was to investigate quadratures and cubatures by means of arith
metic methods involving infinite numerical series. In Proposition XIX he consid
ered the series

0+1 = 1 1 1 1  0 + 1 + 4 = 5
l + l = 2 - 2 _ 3 + 6 ’ 4 + 4 + 4 = 1 2
0 + 1 + 4+ 9  = 14 7 1 1-------------------- = — = —+ — , e t c .
9 + 9 + 9 + 9 = 34 18 3 18

1 1
—l----
3 12

It is clear that when the number of terms become infinite the value of the series is

1/3. (Wallis wrote down the general formula for the numerator as
/ +1 

3
/2 + — /2

61
He showed how this result may be used to obtain the ratio of the area under a 
parabola to the circumscribed rectangle, and the ratio of the volume of a cone to
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the circumscribed cylinder. He proceeded in the treatise to extend the result, and 
through the skilful and extensive use of interpolation went very far in obtaining 
numerical series expressions for various quadratures14.

In the winter of 1664-1665 Newton began to study the A rithm etica infinito- 
rum , research which he carried out at the same time he was reading Van Schooten’s 
edition of the Geom etrie. He recorded his progress in notebooks which have sur
vived15. His fundamental innovation was to reformulate Wallis’ investigation in 
terms of equations between Cartesian coordinate variables. By setting the prob
lem in this way he made relations between continuously changing magnitudes the 
central object of study. An equation implies the existence of a relation that re
mains valid as the variables change continuously in value. It is this fundamental 
fact—the continuous and permanent character of the relation, its persistence dif
ferentially in the neighbourhood of each real number—that was exploited by New
ton in expressing the connection between the equation of the curve and the formula 
for its quadrature. This fact would also be the basis for his subsequent investiga
tion, set forth in the 1669 paper D e analysi, relating the quadrature of a curve to 
its equation by means of differentiation16.

Although Wallis was an advocate of the new analysis he did not make essen
tial use of relations among variable magnitudes in his investigation. His approach 
was not “analytical” in the deeper sense discernible in Newton’s early work on 
infinite series and quadratures.

Our second example concerns some later work of Newton and the French 
mathematician Pierre Varignon. The motion of a freely moving particle acted 
upon by a central force was the subject of book one of Newton’s Principia mathe- 
m atica  (1687) as well as of a memoir by Varignon published by the Paris Acade
my in 1703 (Varignon 1701). Both men established that motion in an ellipse with 
the force centre at one focus implies an inverse-square force law. In a break with 
his early mathematical work of the 1660s Newton abandoned Cartesian analytical 
methods, turning instead to a kind of infinitesimal-geometrical theory of limits. 
Varignon by contrast used techniques of the recently established Leibnizian calcu
lus in his solution.

In Proposition VI and its corollaries Newton had derived a measure for the 
force in terms of geometrical quantities associated with the curve. In the next few 
propositions he calculated the force law when the trajectory was assumed to have 
a given form. In Proposition XI he considered the case of the ellipse. In fig. 4 the 
point P  is the position of the particle on the ellipse at a given instant, C is the 
centre of ellipse, S is one of the foci and the centre of the force, and CA and CB are 
the semi-major and semi-minor axes. Through P  draw the tangent RP. The line 
D C K  is drawn through C  parallel to the tangent intersecting the ellipse at the 
points D  and K. The lines CP  and CD  are then conjugate axes of the ellipse 
corresponding to the point P. Let E  be the intersection of the SP and D C . Draw the
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Figure 5

perpendicular P F  from P  to Dk. Let Q  be a point on the ellipse near P. Draw the 
line Q v  parallel to the tangent intersecting the conjugate diameter PC G  at v. In the 
course of his derivation Newton made use of the following two equations:

G v  • Pv: Q v2 =  P C 2: C D 2

C A :PF =  CD:CB

These he presented as known properties of the ellipse; of the second relation he 
noted that it had been “demonstrated by the writers on the conic sections.”(Note 
that the first of these relations is the one from Apollonius’s Conics I, discussed 
earlier.) He also proved that the quantity E P  is a constant equal to the semi-major 
axis CA. Using this fact and the above relations he was able to show that the force 
is inversely proportional to the distance SP.

Varignon began by expressing the trajectory relative to a coordinate system in 
which the variables are the distance r  from the force centre and the quantity z, 
where d z  is defined as the projection of the element of path-length ds on the 
perpendicular to the radius. The tangential component of the force is equated to 
the expression dds/dd t, where s  is the path length and t is the time. The derivation 
of the inverse-square law for the case of the ellipse is a model of simplicity. Con
sider the ellipse with major axis AB, foci D  and C and force centre at C  (fig. 5). Set 
A B = a , D C - c  and t f = a 2-c*. Let L  be a point on the ellipse, C L=r. If / is a point 
close to L  and the perpendicular IR is drawn to CL then the differential d z -R l.  
Varignon gave the equation of the ellipse in the form17
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bdr = d z 4  4ar -  4 rr -  bb

Using the relation ds2= dr2+ d z! and the area law rd z= d t he reexpressed this equa
tion in the form

4a  -  4r _  bbds2 

r  d t2

2a
Differentiation of this equation with respect to t led to the expression 2 2 f°r 
the force, which yielded the desired result. r

Both Newton and Varignon employed equations that express relations between 
continuously varying magnitudes and in this sense both of their derivations may 
be said to be analytical. There were however important differences of approach. In 
Newton’s solution the ellipse with its various properties acts as a synthetic geo
metrical object, controlling the form of the derivation. In Varignon’s memoir by 
contrast the ellipse is specified by a single equation between two variables relative 
to a fixed coordinate system. The entire mathematical content of the problem is 
reduced to the study of this equation; all of the properties of the ellipse needed for 
the solution are contained in it. The solution therefore evolves through a mechan
ical application of the differential algorithm.

II.4.2 G r a p h i c a l  T e c h n i q u e s

The curve was an object of considerable mathematical and physical interest through
out the seventeenth and eighteenth centuries. A few examples from the period 
1680-1740 illustrate this point. The study of the relations that subsist between the 
lengths of curves gave rise to a theory of elliptic integrals. In work in the calculus 
of variations classes of curves constituted the primary object of study. In analytical 
dynamics attention was concentrated on determining the relation between trajec
tories and force laws. In the theory of elasticity researchers studied the shape of 
static equilibrium assumed by an elastic lamina under various loadings, as well as 
the configurations of a vibrating string.

The curve also played a fundamental and very different role in the conceptual 
foundation of the calculus. The situation is illustrated by work in problems of 
maxima and minima, an important part of the subject. In the very first published 
paper in the calculus Leibniz (1684) used his differential algorithm to derive the 
optical law of refraction from the principle that light follows the path of least 
time. He considered the points E  and C on opposite sides of a line 55 separating 
two optical media (fig. 6). It is necessary to find the point F  on 55 such that a ray 
of light travelling the path E FC  does so in the least time. The time of transit from
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Figure 6

E  to F  is equal to the product of the distance EF  and a constant equal to the 
reciprocal of the velocity in the first medium; this product Leibniz regarded as a 
rectangle of sides EF  and a given constant line r. The time from F  to C was 
likewise regarded as a rectangle of sides F C  and a line h. The total time of transit 
along E F C  is therefore equal to the sum of these rectangles. Leibniz (ibid. 1684) 
wrote: “Let us assume that all such possible sums of rectangles, or all possible 
paths, are represented by the ordinates K V  of curve W  perpendicular to the line 
G K ” (fig. 7)18. Letting x = Q F = G K  be the abscissa and w = K V  be the ordinate he 
had in fig. 7 a curve W M  representing the time of transit as a function of the 
distance x  from Q  to F. He calculated this time as an expression in x  and applied 
the differential theory he had previously introduced for curves to obtain the path 
given by the known law of refraction.

In this problem the primary object of interest is the relation between two mag
nitudes, the distance QF  and the time of transit that corresponds to this distance. 
Although there is nothing in the nature of this relation that logically entails a 
geometric interpretation Leibniz nevertheless chose to represent it graphically by 
means of a curve. He could then apply his differential algorithm which had been 
introduced earlier for the analysis of curves.

Graphical procedures had been employed by Galileo in his D iscorsi (1638) to 
relate the speed of a falling body to the time of its descent. They had become 
common in mathematical treatises by the late seventeenth century. Barrow in his 
Lectiones geom etricae (1670) represented quadrature relationships in this way. 
In his Principia m athem atica  (1687) Newton investigated the inverse problem of 
central-force particle motion. In Propositions XXXIX and XLI of book one he 
graphed the force as a function of the projection of position on the orbital axis and
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analyzed the resulting curve to arrive at expressions for the particle’s trajectory. 
Jakob Bernoulli employed graphical methods throughout his researches of the 
1690s. In his study of the elastica the relation between the restoring force and the 
distance along the lamina was superimposed in graphical form on the diagram of 
the actual physical system.

The first textbook on the differential calculus, l ’Hopital’s A nalyse des infini- 
m ent p e tits  (1696), was a systematic attempt to ground the calculus in a theory of 
curves. The way in which this was done by him and other researchers of the 
period has been documented in the historical literature (Bos 1974). Of particular 
interest for the present discussion is his treatment of problems of maxima and 
minima. These problems were explicitly formulated as ones of finding the maxi
mum or minimum ordinate of a curve. The equation of condition dy  -  0 or d y  = oo 
was deduced by considering successive values of dy  and noting that about a max
imum or minimum ordinate these values must change in sign. In several exam
ples, each of which gave rise to a relation between two variables, he used graphical 
techniques to refer the problem of finding an extremum to the consideration of an 
associated curve.

In the ninth example l’Hopital introduced a curve AEB (fig. 8) given in posi
tion and two fixed points C and F. Consider a variable point P  on the curve and let 
C P -u  and P F =z. Consider a quantity (what would later be called a function) 
composed in some definite way from the variables u and z. It is necessary to find 
the point P  so that this quantity is a maximum or a minimum. To solve this prob
lem l’Hopital joined the points C  and F  to form a base axis CF. The ordinates Q M  
and OD  give the values of the quantity corresponding to the points P  and E. In 
contrast to the primary curve AEB the curve M D  joining M  and D  is a purely

H

F igure 8
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logical construction expressing the quantity as a function of position along CF. 
L’Hopital observed that at P  “the ordinate Q M  which becomes OD  must be the 
greatest or least of all companion ordinates.” He derived using the differential 
algorithm a solution in the particular case where the quantity is equal to au + z2 (a  
constant), obtaining adu + 2 zd z  = 0 or du : d z  = 2 z : a  as the differential equation 
which defines P.

The grounding of basic calculus procedures in terms of the properties of the 
curve, and the common practice of representing relations between magnitudes 
graphically by means of curves, led to a tendency to see the early calculus as 
something that was essentially geometrical. The term “fine geometry” employed 
at the time conveys the contemporary understanding. At the most fundamental 
level the geometrical character of the early calculus conditioned how the subject 
was understood, allowing it to be experienced intellectually as an interpreted, 
meaningful body of mathematics.

II.4.3 C o o r d in a t e  S y s t e m s

It is clear that graphical methods played a role in the early calculus that would 
later be filled by the function concept. An example of this is Varignon’s 1706 
memoir “Nouvelle formation des spirales” (1704). The paper is devoted to the 
investigation of curves given in terms of polar variables. Although Cartesian ge
ometry was originally developed for oblique and orthogonal coordinates there had 
been an early interest in other reference systems. Study of Archimedes’s On sp i
rals led in the seventeenth century to the invention of transformations that corre
lated areas expressed in terms of polar quantities to ones defined in terms of 
Cartesian coordinates. In the writings of Cavalieri, Roberval, James Gregory, Bar- 
row, Newton and Jakob Bernoulli there was an interest in applying calculus-relat
ed procedures to curves expressed in polar quantities. In Varignon’s own earlier 
work in orbital dynamics (as we saw in § II.4.1) he considered expressions for the 
force that were functions of the distance from the particle to a given centre; it was 
therefore natural that polar quantities were employed to analyze the resulting 
motion.

In his 1706 memoir Varignon considered a fixed reference circle ABYA with 
centre C  (fig. 9). A “courbe generatrice” H H V  is given; a point H  on this curve is 
specified by the perpendicular ordinate GH , where G  is a point on the axis xC X  of 
the circle. The line CX  is conceived as a ruler that rotates with centre C in a 
clockwise direction tracing out a spiral OEZAEK. Consider a point E  on the spi
ral. With centre C draw the arc EG. Let c  = the circumference of the reference 
circle ABYA, x  = arc AM B, C A =a, C E = y , G H = z and A D - b  a constant line. The 
arc x  is defined by the proportion c:x=b:z. Varignon wrote what he called the 
“equation generate de spirals a l’infini” as cz=bx. By substituting the value for z
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given by the nature of the generating curve into this equation the character of the 
spiral was revealed. Depending on whether the generating curve was a parabola, 
hyperbola, logarithm, circle, etc., the corresponding spiral was called parabolic, 
hyperbolic, logarithmic, circular etc.

That one could introduce curves in a polar reference system by considering 
arbitrary relations between the radius and the pole angle was presented by Vari- 
gnon as a substantial advance. Earlier mathematical researches had concerned 
such special cases as the parabolic spiral. In Varignon’s dynamical investigations 
the trajectory was something that was logically given as part of the physical prob
lem. In the present paper by contrast the “equation” of the spiral is formulated a  
p rio r i in terms of Cartesian coordinates in the associated “generating curve”. The 
latter embodies in graphical form the functional relationship between the polar 
variables and acts as a standard model to which this relationship may be referred.

A prominent subject of Varignon’s paper, the rectification of polar curves, is of 
interest from the viewpoint of the conceptual foundations of analysis. Newton and 
Jakob Bernoulli had independently studied the path-lengths of pairs of associated 
curves, one member given in Cartesian and the other in polar coordinates19. The 
Cartesian formula for the differential element of path length is ds2=dx2+ d y2, where 
x  is the ordinate and y  the abscissa; the polar expression of the same quantity is 
ds2- d x 2+x2d&1, where x  is now the radius and Q is the polar angle. If the element 
of length is assumed to be the same along both curves (so that there respective 
lengths for a given value of x  are equal) we are led to the differential equation 
d y= x d d  relating the respective coordinate variables. It was clear for example that

the integral Vl + x 2 dx gives both the length along the parabola y -  ~  x2 as well
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as the length along the Archimedean spiral x=G. The rectification of the spiral, a 
mechanical curve, was reduced to that of the simpler and better known conic 
section, a result of considerable interest to mathematicians of the period. Varignon’s 
study of rectification consisted in large part in the extension and further develop
ment of this result.

The common use of non-Cartesian coordinates in the early calculus was in the 
computation of geometric quantities associated with the curve. Thus polar coordi
nates were employed in certain problems because they provided a suitable meas
ure of the radius of curvature of a curve. The geometrical object was given and the 
coordinate description was varied for the purposes of investigation. Varignon’s 
paper pointed in the opposite direction. Contained in his study, if only implicitly, 
was the realization that the same formula could receive distinct geometric inter
pretations, depending on the meaning assigned to the coordinate variables of the

problem. The interpretation of the formula f 4 \  + x 2 dx in the preceding para-

graph will differ depending on whether x is regarded as an orthogonal or a polar 
variable. This conclusion suggested more generally the possible existence of a 
stable analytical core for the calculus. The work of Euler that we shall we consider 
in the next section was based in large part on the elevation of this insight to an 
explicit and systematic programme of research in infinitesimal analysis.

I ll Euler’s Analysis

III.1 By the early eighteenth century symbolic methods were common in Conti
nental mathematics. In the infinitesimal calculus especially there were strong an
alytical elements in the researches of the Bemoullis, Varignon, Taylor (English, 
but an important influence on the Continent), Hermann, Fagnano, Riccati, and 
others, elements that were combined however with pervasive geometric modes of 
representation.

Euler became established as a mathematician of note during the decade of the 
1730s. He was a young man in his twenties, a member of the St. Petersburg Acad
emy of Sciences and a colleague of Hermann, Daniel Bernoulli and Goldbach. His 
interest in analysis is evident in writings from this period, including his major 
treatise on particle dynamics, M echanica sive motus scientia analytice exposita  
(1736). Although the theme of analysis was well established at the time there was 
in his work something new, the beginning of an explicit awareness of the distinc
tion between analytical and geometrical methods and an emphasis on the desira
bility of the former in proving theorems of the calculus.

The direction of Euler’s research in the later 1730s and early 1740s may be 
followed in his work in the calculus of variations, leading up to the publication in
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1744 of his M ethodus inveniendi. His investigation began from earlier results of 
Jakob Bernoulli, Brook Taylor and Johann Bernoulli. Jakob and Taylor’s researches 
were linked by an appreciation at the level of technical approach for the analytical 
solution of isoperimetric problems. By contrast, Johann’s major memoir of 1719, 
an extended exposition of his brother’s ideas, emphasized a more geometric ap
proach to the same subject. Although Euler had been Johann’s student in Basel 
his own conception of variational calculus seems to have evolved under the influ
ence of Jakob and Taylor (Fraser 1994).

III.2 The M ethodus inveniendi contained many of the advances that would be 
systematically developed by Euler in his later treatises: the function concept; the 
notion of a trigonometric function and the associated notation; and a uniform 
procedure for introducing higher-order differentials. At a deeper level the work 
expressed an appreciation for the mathematical possibilities of a more abstract 
approach to analysis.

A typical problem of the early calculus involved the determination of a magni
tude associated in a specified way with a curve. To find the tangent to a curve at a 
point it was necessary to determine the length of the subtangent there; to find the 
maximum or minimum of a curve one needed to calculate the value of the abscissa 
that corresponded to an infinite subtangent; to find the area under a curve it was 
necessary to calculate an integral; to determine the curvature at a point one had to 
calculate the radius of curvature.

The calculus of variations extended this paradigm to classes of curves. In the 
fundamental problem of the M ethodus inveniendi it is required to select that curve 
from among a class of curves which makes a given magnitude expressing some 
property a maximum or minimum. More precisely, Euler considered curves that 
are represented analytically by means of relations between x  and y  in terms of an 
orthogonal coordinate system (fig. 10). The magnitude that is to be maximized or 
minimized is expressed as a definite integral

W  = ^Z dx  (from x  = a  to x  = b), (1)

a formula that quantifies in analytical terms the given extremal property. Z is 
regarded by Euler as a “function” of x, y  and the differential coefficients (i.e., 
derivatives) p , q, r , ... of y  with respect to x. The latter are given by the relations 
dy= pdx , d p -q d x , dq= rdx , ..., a procedure for introducing higher-order deriva
tives that was Euler’s own invention20.

Near the beginning of his treatise Euler (Euler 1744, 13) noted that a purely 
analytical interpretation of the theory is possible. Instead of seeking the curve 
which renders W  an extremum one seeks that “equation” between jc and y  which
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among all such equations when introduced into (1) renders the quantity W  a max
imum or minimum. He wrote:

“Corollary 8. In this way questions in the doctrine of curved lines may be referred back to pure 
analysis. Conversely, if questions of this type in pure analysis be proposed, they may be referred to 
and solved by means of the doctrine of curved lines.

Scholium 2. Although questions of this kind may be reduced to pure analysis, nevertheless it is 
useful to consider them as part of the doctrine of curved lines. For though indeed we may abstract 
from curved lines and consider absolute quantities alone, so these questions at once become ab
struse and inelegant and appear to us less useful and worthwhile. For indeed methods of resolving 
these sorts of questions, if they are formulated in terms of abstract quantities alone, are very ab
struse and troublesome, just as they become wonderfully practical and are made simple to the 
understanding by the inspection of figures and the linear representation of quantities.So although 
questions of this kind may be applied equally to abstract and concrete quantities it is most conven
ient to formulate and solve them by means of curved lines. Thus if a formula composed of x andy 
is given, and that equation between jc andy is sought such that, the expression for y in terms of jc 
given by the equation being substituted, there is a maximum or minimum; then we can always 
transform this question to the determination of the curved line, whose abscissa isjc and ordinate is 
y , for which the formula W is a maximum or minimum, if the abscissajc is assumed to have a given 
magnitude.”21 (Euler 1744,14)

Euler’s view seems to have been that while it is possible in principle to ap
proach the calculus of variations purely analytically it is more effective in practice 
to refer problems to the study of curves. This conclusion could hardly have seemed 
surprising. Each of the various examples and problems which historically made 
up the subject had as its explicit goal the determination of a curve; the selection of 
such objects was part of the defining character of this part of mathematics. What 
is perhaps noteworthy about Euler’s discussion is that he should have considered 
the possibility at all of a purely analytical treatment.
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III.3 The main body of variational results, presented in chapters two and three, is 
formulated throughout in terms of the properties of curves. Euler’s approach is 
indicated by his derivation of the fundamental necessary condition known in the 
modem subject as the Euler (or Lagrange-Euler) differential equation. He devel
oped his derivation with reference to fig. 11, in which the line amnoz is the hypo
thetical extremalizing curve. The letters M, N, O designate points of the x-axis AZ  
infinitely close together. The letters m, n, o designate corresponding points on the 
curve given by the ordinates Mm, Nn, Oo. Let AM=x, AN=x/, AO=x" and Mm=y, 
Nn=y', Oo-y'. The differential coefficient p  is defined by the relation dy-pdhc, 
hence p=dy/dx. We have the following relations

P =

P' =

y ' - y
dx

dx

(2)

Suppose now that we are given a determinate “function” Z containing x, y and 
p=dy/dx.The integral (1) was regarded by Euler as an infinite sum of the form 
...+Z, dx+Zdx+Z'dx+ w h e r e  Z, is the value of Z at x-dx, Z  its value at x  and Z' 
its value at x+dx, and where the summation begins at x=a and ends at x=b. Let us 
increase the ordinate /  by the infinitesimal “particle” nv, obtaining in this way a 
comparison curve amvoz. Consider the value of (1) along this curve. By hypothe
sis the difference between this value and the value of (1) along the actual curve 
will be zero. The only part of (1) that is affected by varying/ is Zdx+Z'dx=(Z+Z')dx. 
Euler wrote:

F igure 11
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dZ = Mdx + Ndy + Pdp 
dZ ' = M'dx + N 'dy'+ P 'dp'

He proceeded to interpret the differentials in (3) as the infinitesimal changes 
in Z, Z', x, y, / ,  p, p' that result when /  is increased by nn. From (2) we see that dp 
and dp' equal nn/dx and -nn/dx. (These changes are presented in the form of a 
table, with the variables in the left column and their corresponding increments in 
the right column.) Hence (3) becomes

dZ =
(4)

dZ' = N ' n v - P ' nv
dx

eb
Thus the total change in Zdx equals (dZ+dZ’)dx = nv-(P+N’dx-P’). This

expression must be equated to zero. Euler set P’-P=dP and replaced N ’ by N. He 
therefore obtained 0=Ndx-dP or

N - * ? =  o
dx

(5)

as the final equation of the problem.
Equation (5) is the simplest instance of the Euler differential equation, yield

ing a necessary condition that must be satisfied by the extremalizing arc. In mod-

. . .  dfem notation it is written ——  
<9y dx Kdy' ,

= 0 . Its derivation by Euler was a major

theoretical achievement, representing the synthesis in one equational form of the 
many special cases and examples that had appeared in the work of earlier re
searchers.

The remainder of chapter two consists of the presentation of a large number of 
examples as well as the extension of the variational theory to the case where 
higher-order derivatives of y with respect to x  appear in the integrand Z of (1). In 
chapter three, mathematically the most advanced of the treatise, Euler considered 
problems where variables that satisfy certain auxiliary relations are introduced 
into the integrand Z of the variational integral (1). This investigation, which was 
motivated by examples involving the constrained gravitational motion of particles
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in resisting media, led once again to an analytical solution in the form of differen
tial equations.

III.4 The basic variational problem of maximizing or minimizing (1) involves 
the selection of a curve from among a class of curves. In the derivation of (5) the 
variables x  and y  are regarded as the orthogonal Cartesian coordinates of a curve. 
Each of the steps in this derivation involves reference to the geometrical diagram 
in Figure 11. In chapter four, however, Euler returned to the point of view that he 
had indicated at the beginning of the treatise. In the opening proposition the var
iational problem is formulated as one of determining that “equation” connecting 
two variables x  and y  for which a magnitude of the form (1) (given for the general 
case where higher-order derivatives and auxiliary quantities are contained in Z) is 
a maximum or minimum. In his solution he noted that such variables can always 
be regarded as orthogonal coordinates and so determine a curve. The solution 
then follows from the theory developed in the preceding chapters. In the first 
corollary he wrote:

“Thus the method presented earlier may be applied widely to the determination of equations 
between the coordinates of a curve which render any given expression SZdx a maximum or a 
minimum. Indeed it may be extended to any two variables, whether they involve an arbitrary 
curve, or are considered purely in analytical abstraction.”22 (Euler 1744,129)

Euler illustrated this claim by solving several examples using variables other 
than the usual rectangular Cartesian coordinates. In the first example he em
ployed polar coordinates to find the curve of shortest length between two points. 
We are given (fig. 12) the points A  and M  and a centre C; it is necessary to find the 
shortest curve A M  joining A  and M . Let x  be the pole angle A C M  and y  the radius

F igure 12 F igu re 13
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CM . Because the differential element of path-length is equal to •J d y 2 + y 2d x 2 the

formula for the total path-length is J d x ^ y y  +  p p  , where p d x = d y  and the integral 
is taken from x=0 to x -Z A C M . Here x  does not appear in the integrand Z of the 
variational integral, so that dZ = N dy+ P dp . The equation (5) gives N = dP /dx  so 
that we have dZ = d P p + P d p  and a first integral is Z + C = P p , where C is a constant.

Since Z Z  = ■Jyy + p p  we have

C + ,J(y y  +  pp) PP

V (y y + p p )
i. e.: yy

yl(yy + pp)
Const. =  b

Let P M  be the tangent to the curve at M  and CP the perpendicular from C to this 
tangent. By comparing similar triangles in fig. 12 we see that M m :M n=M C:CP.

Since Mm = d x J y 2p 2 , M n-ydx  and M C -y  it follows that CP = =?  .
h 2 + p 2

Hence CP is a constant. Euler concluded from this property that the given curve 
A M  is a straight line.

Note that Euler was completely comfortable with polar coordinates; gone is 
the Cartesian “generating curve” Varignon had employed in his investigation of 
1706 in order to introduce general curves using polar quantities. In the second 
example he displayed a further level of abstraction in his choice of variables. Here 
we are given the axis A C  with the points A  and P, the perpendicular line P M  and 
a curve ABM joining A  and M (fig. 13). Given that the area ABM P  is some given 
constant value we must find that curve A B M  which is of the shortest length. Euler 
set the abscissa A P = t, the ordinate P M = y  and let x  equal the area under the curve

from A to P. We have d x - y d t  and the variational integral becomes I d y 1 + d x 2

yy
Because x  does not appear in the integrand we obtain as before the first integral 
Z = C + p P . Substituting the expressions for Z and P into this integral we obtain

J jl+ y y p p ) ypp

J ( \  + yypp)y
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INTRODUCTION

Time and again, philosophy, in trying to untangle the issues surrounding the an
alytic-synthetic distinction, has doubted that such a distinction can significantly 
be drawn at all. We think, in face of the varied and age-old discussions on it, that 
such reflections amount only to one more documentation of the tenacity of the 
problems behind this distinction. We could even be justified in promoting the 
thesis that this distinction refers to the complex relationship between the universe 
of meanings and the universe of objects and thus concerns each domain of human 
thinking where a form of objectivity is pursued.

If one accepts such a thesis, one will find it very natural that this distinction 
has so frequently occurred in the history of mathematics and in philosophical 
discussions about mathematics. Since Plato, we may encounter quite a number of 
interpretations of the ideas of analysis and synthesis, which are related in one 
sense or other with mathematical thought. Mathematicians of all ages have ap
pealed to them in order to distinguish different forms and styles in their argumen
tation and expositions. Philosophers have referred to them for clarification of the 
specific character of mathematics in its relations to knowledge in general.

In the present volume various instances of the analytic-synthetic distinction 
are discussed in relation to the history and philosophy of mathematics, and some 
new perspectives about possible interpretations and consequences are suggested.

Let us briefly recall a number of interpretations of the notions of analysis and 
synthesis which played a role in history with respect to mathematics.
-  The “logical” interpretation. Analysis proceeds from the general to the particu
lar; synthesis advances in the opposite direction.
-  The “structuralist” interpretation. Analysis is conceived as the decomposition of 
a complex construction given as a whole, in order to reduce it to its elementary 
components. Synthesis is accomplishment of the complex construction, starting 
from its elements.
-  The “methodological” interpretation. Analysis proceeds on the level of the ge
neral only; synthesis is concerned with the particular, considering the general in 
the particular or even individual.
-  The “gnoseological” interpretation. A judgment, or more generally a proposi
tion, is synthetic, if it provides new knowledge, otherwise it is analytic.
-  The “mereologic” interpretation. A predication is analytic if it assigns a certain 
entity to the whole of which it is a part; it is synthetic if this entity is connected to 
a different and independent (even more general) entity.

IX
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-  The “semantic” interpretation. A true statement is analytic if its truth just de
pends on the meaning of the terms occurring in it (and it is then always true as 
long as these meanings do not change). It is synthetic if its truth depends on the 
particular character of the model to which it refers (and it is then true in some 
models and false in others).
-  The “syntactical” interpretations. A sentence is analytic if it is logically deduced 
(or can be logically deduced) from a certain class of axioms, satisfying certain 
conditions. If not, it is synthetic (except if its negation can be logically deduced 
from the same axioms). The different interpretations of such a class obviously 
differ according to the conditions which the axioms have to satisfy. You may re
quire them, for example, to be sentences expressing true analytic statements ac
cording to the semantic interpretation of analyticity, or sentences expressing true 
statements which are true only because of the meaning of the logical constants 
occurring in them, or even, that they are “logical axioms”, or finally that they are 
simply accepted as starting points of deductive reasoning.
-  The “phenomenological” interpretation. By this, analysis and synthesis are un
derstood to be different stages or moments or modalities of mental activity. Syn
thesis is just will, while analysis is deliberation, the complex research which 
prepares and justifies synthesis.
-  The “genetic” interpretation. Analysis proceeds from ideas which are given as 
such in a certain stage of the evolution of reason to the original ones from which 
these ideas originate; synthesis composes or connects the original ideas in order to 
realize the evolutionary process: it is just a figure of the evolution of reason. 
-T he  “representationalist” interpretation. Analysis presents something through 
its specific details; synthesis expresses some essential features or characteristics 
of it.
-T he  “pragmaticist” interpretation. According to this interpretation analytical 
reasoning depends upon associations of similarity, synthetical reasoning upon as
sociations of contiguity.
-  The “programmatic” interpretation. This is expressed in the ideal of the En
lightenment to organize all knowledge in terms of an “analytic” system. Analysis 
is then the aim of a program of classification of knowledge, according to a genet
ic, historical and logical order. It is not concerned with problems of existence, 
since this is rather the problem of synthesis. Synthesis exhibits contents or being, 
without caring for their concepts and it remains deaf when analysis does not fol
low.
-  The “directional interpretation”. In mathematical reasoning or proof, synthesis 
proceeds from the given or known to that which we have to deduce or construct in 
order to solve a certain problem or prove a certain theorem; analysis, in contrast, 
proceeds from the unknown as if it were known, to its possible antecedents until

INTRODUCTION Xl

arriving at premises we recognize to be true, proven or known. These premises 
then serve as the basis of synthesis.
-  The “configurational” interpretation. Again in mathematical reasoning or proof, 
synthesis determines the consequences of certain premises, by producing a tree of 
successive and related deductions; analysis identifies the functional relations ex
isting in a certain specified domain of known or unknown entities, by transform
ing them into a functional configuration.
-  The “logico-theoretical” interpretation. A mathematical theory is synthetic if its 
objects are constructs, being introduced by recursive reasoning, or simply by suc
cessive descriptions of the repeatable conduct that lead to their exhibition. It is 
analytic, if its objects are characterized by specifying certain conditions or proper
ties they have to satisfy or share either individually or together as a whole system 
or domain.
-  The “historico-theoretical” interpretation. A mathematical theory is synthetic, 
if it refers to the classical geometrical objects or arguments or even to the classical 
theories of proportion, of numbers or magnitudes. It is analytic if it considers its 
objects as arguments of certain equations (rather than proportions) or operations, 
or even as functions.
-T he “linguistic” interpretation. A mathematical arguments or the formulation 
of a mathematical problem or proof is synthetic if it uses the language of classical 
geometry and of the theory of proportions. It is analytic if it uses the language of 
equations, functions or operations.
-  The “disciplinary” interpretations. A version of it is typical for eighteenth cen
tury mathematicians, according to whom analysis is a theory in terms of which all 
of mathematics can be formulated. A modem version of this interpretation states 
that analysis is a branch of mathematics, variously the mathematical theory in
cluding calculus, or the mathematical theory of the continuum, or the domain of 
all the theories where topological arguments, conditions or problems occur; etc.

Though it is not the intention of the following presentations to give a classifi
cation or even an account of the different ways in which mathematicians and 
philosophers have addressed analysis and synthesis or have discussed the analyt
ic-synthetic distinction, the greater part of the previous interpretations are direct
ly or indirectly discussed in the different articles of the present volume. Other 
interpretations, less customary or not as explicitly advanced in the history of math
ematics and philosophy, are also presented or evoked. Finally, in certain cases, 
new interpretations are proposed.

So extended an inquiry is motivated by two convictions. First, behind such a 
wide variety of interpretations a deep unity in meaning and attitude seems to 
subsist, an invariant kernel, which justifies the use of the same terms to express 
different distinctions or views. Second, because of this unity and by searching for
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it, the discussion of the different interpretations of the analytic- synthetic distinc
tion with regard to mathematics, becomes a Konigsweg for tackling what we see 
as the essential problem mathematics presents for historical and philosophical 
considerations, the problem of objectivity as a form of knowledge.

It appears to us that the connections between this fundamental question and 
the analytic-synthetic distinction become particularly pertinent to the philosophical 
and methodological discussions about mathematics after 1800. All the different 
positions in their respective peculiarities, as characterized above, have since then 
been more or less overshadowed by the contrast between pure and applied mathe
matics. Expressed in philosophical terms: all kinds of foundationalism became 
obsolete and at the same time issues of objectivity of knowledge became ever more 
pressing. It seems as if the general spirit of the problems that was expressed by the 
terms “analysis” and “synthesis” can now be summarized by what may be called 
the question of philosophical realism (as opposed to nominalism as well as social 
individualism).

Towards the end of the eighteenth century a new understanding of cognition, 
of science and scientific development as well as of philosophy, emerged. More 
than ever before, the sciences were faced with the inevitability of the complexity 
of experience. Even though quantitative extensions of knowledge had always led 
to changes in scientific methods, techniques and theories, this increase in knowl
edge accelerated to such a degree that the capacity of the traditional information 
processing technologies, based on the spatial organization of knowledge seemed 
exhausted. This led to an estrangement of the natural sciences from the mathe
matically dominated spirit of the past and it also led to new developments in 
mathematics itself.

Since the turn to the nineteenth century a fundamental transition from think
ing in substances (being the subjects of predication) towards relational thinking 
has occurred. Science no longer aimed at phenomena but at the form of things, 
and theories became realities sui generis. It became just as obvious, however, that 
every pertinent piece of theoretical knowledge, being part of some idea or model 
of the real world, will in some way or other take into account that the person 
having the knowledge is part of the system this knowledge represents. All knowl
edge presupposes a subject and an object and relations between these two, (which 
are established by the subject’s activity). And as the multiplicity of subjective 
perspectives grew with the increasing division of labor, it could no longer be over
looked that the subject is not only the dynamical source of knowledge and change, 
but also its object or task. In as much as all knowledge is concerned with either of 
these aspects of the subject’s role, it has a distinctly bipartite structure, which may 
be represented in various ways; for instance, in terms of the well-known comple
mentarity of means and objects of human activity.
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This complementarity of means, that is signs, and objects now seems to lie at 
the heart of the analytic-synthetic distinction.

The present volume offers various suggestions to substantiate such a thesis.

We wish to acknowledge our gratitude to the following persons, without whom 
this project could not have been completed: Lydia Bauer, Michael Detlefsen, An
ita von Duhn, Michael Hoffmann, Michael Mose, Marianne Murphy, Gloria Origgi 
and Klaus Peters.

The financial assistance from the IDM / University of Bielefeld is greatly ap
preciated. In the process of editing this volume we have also received indispensa
ble help from the Series Editor and from the Publisher's side. We feel particularly 
grateful to Evelien Bakker and Annie Kuipers.

Michael Otte 
Marco Panza



I. History



GIORGIO ISRAEL

THE ANALYTICAL METHOD IN 

DESCARTES’ GEOMETRIE*

To describe La Geometrie as an “essai’ of the Cartesian method, or as the appli
cation of the rules given in Discours de la methode, has paradoxically contributed 
to an undervaluation of existing connections between this brilliant and famous 
“essai” and Descartes’ philosophical work. In a way this is a paradox, considering 
the fact that this description of La Geometrie underlines the dependency of Des
cartes’ only complete mathematical treatment on the method to follow “pour bien 
conduire sa raison et chercher la verite dans les sciences” and on the metaphysical 
principles on which it is based. Nevertheless the connection between La Geometrie 
and the Cartesian method thus established appears weak. Because of this unsatis
factory situation, the essays dedicated to the study of this text appear to be split 
into “philosophical-humanistic” analyses and “scientific” analyses.

Let us try to clarify the previous statement, beginning with the reasons why 
the connection between La Geometrie and the rules of Discours de la methode 
appears weak. The fundamental reason lies in the vagueness of the methodologi
cal rules expressed in the Discours and summarized in the four famous rules 
governing scientific thought, even if Leibniz’s severity seems excessive when he 
compares them with common recipes and sums them up in the almost obvious 
rule: “sume quod debes, operare ut debes et habebis quod optas” (Leibniz GP, IV, 
329). Nevertheless it is difficult to deny that those who aim at establishing a tight 
connection between the rules of the Discours and the contents of La Geometrie, 
by trying to demonstrate in some way that the latter represent an application of the 
first, as if Descartes had endeavoured to obtain the results of La Geometrie as a 
direct application of his methodological rules, would be disappointed, and achieve 
little more than the impression of a vague link. The situation appears different, 
however, when the whole of Descartes’ work is considered, and not only the Dis
cours. Then, particularly when referring to the Regulce ad directionem ingenii, it 
is possible to trace a much tighter connection between Descartes’ method and the 
contents of La Geometrie, and at the same time to examine some historiographi
cal questions on viewing Descartes’ mathematical work from a different angle. 
The aim of this article is to attempt to highlight these connections and to briefly 
consider the historiographical questions mentioned above. 3

3
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As an introduction we will use some observations by E.J. Dijksterhuis, which, 
even though rather general, emphasize the existing link between La Geometrie 
and the Regulce. Dijksterhuis observes that

“[...] if you really want to get to know Descartes’ method, you should not read the enchanting 
Discours, which is more a causeriethm  a treatise, but rather the Regulce ad directionem ingenii 
[...]. As a matter of fact, the Regulce contain an exposition of the so-called Mathesis universalis, 
which Descartes always considered one of his major methodological discoveries and which he 
hoped to see applied in all natural sciences.” (Dijksterhuis 1961,542)

Further on he continues:

“The essay La Giomitrie, in which Descartes presents his new discovery, fully deserves [...] to 
be described as a demonstration of the Cartesian method; yet it does not contain an application of 
the four rules of theDiscours, to which this essay constitutes an appendix. In fact, the true Discours 
de la mithode is set up by the Regulce ad directionem ingenii.” (Dijksterhuis 1961,543)

Dijksterhuis identifies this methodology in the Mathesis universalis and con
sequently the Cartesian ideal in the process of making science mathematical, which 
establishes a central role for La Geometrie as the first step of this process and as 
a model for its realization. Nevertheless, the way in which he characterizes the 
Mathesis universalis and the methodology he derives from it is not only vague but 
also misleading, in a way typical of many ambiguities in historiography dealing 
with these topics.

First of all Dijksterhuis completely identifies the Mathesis universalis with 
the “algebra speciosa” of Viete: consequently, Descartes’ ideal would be nothing 
but the systematic “application of algebraic methods” to all science. In this way 
La Geometrie is nothing but the application of algebraic methods to geometry1, 
which, in part, is true, but in our opinion insufficient to describe the characteristic 
features of Cartesian geometry. Secondly, Dijksterhuis identifies the deductive 
Cartesian method with the logical deductive method of modem mathematics, ex
plicitly referring to the axiomatic method, which constitutes its complete codifi
cation2.

In reality, these two comparisons are strictly correlated so that the discussion 
of one leads directly to the discussion of the other. We will start by commenting on 
the second comparison, recognizing that it is misleading, which a brief reading of 
La Geometrie demonstrates. As will be clarified later, the Cartesian deductivism 
clearly has “constructivistic” character: the only kind of reasoning allowed is that 
which will give an explicit construction of the entity under investigation or the 
result being demonstrated. Consequently any form of reasoning ab absurdo is 
excluded in Cartesian mathematics; moreover the entities all have to be construct- 
ible, which makes it impossible to define them in a conventional or axiomatic 
way. Furthermore, the admissible deductive chains must be finite; consequently, 
also the rudimentary forms of inductive reasoning in Descartes’ work differenti
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ate from modem mathematical inductive reasoning which, by means of a finite 
number of steps, makes it possible to pass from the finite to the infinite. Thus 
Cartesian deductivism is “constructivistic” and “finitistic”, i.e. far from, if not the 
opposite of, the “logical-formal” deductivism of modem mathematics.

Descartes seems conscious of the particular nature of his method and its posi
tion in comparison with past traditions in mathematics. When Descartes criticiz
es the “vulgar mathematics” (Descartes AT, X, 376 and LR, 34)3 of his time, he 
does not only refer to a sort of intuitive-experimental knowledge, in which the 
validity of the discoveries is particularly uncertain because of the frailty of the 
method used to obtain them4; he also criticizes the deductivism of classical math
ematics, in particular that of the “ancients” and the synthetic method on which it 
is based (Descartes AT, X, 376 and LG, 34)5. Therefore the “analytical” method 
he proposes is neither an intuitive procedure, which relies on the senses, nor an 
abstract formal deductive procedure, which is unable to account for the way in 
which the discovery was reached—similar to the one characterizing the forms of 
reasoning of ancient mathematics6.

The difference between the analytical and synthetic methods and Descartes’ 
evaluations of them are shown in an extremely clear manner in a passage of the 
“answers” to the “second objections” to the Meditationes1. Here Descartes points 
out that in the works of the geometer the methods of demonstration are twofold: 
“l’une se fait par 1’analyse ou resolution, et 1’autre par la synthese ou composi
tion” (Descartes 1647, 387 and AT, VII, 155) and he continues:

“L’analyse montre la vraie voie par laquelle une chose a 6t6 m6thodiquement invent6e, et fait 
voir comment les effets dependent des causes; en sorte que, si le lecteur la veut suivre, et jeter les 
yeux soigneusement sur tout ce qu’elle contient, il n ’entendra pas moins parfaitement la chose 
ainsi d6montr6e, et ne la rendra pas moins sienne, que si lui-meme l’avait invent6e.

Mais cette sorte de demonstration n ’est pas propre & convaincre les lecteurs opiniatres ou peu 
attentifs: car si on laisse 6chapper, sans y prendre garde, la moindre des choses qu’elle propose, la 
n6cessit6 de ses conclusions ne paraitra point; et on n ’a pas coutume d’y exprimer fort amplement 
les choses qui sont assez claires de soi-meme, bien que ce soit ordinairement celles auxquelles il 
faut le plus prendre garde.” (Descartes 1647,387-388 and AT, VII, 155-156)

Therefore the value of the analytical procedure lies in the connection with the 
“true way”, which has made the invention possible, and in the fact that it shows 
the links of causal dependence: this means that it derives from the “constructive” 
nature of this method, even if this advantage can be easily lost, if the chain linking 
the causes and the effects is interrupted, however slightly. The synthetic method 
proceeds in a different way:

“La synthdse, au contraire, par une voie tout autre, et comme en examinant les causes par leurs 
effets (bien que la preuve qu’ elle contient soit aussi des effets par les causes), d6montre & la v6rit6 
clairement ce qui est contenu en ses conclusions, et se sert d ’une lungue suite de definitions, de 
demandes, d ’axiomes, de th6or£mes et de probldmes, afin que, si on lui nie quelques consequences, 
elle fasse voir comment elles sont contenues dans les antecedents, et qu’elle arrache le consentement
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du lecteur, tant obstind et opiniatre qu’il puisse etre; mais elle ne donne pas, comme l’autre, une 
entidre satisfaction aux esprits de ceux qui cfesirent d ’apprendre, parce qu ’elle n ’enseigne pas la 
nfethode par laquelle la chose a 6te invenfee.” (Descartes 1647,388 and AT, VII, 156)

Descartes’ description of the procedure of the synthetic method clearly refers 
to the geometry of the ancients and, in particular, to the model of Euclid. Differ
ing from the analytical method, this procedure gains the reader’s consent, using 
procedures of “coercion” typical of formal logic8. Nevertheless, Descartes criticiz
es the absence of constructivism in it: it “does not teach the method by which the 
thing has been invented”9. The analytical method, on the contrary, has this great 
advantage, which was also recognized but kept “secret” (Descartes 1647, 388 and 
AT, VII, 156)10 by the ancients, and which Descartes, brought to light and exposed 
as a method.

The difference between the analytical and the synthetic method is discussed by 
Descartes as an answer to a concluding remark of the Seconde obiezioni to the 
Meditationes “collected by Mersenne on the basis of remarks from various theolo- 
gicians and philosophers” (Descartes 1647, 359), which invites Descartes to pre
cede “more geometrico” in his exposition:

“[...] ce serait une chose fort utile, si, & la fin de vos solutions, aprts avoir pfemidrement avance 
quelques definitions, demandes et axiomes, vous concluiez le tout selon la m6thode des georndtres, 
en laquelle vous etes si bien verse, afin que tout d ’un coup, et comme d ’une seule illade, vos 
lecteurs y puissent voir de quoi se satisfaire, et que vous remplissiez leur esprit de la connaissance 
de la divinife.” (Descartes 1647,365 and AT, VII, 128)

On the one hand Descartes’ answer makes clear in which sense he believes to 
have to accept the invitation to precede “more geometrico”— i.e. according to the 
analytical and not the synthetic method; on the other hand, as he deals with met
aphysical matters, he endeavours to show the particular inadequacy of synthesis 
in these kinds of questions, recognizing that synthesis appears more acceptable in 
geometrical problems. In specifying this aspect he touches on an issue that is 
particularly interesting for our topic: he asks himself why synthesis can “be useful 
when put after analysis” (Descartes 1647, 388 and AT, VII, 156). This derives 
from the nature of the basic notions of geometry, which, since they are not in 
contradiction with the senses, are accepted unanimously:

“Car il y a cette difference, que les pfemferes notions qui sont supposdes pour demontrer les 
propositions g6om6triques, ayant de la convenance avec les sens, sont revues facilement d ’un 
chacun; c ’est pourquoi il n’y a point 1& de difficult^, sinon k bien tirer les consequences, ce qui se 
peut faire par toutes sortes de personnes, meme par les moins attentives, pourvu settlement qu’elles 
se ressouviennent des choses pfecedentes; et on les oblige aisement £ s’en souvenir, en distinguant 
autant de diverses propositions qu’il y a de choses & remarquer dans la difficult^ propofee, afin 
qu ’elles s 'arretent s£pafement sur chacune, et qu ’on les leur puisse citer par aprds, pour les avertir 
de celles auxquelles elles doivent penser.”11 (Descartes 1647,388-389 and AT, VII, 156-157)
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Therefore it is obvious that the axioms of geometry are not only far from being 
conventional but also only acceptable as far as their contents of truth are “clear” 
and “distinct”: only for this reason the synthetic method can be useful when intro
duced in geometry, naturally “apres l’analyse”. Thus, once again the superiority 
and priority of the analytical-constructive method over the synthetic-formal one is 
emphasized. This has led to two errors: the first one to believe that the use of 
axiomatic procedures is at the centre of the Cartesian “revolution” in mathemat
ics—with Descartes actually dissociating himself from these procedures, even if it 
is in a “form of contents” typical of the geometry of the ancients; the second one to 
speak generally of the central position of the “deductive method” (evoking im
proper associations with the deductive logics of modem mathematics) without 
specifying and clearly underlining the “constructive” character of this method in 
Descartes’ vision. It is necessary, however, to give an exact definition of this “con
structivism”. For this purpose it will be useful to re-examine the Regulce in order 
to show how it can be directly translated into the concept of “geometric construc
tion” and into a precise definition of the forms of such a construction. This leads 
Descartes to a critical re-examination of the concept of “constructibility” of a 
geometric figure as it was defined by previous geometry and to the introduction of 
a new interpretation of such a concept. The Cartesian classification of the curves— 
which can be considered Descartes’ most important contribution to mathemat
ics—is the consequence of such a re-examination and re-definition. In the end the 
Cartesian classification of the curves is a direct consequence of the general princi
ples of the Cartesian analytical method, which are unfolded in the Regulce.

Before concentrating on this more specific analysis, we have to make some 
general observations.

We have tried to show that an accurate explanation of the meaning which 
Descartes attributes to the terms “analytical” and “synthetic” is necessary to fully 
understand the method he follows in his mathematical arguments. Therefore it is 
also necessary to give an exact explanation of these terms with respect to the 
context of Cartesian thought and to their prevalent use at that time, avoiding any 
reference to a non-specific and thus debatable “general meaning” of these terms 
in the history of mathematics. This kind of use, uncritical and unrelated to time, is 
not infrequent in historiography—particularly the one manifesting itself as a kind 
of by-product of research—and has been the source of quite a few misunderstand
ings. A typical manifestation of the cumulative historiographic analysis is the 
incomprehension—or at least the negligence—of the changes in meaning in sci
entific terminology, subtle transformations of meaning which occur silently in the 
course of history, below the unchanged surface of its formal appearance. Marc 
Bloch, having observed how much the term “history” has changed its meaning in 
the course of 2000 years, has given a sharp comment which should be read, re
read and remembered by the historian as a precious memento: “Si les sciences
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devaient, a chacune de leurs conquetes, se chercher une appellation nouvelle—au 
royaume des acad6mies que de baptemes, et de pertes de temps!” (Bloch 1964,1). 
Yet historians of science often forget this rule and venture to analyse a context of 
scientific concepts by taking a meaning for granted that is determined by recur
rent terms which have nothing to do with that very context and that is almost 
always related to a more recent context. In this way the historic specificity of the 
term, i.e. its meaning in relation to the context in which it is used, is changed, 
with rather negative consequences for a correct understanding of the subject. The 
use (and abuse) of the term “analytical geometry” in historiography is an evident 
example of this: the use of the term recurrent in the handbooks of contemporary 
mathematics or at least of the end of the 19th century has been widely accepted 
without any closer examination. In our opinion, this point of view is completely 
inadequate for the specific meaning of “analytical” geometry in Descartes’ work.

Both, the terms “synthetic” and “analytic” have a completely different mea
ning in Descartes’ work than in modem and contemporary mathematics. Since 
the times of Descartes, the modem meaning of the term “synthetic” (i.e. the meaning 
implied from the second half of the 19th century onwards) has undergone radical 
changes: what was essential in the ancient interpretation (i.e. the very demonstra
tive procedures effectively described by Descartes in the Meditationes) was put 
last and the aspect of the intuitive meaning of the discovery first12. Yet the chang
es undergone by the term “analytic” are even more complex. No doubt we have to 
speak about a sequence of slight alterations of meaning during a long period of 
historical development. The history of these changes should be seen within the 
framework of the history of changes in meaning of the concept of analysis. Nei
ther of these ambitious projects will be carried out here and we will limit ourselves 
to pointing out some of the historical layers that cover the Cartesian conception of 
“analytical” geometry. The marked constructive nature of analysis in Cartesian 
geometry—something nonexisting in the modem meaning of the term—should 
be an indication of the occurrence of possible historical sedimentation.

Let us now look at historiography (particularly but not solely at the sector of 
historiography that is linked with research, referred to above). We may even be 
fortunate enough to witness an ongoing attempt of “concealment”! Actually, 
J. Dieudonne, after having listed “analytical geometry” among those “pseudo
sciences” which “it remains to hope we can forget the existence and even the 
name of” (Dieudonn6 1968, 6), continues like this: “Furthermore it is urgent to 
free the term ‘analytical geometry’, which, no doubt, is best to indicate one of the 
most vivid and profound theories of modem mathematics, i.e. the one of analyti
cal varieties, compared to ‘algebraic geometry’, which is the study of ‘algebraic 
varieties’” (ibid., 6). In another piece of writing (where the “liberation” has al
ready taken place) Dieudonne clearly explains the contents which he wants to free 
the term “algebraic geometry” from:
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“It is absolutely intolerable to use ‘analytical geometry’ for linear algebra with coordinates, still 
called ‘analytical geometry’ in the elementary books. Analytical geometry in this sense has never 
existed. There are only people who do linear algebra badly, by taking coordinates and this they 
call analytical geometry. Out with them! Everyone knows that analytical geometry is the theory of 
analytical spaces, one of the deepest and most difficult theories of all mathematics.”(Dieudonn6 
1970, 140)

It is not our aim to discuss this kind of historical destructions (which are 
perpetrated by one of the most authoritative voices not only in mathematics but 
also in the history of mathematics of our time).

Certainly analytical geometry in the sense of “coordinate geometry” has exist
ed. It is important to remember that the term “analytical geometry” did not first 
appear in Descartes but in the Introduction of the first volume of Lacroix’ Traite 
du calcul differentiel et du Calcul integral in the 1797 edition (Lacroix 1797-1798). 
Lacroix explains that his point of view differs completely from the traditional 
constructive one:

“En £cartant avec soin toutes les constructions g6om£triques j ’ai voulu fairs sentir au Lecteur 
qu’il existoit une manidre d ’envisager la g£om6trie, qu’on pourrait appeler ‘G£om£trie analytique’, 
et qui consisteroit & d£duire les propri6t6s de l ’6tendue du plus petit nombre de principes, par des 
mlthodes purement analytiques, comme Lagrange l ’a fait dans sa Mdchanique & l ’6gard des 
propri6t£s de l’6quilibre et du mouvement.” (ibid., I, xxv-xxvi)

In spite of recalling Lagrange, Lacroix admits that it was Monge who first 
presented “sous cette forme l’application de l’Algebre a la Geometrie” (ibid., I, 
xxv-xxvi). Actually, his homonymous treatise (Monge and Hachette 1802) still 
uses this terminology—“application of algebra to geometry”—which, on one hand, 
conveys the idea of an “ancillary” use of algebra in geometry, on the other hand 
suggests a one-sided relationship between the two disciplines in one direction 
only: the use of algebra in geometry as an instrument leads to the need to justify 
algebraic techniques in terms of the main subject—geometry—and consequently 
the translation of algebraic operations into geometrical constructions (i.e. from 
geometry to algebra), while the opposite (from algebra to geometry) does not ex
ist. This is exactly Descartes’ point of view—which justifies the definition of his 
approach as “application of algebra to geometry”—but it is not Monge’s point of 
view, as revealed by Lacroix:

“Qu’on ne croie pas qu’en insistant ainsi sur les avantages de 1’Analyse algdbrique, je veuille 
faire le procSs & la Synthase et d l’Analyse g6om£trique. Je pense au contraire qu’on n£glige trop 
aujourd’hui l’6tude des Anciens mais je ne voudrais pas qu’on melat, comme on le fait dans 
presque tous les ouvrages, les considerations g6om£triques avec les calculs alglbriques; il s£roit 
mieux, ce me semble, que chacun de ces moyens fQt port£ dans des trait£s s£par£s, aussi loin qu’il 
peut aller et que les r£sultats de l’un et de l’autre s ’6clairassent mutuellement en se correspondant 
pour ainsi dire, comme le texte d ’ un livre et sa traduction.” (Lacroix 1797-1798,1, xxv-xxvi)
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Therefore Lacroix’ merit is to have given a new name (which also contains an 
element of continuity in the use of the term “analytical”) to a turning-point in 
geometrical thinking carried out by Monge in the first place. This turning-point 
consists in having given autonomy to the two disciplines—algebra and geome
try—transforming their relationship into a form of specular correspondence. Even 
more clearly Monge pointed out in his lectures on descriptive geometry held at the 
Ecole Normale of the year III that the student had to

“[...] se mettre en 6tat d ’une part de pouvoirecrire en Analyse tous les mouvements qu’il peut 
concevoir dans l ’espace, et de l ’autre de se r6presenter perp6tuellement dans 1’espace le spectacle 
mouvant dont chacune des operations analytiques est i ’6criture.”13(Monge LEN, 367 and 1799,
62)

Algebra is no longer a mere instrument to obtain geometrical constructions in 
an easy way: it offers a translation of the “book” of geometry which one can work 
with; and, vice versa, from the translation it is possible to return to the original 
text. Therefore every geometrical problem is susceptible of an algebraic treatment 
that permits reasoning in a somewhat stenographic abbreviated form, which, in 
the long run, is more powerful than the classic synthetic reasoning; however, a 
geometrical translation exists of every algebraic formulation. So, it is possible to 
obtain from every geometrical locus the algebraic equation representing it, which 
can be manipulated with the autonomous methods of algebra, and vice versa a 
geometrical locus can be obtained from a given equation.

This specularity has been the essence of modem analytical geometry from 
Monge and Lacroix onwards. In this concept coordinate geometry no longer plays 
an accessory or technical but a central role: the role of mediator between algebra 
and geometry, a kind of dictionary to translate from one text to another, indicating 
the correspondence between geometrical locus and equation and vice versa. There
fore it is understandable how, in the modem meaning, the notion of analytical 
geometry has been confounded with the one of “coordinate geometry”, exactly 
because of the central position of this method in guaranteeing the bi-univocal 
relationship between the two disciplines.

Referring to this interpretation of analytical geometry as the study of the prop
erties of extension based on the recognition of the specularity between algebraic 
and geometrical operations and on the consequent central position of coordinate 
geometry we are led back to Fermat and not Descartes. On this point C. B. Boyer 
is completely right, when he observes that it is in Fermat’s work—precisely in his 
short treatise entitled Ad locos pianos et solidos isagoge (Fermat TH, I, 4, 91- 
110)—that “the fundamental principle of analytical geometry is to be found in a 
precise and clear language” (Boyer 1956, 218). Boyer is also right when he ob
serves that Fermat’s phrase stating that a locus exists whenever there are two 
unknown quantities in a final equation, since the extreme of one of them describes
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a straight line or curve, “represents one of the most significant statements in the 
history of mathematics” (Boyer 1956, 190). This is certainly most important as 
regards the notion of analytical geometry of Monge and Lacroix mentioned above: 
actually, Fermat puts forward the principle of bi-univocal correspondence between 
algebra and geometry in a rather explicit way, when he admits that beginning 
with an algebraic equation there can be a geometrical locus—a really revolution
ary idea for his time. The geometric constructions have lost their central position 
at a single blow: it is no longer necessary that a curve can be constructed in order 
to be admissible—which has been fundamental for the priority of geometry over 
algebra—the curve exists only because the equation is given, it is not defined by a 
construction but as “the locus of the points that satisfy the equation”. The central 
position of coordinate geometry follows as an obvious necessity. The fact that 
Fermat’s approach is more “modem” than Descartes’ has been correctly observed 
for some time (Taton 1951,102). Descartes does not admit this vision of geomet
rical loci at all, nor does he accept the specularity between algebra and geometry 
or renounces the central position of the concept of construction. Finally, coordi
nate geometry has a purely technical and accessory role in his work.

At this point some historiographical difficulties arise. Fermat’s point of view, 
though apparently more modem, was certainly not the more influential one: it is 
well-known that the 17th and part of the 18th century was dominated by the Car
tesian geometrical conception; and even when the mathematics of the Enlighten
ment period and the time of the French Revolution—Lagrange, Monge and Lacroix 
in particular—distanced itself from the Cartesian tradition this was done silently, 
underlining in a clear but implicit way the breaking with this tradition. Monge’s 
use of the expression “application of algebra to geometry” reminds us of the con
tinuity with the Cartesian tradition. On the contrary, Lacroix’ naming (the intro
duction of the term “analytical geometry”) equals a more explicit separation, but 
because of the apparent character of continuity, due to the common use of the term 
“analytical”, may not have sufficiently drawn the historians’ attention. This dif
ferent meaning attributed to the concept of analysis, however, is the very basis of 
the big difference between the Cartesian vision and the “modem” use of “analyt
ical geometry”.

It has to be pointed out that the choice of examining the problem of the birth of 
analytical geometry according to a view typical of a “cumulative” historiogra
phy—and thus starting from the modem notion of analytical geometry14—has led 
to serious difficulties and has caused contradictions among numerous historians. 
So, Gino Loria does not conceal the sense of confusion that overcomes the histo
rian when he tries to determine the birth of analytical geometry:

“All those who long for knowing the work which is the starting point of literature on coordinate
geometry experience a great disappointment since Descartes’ La Giomitrie differs from a modem
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treaty of analytical geometry infinitely more than do two expositions, one ancient, one modem of 
any other mathematical discipline.” (Loria 1924,777)

He continues like this, providing a perfect model of cumulative historiography:

Descartes (and this also holds true for Fermat) considered the new discipline a simple meta
morphosis in the geometry of the ancients from the influence of algebra [...]; so the comparison of 
the author of theDiscours de la mithode with Christopher Columbus, who took the conviction to 
have discovered a new world to his grave, is evident; this state of being blind was transmitted from 
the Supreme to his immediate disciples (Loria 1924,777)

Taton reveals the differences between Fermat and Descartes more skillfully, 
characterizing the technical aspects of Cartesian geometry quite well:

“[Descartes] avait confu cette science comme ‘une application de I’algdbre k la g6om6trie’, nom 
qu’elle conservera d ’ailleurs jusqu’au pr6mi£res d6cadaes du XIX sidcle et que Monge lui-meme 
adoptera, c ’est-it-dire comme une technique de structure algSbrique, adapt6e k la resolution des 
probldmes d ’essence g£om6trique et sp£cialement des probldmes des lieux & la manidre 
d ’Apollonius. Ainsi, apparait-elle, non pas comme une branche autonome de la science, mais 
plfltot comme un outil permettant de r6soudre de nombreux probldmes g6om6triques qui n ’entrent 
pas dans le champs normal d ’application directe des propri6t6s classiques tirdes des Elements 
d ’Euclide. Les courbes ne s’y trouvent pas dtudides pour elles-mdmes d ’aprds leurs equations, 
mais 1’intdret se porte quasi exclusivement sur celles qui apparaissent comme solutions de probldmes 
& rdsoudre.” (Taton 1951,101)

Most important in the historiography of analytical geometry remains the work 
of C. B. Boyer (Boyer, 1956), whose merit was to clarify the difference between 
Fermat’s and Descartes’ point of view. As Taton, he recognizes that Descartes’ 
geometry is more an application of algebra to geometry than analytical geometry 
in the sense we understand it today and calls Chasles’ definition of analytical 
geometry as a “proles sine matre creata” (Chasles 1875, 94) “unfortunate”. And, 
after having observed that Cartesian geometry has now become a synonym of 
analytical geometry, but that Descartes’ fundamental goal is quite different from 
the one of modem handbooks, he offers the following characterization of Carte
sian geometry:

“Descartes was not interested in the curves as such. He derived equations of curves with one 
purpose in mind—to use them in the construction of determinate geometrical problems which had 
been expressed by polynomial equations in a single variable.[...] The method of Descartes is that 
of coordinate geometry, but his aim is now found in the theory of equations rather in analytic 
geometry. [...] where Descartes had begun with a locus problem and from this derived an equation 
of the locus, Fermat conversely was inclined to begin with an equation from which he derived the 
properties of the curve. Descartes repeteadly refers to the generation of curves ‘by a continuous 
and regular motion’; in Fermat one finds more frequently the phrase, ‘Let a curve be given having 
the equation [ ...] ’ The one admitted curves into geometry if it was possible to find their equations, 
the other studied curves defined by equations.”l5(Boyer 1956,216-217)
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What exactly are the characteristics of Cartesian geometry? They are described 
by Boyer, when he refers to the differences between Descartes’ and Fermat’s ap
proach. These differences could be summed up as follows: both Descartes and 
Fermat were influenced by Viete; Fermat applied Viete’s method to the problems 
of geometrical loci, whereas Descartes renewed the method by introducing the 
algebraic symbolism, without changing the object of Viete’s researches, i.e. the 
geometrical construction of the roots of an equation. This is certainly correct and 
yet it means that Descartes is nothing but a descendant of Viete: his analytical 
geometry is the continuation of Viete’s ars analytica with the introduction of the 
powerful instrument of algebraic symbolism—without doubt a considerable step 
forward but not doing justice to Fermat’s innovating contribution. This does not 
mean that it is scandalous to reconsider the significance of the Cartesian work. 
But as to the connection between Descartes’ and Viete’s work, it seems that the 
above-named interpretation is based on a merely technical vision of the question.

There are also other reasons for not being satisfied. The problem of the origin 
of analytical geometry cannot be solved by simply stating that Descartes’ geome
try is not the same as modem analytical geometry, and by concluding with re
naming it “application of algebra to geometry”. Moreover this term goes back to a 
later date, so that the question why Cartesian geometry (i.e. the application of 
algebra to geometry) originated as “analytical” geometry or at least as the appli
cation of “analysis” to geometry remains. This is not a simple question of termi
nology but a basic problem which must not be disregarded and reduced to a question 
of names. Once again the answer could be that Descartes is a descendant of Vifcte16. 
At this point, however, we really are dissatisfied. We have already seen how the 
notion of “analytical” in Descartes can neither be reduced to the notion of “analyt
ical” of modem analytical geometry nor to the ars analytica of Viete. The charac
teristics of this notion are to be found in the philosophical sense of the term and 
not in the strictly mathematical sense. It is obvious that the study of Descartes’ 
philosophical work does not provide the key to the understanding of the impor
tance of his mathematical works, it is true, but it is equally evident that, in order to 
understand the work of a scientist-philosopher like Descartes, an analysis which 
is restricted to the study of his contribution viewed solely from the angle of the 
history of geometrical methods is not sufficient.

One of the most important contributions to Descartes’ La Geometrie, apart 
from the writings of Boyer17, is an article by H. J. M. Bos (Bos 1981). Bos’s point 
of view is different from the one prevailing in literature, which he considers un
satisfactory as it aims at solving “the sterile question whether Descartes invented 
analytical geometry or not” (Bos 1981,297). Also Bos’s approach is strictly inter
nal and in no way detached from a “cumulative” point of view. In this way the 
“sterile” question is taken up, possibly in the paradoxical form according to which
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the very “programmatic” intentions of Descartes had restrained the establishment 
of analytical geometry.

“The later synthesis of algebraic and geometrical methods into what is now called analytic ge
ometry was possible only because later mathematicians were not aware of (or foigot) the program
matic problems with which Descartes had struggled.” (Bos 1981,298)

Special emphasis must be put on the fact that Bos’s analysis is clearly directed 
towards the topics and problems we have dealt with so far. First of all, Bos demon
strates that the central theme of La Geometrie and “the key to understand its 
underlying structure [...] and programme” (Bos 1981, 332) is the representation 
of curves. In fact, it is the basis of the relationship between geometry and algebra 
in Descartes’ work, which is connected to the topic of his constructivistic concep
tion and the relation between analysis and synthesis. After a profound analysis of 
the text, Bos indicates what he considers contradictory: the co-existence of a clas
sical programme (already clearly expressed in 1619) which regards geometry as a 
science that “constructs” or solves geometrical problems, which changes the an
cient classification of the curves only slightly (basing it on the use of machines 
which are nothing but the generalization of ruler and compasses) and where alge
bra has no place, and a programme which attributes an important role to algebra18 
and abolishes the ancient classification of curves, and, in doing so, opens the way 
to the modem distinction between algebraic and transcendental curves. In fact, 
there are two co-existing programmes, since Descartes never abandons the vision 
of geometry as science of “constructions” and remains prisoner of some essential 
difficulties. The main difficulty revealed by Bos is the contradiction which can be 
found in the criteria of geometrical acceptability of curves in the programme of 
La Geometrie:

“On the one hand Descartes claimed that he accepted curves as geometrical only if they could be 
traced by certain continuous motions. This requirement was to ensure that intersections with other 
curves could be found, and it was induced by the use of the curve as means o f construction in 
geometry. On the other hand Descartes stated that, under certain conditions, curves represented by 
pointwise constructions were truly geometrical. Pointwise constructions were related to curve 
equations in the sense that an equation for a curve directly implied its pointwise constructions. 
Pointwise construction was used primarily for curves that occurred as solutions to locus problems.

The link between the two criteria is Descartes’ argument that pointwise constructible curves can 
be traced by continuous motions. We have seen that that aigument, and hence also the link, is very 
weak.” (Bos 1981,326)

Looking once again at Cartesian geometry through the lens of modem mathe
matics, i.e. of “analytical geometry”, Bos asks himself:

“Why then did Descartes not cut this Gordian knot in the most obvious way, namely by defining 
geometrical curves as those which admit algebraic equations? Why did he not simply state that all 
such curves are acceptable means of construction and that the degrees of their equations determine
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their order of simplicity? That principle would have removed the contradictions mentioned above.”
(Bos 1981, 326)

After an accurate analysis Bos comes to the conclusion that the contradiction 
is based on the co-existence of the two programmes mentioned above, the second 
of which being the result of a paradigmatical change that occurred between 1619 
and 1637. This change, even though it emphasizes the role of algebra, does not 
modify the nucleus of the first programme and consequently the idea that “geom
etry is the science that solves geometrical problems by constructing points by 
means of the intersection of curves” (Bos 1981, 331). The programme of 1619 
“may have been impracticable but coherent” (Bos 1981, 331), whereas the pro
gramme of 1637 is innovative but incoherent: it introduces algebra without re
nouncing the link with the old geometrical programme and consequently brings 
about a series of difficulties.

This explanation, though accurate, is only descriptive: it does not say any
thing about the motives that led Descartes to take this new position and remain 
obliged to the old one at the same time. Was it a question of mere attachment to 
the past? There is one possible answer, on condition of leaving the link with the 
“sterile” question of Descartes’ relationship with analytical geometry definitely 
behind. In the time between 1619 and 1637 something crucial happened: Des
cartes’ enunciation of the principles of the method. The influence of such an enun
ciation on the programme of La Geometrie is revealed by Bos19. However, by 
restricting the connection to the Discours de la Methode, it is impossible to see 
the amplitude and complexity of the profound link between geometry and method. 
The crucial event between 1619 and 1637 is the publication of the Regulce. In this 
text we find Descartes’ so-called attachment to the classical constructive vision of 
geometry and, at the same time, the importance he attributes to the procedures of 
algebra.

Attempting to draw a parallel between the changes in Descartes’ approach to 
geometrical problems—which certainly exist and consist in passing from a nearly 
orthodoxically classical vision to one that attributes an important role to algebraic 
procedures—Bos refers to Schuster’s theses. Schuster maintains that after 1628 
Descartes abandoned the programme of Mathesis universalis formulated in the 
Regulce because he had encountered some difficulties in constructing a geometri
cal theory of equations (Schuster 1980); consequently he turned to algebra in 
order to solve his technical difficulties. This explanation, however, is not very 
convincing, not only because Descartes was not easily influenced by technical 
difficulties or details20. In the first place the changes in Descartes’ approach to 
geometry are reduced to merely technical reasons. Secondly, it is taken for granted 
that after 1628 Descartes abandoned his programme of Mathesis universalis: this 
means that all connections between the Regulce and La Geometrie are disregard
ed, which really is something impossible to do. Moreover it appears arbitrary to
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talk about a programme of Mathesis universalis which Descartes was to have 
developed in detail, since he considered the enunciation of the methodical rules of 
reasoning more important than anything else. Last but not least the traditional 
conception of geometry which Descartes adhered to in 1619 is claimed to be the 
exact opposite of the method expressed in the Regulce and does not leave any 
space for the algebraic approach. We shall see that this does not hold true: in the 
method enunciated in the Regulce the algebraic procedures, though under a con
structive framework, have a fundamental role. It is not true that in 1628 Descartes 
formulated the Regulce as a specular translation of his geometry of 1619; nor is it 
true that after 1628 a programme that did not exist came to a crisis for technical 
reasons. The contrary holds true: exactly in 1628 the determination of the princi
ples of a new method by Descartes induced a radical change in his consideration 
of geometrical problems. On the one hand, this method is “analytical” and conse
quently chooses methods used in algebra and it is a “constructive” analytical method 
and therefore uses the constructive procedures of classical geometry as its point of 
reference. On the other hand, this constructive analytical procedure, which will 
be described shortly, completely changes the picture of geometry, in particular the 
criteria of representation and admission of curves, where progress and difficulties 
analysed by Bos become evident. It remains doubtful, however, whether Descartes 
ever worried about those difficulties or even perceived them.

Therefore the crucial knot is to be found in Descartes’ method, which is both, 
analytical and constructive. Such a method needs algebra as a universal language, 
which reflects the generality of the method, but at the same time it is constructive 
and does not admit leaps or lacerations in its procedures. Descartes strives to unite 
these two requirements: therefore the contradictions in his text do not arise from 
the co-existence between two different visions of geometry but represent the diffi
culties of one coherent vision21, which is based on a philosophical programme and 
not on one of mathematical nature. The Cartesian “incoherences” only exist when 
they are viewed under the point of view of modem analytical geometry, which 
requires a balanced co-existence between geometry and algebra: Descartes, how
ever, was not at all interested in cutting the “Gordian knot”. For him this “Gord
ian knot” did not exist, nor could he have solved it—not because he was attached 
to an ancient vision of geometry but because it would have been in contradiction 
with his methodological approach. Let us rather have a look at the subordination 
of algebra to geometry, which is no residue of the past but a necessary conse
quence of the Cartesian methodical principles.

A purely internalist historiographic vision can make it even more difficult to 
value the significance of Descartes’ contribution and its position in the history of 
science. Our opinion, which is also based on the big influence that La Geometrie 
had for more than a century, is that Descartes’ contribution meant an enormous 
methodological revolution: this is why his success went beyond the importance of
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the results. In order to understand the reasons, there is no need to go back to the 
traditional connection between La Geometrie and the Discours de la methode: in 
the Regulce ad directionem ingenii it is possible to trace a stronger connection 
which permits re-reading La Geometrie, bringing to light aspects of great impor
tance which, up to now, may have been valued in a one-sided way. The re-reading 
of the work combined with the sound contributions of historiography, in particu
lar those of Boyer and Bos, provides a satisfactory picture of the basic arguments 
of the Cartesian text.

Within the limits of this article it is impossible to embark on a detailed and 
exhaustive analysis of the Regulce, let alone La Geometrie, the contents of which 
will be taken for granted. Here we shall limit ourselves to undo the most impor
tant conceptual knots of the Cartesian analytical method emerging from the Reg
ulce. They can be described as follows.

The first point is the affirmation that knowledge is achieved in a two-fold way: 
by “intuition” (an elementary act the basis of which is not any unreliable informa
tion provided by the senses or by imagination but the conception of a “pure atten
tive spirit” which does not leave any doubts as to what has been understood22 and 
is the matrix of the formation of clear and distinct ideas) and by “deduction” (with 
deduction being a chain of intuitions). It follows that reasoning, being invariably 
based on the use of “concatenations of elementary acts of intuition”, is deduc
tive—which is the second fundamental point.

The third aspect centers on the “constructive” character of the deductive pro
cedure: the chain of deductions on which it is based must not be interrupted, the 
result has to be reached without leaps. In the process of reasoning one term must 
not approach another pre-existing term but all links and relations between them 
have to be indicated so that a chain of intuitions connecting them is constructed. 
Its validity is proved by the fact that the deductive chain can be run through time 
and again in an “ordered” and “continuous” movement, which makes it possible 
to verify whether the construction which conducts to the final truth is valid.

The fourth aspect deals with the possibility of reducing any differences be
tween objects to “differences between geometrical figures”: this is the first form of 
the Cartesian notion of reducing differences to differences of extension in the 
Regulce, which is basic to the Cartesian quantitative conception of the Universe. 
In the Regulce this idea does not immediately appear as a metaphysical principle 
(the possibility of reducing any object to extension), but as an intuitive aid to 
represent the relations which are difficult to conceive in a form more accessible to 
intuition. But this first presentation is followed by an interpretation which out
lines very clearly the explicit metaphysical valence which the concept of exten
sion will assume in subsequent works. In fact, Descartes proposes a quantitative 
interpretation of the Universe, centering on mathematics, i.e. Mathesis universa
lis, completely different from the “vulgar” mathematics of his time, and a univer
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sal knowledge that permits reducing the analysis of any phenomenon to problems 
of “order” and “relations”. In the deductive chain of reasoning every intuition can 
be compared with the subsequent one, as in the comparison of two quantities. So, 
deductive reasoning is transformed, or rather reveals its true nature as a sequence 
of concatenated relations: in it there occurs what happens in mathematical pro
gression, where every term is determined by the relationship with the preceding 
term. By means of the language of algebra, deductive reasoning is translated into 
a sequence of proportions—hence the fundamental role of the theory of propor
tions. Another important consequence is the following: it has been maintained 
that, due to the constructive character of the deductive procedure, no ring of the 
chain can be left out, nor can there be any data without having defined the proce
dure which, starting from a further well-known truth, permits obtaining it (i.e. by 
way of construction). Therefore the translation of the deductive procedure into 
algebraic language (i.e. by means of equations via the theory of proportions) is 
“one-directional”; it is possible to move from the deductive procedure to algebra, 
but not the other way round, since there are no constructive procedures expressed 
by algebra. In the specific field of the relations between algebra and geometry this 
implies that their relations are one-directional: it is possible to pass from the 
geometrical problem to its algebraic translation (provided that the algebraic oper
ations applied are geometrically and thus constructively justified), but not to do 
the opposite, since no “algebraic problems” as such exist. The Mathesis universa
lis, which reflects the constructive form of deductive reasoning and the universal
ity of the well-defined relations that exist among the objects of the Universe, only 
contemplates problems of geometrical construction.

The fifth and last aspect is the following: in all the Regulce there is a parallel 
between “arts” and science, between the procedures of the “mechanical arts” and 
the constructive procedure of deductive reasoning. This is one of the great number 
of aspects of the Cartesian mechanistic conception. This parallelism is translated 
into a parallelism between the procedures of the mechanical “arts” and geometri
cal constructions and is the basis of the definition of the new criterion of demarca
tion between admissible and inadmissible curves, introduced by Descartes, which 
made it possible to go beyond the ancient classification of the curves and re
classify them: an important result, since, apart from some significant but not deci
sive differences, it coincides with the modem classification of algebraic and 
transcendental curves.

Let us now examine more closely the significance and implications of the five 
aspects mentioned above, looking at the form in which they are presented and 
taken up in the Regulce.

Before doing so, however, we want to discuss to two general topics which 
represent a sort of “/e/f-monv” of the Regulce. The first is the refusal of specialis
t s  knowledge in favour of the unity of learning. This is the central theme of
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Regula Z23, but also recurs in many other passages and has important consequenc
es for mathematics. For Descartes the study of specific mathematical problems is 
of no interest at all:

“neque enim magni facerem has regulas, si non sufficerent nisi ad inania problemata resolvenda, 
quibus Logistae vel Geometrae otiosi ludere consueverunt; sic enim me nihil aliud praestitisse 
crederem, quam quod fortasse subtilius nugarer quam caeteri. Et quamvis multa de figuris et 
numeris hie sum dictums, quoniam ex nullis disciplinis tarn evidentia nec tarn certa peti possunt 
exempla, quicumque tamen attente respexerit ad meum sensum, facile percipiet me nihil minus 
quam de vulgari Mathematica hie cogitare, sed quamdam alima me exponere disciplinam, cujus 
integumentum sintpotius quam partes.” (Descartes AT, X, 373-374 and LR, 30-32)

In a certain sense he explicitly declares that he neither is nor wants to be a 
mathematician; he uses mathematics (i.e. certain mathematics, different from the 
“vulgar” mathematics of his time) to determine the principles of a universal meth
od of reasoning24.

The second theme is the refusal of a historical approach to science: Regula III 
establishes a distinct opposition between historical and scientific learning. Ac
cording to Descartes, we would not be able to “express a firm judgement on a 
given question”, even if we read all the works of the ancients. In the following he 
enunciates most clearly the opposition mentioned above: “in fact, we seem to have 
learned from history and not from science” (AT, X, 367 and LR, 16-18). It is 
evident that this opposition is a result of Descartes’ need to proclaim the necessity 
of leaving previous learning aside so as to promote the development of a science 
free from the prejudices of bookish learning. But in doing so he accomplishes 
more than a tactical move: he actually establishes the basis of one of the corner
stones of modem sciences, which has greatly influenced research and its view of 
the role of history: it is a matter of affirming the uselessness of historical learning 
in the determination of trends in scientific research and its opposition to the ac
quisition of scientific learning. As will be shown, this point of view also helps 
Descartes to deal with traditional principles without being prejudiced, re-examin
ing them independent of any reference to historical tradition and only because of 
their conceptual value: an impartiality which is particularly important at the mo
ment he abolishes the classification of the curves, consolidated by a time-hon
oured tradition.

Let us now return to the analysis of the five fundamental topics of the Regula. 
The first two of them are already clearly enunciated in Regula III: the only two 
acts of intellect suitable to obtain knowledge without errors are “intuition” and 
“deduction”. It has to be emphasized that, by defining intuition as the “firm con
ception of a pure and attentive spirit that is bom by the light of reasoning alone”, 
Descartes underlines that this act is purely intellective and differentiates it from 
the “unreliable testimony of the senses” or the “deceptive judgement of imagina
tion” (AT, X, 368 and LR, 20). In order to explain the changes in the use of the
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term, he refers to its Latin meaning “intuitus”25. “Deduction”, on the other hand, 
is the means to get to know other things (most things, actually) which are not 
evident by themselves, provided that they are deduced from true and known prin
ciples by way of a chain of elementary acts of intuition and consequently control
lable at each step. The difference between the first and second act mainly consists 
in the fact that the latter needs a “movement” or a “succession”. This “movement” 
is the key to the deductive process: in fact, it is a ’’continuous and uninterrupted 
movement of thought with a clear intuition of everything”26 (AT, X, 369 and 
LR, 22). Here the influence of two fundamental principles of the Cartesian con
ception is to be found: the principle of “continuity” and the principle of “com
pleteness”. The consequence is a conception of the Universe as a “continuum” 
free from lacerations and interruptions: it is well-known that Descartes complete
ly refused the existence of a vacuum. As to processes of reasoning (which are of 
the same nature as material processes), these principles are reflected in the con
cept of continuity of the deductive chain and in the absence of ruptures and inter
ruptions. It has to be emphasized that the two terms are not synonymous and their 
meanings do not even partially overlap. This is made clear in Regula VII, from 
which emerges that “continuous” means “which does not stop”, “without pauses”, 
“arriving at the very end of the course” and follows all necessary concatenations 
so as to make up for the weaknesses of memory, which is unable to seize the whole 
course of reasoning at once. Moreover, it is evident that the deductive chain moves 
in one direction—from the introduction to the conclusion: by going through the 
chain time and again in a continuous movement (faster and faster), it is possible 
to leave the role of memory aside and obtain a sort of global intuition of the 
whole27. Consequently continuity presents itself as a characteristic feature that 
leads to the comprehension of the whole. Vice versa, the fact, that in the act of 
deducing, the movement of thought is uninterrupted implies that it is not permit
ted to skip any ring of the chain; the conclusions are no longer certain28.

Let us have a look at the consequences which these characteristics of deductive 
reasoning have on the “status” of geometry (as well as that of physics, since the 
possibility of a gap is negated): geometrical reasoning must be constructive, as it 
is based on chains of steps, each depending on the preceding one. The geometrical 
object is only imaginable as constructed by such a succession. Therefore the geo
metrical point cannot be seen “isolated”: when the geometrical object (e.g. a curve) 
is constructed, it has to be explained how to pass from one point to the next one in 
a “continuous” and uninterrupted procedure. As in physical space, also in geo
metrical space there can be no gap. From this results Descartes’ inconceivability 
of the notion of geometrical locus assigned in an abstract way by means of an 
equation and not defined by a construction. The above-mentioned refusal of rea
soning ab absurdo equally depends on this vision (it is not constructive: skipping
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all rings of the chain, it directly compares the last one with the first one and is not 
one-directional).

It has been considered useful to look at the implications of the Cartesian no
tion of geometry, so as not to keep apart two important and intimately interrelated 
aspects. In doing so, however, we have not yet specified the role of geometry in 
Descartes’ notion. It is explained in Regula IV, which contains some famous pas
sages on the meaning of the Mathesis universalis. We are not going to spend 
much time on such a well-known topic, but want to emphasize the parallels be
tween Descartes’ criticism of the particular sciences and the claim that a form of 
universal knowledge is necessary, as well as his criticism of the way to do mathe
matics (geometry and arithmetics). The latter emerges from tradition and the claim 
to “true” mathematics, certainly well-known to the ancients as the easiest and 
most necessary science of all to form and prepare the mind to understand other 
more elevated sciences29. In order to understand what this is all about, however, it 
is not sufficient to refer to etymology, according to which “Mathematics” simply 
means “science”, because in this case also Music, Optics and Mechanics would 
have the same right as Geometry to be called Mathematics30. The substance of 
Mathematics (which makes it a universal science or Mathesis universalis) is the 
study of everything that is connected with order and measure, “no matter whether 
these measures are to be found in numbers, figures, stars, sounds or in any other 
objects”31 (AT, X, 377-378 and LR, 38).

The link between Mathesis universalis and the deductive procedure is evi
dent: just as Mathesis universalis searches order in things, according to Regula V 
“the whole method consists in order and the arrangement of the things towards 
which the mind has to be directed in order to discover some truths”32 (AT, X, 379 
and LR, 42). It follows that the classification of things must no longer be attained 
by means of categories, as in scholastic philosophy, but “according to deductive 
order”33. Finally, “in order to attain science, all things leading to our goal, and 
every singular one in particular, have to be run through in a continuous and unin
terrupted movement of thought and have to be understood in a sufficient and 
methodical enumeration”34.

The concept of “sufficient enumeration” or “induction” could be considered a 
rudimentary version of the principle of mathematical induction known in modem 
mathematics. As the only certain procedure Descartes puts induction next to intu
ition, since it defines inference in each point of the chain. Nevertheless it is quite 
a rudimentary concept of induction: it is hue that the link between subsequent 
steps is decisive, but all steps have to be examined: moreover, in Descartes’ work 
this notion is not subjected to a clear concept of numeration of the steps (as is 
shown in Descartes’ example on circles in Regula V)35. The distance separating 
the Cartesian induction from the modem one still refers to the theme of construc
tivism, which is well-explained by the contents of Regula XI. It has been observed
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that each step has to be controlled, constructed, and nothing can be left out or 
taken for granted, while two verifications are sufficient in modem induction and 
from these infinite cases are deduced. However, Descartes’ opinion on the infinite 
is well-known: his finitism is the second fundamental aspect, mentioned above. In 
the Principia36, for instance, he distinguishes between infinite and indefinite, re
serving the first attribute to God. In this text Descartes declares that he will never 
deal with discussions of the infinite, since he considers it ridiculous that “finite” 
beings pretend to say something about the infinite. This also explains the bound
aries of the relationship between the Cartesian notion of “continuum” and the 
modem one: the idea of completeness and lack of interruptions has nothing to do 
with continuity in the modem sense of the word: therefore Descartes’ complete
ness is a sort of “discrete continuity”.

As has been pointed out, Mathesis universalis also deals with the study of 
measure. The answer to the question whether there exist any parallels between 
mathematics and the deductive method also at this level is positive; in order to 
establish this connection, however, another crucial knot of Cartesian thinking has 
to be considered: the concept of extension and the notion that every object can be 
reduced to characteristics of extension.This is another aspect of Cartesian philos
ophy too well-known to deal with it here: we shall limit ourselves to say some
thing on how it is presented in the Regulce. It is in Regula XII that a representation 
of differences between objects (and related representations) as differences between 
figures is introduced. Descartes observes that there is nothing wrong with con
ceiving the differences that exist between colours like white, blue and red as dif
ferences between figures, as the following or similar ones:

In this way the introduction of useless entities is avoided and an extremely 
natural representation is recurred to. Moreover, the infinite number of figures is 
sufficient to describe all differences between sensitive objects. In this form the 
notion of the quantitative description of differences between sensitive objects is
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introduced in the Regulce: it will be expressed in the different shape of two geo
metrical figures and consequently in their relationship. This is a crucial passage: 
by establishing the central position of the concept of extension, the central role of 
geometry as science of extension in the learning process is also established.

Nevertheless, the form which the principle of reduction to extension assumes 
in the Regulce somewhat differs not only from the metaphysical version of the 
Principia37, but apparently also from the meaning implicit in the text of La 
Geometrie. In fact, in the Regulce differences are described by means of referenc
es to illustrated extensions applying to imagination and, in a certain sense, juxta
posed to quantity. In La Geometrie this juxtaposition disappears, actually it turns 
to a hierarchical relationship: in fact, the role of imagination disappears and ex
tension is reduced to quantity by means of algebra. More precisely, the quantita
tive description of differences by means of extension is realized in a purely 
intellectual way and the instrument of such a realization is the algebraic descrip
tion. We have spoken of apparent differences between Regulce and Geometrie; 
the following propositions represent a decisive step forward: generic references to 
an illustrated representation of differences are abandoned and are described in 
terms of the theory of proportions—at this point the decisive step towards the 
introduction of algebra has been taken. Furthermore, as we shall see, the concept 
of “problem with unknown quantities” and thus the concept of equations is intro
duced. Last but not least the final part of the first book (incomplete as well) makes 
evident that Descartes had a clear notion of the central role of algebra.

Before continuing with these topics, we will point out an important conse
quence of what has been mentioned before: the relationship between extension 
and quantity thus established shows the subordinate position of algebra compared 
to the central one of geometry. Geometry comes first: as science of extension it is 
the instrument to describe and analyse the substance of things: algebra has the 
essential but subordinate role to make it possible to treat extension as quantitative 
description and not as a complex of figurations perceptible by imagination alone. 
This hierarchy is clearly reflected in La Geometrie (from the first pages onwards), 
when Descartes tries to justify the introduction of algebraic operations by means 
of geometry (demonstrating “how arithmetical calculations refer to geometrical 
operations”38 (AT, VI, 369)).

In Regula XII we find the distinction between simple propositions and “quces- 
tiones”: the first only need the distinct intuition of the object and the methods of 
reasoning expounded in the first twelve rules (which are the ones we have sum
marized up to this point), whereas the second (object of the remaining twelve 
rules39) regard the problems which are “perfectly understood”40, even though the 
solution is unknown. These abstract problems in algebra and geometry lead to 
three kinds of questions: a) Which are the signs to recognize the object that is 
being searched? b) What can it be deduced from? c) How does the close dependen
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cy of these things manifest itself? In order to solve these problems, the deductive 
procedure is no longer sufficient, an “art” (i.e. Descartes’ ars analytica, which he 
sets about to expound) has to be introduced: it consists in the “development of 
something that depends on many other” simul implicatis41 (AT, X, 429 and LR, 
140). This “art” is nothing else than the method of solving problems where “un
known quantities” appear (as is explained by Regula XIII, introducing the con
cept of designating something unknown by something that is known) and thus the 
“art” of solving equations. Even though this procedure is different from the de
ductive one (developing what is unknown from what is known), there is a tight 
link with the constructive procedures of deduction, particularly because the ques
tions dealt with are perfectly determined42.

Regula XIV contains the last important step towards the translation of “per
fectly understood” problems into algebraic form. In fact, Descartes observes that 
any knowledge that is not gained by simple intuition is gained by comparison. In 
distinct objects common characteristics are to be found in relations and propor
tions which have to be reduced to equalities. But in virtue of former considera
tions, only quantity is susceptible to this reduction and it is extension that has to 
be chosen from the quantities. So the formulation of a perfectly determined prob
lem is nothing else than the reduction of proportions to equalities. In this rule we 
observe a transition from the definition of these differences between things by 
means of figures to a definition of these differences by means of relations or pro
portions of quantities of extension. The intervention of algebra as an instrument, 
however, has not yet occurred: this happens in Regula XVI, where algebra is 
explicitly introduced as a more compact instrument of symbolical representation43 
than the geometrical-spatial signs which Descartes referred to in the preceeding 
rules; he did so in order to give an example of the translation of relations (or 
differences) between things into relations of extension. This rule is also important 
as a significant step towards algebra: it eliminates the distinction between root, 
square root, third root etc., all reduced to the language of the theory of propor
tions.

It is in Regula XVII, however, that the procedure which Descartes suggests in 
order to solve a perfectly determined problem is expound more clearly, having 
been translated into equations or a chain of proportions. In our opinion, a direct 
parallel can be established between this procedure and the one expound in La 
Geometrie.

Descartes observes that, while there exists an easy and direct way to solve a 
problem in a deductive manner which permits to pass easily from one term to 
another—it is the one of the direct concatenation exposed in Regula XI—the 
situation is different in the case of perfectly understood problems. Let us continue 
with Descartes’ words:
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“Nunc igitur si dependentiam singularum ad invicem, nullibi interrupto ordinem, intueamur, ut 
inde inferamus quomodo ultima a prima dependeat, difficultatem directe percurremus; sed contra, 
si ex eo quod primam et ultimam certo modo inter se connexas esse cognoscemus, vellemus deducere 
quales sint mediae quae illas conjungunt, hunc omnino ordinem indirectum et praeposterum 
sequeremur. Quia vero hie versamur tantum circa quaestiones involutas, in quibus scilicet ab 
extremis cognitis quaedam intermedia turbato ordine sunt cognoscenda, totum hujus loci artificium 
consistet in eo quod, ignota pro cognitis supponendo, possimus facilem et directam quaerendi 
viam nobis proponere, etiam in difficultatibus quantumeunque intricatis; neque quicquam impedit 
quominus id semper fiat, cum supposuerimus ab initio hujus partis, nos agnoscere eorum, quae in 
quaestione sunt ignota, talem esse dependentiam a cognitis, ut plane ab illis sint determinata, adeo 
ut si reflectamus ad ilia ipsa, quae primum occurrunt, dum illam determinationem agnoscimus, et 
eadem licet ignota inter cognita numeremus, ut ex illis gradatim et per veros discursus caetera 
omnia etiam cognita, quasi essent ignota, deducamus, totum id quod haec regula praecepit, 
exequeremur [ ...]” (Descartes AT, X, 460-461 and LR, 200)

Descartes declares that he wants to reserve the examples of this method for the 
subsequent Regula XXIV, which is missing: in our view, however, these examples 
can be found in La Geometrie.

The following Regula XVII teaches us that only four operations (addition, 
subtraction, multiplication and division) are sufficient to establish these mutual 
dependencies, which consents to reduce the definition of mutual dependencies to 
a sequence of proportions. The following step (Regula XIX) is to search as many 
quantities expressed in different ways as there are unknown variables. When the 
equations have been found and all remaining operations have been completed 
CRegula XX), all equations of this kind have to be reduced to a single one, “i.e. to 
the one whose terms occupy the minimum degrees on the scale of quantities, in 
continuous proportion according to which they must be arranged” (Regula XXI; 
Descartes AT, X, 469 and LR, 216).

Let us now turn to the first pages of La Geometrie. Here we find the transla
tion of the procedure just expound with analogue terms and the same methodical 
sequence. It will suffice to read the following passage to verify this statement:

“[...] voulant resoudre quelque problesme, on doit d ’abord le considerer comme desia fait, & 
donner des noms a toutes les lignes qui semblent necessaires pour le construire, aussy bien a celles 
qui sont inconnues qu’aux autres. Puis, sans considerer aucune difference entre ces lignes connues 
& inconnues, on doit parcourir la difficult^ selon l’ordre qui monstre, le plus naturellement de 
tous, en quelle sorte elles dependent mutuellement les unes des autres, iusques a ce qu’on ?it 
trouv6 moyen d ’exprimer une mesme quantite en deux fagons: ce qui se nomme une Equation, car 
les termes de l’une de ces deux fagons sont esgaux a ceux de l’autre. Et on doit trouver autant de 
telles Equations qu’on a suppose de lignes qui estoient inconnuSs. Ou bien, s ’il ne se trouve pas 
tant, & que, nonobstant, on n ’omette rien de ce qui est desirS en la question, cela tesmoigne qu’elle 
n ’est pas entierement determin6e; et lors, on peut prendre a discretion des lignes connues, pour 
toutes les inconnues ausquelles ne correspond aucune Equation. Aprds cela, s ’il en reste ancore 
plusieurs, il se faut servir par ordre de chascune des Equations qui restent aussy, soit en la considerant 
toute seule, soit en la comparant avec les autres, pour expliquer chascune de ces lignes inconnues,
& de faire ainsi en les desmelant, qu’il n ’en demeure qu’une seule, esgale a quelque autre qui soit 
connuS, ou bien dont le quarre, ou le cube, ou le quarre de quarre, ou le sursolide, ou le quarr6 de



26 GIORGIO ISRAEL

cube, &c., soit esgal a ce qui se produist par T addition, ou soustraction, de deux ou plusieurs 
autres quantity , dont l ’une soit connud, & les autres coient com poses de quelques moyennes 
proportionnelles entre l ’unit6 & ce quarr£, ou cube, ou quam6 de quarr6, & c., m ultip lies par 
d ’autres connuds. Ce que i ’escris en cete sorte:

z >o b,
ou z2 jo -az + bb.

ou z3 30 + az2+ bbz- c3, 

ou z4 >o + az3+ cz3+ d 4,

& c.
C ’est a dire: z, que ie prens pour la quantity inconnud, est esgale ab ; ou le quarre dez estesgale 

au quarr6 de b, moins a multiple par z ; ou le cube de z est esgal a a multiplid par le quarr6 de z, 
plus le quarr6 de b multiplid parz, moins le cube de c; & ainsi des autres.

Et on peut tousiours reduire ainsi toutes les quantiis inconnuds a une seule, lorsque le Problesme 
se peut construire par des cercles & des lignes droites, ou aussy par des sections coniques, ou 
mesme par quelque autre ligne qui ne soit que d ’un ou deux degrds plus compos6e. [...] ie me 
contenteray icy de vous avertir que, pourvfl qu’en demeslant ces Equations on ne manque point a 
se servir de toutes les divisions qui seront possibles, on aura infalliblement les plus simples termes 
ausquels la question puisse estre reduite.” (Descartes AT, VI, 372-374)

The close link between the general methodical principles enunciated in the 
Regulce and their application in La Geometrie is more than evident. Actually, we 
could say that almost the whole procedure to “develop” the unknown quantity into 
equations described in La Geometrie is already contained in the Regulce.

Let us now examine the last of the five fundamental themes which have been 
considered the nucleus of the Regulce: the question of the relationship between 
mechanical arts and geometry. The first reference to this question appears in Re- 
gula VIII, where Descartes, after having given various examples on the use of the 
method, continues like this:

“Haec methodus siquidem illas ex mechanicis artibus imitatur, quae non aliarum ope indigent, 
sed tradunt ipsaemet quomodo sua instrumenta facienda sint. Si quis enim unam ex illis, ex.gr., 
fabrilem vellet exercere, omnibusque instrumentis esset destitutus, initio quidem uti cogeretur 
duro lapide, vel rudi aliqua ferri massa pro include, saxum mallei loco sumere, ligna in forcipes 
aptare, aliaque ejusmodi pro necessitate colligere: quibus deinde paratis, non statim enses aut 
cassides, neque quidquam eoruim quae fiunt ex ferro, in usus aliorum cudere conaretur, sed ante 
amnia malleos, incudem, forcipes, et reliqua sibi ipsi utilia fabricaret. Quo exemplo docemur, 
cum in his initiis nonnisi incondita quaedam praecepta, et quae videntur potius mentibus nostris 
ingenita, quam arte parata, poterimus invenire, non statim Philosophomm lites dirimere, vel solvere 
Mathematicorum nodos, illorum ope esse tentandum: sed iisdem prius utendum ad alia, quaecumque 
ad veritatis examen magis necessaria sunt, summo studio perquirenda; cum praecipue nulla ratio 
sit, quare difficilius videatur haec eadem invenire, quam ullas questiones ex iis quae in Geometria 
vel Physica aliisque disciplinis solent proponi”. (Descartes AT, X, 397 and LR, 76-78)

Descartes’ interest in machines and mechanical arts as a natural consequence 
of his mechanistic conception is well-known. Nevertheless, as Paolo Rossi points
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out, “for Descartes the effective progress of science depends on the work of theo
rists. Technology as such does not contribute to the progress of scientific learning 
atall”(Rossi 1962, 111). Rossi remembers Baillet’s description of Descartes’ project 
to build some halls at the College de France: the craftsmen involved were taught 
the scientific principles of making machines work by professors of mathematics 
and physics. Technology remains subordinate to science, it has to follow its prin
ciples, in particular its methodological principles, and not the product but its 
principle of realization is of interest. In this way Descartes reveals a conception 
which, in a certain sense, is closer to a technological approach than to a technical 
one; the main difference, however, is that the relationship between science and 
technology is somewhat sterile, as technology is considered subordinate to sci
ence. In any case Descartes is interested in technology as deriving from methodi
cal principles, since for him this is the practical verification of the world’s 
mechanical nature. His description of the mechanical arts, where nobody pro
ceeds at random but first prepares the necessary tools following methodical prin
ciples, shows that he sees a concrete connection between some historical forms of 
the “arts” and his method. This connection becomes less vague and boils down to 
a concrete reference in Regula X, where the importance of the simpler arts, which 
are ’’are ruled by order”, is dealt with, those of craftsmen making cloths or carpets 
or embroideries “similar to number combinations and arithmetical operations”44. 
Embroidery is particularly interesting, as it links the characteristics of these arts,
i.e. being simple and methodical, to a specification of their procedures: it is close 
to the theory of proportions. Therefore these arts appear as a concrete representa
tion of the concatenated, continuous and uninterrupted movement which is the 
nucleus of the method. We know that one of the outstanding characteristics of 
technical development in France at the time of Descartes was the diffusion of the 
textile industry based on the use of the power loom(Dockes 1969). So Descartes’ 
reference appears in no way fortuitous: in a new innovative technique like the one 
of power-loom weaving, Descartes saw the expression of a conception of the me
chanical arts based on method in a double sense: in a general sense, since the 
methodical principle is put before the specific realization (the way of weaving is 
more important than the product itself) and in a specific sense, because—as is 
evident in the case of the power-looms—the functioning of the instrument is based 
on a concatenation of coordinate movements following one another according to a 
well-defined rule. This concatenation is determined by precise number relations 
and consequently based on the theory of proportions. All crucial conceptional 
knots of the Cartesian method (continuous and uninterrupted movement, theory 
of proportions) can be found in these examples of mechanical arts.

Several times it has been pointed out that Descartes’ famous instrument of 
movable squares, or rather the instrument to multiply proportions, which appears 
in La Geometrie and has a fundamental role in the classification of curves, had
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been invented by him long before the publication of La Geometrie. This kind of 
power-loom seems to be a further manifestation of a predilection for the proce
dures of the mechanical arts based on the theory of proportions, clearly expressed 
in the Regulce. In any case, Descartes’ instrument of movable squares permits the 
geometrical representation of a sequence of proportions and so it is nothing but 
the concrete translation of a continuous and uninterrupted movement, the subse
quent steps of which are all concatenated according to precise and perfectly deter
mined relations. Although this does not fully meet the necessary qualification of 
constructibility of the Cartesian conception, it stands for the prototype of a class 
of instruments that conform to these qualifications (Bos 1981). Descartes referred 
to this instrument, when he proposed a new classification of “admissible” curves 
which was to substitute the classical subdivision into “geometrical” curves (i.e. 
curves that can be drawn with ruler and compasses or planar loci), curves ob
tained by cutting a section (i.e. conics or linear loci) and “mechanical” curves 
(resulting from the “chaotic” motion of a point). This classification was based on 
the preference of ruler and compasses and could only be changed after their priv- 
iledged position had been abolished and different criteria introduced. Descartes, 
however, did not have the slightest reason to insist on recognizing the ancient 
classification—neither on the methodological nor the technical level ruler and 
compasses were to be preferred, since they only represented a partial and episodic 
working method as to the methodological principles. An instrument like the one 
of movable squares instead constituted their complete and faithful translation.

It is most interesting to read Descartes’ comment on the problem of the classi
fication of curves, which is characterized by the “anti-historic” spirit mentioned 
above.

“Les anciens ont fort bien remarqu6 qu’entre les Problesmes de Geometrie, les uns sont plans, les 
autres solides, & les autres lineaires: c ’est a dire que les uns peuvent estre construits en ne trafcant 
que des lignes droites & des cercles; au lieu que les autres ne le peuvent estre, qu’on n ’y employe 
pour le moins quelque section conique; ni enfin les autres, qu’on n ’y employe quelque autre ligne 
plus compos6e. Mais je m ’estonne de ce qu’il n ’ont point outre cela, distingue divers degr6s entre 
ces lignes plus composees, & ie je s^aurois comprendre pourquoy il les ont nomees Mechaniques, 
plustot que Geometriques.” (Descartes AT, VI, 388)

Descartes’ astonishment could seem somewhat strange, if it were not regarded 
in the above-mentioned anti-historic context. Further on he emphasizes that me
chanical curves do not derive their names from the fact that they are drawn by 
machines, because otherwise also the curves drawn with ruler and compasses, 
which actually are machines, too, would have to be rejected. We know, however, 
that in the ancient classification ‘mechanical’ has a different meaning and, at 
least in Greek tradition, ruler and compasses have an intellectual value—they 
represent ideal perfection (exactly like the machine of movable squares in Des
cartes’ intentions). But Descartes continues as if he was not aware of this:
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“Ce n ’est pas non plus a cause que les instrumens qui servent a les tracer, estant plus composes 
que la reigle & le compas, ne peuvent estre si iustes (Descartes AT, VI, 388-389)

Otherwise they would have to be rejected also from the mechanical curves

“[...] ou c ’est seulement la iustesse du raisonnement qu’on recherche, & qui peut sans doute 
estre aussy parfaite, touchant ces lignes, que touchant les autres autres.” (Descartes AT, VI, 389)

So ‘mechanical’ does not mean inexact—on the contrary, mechanical proce
dures are based on exactness. On the other hand, Descartes does not even consider 
the possible meaning of ‘mechanical’, i.e. “generated by motion”. In this way he 
discards all possible hypotheses of interpretation, only to demonstrate the inco
herence of the ancients, and concludes, declaring that he does not want to change 
any names that have already been accepted by use. In doing so, however, he has 
deprived them from their original meaning: henceforth—though only conven
tionally—‘geometrical’ refers to what is precise and exact and ‘mechanical’ to 
what is not. ‘Mechanical’ alone does not mean anything any longer: it neither 
means “generated by motion” nor “obtained by means of a machine”. Both of 
these meanings would only obstruct Descartes’ new classification, which accepts 
many of the curves that, according to the old classification, were considered “me
chanical” as admissible curves. Now the term ‘mechanical’ only serves to denote 
the opposite of something that is perfectly determined—the contrary of ‘geometri
cal’, which is well-determined. The names remain unchanged, the line of demar
cation of the meanings changes.

Geometry is the science whose object is the measure of bodies. Therefore there 
is no reason to exclude composite lines in favour of simple lines,

“pourvu qu’on les puisse imaginer descrites par un mouvement continu, ou par plusieurs qui 
s’entresuivent & dont les demiers soient entierement regies par ceux qui les precedent: car, par ce 
moyen, on peut tousiours avoir une connoissance exacte de leur mesure.” (Descartes AT, VI, 390)

Here the usual criterion, already familiar to us, re-emerges: constructibility by 
means of a continuous, uninterrupted and coordinate movement. This criterion 
(of which we want to emphasize its “constructive element”) is the true conceptual 
core of Cartesian geometry. This makes the reference to coordinate geometry ap
pear secondary, if not marginal, whereas the classification of curves obtained by 
Descartes by the conceptual use of the instrument of movable squares is most 
important. It is well-known that the classification is not complete—due to its 
constructive character which does not assume the order of the curve as an element 
of classification, as would happen in the case of a point of view based on the 
concept of geometrical locus, i.e. starting from the algebraic equation: it skips 
several steps and therefore does not obtain all algebraic curves, as one would 
expect on the basis of permitted operations, which are the algebraic ones. This 
topic has been widely discussed and studied in the literature45. There is no doubt,
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however, that the Cartesian classification is almost a complete step towards the 
modem distinction of the curves between algebraic and transcendental curves, 
which will be explicitly codified by Leibniz.

Here we conclude our analysis, which is not aimed at going through these 
specific themes already widely analysed by other exhaustive studies but rather at 
showing that certain specific themes (like the one of the classification of the curves 
or the position of Cartesian geometry in the history of analytical geometry) are 
brought into a new light by the analysis of the relationship between the method 
expound in the Regulce and La Geometrie. Cartesian Geometry no longer ap
pears as a step in the formation of analytical geometry in the modem sense of the 
word. It is the result of a very particular view of mathematics, in which the con
cept of geometrical extension has a central role. Descartes’ geometry is “analyti
cal”, not because it highlights coordinate method, but because it recalls a 
methodological principle (indeed “analytical”) centered upon the “deductive” and 
“constructive” procedures of reasoning which are the heart of Cartesian philoso
phy.

University o f Rome "La Sapienza"
Department o f Mathematics

Notes

* This essay is a revised English version of the paper “Dalle Regulce alia Giomitrie” published in Italian 
in the book Descartes: ilMetodo e i Saggi, Atti del Convegno per il 350° anniversario della pubblicazione 
del Discours de la Mithode e degliEssa/s (G. Belgioioso, G. Cimino, P. Costabel, G. Papuli, eds.), Acta 
Enciclopedica no. 18 (2 voll.), Istituto della Enciclopedia Italiana, Roma, 1990: vol. 18**, pp. 441- 
474. We thank the Istituto della Enciclopedia Italiana for the authorization to publish a new English 
version of the essay.

1 This is the meaning that Dijksterhuis attributes to the term “analytical geometry”; Descartes is considered 
its creator: “With the introduction of the new symbolic algebra in geometry he actually became the 
creator of analytical geometry and consequently the author of one of the most fundamental reforms in 
mathematics.” (Dijksterhuis 1961,543)

2 The “possibility of setting out propositions in deductive chains” which Cartesius speaks of is identified 
with the possibility of “expressing the acquired knowledge in axioms”. Dijksterhuis continues: “The 
intention of the cartesian method is [...] to make scientific thought occur [...] through deduction, starting 
out with axioms, and through algebra.” (ibid., 542)

3 The original edition of the Regulce is Descartes (ROP).

4 Descartes talks about these demonstrations “quae casu saepius quam arte inveniuntur, et magis ad oculos 
et imaginationem pertinent quam ad intellectum.” (Descartes AT, X, 376 and LR, 34-36)

5 Descartes remembers to have read nearly everything from the beginning that is usually taught in 
Arithmetics and Geometry and comments: “Sed in neutra Scriptores, qui mihi abunde satisfecerint, tunc 
forte incidebant in manus: nam plurima quidem in iisdem legebam circa numeros, quae subductis 
rationibus vera esse experiebar, circa figures vero, multa ispismet oculis quondammodo exhibebant et
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ex quibusdam consequentibus concludebant; sed quare haec ita se habeant, et quomodo invenirent, menti 
ipsi non satis videbantur ostendere.” (ibidem, AT, X, 375 and LR, 32)

6 Modem axiomatic mathematicians consider it the basis of their method. See J. Dieudonn6’s numerous 
references to the work of Euclid as a point of reference for the logical-deductive axiomatic method (he 
repeats that in order to find a valid reference modem axiomatics have to go back in history to Euclid). Cf. 
e.g. Dieudonn6 (1939).

7 The original edition is Descartes (1641). There exists a French translation of this text published in 
Descartes’ lifetime: Descartes (1647). The quotations are taken from this translation (which Baillet 
maintains to be preferable to the Latin one), while references will be given both to it and to (Descartes 
AT, VII).

8 Note, in particular, the clear reference to the method o f proving ab absurdo (“afin que, si on lui nie 
quelques consequences, elle fasse voir comment elles sont contenues dans les antecedents ”), which 
Descartes implicitly declares not to wish to include in his method (as a consequence of his refusal of 
synthesis).

9 The fact that this formulation and the one of the Regulce quoted in note 5 are nearly identical is rather 
important.

10 Also on that point the Regulce and theMeditationes agree. The previous passage actually continues like 
this: “Les anciens geomdtres avaient coutume de se servir seulement de cette synthase dans leurs Merits, 
non qu’ils ignorassent entidrement l ’analyse, mais, & mon avis, parce qu’ils en faisaient tant d ’etat, qu’ils 
la reservaient pour eux seuls, comme un secret d ’importance” (Descartes 1647,388). In the Regulce: 
“Cum vero postea cogitarem, unde ergo fieret, ut primi olim Philosophiae inventores neminem Matheseos 
imperitum ad studium sapientiae vellent admittere, tanquam haec disciplina omnium facillima et maxime 
necessaria videretur ad ingenia capessendi aliis majoribus scientiis erudienda et praeparanda, plane 
suspicatus sum, quamdam eos Mathesim agnovisse valde diversam a vulgari nostrae aetatis [...].” 
(Descartes AT, X, 376 and LR, 34)

11 The contrary happens in metaphysics, where “la principale difficult^ est de concevoir clairement et 
distinctement les pr6mi&res notions.” (Descartes 1647,389 and AT, VII, 157)

12 in modem mathematics the term ‘synthetic’ has taken a different meaning. It is true that the reaction to 
the “subordination” of geometry to algebra appeared as a return to the ancient world: exactly to “synthetic” 
geometry, which was seen as a way of doing geometry in an autonomous manner and not subordinated to 
the use of analytical procedures. This tendency was called “purism” (with the Italian mathematician 
Luigi Cremona as one of the most important exponents), since it suggested to restore the use of “pure” 
methods in geometry, which were free from any reference to algebra. In the “purist” movement, however, 
the return to intuition took a predominant, if not nearly obsessive, role. Reasoning in a “synthetic” way 
did not only mean to proceed with a sequence of logical operations which were to correlate the geometrical 
characteristics of the entities studied without recurring to algebraic instruments, but to “see” the result, to 
know it by intuition, make it evident for imagination. The prevailing trend of synthetic geometry of the 
19th century expressed a reconquest of the “intuitive geometrical spirit” over the “abstract analytical 
spirit”. Despite refusing the excesses of Cremonian “purism” later on, the Italian geometrical school 
defended “synthetic” geometry right to the bitter end: not so much as a refusal of the algebraic instrument 
but so as to support a vision of the “synthetic” method based on the use of intuition or, more precisely, on 
the psychological acquisition of geometrical concepts. For further details see Israel (1990).

1 ̂ For further detail cf. Taton (1951), 79-92.

* ̂ Not from the one by Dieudonn6, but the one by Monge-Lacroix, the influence of which reaches up to 
recent times.
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I 5cf. also Itard (1984,277): “Descartes affirme plusieurs fois que les courbes organiques conduisent £ une 
equation alg6brique. II n ’affirme ni nie jamais la proposition rSciproque.”

i^C f. ibid., 277-278: “A se placer au niveau elementaire, la Giometrie de Descartes est un ouvrage parmi 
bien d ’autres, et les accusations de plagiat [...] pleuvent de toutes part. [...] On pourra toujours trouver 
chez tel ou tel auteur contemporain ou plus ancien telle ou telle des idees 6mises par Descartes dans sa 
Geom6trie.”

1 7lt is impossible to give even an approximate report on the vast secondary bibliography. So we will only 
remind of some texts which are among the closest to the subject we have been dealing with (and 
consequently close to the general lines we have been following), apart from the ones already quoted. 
First of all the important work by J.Vuillemin, to which we owe an essential contribution to bring the 
philosophic theme closer to the mathematical theme in Descartes’ work: Vuillemin (1960). In this respect 
also Lenoir (1979). It specifies the connection between Regulce and Giomitrie, presenting, however, 
only a general analysis of the relations between the two. See also: Molland (1976), Coolidge (1940), 
Milhaud (1921), Granger (1968), Dhombres (1978), Scriba (1960-1962) and Schuster (1980).

Despite the fact, as Bos observes, that “nowhere in the Giomitrie did Descartes use an equation to 
introduce or to represent a curve.” (Bos 1981,322)

19 Bos observes: “[...] the use of the key words, clear and distinct [...] show that Descartes saw a parallel 
between the series of interdependent motions in [a] machine, all regulated by the first motions, and the 
“long chains of reasoning” in mathematics, discussed in the Discours de la Methode, which provided 
each step in the aigument is clear, yield results as clear and certain as their starting point.” ( ibidem, 310)

20 There is much evidence of that. In his texts numerous sentences like the following famous one can be 
found: “Mais ie ne m ’areste point a expliquer cecy plus en detail, a cause que ie vous osterois le plaisir 
de l ’apprendre de vous mesme, & Futility de cultiuer vostre esprit en vous y exer?ant, qui est, a mon avis, 
la principale qu ’on puisse tirer de cete science. Aussy que ie n ’y remarque rien de si difficile, que ceux 
qui seront un peu vers6s en la Geometrie commune & en l ’Algebre, & qui prendront garde a tout ce qui 
est en ce trait6, ne puissent trover.” (Descartes AT, VI, 374). The original edition of La Giometrie is 
Descartes (1637).

21 On the other hand even Bos observes: “Although there were contradictions in the structure and the 
programme, there was an underlying unity of vision.” (Bos 1981,332)

22 “per intuitum intelligo, non fluctuantem sensuum fidem, vel male componentis imaginationis judicium 
fallax; sed mentis purae et attentae tam facilem distinctumque conceptum, ut de eo, quod intellegimus, 
nulla prorsus dubitatio relinquatur; seu, quod idem est, mentis purae et attentae non dubium conceptum, 
qui a sola rationis luce nascitur [...].” (Descartes AT, X, 368 and LR, 20)

23 “Si quis igitur serio rerum veritatem investigare vult, non singularem aliquam debet optare scientiam: 
sunt enim omnes inter se conjunctae et a se invicem dependentes; sed cogitet tantum de naturali rationis 
lumine augendo [...].” (Descartes AT, X, 361 and LR. 6)

24 It is interesting to note that Descartes refuses to establish any parallels between science and arts at the 
beginning of the Regulae (cf. Regula /), due to the different nature of arts, where the employment of one 
speciality interferes with the employment of another, whereas, according to Descartes, the opposite holds 
true for the sciences, which are linked in such a way that they are more easily assimilated as a whole than 
separately.

25 The verb “intueor” is understood above all in the sense of “consider attentively”, “ponder over”.

26 “Sed hoc ita faciendum fuit, quia plurimae res certo sciuntur, quamvis non ipsae sint evidentes, modo 
tantum a veris cognitisque principiis deducantur per continuum et nullibi interruptum cogitationis motum 
singula perspicue intuentis.”
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27 “Quamobrem illas continuo quodam imaginationis motu singula intuentis simul et ad alia transeuntis 
aliquoties percurram, donee a prima ad ultimam tam celeriter transire didicerim, ut fere nullas memoriae 
partes relinquendo, rem totam simul videar intueri.” (Descartes AT, X, 388 and LR, 58-60)

28 To be more precise, we should point out that Descartes’ meaning of “uninterrupted” is the one closest to 
the modem concept of “continuous”, in particular the one suggested by mathematical terminology. 
However, they only conform in part. We could say that the principles of completeness and continuity 
correspond to the Cartesian principles of continuity and absence of interruption respectively, with some 
translation of the meanings; but on the whole they convey an idea that is rather close to the one suggested 
by the concept of continuum used in modem mathematics.

29 “[...] tanquam haec disciplina omnium facillima et maxime necessaria videretur ad ingenia capessendis 
aliis majoribus scientiis erudienda et praeparanda.” (Descartes AT, X, 375 and LR, 34)

30 “[...] nam cum Matheseos nomen idem tantum sonet quod disciplina, non minori jure, quam Geometria 
ipsa, Mathematicae vocarentur.” (Descartes AT, X, 377 and LR, 36)

31 “Quod attentius consideranti tandem innotuit, ilia omnia tantum, in quibus ordo vel mensura examinatur, 
ad Mathesim referri, nec interesse utrum in numeris, vel figuris, vel astris, vel sonis, aliove quovis objecto, 
tails mensura quaerenda sit.”

32 “Tota methodus consistit in ordine et dispositione eorum ad quae mentis acies est convertendo, ut aliquam 
veritatem inveniamus.”

33 This consequence is discussed in Regula VI.

34 “Ad scientiae complementum oportet omnia et singula, quae ad institutum nostrum pertinent, continuo 
et nullibi interrupto cogitationis motu perlustrare, atque ilia sufficienti et ordinata enumeratione complecti.” 
(Descartes AT, X, 387 and LR, 58)

35 A cumulative historian could say that Descartes did not have the concept of natural number.

36 s ee First Part, Sections 24,25, 26,27.

37 in thePrincipia extension is defined as the main attribute of a body (Part I, Sect. 53) and it is confirmed 
that the nature of a body only consists in being a substance with extension (Part II, Sect. 4). Moreover it 
is affirmed that size does not differ from what is big nor does number differ from what is numbered but 
through thought. Despite a substantial coherence of the two texts, the ways to establish identity between 
matter and extension are different. In the Regulce it is methodical, whereas in Principia it is metaphysical.

38 “Comment le calcul d ’Arithmetique se rapporte aux operations de Geometric.Dijksterhuis ”

39 We only possess the ones from XIII to XXI (the last three are without comments).

40 These differ from the “imperfectly understood” problems, which are part of physics and should have 
been dealt with by Descartes in his last twelve rules.

41 “ [...] sed unum quid ex multis simul implicatis dependens tam artificiose evolvendo, ut nullibi major 
ingenii capacitas requiratur, quam ad simplicissimam illationem faciendam.”

42 “Sed insuper ut quaestio sit perfecta, volumus illam omnino determinari, adeo ut nihil amplius quaeratur, 
quam id quod deduci potest ex datis [...].” (Descartes AT, X, 431 and LR, 142)

43 Algebra consists in abstracting the terms of difficulty from numbers in order to examine their nature. Cf. 
Regula XVI. (Descartes AT, X, 457 and LR 194)

44 “[...] non statim in difficilioribus et arduis nos occupari oportet, sed levissimas quasque artes et 
simplicissimas prius esse discutiendas, illasque maxime, in quibus magis ordo regnat, ut sunt artificum
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qui telas et tapetia texunt, aut mulierum quae acu pingunt, vel fila intermiscent texturae infinitis modis 
variatae; item omnes lusus numerorum et quaecumque ad Arithmeticam pertinent, et similia 
(Descartes AT, X, 404 and LR, 92)

45 See, in particular, Boyer (1956), Vuillemin (1960) and Bos (1981).

ENRICO PASINI

ARCANUM ARTIS INVENIENDI: LEIBNIZ AND ANALYSIS

“Mathematics is an experimental science. The 
formulation and testing of hypotheses play 
in m athem atics a part not other than in 
chemistry, physics, astronomy, or botany” 
(Wiener 1923, 271).

I Introduction

Leibniz was undoubtedly a many-sided man, and a polymathic mind, if ever there 
was one. The concept of analysis is notoriously, for its part, a polycephalous mon
ster, and nearly all its meanings are spread through Leibniz’s multifarious works, 
where the philosophical, epistemological, logical, and mathematical receptions of 
the term seem to be inextricably interwoven. Much the same is true of its counter
term, synthesis, and thus their mutual relation itself presents various aspects.

A thorough survey of these varieties lies far beyond the scope of the present 
study, and they have already supplied the subject-matter of some very good ac
counts (in particular Duchesneau 1993, 55-104). Here we shall just try to find 
some traces of what Goethe would have called a “red thread”—like the one he 
saw metaphorically twisted throughout the literary cordage of Ottilie’s diary in 
the Wahlverwandtschaften. Analysis is introduced by Leibniz in juridical, scien- 
tifical, mathematical, or philosophical contexts, under different conditions and 
with different purposes; but even for such manifold uses should exist some com
mon ground and univocal meaning. The analysis of thoughts and that of truths, 
the analysis of problems and that of things, all imply slightly or consistently dif
ferent proceedings, and nevertheless they must perform somehow one and the 
same operation.

In a very general sense, analysis is for Leibniz, like for anyone else, the reso
lution of something complex into simpler elements. A procedure of this kind is 
applied, for instance, to physical objects by natural scientists. As Leibniz writes to 
des Billettes in 1697, they make use of “a certain analysis of sensible bodies, 
[protracted only to an extent] useful for the practice of their discipline” (Leibniz 
A, I, 13, 656). Depending on their object, such practices can in principle proceed 
in perfectly symmetrical manners, either from individual entities to universal fea
tures, or from universal concepts to particular instances. Thus Martial Gueroult 
distinguished two aspects of analysis with respect to Leibniz, one that “goes from
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the concrete to the abstract; this is the one which tends to ascend indefinitely 
towards the simple notions”; and another one “which, on the contrary, goes from 
the abstract to the concrete and, in principle, from the less to the more real” 
(Gueroult 1946, 251). There are Leibnitian texts on the analysis of physical bod
ies confirming this interpretation1, but it is anyway somewhat too vague to be 
useful outside the immediate terrain of application.

II Truth Conditions

A first preciser specification of analysis, and a distinguishing one as for Leibniz’s 
thought, is its application to truths, that is, as it may also be called, “conceptual” 
analysis:

“According to Leibniz, truths of reason in general, and logical truths in particular, are necessary 
and eternal, true in all possible worlds, provable (i.e. reducible to identical propositions) in a finite 
number of steps, and hence ‘analytic’ in the strong sense (namely, the conceptual analysis that 
shows that the concept of the predicate is contained in that o f the subject can be actually per
formed)” (Dascal 1988,27).

Here a “truth” is the description of a state of fact expressed by one or several 
propositions in the form “subject-predicate” (substance-state), i.e. each proposi
tion specifying a property of a determinated substance at a determinated instant of 
time—a property as such or a property acting as a non-relational “requisition” to 
a relational state of things (Mugnai 1992). Leibniz writes in the § 33 of the Mona- 
dology:

“When a truth is necessary, its reason can be found by analysis, resolving it into more simple 
ideas and truths, until we come to those which are primitive.” (Leibniz GP, VI, 612)

In every propositional truth, the predicate is someway contained in the subject, 
connected by conditions that can be shown by analysis—just like mathematical 
theorems, Leibniz adds notably, “are reduced by analysis to Definitions, Axioms 
and Postulates” {ibid.).

So there must also be a reason, or a chain of reasons, for all truths of fact, that 
is to say, for contingent truths. They concern the sequences of events that consti
tute the universe of created beings, in which “the analysis into particular reasons 
might go on into endless detail” {ibid., 613), because of the immense variety of 
things in nature and the infinite division of bodies.

“There is an infinity of present and past forms and motions which join to make up the efficient 
cause of my present writing; and there is an infinity of minute tendencies and dispositions of my 
soul, which contribute to make its final cause.” (ibid.)

And all this minuteness involves infinite other contingent objects and events, 
“each of which still requires a similar analysis” {ibid.). As Leibniz once briefly
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condensed his theory of contingency, the root of contingency lies in the infinite 
{radix contingentiae est in infinitum): truths of fact are contingent, because no 
analysis can exhaust the infinite complexity of their truth conditions.

We are confronted here with the most general sense of the term, in which the 
concept of analysis is restricted to its fundamental elements. In so far as this is 
meant, it is true what Rescher maintains: that for Leibniz ‘“analysis’ is a logical 
process of a very rudimentary sort, based on the inferential procedures of defini
tional replacement and determination o f predicational containment through ex
plicit use of logical processes of inference” (Rescher 1967, 23). But it’s easy to 
find quite different epistemological conceptions of analysis in Leibniz’s writings, 
in particular when questions concerning the scientific method are dealt with.

I ll There is Method in’t

Leibniz felt a lively interest in the advancement of medical knowledge and of its 
methods. In a De scribendis novis medicinae elementis, written in 1680-82, we 
find the following remarks on the difference between analysis and synthesis in the 
study of pathology:

“The method is truly analytical when, for every function, we investigate its media, or organs, and 
their modes of operating; thus we acquire knowledge of the body from [the knowledge of] its 
parts. After having completed this, we’ll return to the synthesis, coordinating everything to the 
one, and we’ll describe the prime motor, the instruments of motion (both the liquid and the solid 
ones), their connections, and the whole economy of the animal.” (Pasini 1996,214)

The synthesis is then drawn from theoretical principles, namely the Galenic 
distinction of vessels, humours and spirits, out of which Leibniz’s favourite defi
nition of the animal body as an “hydraulo-pneumatical-pyrobolical engine” can 
easily be deduced.

Synthesis is here an a priori proceeding, while analysis is a method to acquire 
empirical knowledge. Both contribute to the investigation of physiology, but anal
ysis seems to act as first, being the chief means to systematically gather informa
tion, whereas synthesis represents the correct foundation by which it is possible to 
gain systematicity for the information collected. This conception, of course, is not 
in any way peculiar of Leibniz2.

If we read further in the De scribendis novis medicinae elementis, towards the 
end we encounter again the opposition of analysis and synthesis; this time the 
matter is not the method of investigation, but the communication of knowledge. 
Both analysis and synthesis again play a defined role: this is quite relevant, since 
the idea that analysis pertains mainly to discovery and synthesis to explaining and 
teaching is at Leibniz’s time very close to a commonplace.
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“Duplex Methodus tractandi Morbos”, he declares, “una Analytica per symp- 
tomata, altera Synthetica per causas” {ibid., 217). Disease can be considered 
analytically, based upon symptoms, or synthetically, based upon causes. It is im
portant to teach first the true analysis of illness, writes Leibniz further, namely 
“the art both to inquire into the signs, and to identify an illness by means of signs” 
{ibid.). Synthesis will be taught only after giving a specimen of analysis, i.e. “a 
general healing method, which is to the pathological synthesis what algebra is to 
the elements of geometry” {ibid.). Here again we see Leibniz draw a parallel with 
mathematics, and in particular between the method of analysis in general, and 
algebra—that is, for a mathematician of his time, analysis in the most proper 
sense.

IV The Anatomy of Wit

Leibniz maintains, more in general, that inventive people who make discoveries 
and enlarge knowledge usually proceed in two ways: “per Synthesin sive Combi- 
nationem et per analysin’’ (Leibniz VE, 1362), as we read in a De arte character- 
istica et inventoria. Combination, or synthesis, is a conjunction of thoughts, 
maybe even arbitrary, so devised as to let some new knowledge arise. Analysis 
requires dwelling upon the proposed subject, and to resolve its concept into other 
simpler concepts, or to determinate its requisite elements or components.

Leibniz observes that all inventive spirits are either more combinatorics or 
more analytical in disposition. A combinatorics wit can recall things past and 
connect them to present needs and experiences. Analytics thoroughly examine 
present things, but remain so immersed in their object as to limit their power of 
observation. Combinatorics spirits are superior, because their ability is a rare gift: 
“Combinare vero remota promte, non est cujusvis” {ibid., 1363).

In the second version of a programmatic sketch De arte combinatoria scribenda, 
Leibniz remarks analogously:

“I must premise a chapter concerning the difference between the analytical and the combinatory
method, and the difference between analytical and combinatory wits.” (Leibniz VE, 1098)

Analytical wits, according to him, are more short-sighted, so to speak, while com
binatorics ones are rather long-sighted (“Analytici magis Myopes; Combinatorii 
magis similes pres bites", ibid., 1099): in fact, in analysis it is suitable to pay 
attention to fewer things, but with more precision, whereas combinatorics consid
ers many things together, and much more perspectively; thus analysis has more in 
common with miniature painting, and combinatorics with large-scale sculpture.

Analysis is much easier to apply, since it consists of definable procedures:
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“Once a procedure of analysis is detected, it requires only attention, or firmness of mind [...] and 
indeed there are such people, whose wit is not vagabond, and who are able to reckon in their 
imagination, even without paper and pencil.” (ibid.)

Combinatorics, on the contrary, requires to quickly and promptly browse a mani
fold of subjects, and to treat them in unexpected ways. Their practical instruments 
also differ: people with a weaker imagination make use of figures and symbols to 
better focus questions, while those with a weaker memory and unable to represent 
many things together, are helped by the use of tables. “Characteristica vera et 
tabulis et analysi auxiliatur” {ibid.).

In the art of discovery, that is in the course of knowledge, both analytic and 
combinatorics spirits, as we read in the De arte characteristica et inventoria, will 
particularly profit of a method. The method is described in general: “Methodus 
inveniendi consistit in quodam cogitandi filo id est regula transeundi de cogita- 
tione in cogitationem” {ibid.). Method means something that provides the think
ing processes with a leading thread, i.e. with a rule regulating the movement from 
one thought to the other. The rule must consist in a palpable instrument: as the 
compass rules the hand in correctly tracing a circle, for correct thinking “instru- 
mentis quibusdam sensibilibus indigemus” {ibid.). These palpable instruments of 
thought are again tables for the combinatorics and characters—symbols—for the 
analysis3.

“Characterem voco quicquid rem aliam cogitanti repraesentat” {ibid.)—a char
acter is anythings that represents another thing to a thinking person. If we could 
keep the things themselves before us, we would have less need for such charac
ters. The representation is based on some relation or rule of correspondence be
tween them: so the ellipse represents a circle by being its projection. Models and 
figures of things can be considered as characters: they too are crafted so as to 
express the essence of the thing. Characters do not need to be similar to the objects 
they represent: numerical symbols express correctly the properties of number, but 
they do not resemble them.

V Thought Instruments

This conception of the method as an instrument, or a collection of instruments 
and techniques, rather than a set of precepts, marks one of the most important 
differences between Leibniz and the greater part of his contemporaries, notably 
Descartes. For Leibniz a method “is” an instrument, and an instrument, in the 
method of analysis, is an algorithm based on characters. Hence, on non-mathe- 
matical ground too, analysis is in principle a symbolic operation for Leibniz. More
over, systems of symbolic operations, i.e. algorithms, can legitimately be used, 
both for the comprehension and organization of existing knowledge and for the 
creation of new knowledge, also outside their traditional grounds.
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The construction of general methods for the acquisition, sharing and trans
mission of knowledge, in the form of complex algorithmic instruments for logical 
and conceptual calculus, is an idea that dates back to the young Leibniz. Adoles
cent, he devised an “alphabet of human thoughts”: it will grow into one of Leib
niz’s greatest projects, that of an art of discovery based on a “characteristic” (art 
of characters or symbols) of general use for combinatorics and analysis at the 
same time.

An analysis of our thoughts (analyse de nos pensees), states Leibniz in 1684, 
is “of the greatest importance both forjudging and for inventing” (Leibniz A, I, 4, 
342). This analysis of thought, he specifies elsewhere, “respondet analyst charac- 
terum”, corresponds to a symbolic analysis, in that characters can express our 
thoughts and their relations, thus providing our reasonings with a “mechanical 
thread” (Leibniz VE, 811). This idea is explained more clearly in many program
matic essays, one of which received the not particularly original title of Initia et 
specimina scientiae novae generalis (“First steps and examples of a new general 
science”). Leibniz distinguishes between dialectics, or analysis of opinions, and 
analysis of truths; the latter, he affirms, is the secret for the development of the art 
of invention and discovery:

“I shall also add the vulgar analysis of human judgements, i.e. the principles on which human 
opinions are based, that are dialectic and ought not to be despised. It wouldn’t be necessary to 
bring them into surer principles, only with the purpose to confirm something we already know.
But since the whole secret of the art of discovery [totum arcanum artis inveniendi], by virtue of 
which human science could make an immense progress, depends on the analysis of truths (that is 
the emendation of our thoughts), it is convenient to proceed to the highest levels of analysis.” 
(Leibniz VE,702)

This art will comprehend a method to perform rigorous demonstrations in any 
field, “equal or even superior to mathematical ones, which suppose many ele
ments that here could be demonstrated” (ibid.). It is a wholly new calculus that, 
according to Leibniz, is at work, in every human reasoning and is nevertheless as 
accurate as arithmetical or algebraic calculations are.

The same concepts are repeated ever and again in Leibniz’s countless mani
festoes for this new discipline:

“Since when I had the pleasure to considerably improve the art of discovery, or analysis, of the 
mathematicians, I began to have certain new views, that is, to reduce all human reasoning to a sort 
of calculus, which would be of use in discovering a truth in so far as it is possibleej: datis, i.e. from 
what is given or known.” (Leibniz GP, VII, 25)

A universal writing would also result from it, that “would be like a sort of 
general algebra, and would provide the means to perform reasoning by calcula
tion” (ibid., 26): such a calculus would not only be an instrument for learning and
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research, but it would be an infallible judge of controversies as well, offering a 
way to solve disputes by simple reckoning.

Leibniz explains this extended meaning of calculus in a letter he wrote to 
Tschimhaus in 1678: “Nihil enim aliud est Calculus, quam operatio per charac- 
teres, quae non solum in quantitate, sed et in omni alia ratiocinatione locum 
habet” (Leibniz GM, IV, 462). A calculus is nothing else than an operation per
formed by means of characters—that is, an algorithm of symbolic analysis—that 
takes place not only with quantities, but in any kind of reasoning as well.

VI The Place of Analysis

The place of analysis in this more general frame is, as one may expect, quite 
variable. In a short and schematic note, Leibniz lists the chapters for a work to be 
entitled Guilielmi Pacidii Plus Ultra sive Initia et specimina scientiae generalis. 
There we find among others the following arrangement of analysis and synthesis, 
combinatorics and discovery, mathesis and art of invention:

“ 10. De arte inveniendi
11. De synthesi seu arte combinatoria
12. De Analyst
13. De combinatoria speciali, seu scientia formarum, sive qualitatum in genere sive de simili 

etdissimili
14. De Analysi speciali seu scientia quantitatum in genere seu de magno et parvo
15. De mathesi generali ex duabus praecedentibus composite.” (Leibniz GP, VII, 49-50)

Analysis and combinatoric in general seem to be tied to the art of invention; 
two more specific versions, that concern quantity and form, are presented as the 
two branches that compose universal mathesis4.

Another, more detailed program is rubricated Initia et specimina scientiae 
generalis. It describes at length the structure of a complex work, dedicated to the 
“instauratione et augmentis scientiarum” (Leibniz GP VII, 57). After a first book 
dedicated to the logical form of arguments and to the ways to determine the eter
nal truths, the second book should treat de arte inveniendi, the “art of discovery, 
namely that of the tangible thread by which investigation is ruled”, and of its 
divisions, “ejusque artis speciebus”, namely combinatorics and analytics (ibid.).

In the Fundamenta calculi ratiocinatoris (1688-1689) Leibniz defines the cal
culus used in the universal art of characters as follows: “A calculus or operation 
consists in the exhibition of relations, performed by the transmutation of formulas 
according to some prescribed rule” (Leibniz VE, 1205); again, it might well be an 
exemplary definition of the analytical proceedings. And anyway, for Leibniz, any 
analytical calculation is a formal argument: as we read in a letter to the palatine 
countess Elisabeth of 1678:



42 ENRICO PASINI

“un calcul d ’analyse est un argument in forma, puisqu’il n ’y a rien qui y manque, et puisque la 
forme ou la disposition de tout ce raisonnement est cause de l’evidence.” (Leibniz A, II, 1,437)

When Leibniz defines combinatorics in his De artis combinatoriae usu in 
scientia generali (of 1683-84), he states that “Combinatoria agit de calculo in 
universum”, the combinatorics art deals with every aspect of the calculus, “that is 
to say, with universal marks or characters [...] and their rules, dispositions and 
processes, or with formulas universally. Of this general calculus, the algebraic 
calculus is a species, i.e. the one based on the laws of multiplication” (Leibniz 
VE, 1354).

If even combinatorics reveals itself blatantly to be framed just like analysis, on 
the other hand mathematical analysis is clearly, as Leibniz himself often affirms, 
a specimen of the ars characteristica. In 1691 Leibniz writes to Huygens that:

“The best and most convenient feature in my new calculus is this: that it exhibit truths by means 
of a sort of analysis, without any of those efforts of the imagination, that often succeed only by 
chance, and thus gives us the same advantage over Archimedes that Vieta and Descartes let us 
gain over Apollonius.” (Leibniz GM, II, 104)

The infinitesimal calculus, he means, frees the geometer from the need to concen
trate on the geometrical situation of the problem in order to devise a helpful con
struction, such as the insertion of a suitable ad-hoc linear segment.

Three months later Leibniz hammers again the qualities of his calculus in 
Huygens’ mind, and he supports his argument with an example:

“I remember that, as I once studied the cycloid, my calculus presented to me the greater part of 
the discoveries that have been made on the subject, nearly without any need for meditation. In
deed, what I like best in this calculus, is that it gives us the same advantage in the field of 
Archimedean geometry that Vieta and Descartes have given us in Euclidean and Apollonian ge
ometry, since it exempts us from working with the imagination.” (ibid., 123)

In fact, from the study of the function it is possible to exhibit numerous geometri
cal properties of the curve, by way of analysis: “Caeteraque omnia circa cycloidem 
inventa, pluraque alia similiter ex tali calculo analytice derivantur.” (Leibniz 
GM, H, 118)

VII Calculus on My Mind

Leibniz often intends by “analysis” a particular analytical method or a set of ana
lytical techniques, developed by other mathematicians, and from some writings of 
his, one might imagine that “quot sunt capita, tot sunt analyses”. Leibniz is clear
ly conscious of the novelty and peculiarity of his mathematical discoveries. He 
writes in 1692:
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“I have developed a new analysis concerning the infinite; it is quite different from Cavalieri’s 
geometry of indivisibles and from Wallis’ arithmetic of infinite series, since it doesn’t depend on 
lines as the former, nor on numerical series, as the latter, but it is general, and thus symbolic or 
Specious. But instead of the vulgar analytical calculus applying to powers and roots, it performs 
the calculus of differences and summations.” (Leibniz GM, V, 263-264)

“Vulgar” analysis (i.e. the algebra of Descartes, his mathematical and philo
sophical tete de turque) is often reprehended by Leibniz, since it doesn’t compre
hend some of the most fascinating concepts of seventeenth century mathematics 
(infinitesimals, imaginary numbers), nor some of the most important objects of 
Leibniz’s analytic research (transcendent relations, the theory of determinants).

A very important methodological distinction is drawn in a famous letter ad
dressed to Antonio Magliabecchi. There are two forms of analysis, states Leibniz 
here; first comes the analysis of Vieta and Descartes, that is considered by the 
modems to be the only analysis, and “that solves every problem, studying the 
relation of the unknown to the known quantities” (Leibniz GM, VII, 312). The 
other one has its scope in reducing the problem “to a different problem, easier 
than the first one” (ibid.). The latter was known also to the ancients, as it appears, 
for instance, from the Data. In writing to Huygens, Leibniz explains this distinc
tion as that between analysis “per saltum" and “per gradus, cum problema prop- 
ositum reducimus ad aliud facilius” (Leibniz GM, II, 116-117). The first one is 
more absolute, but the second often works better.

In De methodis synthetica et anagogica applicandis in algebra, the synthetic 
method is defined analogously: “cum problema difficile soluturi incipimus a fa- 
cilioribus” (Leibniz VE, 1095). Leibniz also observes that algebra performs a 
fake synthesis, in treating the unknown quantities as if they were known. The 
anagogic method is that of pure analysis, “quae nihil syntheseos habef (ibid.); 
and the “Data veterum” are of pertinence to the anagogic method, that hence 
appears to be the heir of the method described to Magliabecchi. Here we proceed 
backwards, “always reducing the problem to another, easier problem. And this is 
my method” (ibid.), adds Leibniz, used for ordinary equations, but also for the 
resolution of the ordinates of a curve, viz. in transcendent problems.

Another front is to be opened soon. As Leibniz writes to Melchisedec The- 
venot in 1691:

“Since I believe that geometry and mechanics have now become fully analytical, I have devised 
to extend the calculus to other subjects, even to subjects that until now nobody thought would 
have supported it.” (Leibniz A, 1,7,356)

And he adds, as usual: “Here I mean by ‘calculus’ every notation representing a 
reasoning, even without any relationship to numbers” (ibid.).

In 1679, four years after the completion of his work on the fundamentals of 
the infinitesimal calculus, Leibniz writes to Huygens: “Mais apres tous les pro-
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gres que j ’ay faits en ces matieres, je ne suis pas encor content de l’algebre” 
(Leibniz GM, II, 18-19), after all the work I did with algebra I think we need 
something different and more powerful in treating with geometrical entities. It is 
“une autre analyse proprement geometrique ou lineaire, qui nous exprime direct- 
ement situm” (ibid., 19): an analysis specific to loci, i.e. an analytic topology. 
Algebra represents quantities by appropriate symbols and operations: other sym
bols and operations can calculate forms, angles, orientations, movements, in their 
qualitative aspects too.

The most important use of this analysis, anyway, is to help in geometrical 
reasoning: “on trouve ainsi par une espece de calcul”, the same words used to 
describe the advantages of infinitesimal analysis, “tous ce que la geometrie ensei- 
gne jusqu’aux elemens d’une maniere analytique et determinee” (ibid., 26). By 
this calculus it is possible to determine analytically everything that belongs to 
geometry, up to its most fundamental elements.

As an obvious example of immaterial cognitive technology, this new analysis 
situs is, of course, an art of characters, and an art of invention: “Cette caracteris- 
tique”, adds Leibniz, will even express in symbols all mechanical structures and 
will help us to find new geometrical constructions, “a trouver de belles construc
tions”, since it contains at one time both the procedures of calculus and of con
struction (Leibniz GM II, 30-31).

VIII An Engine for Your Thoughts

“Quod omnium maxime quaero est Machina, quae pro nobis faciat operationes 
analyticas, quemadmodum Arithmetica a me reperta facit numericas” (Leibniz 
A, VI, 3, 412). What I most desire, Leibniz writes already in 1674, is a machine 
that performs analytical operations, just as the calculating machine he invented 
carries out the arithmetic ones. This idea of an analytical engine is hindered, one 
may say, by the inadequacy of its programming language, since “the universal 
analysis depends on the development of a universal character” (Leibniz A, VI, 3, 
413). Meanwhile, for the use of complex reasonings, it is acceptable to surrogate 
the required special-purpose characters with generic characters, such as the let
ters used in geometry5. But in general the signs we presently use to compose 
analytical formulas, adds Leibniz, can’t suitably express the mental operations 
involved in their treatment by means of simple analytical procedures as transposi
tions or linear transformations. Anyway, it is not an impossible task, since “omnes 
cogitationes non sunt nisi simplices complicationes idearum” (ibid.): thoughts 
derive in the ultimate analysis from simple components, simply combined, as 
words are composed by simple letters, and the complex apparatus of thoughts 
needs only to be brought back to such simplicity.
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But in reality our thoughts are not so transparent: even if we were able to 
perform thorough analyses of the concepts we use, we would not ipso facto be 
aware of its results at any moment of our thinking processes: “when a notion is 
very composite, we can’t think of all its ingredients together, as with an intuitive 
notion” (Leibniz GM, IV, 610). Leibniz discusses such issues in his Meditationes 
de cognitione, veritate et ideis, a short essay published in 1684 and dealing main
ly with the classification of ideas into clear, distinct, obscure, adequate etc. We 
have a distinct notion of something, Leibniz affirms, if our knowledge contains 
enough marks to discern it from all similar objects. But “in most cases, in partic
ular when a very complex Analysis is required, we can’t represent intuitively the 
whole nature of the object, and we use signs instead” (ibid.).

This sort of reasoning, says Leibniz, can be called “blind reasoning, or also 
symbolic reasoning, as we make use of in Algebra and Arithmetic, and indeed at 
every moment” (ibid.). Symbols, like those of analysis, are the true instruments of 
thought: in particular, they are for human thought a sort of indispensable blind
flying instruments—under conditions where normal thought is “blind-thought”. 
“Er huius generis cogitationes”, in Leibniz’s words, “soleo vocare caecas, quibus 
nihil apud homines frequentius aut necessarium magis” (Leibniz A, VI, 2, 481). 
This is the most intimate kernel and the real operational mode of human thought: 
that it operates mostly by means of symbols, that is to say it operates in the same 
way as algebraic algorithms, or analytical algorithms do—those of the “literal” or 
“specious” analysis. That’s why this last one is so successful, and useful, and sure 
in matters so difficult and general as reasoning and problem solving: “Hinc Sym- 
bolica ilia recentiorum analysis [...] tanti est ad celeriter et secure ratiocinan- 
dum usus” (ibid.).

The cogitatio caeca or symbolica finally is, according to Leibniz, in itself the 
best human instrument for problem solving, that is to say for the augmentation of 
“both knowledge, and happyness” (ibid.)—and mathematical analysis mirrors it. 
Not bad, in the end.

Notes

1 In the De modo perveniendi as veram corporum analysin of 1677: “Duplex est resolutio: una corporum 
in varias qualitates per phenomena seu experimenta, altera, qualitatem sensibilium in causas sive rationes 
per ratiocinationem” (Leibniz GP, VII, 268). If we combine such analyses with experiments, adds Leibniz, 
we’ll easily determine the causes of any quality found in any physical subject.

2 For instance, a quite conformable statement can be read in Newton’s Optics: “The Synthesis consists in 
assuming the Causes discover’d, and establish’d as Principles, and by them explaining the Phenomena 
proceeding from them” (Newton 1704,405).
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3 It must be observed that the instruments intended for the combinatorics are mostly traditional, static and 
trite; the instruments for analysis powerfully embody innovation.

4 And in the Elementa nova matheseos universalis (written between 1684 and 1687): “Tradetur et 
Synthesis et Analysis, sive tam Combinatoria, quam Algebra.” (Leibniz VE, 987).

5 In this way, if the specific knowledge that enters in a logical calculation is already set up, it will be easier 
to coordinate this particular specimen of the art to the general frame of the universal characteristic.

C R A IG  G . FR A S E R

THE BACKGROUND TO AND EARLY EMERGENCE 

OF EULER’S ANALYSIS

I Introduction

In cultivating analysis Euler is sometimes seen as someone whose primary achieve
ment was the development of tendencies in the Leibnizian school. Typical here is 
Bourbaki’s statement (Bourbaki 1974, 246) that he carried “the Leibnizian for
malism to an extreme” thereby “completing the work of Leibniz”. A somewhat 
different view is expressed by Boyer (Boyer 1939, 243) who calls attention to 
Euler’s originality: “Most of his predecessors had considered the differential cal
culus as bound up with geometry, but Euler made the subject a formal theory of 
functions which had no need to revert to diagrams or geometrical conceptions”1.

The present paper is devoted to a study of the role of analysis in the back
ground to and early development of Euler’s mathematical research. Euler’s Meth- 
odus inveniendi lineas curvas of 1744 (Euler 1744), the first systematic treatise 
on what would later become known as the calculus of variations, is here identified 
as the locus classicus for the initial emergence of a fully analytical conception of 
the calculus. The work contained many of the technical and notational innova
tions that would be elaborated in his mid-century textbooks on infinitesimal anal
ysis. In addition, in chapter four of the treatise Euler developed the subject in a 
way that exhibited its analytical character at a deeper theoretical level.

To understand the origins of Euler’s programme we first provide a survey of 
analytical conceptions in earlier mathematics. We then turn to a consideration of 
the relevant parts of the Methodus inveniendi, ending with a discussion of the 
mathematical and philosophical character of his approach to analysis.

II Analytical Methods in Early Modern Mathematics

It is possible to trace a continuous development in European mathematics that 
begins in the thirteenth century and leads by 1700 to the extensive employment of 
symbolic methods. Techniques of analysis came to play an important role in such 
distinct areas as the theory of determinate equations, arithmetic, coordinate ge
ometry and the calculus. Our survey will focus on the emergence of the concepts
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of equation and variable, and on the question of the degree to which symbolic 
methods formulated essential mathematical features of the subject under study.

II. 1 A nalytic A rt

The concept of analysis and the name itself became part of early modem mathe
matics largely as a result of the work of Francis Viete. His essay of 1591, In 
artem analyticen isagoge (1591a), initiated a series of researches by himself and 
such contemporaries of his as Marino Ghetaldi and Thomas Harriot that together 
contributed to the widespread employment in the seventeenth century of symbolic 
mathematical methods.

A substantial historical literature, deriving from the work of Jakob Klein (Klein 
1934-1936), emphasizes Viete’s modernity as a mathematician. It is suggested 
that his notion of specious logistic involved a theoretical widening of the concept 
of magnitude to include both arithmetic and geometric quantity. In adapting ideas 
from Diophantus’s arithmetic to the realm of geometric analysis he was led to 
generalize Diophantus’s concept of species. According to Klein {ibid., 166-167), 
“the eidos concept, the concept of the ‘species’, undergoes a universalizing exten
sion while preserving its tie to the realm o f numbers. In the light o f this general 
procedure, the species, or as Viete also says, the ‘forms of things’f...] represent 
‘general’ magnitudes simply”2.

Associated with this general concept of number, it is suggested, there emerged 
in his analytic art, with its use of symbols to represent unknowns and parameters, 
a structural, syntactic approach to mathematics3. Because the terms of his system 
could be given different interpretations in arithmetic and geometry the purely 
combinatorial properties of operations performed on analytical expressions were 
exhibited as an object of interest.

Klein’s essay and the historical writings it has inspired have resulted in a 
renewed interest in Viete’s algebra and have led to a better appreciation of his role 
in early modem mathematics. We will however argue in what follows that sugges
tive and informative as Klein’s essay has been, his whole thesis must be qualified 
at certain fundamental points.

The widening of the concept of magnitude that is attributed to Viete had al
ready taken place and was well assimilated within algebraic practice at least a 
century before he wrote. Algebra was known as “the art of the thing and the 
power” or “the great art” or “the greater part of arithmetic”. The progress of 
symbolic methods consisted of the replacement of the largely rhetorical proce
dures inherited from Islamic mathematicians by ones that used a syncopated or 
partial formalism in the solution of problems involving the determination of an 
unknown quantity. Study of quadratic, cubic and quartic equations led to the in
troduction of expressions denoting the roots of non-square numbers; thus magni
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tudes traditionally regarded as geometrical entities were denoted as numbers within 
the confines of what was essentially an arithmetical algebra.

In emphasizing the radical character of the Vietan concept of magnitude, Klein 
has overlooked the full mathematical significance inherent in the assimilation 
(well established by 1590) of surd numbers into arithmetical algebra.He is to be 
sure aware of this earlier tradition, writing that “the new number concept [...] 
already controlled, although not explicitly, the algebraic expressions and investi
gations of Stifel, Cardano, Tartaglia, etc.” {ibid., 178). Nevertheless he concludes 
of the cossist school that “in its whole mode of operating with numbers and number 
signs, its self-understanding fails to keep pace with these technical advances. This 
algebraic school becomes conscious of its own ‘scientific’ character and of the 
novelty of its ‘number’ concept only at the moment of direct contact with the 
corresponding Greek science, i.e., with the Arithmetic of Diophantus” {ibid., 148). 
To this one may reply in two ways. Self-consciousness on the part of researchers, 
however significant, is not necessary in order for important conceptual advances 
to take place; the latter may be, as they were for the cossist algebraists, logical 
concomitants of technical developments within the subject itself. Second, if in
deed an explicit awareness of conceptual advance is present it is necessary to 
show how this influenced and shaped the direction of mathematical research.

Another difficulty with Klein’s thesis is that it understates the extent to which 
Viete situated his notion of species within a classical Euclidean theory of magni
tude. He seems to have regarded the general magnitudes of his specious logistic as 
geometrical entities. He uses the words “ducere” and “adplicare”, terms denoting 
geometric operations, in his definition of the multiplication and division of mag
nitudes (writing for example, “magnitudinem in magnitudinem ducere”), and re
tains dimensional homogeneity as a fundamental principle. His vision of a general 
theory of quantity applicable to either number or line segments was already real
ized in Elements V, a part of the Euclidean canon that he drew upon in chapter 2 
of his Analytic Art. (Advocates of the notion of “symbolic magnitude” never ex
plain how book V of the Elements—a general theory of magnitude without sym
bols in the Vietan sense—is possible.)

Certainly Viete showed a stronger interest in mathematical method than had 
earlier researchers. To attribute to him a radical new syntactic or structural con
ception of mathematics seems however doubtful. He viewed analysis not as an 
autonomous subject but as an “art”, as a tool in solving problems, be they ones in 
geometry, the theory of equations or Diophantine arithmetic. The content of math
ematics was for him not a system of relations but a set of concrete problems in 
these subjects. His notational innovations were developed within this historically 
particular programme of research. His technical vocabulary and fondness for for
mal categories indicate the continued influence on him of scholastic thought. In
congruous mathematical elements were contained in his attempt to adapt ideas
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from Diophantine arithmetic, essentially a work of rational number theory, to the 
art of algebra as it was employed in the solution of geometrical problems.

Viete’s conceptual advances, the introduction of distinct symbols for variables 
and parameters and the adoption of an operational formalism, represented a sig
nificant contribution to mathematical method. They provided an orderly and uni
form notation for handling the material on algebraic identities and polynomial 
equations that had appeared in Cardano’s Ars Magna (Cardano 1545), and per
mitted the emergence of “the first consciously articulated theory of equations” 
(Mahoney 1973, 36). Perhaps most important mathematically, his notational sys
tem allowed one to investigate the relationship between the coefficients of a poly
nomial and the structure of its roots; it must be said however that this last line of 
investigation developed slowly and only became established in the later eight
eenth century.

Of considerable conceptual significance, particularly for the later development 
of the calculus, was the idea of a function. The notion of a general expression/(A) 
defined in terms of the variable A was present in embryonic form in Viete’s sys
tem, where the square of the magnitude denoted by the symbol A was denoted by 
an expression (“A quadratus”) that itself contained A. Instead of the “res” and the 
“census” of traditional algebra, separate terms denoting distinct entities, one now 
had a notation that reflected the underlying operations performed on the magni
tudes being represented. That the functional idea could only receive a somewhat 
limited development by Viete was a consequence of the fact that he viewed his 
symbol “A” not as a variable in the full sense but as an unknown, an object whose 
value was to be determined in the course of the solution of a problem (Boyer 1956, 
60). His definition of an equation, “the coupling of an unknown magnitude with a 
known” reflected this particular perspective.

II.2 T heory of Numbers

The figures of Euclidean plane geometry are coherent unitary objects whose iden
tity is defined in terms of certain universal attributes, such as being three-sided or 
being right-angled. Results in geometry become theorems by virtue of the inher
ent generality of figures as mathematical objects. As commentators from Leibniz 
to Frege have emphasized, whole numbers—the objects of arithmetic—are differ
ent sorts of things, possessing particular individual characteristics4. Propositions 
in Euclidean arithmetic (Elements VII, VIII and IX) are formulated in terms of 
classes of numbers, such as being prime, being perfect, or being a member of a 
geometric progression. These classes are delineated rhetorically, without the aid 
of symbolic notation.

It is ironic that Viete turned to Diophantus’s Arithmetic, a work of rational 
number theory, as a source of inspiration for developing methods in algebra and
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geometry, the sciences (for him) of continuous magnitude. An opposite sort of 
irony characterized Pierre Fermat’s extensive researches in theoretical arithme
tic5. In his study of geometry he adopted Viete’s system of notation, using it to 
formulate mathematically the idea of coordinate geometry. He also studied the 
Arithmetic carefully and greatly extended the results contained there, in the proc
ess laying the foundation of modem number theory. Throughout these latter re
searches he employed a predominately rhetorical mode of presentation. Although 
he used hindu-arabic numerals and some signs for arithmetic operations, his state
ment and demonstration of theorems were presented in words without the aid of 
symbolic notation.

The style of Fermat’s writings is illustrated by a comparison with Euclid, whose 
mode of expression in number theory was also rhetorical. Consider Euclid’s asser
tion (Elements IX, 36) that a number of the form 2P_1(2P-1) is perfect if 2P-1 is 
prime6: “If as many numbers as we please beginning from an unit be set out con
tinuously in double proportion, until the sum of all becomes prime, and if the sum 
multiplied into the last make some number, the product will be perfect”.

Consider now Fermat’s original statement of what is known as Fermat’s little 
theorem, the assertion (in modem mathematical language) that p  divides aP~l- 1, 
where a and p are relatively prime numbers7: “Without exception, every prime 
number measures one of the powers -1 of any progression whatever, and the expo
nent of the said power is a submultiple of the given prime number -1 ” (Fermat, 
TH, V. 1, 209).

In his rhetorical expression as well as in his interest in integral rather than 
rational solutions Fermat seemed to be looking past Diophantus to the arithmetic 
books of Euclid’s Elements as a source of inspiration. In 1657 he explicitly criti
cized the use of geometrical considerations in arithmetic (presumably because 
they entailed conceptions of continuous magnitude) and, appealing to Euclid, urged 
that “arithmetic redeem the doctrine of whole numbers as a patrimony of its own”8. 
Although many problems of rational arithmetic reduced to ones of whole-number 
arithmetic it was also the case that certain interesting questions in the latter sub
ject became trivial when the class of permissible solutions was extended to ration
al numbers. It is very possible that his disinclination to use literal notation derived 
from a desire to emphasize the autonomy of whole-number arithmetic.

There is it must be noted some evidence that Fermat privately employed alge
braic methods in his arithmetic researches, and some of his correspondents sus
pected him of having done so. His contemporary Descartes made use of formulas 
to express arithmetical results. Nevertheless, in all of his extant writings, in all of 
the different phases of his research, Fermat did not employ symbolic algebraic 
notation.

The awkwardness of rhetorical formulations and the need for more and more 
detailed statements of results eventually imposed restrictions on the sort of theory
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that could be developed. Fermat’s decision not to give a fuller account of his 
researches may have derived in part from the demands that such a mode of expo
sition entailed. The concept of an arithmetic variable—an entity that could as
sume any of a given set of whole-number values—was central to the progress of 
number theory as it was to develop after him. It enabled one to reify in formulas 
expressions and relations that could then be studied or manipulated at will in the 
course of the investigation.

It should nevertheless be remembered that at the most fundamental level it 
was numbers and their properties, and not any system of relations embodying 
these properties, which constituted the fundamental subject of the theory of num
bers. The role of the variable was not an essential one; each symbolic statement 
could always be re-expressed in terms of a proposition about classes of numbers.

II.3 C o o r d in a te  G e o m e t r y9

Euclid and Apollonius had derived results about curves that express relations of 
equality between magnitudes associated with these figures, relations that are valid 
for an arbitrary point taken on the perimeter of the curve. In Elem ents HI, 36 one 
is given a point D  outside of a circle and asked to draw from it two lines; the first 
DB  is tangent to the circle and the second D CA  cuts the circle at the points C and 
A (fig. 1). Euclid showed that the square on DB  is equal to the rectangle on D C  
and DA. In book I of the Conics Apollonius introduced the ellipse as the section 
obtained by intersecting a plane with an oblique circular cone (fig. 2). Such a cone 
is formed by the lines joining the perimeter of a circle to a point not in the plane of 
the circle. Let PP' be a given axis through the centre of the ellipse and let Q  be a 
point on the perimeter of the ellipse. Consider the line VQ of intersection of the 
plane of the ellipse and the plane of that circle through V which is parallel to the 
base; Q  is the point where the line meets the ellipse. The line VQ is called an 
“ordinate”. In I, 15 Apollonius showed that the rectangle on P V  and V P ’ is in a 
given constant ratio to the square on VQ.

In these propositions the curve is introduced and the given relation is then 
exhibited as a property satisfied by it. The relation represents one of several prop
erties and is not regarded as defining or definitively expressing the curve. The 
primary purpose of the results is found in the solution of other problems. In E le
m ents IV Euclid used III, 36 in his construction of the regular pentagon. In Conics 
III Apollonius employed the theory of the earlier books in his investigation of the 
problem of the locus to three and four lines.

This last problem is of great historical significance for the later development 
of coordinate and projective geometry and possesses in its own right certain points 
of conceptual interest. Consider four lines given in position in the plane. It is 
necessary to determine the locus of points P  such that the rectangle formed by the
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distances from P  measured in given directions to the first two lines is in a speci
fied ratio to the rectangle formed by the distances measured in given directions to 
the other two lines. (In the case of three lines one of the rectangles becomes a 
square.) It turns out that the locus is in every instance a conic section. In the same 
book Apollonius provided a detailed discussion of the problem, developing results 
that would (at least in principle) form the basis for a complete solution10.

In book VII of his C ollection  Pappus called attention to the three and four line 
problem and discussed the work of earlier geometers11. He also raised the question 
of the nature of the locus when the number of lines exceeds four. The distances 
that appear in this problem are magnitudes that are assumed to vary while the 
relation expressed by the locus condition itself continues to hold. (This relation 
was expressed in two forms by Pappus, in terms of the ratio of figures or solids, 
and for the more general case in terms of compound proportions.) What logically 
distinguishes these magnitudes within the problem is that they vary, and that the 
locus is produced in consequence of their variation. The concept of a variable 
would therefore seem to be implicitly present in Pappus’s formulation.

The Collection became available in Western Europe in 1588 in Commandi- 
no’s Latin translation (Commandino 1588). When Descartes began to study the 
locus problem in 1632 he did so having already had some grounding in Vietan 
algebra and the theory of equations. His G eom etrie (1637) may be seen as a fairly 
natural development arising from the application of algebraic methods to a prob
lem of current interest. His approach to the investigation of the locus was very 
simple. Let AB be one of the lines that are given in position, C be a point on the 
locus and CB the line segment that is to be drawn from C to AB. Descartes took 
AB  and CB as his given reference lines and let x=AB  and y= C B  (fig. 3). (Notice 
that the problem is especially suited to coordinate methods, because the line seg
ment CB from C to AB  is always drawn at the same angle to AB.) He calculated
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the various distances of the problem in terms of x  and y and proceeded to express 
the locus condition as an indeterminate equation in these variables.

In the original locus problem there were as many variable magnitudes as there 
were lines given in position. In Descartes’ geometry by contrast the problem was 
reduced to the consideration of two variables connected by means of an equation. 
His theory opened up the possibility—at least in principle—that continuous vari
ation could be studied by examining how one variable changes with respect to the 
other within such a relation.

The last question however was one that Descartes never pursued. His investi
gation remained firmly centred on the classical problem of constructing solutions 
to geometrical problems. His interest in equations was based primarily on the role 
they played in such solutions. Within this programme it was necessary to deter
mine points on a curve by means of acceptable instruments of construction (Bos 
1981).The curve enjoyed a dual status, as something that was a solution to a geo
metrical problem and as something that could itself be used as a tool in the con
struction of a solution. The study of indeterminate equations yielded information 
about the associated curves, while determinate equations could be solved to obtain 
particular points on the curve.

Fermat’s writings from the same period demonstrate a better appreciation of 
the general methodological character of coordinate geometry. In his Ad locos et 
solidos isagoge of 1637 (TH, I, 4, 91-110) he enunciated the principle that to any 
equation in two variables there corresponds a curve in the plane, one given by 
means of the graphical method of his coordinate system12. He was however prima
rily interested in geometrical loci problems, in which the final equation is always
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an algebraic or polynomial relation. His continued interest in restoring Greek 
mathematical works indicated the strong classical character of his investigation.

Throughout the early history of coordinate geometry there seems to have been 
little interest in the mathematical investigation by means of graphical techniques 
of arbitrary relations among magnitudes, abstractly considered. The familiar mod
em use of graphs to represent the behaviour of virtually any two related quantities 
that are found anywhere was notably absent during the period.

II.4  T he C alculus

II.4.1 E q u a t i o n s

While established research in coordinate geometry remained centred on geomet
rical construction a whole new line of investigation was opened up with the grow
ing interest in quadrature and tangent problems. Early work on what later became 
the calculus was connected with the programme of study set forth in Van Schooten’s 
Latin edition of Descartes’s Geometrie (Descartes, 1659-1661). Out of these de
velopments came a new part of mathematics, one that soon achieved considerable 
prominence as an area of research13.The relevant history has been well document
ed in the literature. Our discussion will be confined to two examples which illus
trate some of the conceptual and technical issues associated with the role of the 
equation in the early calculus.

The first example involves a comparison of Wallis’s A r i t h m e t i c a l  in f in i to r u m  

(1656) and Newton’s researches on infinite series from the 1660s. Wallis was a 
proponent of the new analysis and employed symbolic notation freely in his book. 
His primary goal was to investigate quadratures and cubatures by means of arith
metic methods involving infinite numerical series. In Proposition XIX he consid
ered the series

0+1 = 1 1 1 1  0 + 1 + 4 = 5
l + l = 2 - 2 _ 3 + 6 ’ 4 + 4 + 4 = 1 2
0 + 1 + 4+ 9  = 14 7 1 1-------------------- = — = —+ — , e t c .
9 + 9 + 9 + 9 = 34 18 3 18

1 1
—l----
3 12

It is clear that when the number of terms become infinite the value of the series is

1/3. (Wallis wrote down the general formula for the numerator as
/ +1 

3
/2 + — /2

61
He showed how this result may be used to obtain the ratio of the area under a 
parabola to the circumscribed rectangle, and the ratio of the volume of a cone to
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the circumscribed cylinder. He proceeded in the treatise to extend the result, and 
through the skilful and extensive use of interpolation went very far in obtaining 
numerical series expressions for various quadratures14.

In the winter of 1664-1665 Newton began to study the A rithm etica infinito- 
rum , research which he carried out at the same time he was reading Van Schooten’s 
edition of the Geom etrie. He recorded his progress in notebooks which have sur
vived15. His fundamental innovation was to reformulate Wallis’ investigation in 
terms of equations between Cartesian coordinate variables. By setting the prob
lem in this way he made relations between continuously changing magnitudes the 
central object of study. An equation implies the existence of a relation that re
mains valid as the variables change continuously in value. It is this fundamental 
fact—the continuous and permanent character of the relation, its persistence dif
ferentially in the neighbourhood of each real number—that was exploited by New
ton in expressing the connection between the equation of the curve and the formula 
for its quadrature. This fact would also be the basis for his subsequent investiga
tion, set forth in the 1669 paper D e analysi, relating the quadrature of a curve to 
its equation by means of differentiation16.

Although Wallis was an advocate of the new analysis he did not make essen
tial use of relations among variable magnitudes in his investigation. His approach 
was not “analytical” in the deeper sense discernible in Newton’s early work on 
infinite series and quadratures.

Our second example concerns some later work of Newton and the French 
mathematician Pierre Varignon. The motion of a freely moving particle acted 
upon by a central force was the subject of book one of Newton’s Principia mathe- 
m atica  (1687) as well as of a memoir by Varignon published by the Paris Acade
my in 1703 (Varignon 1701). Both men established that motion in an ellipse with 
the force centre at one focus implies an inverse-square force law. In a break with 
his early mathematical work of the 1660s Newton abandoned Cartesian analytical 
methods, turning instead to a kind of infinitesimal-geometrical theory of limits. 
Varignon by contrast used techniques of the recently established Leibnizian calcu
lus in his solution.

In Proposition VI and its corollaries Newton had derived a measure for the 
force in terms of geometrical quantities associated with the curve. In the next few 
propositions he calculated the force law when the trajectory was assumed to have 
a given form. In Proposition XI he considered the case of the ellipse. In fig. 4 the 
point P  is the position of the particle on the ellipse at a given instant, C is the 
centre of ellipse, S is one of the foci and the centre of the force, and CA and CB are 
the semi-major and semi-minor axes. Through P  draw the tangent RP. The line 
D C K  is drawn through C  parallel to the tangent intersecting the ellipse at the 
points D  and K. The lines CP  and CD  are then conjugate axes of the ellipse 
corresponding to the point P. Let E  be the intersection of the SP and D C . Draw the
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perpendicular P F  from P  to Dk. Let Q  be a point on the ellipse near P. Draw the 
line Q v  parallel to the tangent intersecting the conjugate diameter PC G  at v. In the 
course of his derivation Newton made use of the following two equations:

G v  • Pv: Q v2 =  P C 2: C D 2

C A :PF =  CD:CB

These he presented as known properties of the ellipse; of the second relation he 
noted that it had been “demonstrated by the writers on the conic sections.”(Note 
that the first of these relations is the one from Apollonius’s Conics I, discussed 
earlier.) He also proved that the quantity E P  is a constant equal to the semi-major 
axis CA. Using this fact and the above relations he was able to show that the force 
is inversely proportional to the distance SP.

Varignon began by expressing the trajectory relative to a coordinate system in 
which the variables are the distance r  from the force centre and the quantity z, 
where d z  is defined as the projection of the element of path-length ds on the 
perpendicular to the radius. The tangential component of the force is equated to 
the expression dds/dd t, where s  is the path length and t is the time. The derivation 
of the inverse-square law for the case of the ellipse is a model of simplicity. Con
sider the ellipse with major axis AB, foci D  and C and force centre at C  (fig. 5). Set 
A B = a , D C - c  and t f = a 2-c*. Let L  be a point on the ellipse, C L=r. If / is a point 
close to L  and the perpendicular IR is drawn to CL then the differential d z -R l.  
Varignon gave the equation of the ellipse in the form17
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bdr = d z 4  4ar -  4 rr -  bb

Using the relation ds2= dr2+ d z! and the area law rd z= d t he reexpressed this equa
tion in the form

4a  -  4r _  bbds2 

r  d t2

2a
Differentiation of this equation with respect to t led to the expression 2 2 f°r 
the force, which yielded the desired result. r

Both Newton and Varignon employed equations that express relations between 
continuously varying magnitudes and in this sense both of their derivations may 
be said to be analytical. There were however important differences of approach. In 
Newton’s solution the ellipse with its various properties acts as a synthetic geo
metrical object, controlling the form of the derivation. In Varignon’s memoir by 
contrast the ellipse is specified by a single equation between two variables relative 
to a fixed coordinate system. The entire mathematical content of the problem is 
reduced to the study of this equation; all of the properties of the ellipse needed for 
the solution are contained in it. The solution therefore evolves through a mechan
ical application of the differential algorithm.

II.4.2 G r a p h i c a l  T e c h n i q u e s

The curve was an object of considerable mathematical and physical interest through
out the seventeenth and eighteenth centuries. A few examples from the period 
1680-1740 illustrate this point. The study of the relations that subsist between the 
lengths of curves gave rise to a theory of elliptic integrals. In work in the calculus 
of variations classes of curves constituted the primary object of study. In analytical 
dynamics attention was concentrated on determining the relation between trajec
tories and force laws. In the theory of elasticity researchers studied the shape of 
static equilibrium assumed by an elastic lamina under various loadings, as well as 
the configurations of a vibrating string.

The curve also played a fundamental and very different role in the conceptual 
foundation of the calculus. The situation is illustrated by work in problems of 
maxima and minima, an important part of the subject. In the very first published 
paper in the calculus Leibniz (1684) used his differential algorithm to derive the 
optical law of refraction from the principle that light follows the path of least 
time. He considered the points E  and C on opposite sides of a line 55 separating 
two optical media (fig. 6). It is necessary to find the point F  on 55 such that a ray 
of light travelling the path E FC  does so in the least time. The time of transit from
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E  to F  is equal to the product of the distance EF  and a constant equal to the 
reciprocal of the velocity in the first medium; this product Leibniz regarded as a 
rectangle of sides EF  and a given constant line r. The time from F  to C was 
likewise regarded as a rectangle of sides F C  and a line h. The total time of transit 
along E F C  is therefore equal to the sum of these rectangles. Leibniz (ibid. 1684) 
wrote: “Let us assume that all such possible sums of rectangles, or all possible 
paths, are represented by the ordinates K V  of curve W  perpendicular to the line 
G K ” (fig. 7)18. Letting x = Q F = G K  be the abscissa and w = K V  be the ordinate he 
had in fig. 7 a curve W M  representing the time of transit as a function of the 
distance x  from Q  to F. He calculated this time as an expression in x  and applied 
the differential theory he had previously introduced for curves to obtain the path 
given by the known law of refraction.

In this problem the primary object of interest is the relation between two mag
nitudes, the distance QF  and the time of transit that corresponds to this distance. 
Although there is nothing in the nature of this relation that logically entails a 
geometric interpretation Leibniz nevertheless chose to represent it graphically by 
means of a curve. He could then apply his differential algorithm which had been 
introduced earlier for the analysis of curves.

Graphical procedures had been employed by Galileo in his D iscorsi (1638) to 
relate the speed of a falling body to the time of its descent. They had become 
common in mathematical treatises by the late seventeenth century. Barrow in his 
Lectiones geom etricae (1670) represented quadrature relationships in this way. 
In his Principia m athem atica  (1687) Newton investigated the inverse problem of 
central-force particle motion. In Propositions XXXIX and XLI of book one he 
graphed the force as a function of the projection of position on the orbital axis and
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analyzed the resulting curve to arrive at expressions for the particle’s trajectory. 
Jakob Bernoulli employed graphical methods throughout his researches of the 
1690s. In his study of the elastica the relation between the restoring force and the 
distance along the lamina was superimposed in graphical form on the diagram of 
the actual physical system.

The first textbook on the differential calculus, l ’Hopital’s A nalyse des infini- 
m ent p e tits  (1696), was a systematic attempt to ground the calculus in a theory of 
curves. The way in which this was done by him and other researchers of the 
period has been documented in the historical literature (Bos 1974). Of particular 
interest for the present discussion is his treatment of problems of maxima and 
minima. These problems were explicitly formulated as ones of finding the maxi
mum or minimum ordinate of a curve. The equation of condition dy  -  0 or d y  = oo 
was deduced by considering successive values of dy  and noting that about a max
imum or minimum ordinate these values must change in sign. In several exam
ples, each of which gave rise to a relation between two variables, he used graphical 
techniques to refer the problem of finding an extremum to the consideration of an 
associated curve.

In the ninth example l’Hopital introduced a curve AEB (fig. 8) given in posi
tion and two fixed points C and F. Consider a variable point P  on the curve and let 
C P -u  and P F =z. Consider a quantity (what would later be called a function) 
composed in some definite way from the variables u and z. It is necessary to find 
the point P  so that this quantity is a maximum or a minimum. To solve this prob
lem l’Hopital joined the points C  and F  to form a base axis CF. The ordinates Q M  
and OD  give the values of the quantity corresponding to the points P  and E. In 
contrast to the primary curve AEB the curve M D  joining M  and D  is a purely

H

F igure 8
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logical construction expressing the quantity as a function of position along CF. 
L’Hopital observed that at P  “the ordinate Q M  which becomes OD  must be the 
greatest or least of all companion ordinates.” He derived using the differential 
algorithm a solution in the particular case where the quantity is equal to au + z2 (a  
constant), obtaining adu + 2 zd z  = 0 or du : d z  = 2 z : a  as the differential equation 
which defines P.

The grounding of basic calculus procedures in terms of the properties of the 
curve, and the common practice of representing relations between magnitudes 
graphically by means of curves, led to a tendency to see the early calculus as 
something that was essentially geometrical. The term “fine geometry” employed 
at the time conveys the contemporary understanding. At the most fundamental 
level the geometrical character of the early calculus conditioned how the subject 
was understood, allowing it to be experienced intellectually as an interpreted, 
meaningful body of mathematics.

II.4.3 C o o r d in a t e  S y s t e m s

It is clear that graphical methods played a role in the early calculus that would 
later be filled by the function concept. An example of this is Varignon’s 1706 
memoir “Nouvelle formation des spirales” (1704). The paper is devoted to the 
investigation of curves given in terms of polar variables. Although Cartesian ge
ometry was originally developed for oblique and orthogonal coordinates there had 
been an early interest in other reference systems. Study of Archimedes’s On sp i
rals led in the seventeenth century to the invention of transformations that corre
lated areas expressed in terms of polar quantities to ones defined in terms of 
Cartesian coordinates. In the writings of Cavalieri, Roberval, James Gregory, Bar- 
row, Newton and Jakob Bernoulli there was an interest in applying calculus-relat
ed procedures to curves expressed in polar quantities. In Varignon’s own earlier 
work in orbital dynamics (as we saw in § II.4.1) he considered expressions for the 
force that were functions of the distance from the particle to a given centre; it was 
therefore natural that polar quantities were employed to analyze the resulting 
motion.

In his 1706 memoir Varignon considered a fixed reference circle ABYA with 
centre C  (fig. 9). A “courbe generatrice” H H V  is given; a point H  on this curve is 
specified by the perpendicular ordinate GH , where G  is a point on the axis xC X  of 
the circle. The line CX  is conceived as a ruler that rotates with centre C in a 
clockwise direction tracing out a spiral OEZAEK. Consider a point E  on the spi
ral. With centre C draw the arc EG. Let c  = the circumference of the reference 
circle ABYA, x  = arc AM B, C A =a, C E = y , G H = z and A D - b  a constant line. The 
arc x  is defined by the proportion c:x=b:z. Varignon wrote what he called the 
“equation generate de spirals a l’infini” as cz=bx. By substituting the value for z
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given by the nature of the generating curve into this equation the character of the 
spiral was revealed. Depending on whether the generating curve was a parabola, 
hyperbola, logarithm, circle, etc., the corresponding spiral was called parabolic, 
hyperbolic, logarithmic, circular etc.

That one could introduce curves in a polar reference system by considering 
arbitrary relations between the radius and the pole angle was presented by Vari- 
gnon as a substantial advance. Earlier mathematical researches had concerned 
such special cases as the parabolic spiral. In Varignon’s dynamical investigations 
the trajectory was something that was logically given as part of the physical prob
lem. In the present paper by contrast the “equation” of the spiral is formulated a  
p rio r i in terms of Cartesian coordinates in the associated “generating curve”. The 
latter embodies in graphical form the functional relationship between the polar 
variables and acts as a standard model to which this relationship may be referred.

A prominent subject of Varignon’s paper, the rectification of polar curves, is of 
interest from the viewpoint of the conceptual foundations of analysis. Newton and 
Jakob Bernoulli had independently studied the path-lengths of pairs of associated 
curves, one member given in Cartesian and the other in polar coordinates19. The 
Cartesian formula for the differential element of path length is ds2=dx2+ d y2, where 
x  is the ordinate and y  the abscissa; the polar expression of the same quantity is 
ds2- d x 2+x2d&1, where x  is now the radius and Q is the polar angle. If the element 
of length is assumed to be the same along both curves (so that there respective 
lengths for a given value of x  are equal) we are led to the differential equation 
d y= x d d  relating the respective coordinate variables. It was clear for example that

the integral Vl + x 2 dx gives both the length along the parabola y -  ~  x2 as well
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as the length along the Archimedean spiral x=G. The rectification of the spiral, a 
mechanical curve, was reduced to that of the simpler and better known conic 
section, a result of considerable interest to mathematicians of the period. Varignon’s 
study of rectification consisted in large part in the extension and further develop
ment of this result.

The common use of non-Cartesian coordinates in the early calculus was in the 
computation of geometric quantities associated with the curve. Thus polar coordi
nates were employed in certain problems because they provided a suitable meas
ure of the radius of curvature of a curve. The geometrical object was given and the 
coordinate description was varied for the purposes of investigation. Varignon’s 
paper pointed in the opposite direction. Contained in his study, if only implicitly, 
was the realization that the same formula could receive distinct geometric inter
pretations, depending on the meaning assigned to the coordinate variables of the

problem. The interpretation of the formula f 4 \  + x 2 dx in the preceding para-

graph will differ depending on whether x is regarded as an orthogonal or a polar 
variable. This conclusion suggested more generally the possible existence of a 
stable analytical core for the calculus. The work of Euler that we shall we consider 
in the next section was based in large part on the elevation of this insight to an 
explicit and systematic programme of research in infinitesimal analysis.

I ll Euler’s Analysis

III.1 By the early eighteenth century symbolic methods were common in Conti
nental mathematics. In the infinitesimal calculus especially there were strong an
alytical elements in the researches of the Bemoullis, Varignon, Taylor (English, 
but an important influence on the Continent), Hermann, Fagnano, Riccati, and 
others, elements that were combined however with pervasive geometric modes of 
representation.

Euler became established as a mathematician of note during the decade of the 
1730s. He was a young man in his twenties, a member of the St. Petersburg Acad
emy of Sciences and a colleague of Hermann, Daniel Bernoulli and Goldbach. His 
interest in analysis is evident in writings from this period, including his major 
treatise on particle dynamics, M echanica sive motus scientia analytice exposita  
(1736). Although the theme of analysis was well established at the time there was 
in his work something new, the beginning of an explicit awareness of the distinc
tion between analytical and geometrical methods and an emphasis on the desira
bility of the former in proving theorems of the calculus.

The direction of Euler’s research in the later 1730s and early 1740s may be 
followed in his work in the calculus of variations, leading up to the publication in
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1744 of his M ethodus inveniendi. His investigation began from earlier results of 
Jakob Bernoulli, Brook Taylor and Johann Bernoulli. Jakob and Taylor’s researches 
were linked by an appreciation at the level of technical approach for the analytical 
solution of isoperimetric problems. By contrast, Johann’s major memoir of 1719, 
an extended exposition of his brother’s ideas, emphasized a more geometric ap
proach to the same subject. Although Euler had been Johann’s student in Basel 
his own conception of variational calculus seems to have evolved under the influ
ence of Jakob and Taylor (Fraser 1994).

III.2 The M ethodus inveniendi contained many of the advances that would be 
systematically developed by Euler in his later treatises: the function concept; the 
notion of a trigonometric function and the associated notation; and a uniform 
procedure for introducing higher-order differentials. At a deeper level the work 
expressed an appreciation for the mathematical possibilities of a more abstract 
approach to analysis.

A typical problem of the early calculus involved the determination of a magni
tude associated in a specified way with a curve. To find the tangent to a curve at a 
point it was necessary to determine the length of the subtangent there; to find the 
maximum or minimum of a curve one needed to calculate the value of the abscissa 
that corresponded to an infinite subtangent; to find the area under a curve it was 
necessary to calculate an integral; to determine the curvature at a point one had to 
calculate the radius of curvature.

The calculus of variations extended this paradigm to classes of curves. In the 
fundamental problem of the M ethodus inveniendi it is required to select that curve 
from among a class of curves which makes a given magnitude expressing some 
property a maximum or minimum. More precisely, Euler considered curves that 
are represented analytically by means of relations between x  and y  in terms of an 
orthogonal coordinate system (fig. 10). The magnitude that is to be maximized or 
minimized is expressed as a definite integral

W  = ^Z dx  (from x  = a  to x  = b), (1)

a formula that quantifies in analytical terms the given extremal property. Z is 
regarded by Euler as a “function” of x, y  and the differential coefficients (i.e., 
derivatives) p , q, r , ... of y  with respect to x. The latter are given by the relations 
dy= pdx , d p -q d x , dq= rdx , ..., a procedure for introducing higher-order deriva
tives that was Euler’s own invention20.

Near the beginning of his treatise Euler (Euler 1744, 13) noted that a purely 
analytical interpretation of the theory is possible. Instead of seeking the curve 
which renders W  an extremum one seeks that “equation” between jc and y  which
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among all such equations when introduced into (1) renders the quantity W  a max
imum or minimum. He wrote:

“Corollary 8. In this way questions in the doctrine of curved lines may be referred back to pure 
analysis. Conversely, if questions of this type in pure analysis be proposed, they may be referred to 
and solved by means of the doctrine of curved lines.

Scholium 2. Although questions of this kind may be reduced to pure analysis, nevertheless it is 
useful to consider them as part of the doctrine of curved lines. For though indeed we may abstract 
from curved lines and consider absolute quantities alone, so these questions at once become ab
struse and inelegant and appear to us less useful and worthwhile. For indeed methods of resolving 
these sorts of questions, if they are formulated in terms of abstract quantities alone, are very ab
struse and troublesome, just as they become wonderfully practical and are made simple to the 
understanding by the inspection of figures and the linear representation of quantities.So although 
questions of this kind may be applied equally to abstract and concrete quantities it is most conven
ient to formulate and solve them by means of curved lines. Thus if a formula composed of x andy 
is given, and that equation between jc andy is sought such that, the expression for y in terms of jc 
given by the equation being substituted, there is a maximum or minimum; then we can always 
transform this question to the determination of the curved line, whose abscissa isjc and ordinate is 
y , for which the formula W is a maximum or minimum, if the abscissajc is assumed to have a given 
magnitude.”21 (Euler 1744,14)

Euler’s view seems to have been that while it is possible in principle to ap
proach the calculus of variations purely analytically it is more effective in practice 
to refer problems to the study of curves. This conclusion could hardly have seemed 
surprising. Each of the various examples and problems which historically made 
up the subject had as its explicit goal the determination of a curve; the selection of 
such objects was part of the defining character of this part of mathematics. What 
is perhaps noteworthy about Euler’s discussion is that he should have considered 
the possibility at all of a purely analytical treatment.
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III.3 The main body of variational results, presented in chapters two and three, is 
formulated throughout in terms of the properties of curves. Euler’s approach is 
indicated by his derivation of the fundamental necessary condition known in the 
modem subject as the Euler (or Lagrange-Euler) differential equation. He devel
oped his derivation with reference to fig. 11, in which the line amnoz is the hypo
thetical extremalizing curve. The letters M, N, O designate points of the x-axis AZ  
infinitely close together. The letters m, n, o designate corresponding points on the 
curve given by the ordinates Mm, Nn, Oo. Let AM=x, AN=x/, AO=x" and Mm=y, 
Nn=y', Oo-y'. The differential coefficient p  is defined by the relation dy-pdhc, 
hence p=dy/dx. We have the following relations

P =

P' =

y ' - y
dx

dx

(2)

Suppose now that we are given a determinate “function” Z containing x, y and 
p=dy/dx.The integral (1) was regarded by Euler as an infinite sum of the form 
...+Z, dx+Zdx+Z'dx+ w h e r e  Z, is the value of Z at x-dx, Z  its value at x  and Z' 
its value at x+dx, and where the summation begins at x=a and ends at x=b. Let us 
increase the ordinate /  by the infinitesimal “particle” nv, obtaining in this way a 
comparison curve amvoz. Consider the value of (1) along this curve. By hypothe
sis the difference between this value and the value of (1) along the actual curve 
will be zero. The only part of (1) that is affected by varying/ is Zdx+Z'dx=(Z+Z')dx. 
Euler wrote:

F igure 11
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dZ = Mdx + Ndy + Pdp 
dZ ' = M'dx + N 'dy'+ P 'dp'

He proceeded to interpret the differentials in (3) as the infinitesimal changes 
in Z, Z', x, y, / ,  p, p' that result when /  is increased by nn. From (2) we see that dp 
and dp' equal nn/dx and -nn/dx. (These changes are presented in the form of a 
table, with the variables in the left column and their corresponding increments in 
the right column.) Hence (3) becomes

dZ =
(4)

dZ' = N ' n v - P ' nv
dx

eb
Thus the total change in Zdx equals (dZ+dZ’)dx = nv-(P+N’dx-P’). This

expression must be equated to zero. Euler set P’-P=dP and replaced N ’ by N. He 
therefore obtained 0=Ndx-dP or

N - * ? =  o
dx

(5)

as the final equation of the problem.
Equation (5) is the simplest instance of the Euler differential equation, yield

ing a necessary condition that must be satisfied by the extremalizing arc. In mod-

. . .  dfem notation it is written ——  
<9y dx Kdy' ,

= 0 . Its derivation by Euler was a major

theoretical achievement, representing the synthesis in one equational form of the 
many special cases and examples that had appeared in the work of earlier re
searchers.

The remainder of chapter two consists of the presentation of a large number of 
examples as well as the extension of the variational theory to the case where 
higher-order derivatives of y with respect to x  appear in the integrand Z of (1). In 
chapter three, mathematically the most advanced of the treatise, Euler considered 
problems where variables that satisfy certain auxiliary relations are introduced 
into the integrand Z of the variational integral (1). This investigation, which was 
motivated by examples involving the constrained gravitational motion of particles
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in resisting media, led once again to an analytical solution in the form of differen
tial equations.

III.4 The basic variational problem of maximizing or minimizing (1) involves 
the selection of a curve from among a class of curves. In the derivation of (5) the 
variables x  and y  are regarded as the orthogonal Cartesian coordinates of a curve. 
Each of the steps in this derivation involves reference to the geometrical diagram 
in Figure 11. In chapter four, however, Euler returned to the point of view that he 
had indicated at the beginning of the treatise. In the opening proposition the var
iational problem is formulated as one of determining that “equation” connecting 
two variables x  and y  for which a magnitude of the form (1) (given for the general 
case where higher-order derivatives and auxiliary quantities are contained in Z) is 
a maximum or minimum. In his solution he noted that such variables can always 
be regarded as orthogonal coordinates and so determine a curve. The solution 
then follows from the theory developed in the preceding chapters. In the first 
corollary he wrote:

“Thus the method presented earlier may be applied widely to the determination of equations 
between the coordinates of a curve which render any given expression SZdx a maximum or a 
minimum. Indeed it may be extended to any two variables, whether they involve an arbitrary 
curve, or are considered purely in analytical abstraction.”22 (Euler 1744,129)

Euler illustrated this claim by solving several examples using variables other 
than the usual rectangular Cartesian coordinates. In the first example he em
ployed polar coordinates to find the curve of shortest length between two points. 
We are given (fig. 12) the points A  and M  and a centre C; it is necessary to find the 
shortest curve A M  joining A  and M . Let x  be the pole angle A C M  and y  the radius

F igure 12 F igu re 13
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CM . Because the differential element of path-length is equal to •J d y 2 + y 2d x 2 the

formula for the total path-length is J d x ^ y y  +  p p  , where p d x = d y  and the integral 
is taken from x=0 to x -Z A C M . Here x  does not appear in the integrand Z of the 
variational integral, so that dZ = N dy+ P dp . The equation (5) gives N = dP /dx  so 
that we have dZ = d P p + P d p  and a first integral is Z + C = P p , where C is a constant.

Since Z Z  = ■Jyy + p p  we have

C + ,J(y y  +  pp) PP

V (y y + p p )
i. e.: yy

yl(yy + pp)
Const. =  b

Let P M  be the tangent to the curve at M  and CP the perpendicular from C to this 
tangent. By comparing similar triangles in fig. 12 we see that M m :M n=M C:CP.

Since Mm = d x J y 2p 2 , M n-ydx  and M C -y  it follows that CP = =?  .
h 2 + p 2

Hence CP is a constant. Euler concluded from this property that the given curve 
A M  is a straight line.

Note that Euler was completely comfortable with polar coordinates; gone is 
the Cartesian “generating curve” Varignon had employed in his investigation of 
1706 in order to introduce general curves using polar quantities. In the second 
example he displayed a further level of abstraction in his choice of variables. Here 
we are given the axis A C  with the points A  and P, the perpendicular line P M  and 
a curve ABM joining A  and M (fig. 13). Given that the area ABM P  is some given 
constant value we must find that curve A B M  which is of the shortest length. Euler 
set the abscissa A P = t, the ordinate P M = y  and let x  equal the area under the curve

from A to P. We have d x - y d t  and the variational integral becomes I d y 1 + d x 2

yy
Because x  does not appear in the integrand we obtain as before the first integral 
Z = C + p P . Substituting the expressions for Z and P into this integral we obtain

J jl+ y y p p ) ypp

J ( \  + yypp)y
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Letting dx=ydt we obtain after some further reductions the final equation 

t = c±4(j>b -  yy) . Hence the desired curve is the arc of a circle with its centre on 
the axis AP.

A range of non-Cartesian coordinate systems had been employed in earlier 
mathematics but never with the same theoretical import as in Euler’s variational 
analysis. Here one had a fully developed mathematical process, centred on the 
consideration of a given analytically-expressed magnitude, in which a general 
equational form was seen to be valid independent of the geometric interpretation 
conferred upon the variables of the problem. Thus it is not at all essential in the 
reasoning employed in the derivation of (5) that the line AZ be perpendicular to 
Mm (fig. 11); indeed it is clear that the variable x  need not be a length nor even a 
coordinate variable in the usual sense. As Euler observed in the first corollary, the 
variables of the problem are abstract quantities, and fig. 11 is simply a convenient 
geometrical visualization of an underlying analytical process23.

Euler’s statement at the beginning of the treatise that it was possible to consid
er the subject as one of “pure analysis” seemed somewhat speculative. By showing 
in chapter four how the basic variational problem and its solution could be inter
preted abstractly he had supplied this view with a considerable degree of mathe
matical credibility.

III.5 R efinement

Although Euler in 1744 clearly recognized the essential analytical character of 
the variational calculus his insight was not fully developed in his treatise. Its title 
“Method of finding curves...” indicated that the primary object of study continued 
to be the curve. In his later variational writings, in part in response to Lagrange’s 
research, he developed and refined further the conception outlined in chapter four. 
More generally there was an increasing emphasis on analysis throughout his math
ematical work. Conceptually, the most significant change was the explicit replace
ment of the geometric curve by the analytical relation (conceived as a functional 
equation between two variables) as the fundamental concept of the variational 
theory; instead of selecting a curve from among a class of curves it was now 
required to select a relation from among a class of relations.

The function concept played a dual role in Euler’s emerging programme. The 
functional equation y=f(x) enabled one to conceive analytically of arbitrary rela
tions between the variables x  and y. In addition, the notion of an expression com
posed of variables and constants (denoted for example by Z in the formulation of 
(1)) allowed the formal statement of general propositions and made it possible to 
express the content of the subject in purely analytical terms.
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A relation between variables is regarded by Euler as a primitive of the theory; 
it is not further conceptualized, as it would be in later real-variable calculus, in 
terms of the numerical structure of the continuum of values assumed by each 
variable. This notion of a primitive abstract relation in large part defined the 
distinctive character of his approach to analysis. The point in question is illustrat
ed by his demonstration of theorems of the calculus. We will consider one exam
ple in detail. At the same time he was composing the Methodus inveniendi he 
published a memoir (Euler 1734-1735) containing an analytical proof of the the
orem on the equality of mixed partial differentials. He was motivated in doing so 
by a belief that a geometrical demonstration would be “drawn from an alien source”. 
He considered a quantity z that is a function of the variables x  and a. If dx and da 
are the differentials of x  and a, let <?,/, and g denote the values of z at (x+dx, a), 
(.x, a+da) and (x+dx, a+da). Euler differentiated z holding a constant to obtain

Pdx = e-z (6)

Here P denotes the differential coefficient, in later mathematics the partial 
derivative of z with respect to x. He differentiated Pdx holding x  constant

Bdxda = g-f-e+z (7)

He then differentiated z holding a constant to obtain

Qda -  f - z  (8)

Finally he differentiated Qda holding x constant:

Cdadx = g-e-f+z (9)

By rearrangement of terms the right sides of (7) and (9) are seen to be equal. 
Equating the left sides Euler obtained

B = C (10)

which is the desired result.
In later real analysis this argument would be reformulated using the law of the 

mean and a limit argument. Suppose z=z(x,a) and its first and second partial 
derivatives are defined and continuous on a rectangular region in the x-a  plane. 
For x  and a in this region we have by the law of the mean for small h and k the four 
equations

ch
—-(x  + e lh,a)h = z(x + h ,a )-z (x ,a )  0 < £ ! < 1  (6')
ox
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d 2z
dadx

(x  +  e lh ,a  +  e 2k)hk  = z ( x + h ya  +  k ) - z ( x ya  +  k ) - z ( x  +  hya)

+ z ( x , a ) (7')

0<£!  < 1 , 0 < £ 2

dz
- ( x , a  +  rilk )k  =  z ( x , a  +  k ) - z ( x ya)  0 < T ] l <1 (S')

d 2z  
dx da

(x  +  Tjlh,a +  r)2k)kh  = z (x  +  h>a + k ) - z ( x , a  +  k)  +  z ( x , a )

(9')

0 < 77! < 1, 0 < 772 ^ 1

By rearrangement the right sides of (7') and (9') are equal. The left sides may 
therefore be equated:

d 2z d 2z- (x  +  e xh, a  + e 2k)  = — -  (x  + t]t h ,a  +r]2k)  
dadx dxda

Letting h and k  tend to zero we obtain from the continuity of the second partial 
derivatives the desired result

d 2z  = d 2z  
dadx dxda

(10')

This example is rather typical of eighteenth-century calculus theorems and 
their counterparts in modem analysis24. The law of the mean introduces a distin
guished value, localizing at a particular number the analytical relation or property 
in question. The result is then deduced using conditions of continuity and differ
entiability by means of a limit argument. In Euler’s formulation by contrast there 
was no consideration of distinguished or individual values as such. Euler believed 
that the essential element in the demonstration was its generality, guaranteed by a 
formal analytical or algebraic identity. Thus the key step in his proof, the equality 
of the right sides of equations (7) and (9), was an algebraic identity that ensured 
the validity of the result.
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IV Discussion

Euler perceived that the calculus is concerned ultimately with equations express
ing relations of continuous change between variable magnitudes. His thesis con
cerning the primacy of pure analysis derived from a logical appreciation that 
geometrical methods and reasonings are extrinsic to the subject. In formulating 
this view he established the general framework within which analysis would be 
understood by subsequent researchers of the period, most notably Lagrange.

The distinctive character of Euler’s doctrine is apparent when one considers it 
at a general epistemological level. There is a certain formal quality to his analysis; 
it arises ultimately from his conception of the subject as the study of primitive 
abstract relations. In this respect his viewpoint was very different from that of the 
early pioneers, who conceived of the foundation of the calculus in terms of geo
metric conceptions, or that of the nineteenth-century researchers, for whom the 
numerical continuum provided a fundamental structure of interpretation.

The notion of a primitive abstract relation among variables allowed for a di
rect and general approach to the subject, evident in Euler’s derivation of (5) and 
(10) above. This generality was however of a particular sort, accompanied by a 
certain inflexibility of outlook. This became apparent during his debate with 
d’Alembert in the 1750s over the question of the general solution of the wave 
equation. Faced with some of the restrictions imposed by the precepts of his own 
theory (and insisted upon by d ’Alembert) Euler advocated a rejection of the con
cept of a functional equation as a strict relation of equality between analytical 
expressions. As is well known his defence of this viewpoint reduced to ad hoc 
arguments and “visionary” presentiments of a more general mathematics, pre
sented in a few papers; his systematic treatises of the 1750s remained firmly ground
ed in the established conception of analysis (Liitzen 1983) and (Fraser 1989).

It should be emphasized that the rejection of geometric conceptions by Euler 
and other eighteenth-century researchers was not accompanied by the realization 
that the calculus could be developed in full logical isolation as part of pure analy
sis. In Euler’s writings the relationship between foundation, theoretical develop
ment and problem generation is not worked out. The entire project of thcMethodus 
inveniendi consisted of the derivation of differential equations for general prob
lems, each of which embodied characteristics found in a given set of examples 
from geometry or mechanics. In his subsequent research the separation of analy
sis from geometry was made more explicit at a theoretical level. His variational 
investigations however remained centred on the derivation of general differential 
equational forms. He provided no account of how the problems in question might 
originate or be generated within this or any other branch of pure analysis.

He sometimes wrote as if problems are things that are external to analysis that 
guarantee its meaning and validity. In a memoir published in 1758 he investigat
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ed singular solutions to ordinary differential equations, that is, solutions which 
are not included in the general integral containing arbitrary constants. He took a 
differential equation and exhibited a particular function y= f(x ) that satisfied the 
equation but was not in the general solution. He wrote: “Concerning the example 
that I have just set forth, as it is drawn from fantasy, one could doubt whether this 
case is ever encountered in a real problem. But the same examples that I adduced 
in order to clarify the first paradox, will serve also to clarify this one” (Euler 1756; 
OO, ser. 1, XXn, 231)25. (The examples in question concerned curves in the plane 
that satisfied certain tangent conditions.)

The point here is connected to a larger difference of outlook between eight
eenth-century and modem mathematics. That the problems of geometry and me
chanics should conform to treatment by pure analysis was something that Euler 
implicitly accepted as a point of philosophical principle. The term “philosophy” 
(or “metaphysics”) is here being used in the sense identified by Daston:

“The presuppositions (often unexamined) that inform a scientist’s work, which may be of either 
epistemological or ontological import [...] metaphysics is what is left over once the mathematical 
and empirical content have been subtracted (Daston 1991,522)

In the writings of such post-positivist intellectual historians as E. A. Burtt the 
term ‘metaphysics’ in this sense referred to very broad assumptions, such as a 
general Platonic belief among early modem thinkers in the mathematical charac
ter of physical reality26. We suggest that it is also useful at a more concrete level in 
explaining certain tacit but definite attitudes displayed by Euler in his research in 
geometry and analysis.

Demidov writing of the failure of Euler and d’Alembert to understand each 
other’s point of view in the discussion of the wave equation observes:

“A cause no less important of this incomprehension rests, in our opinion, on the understanding of 
the notion of a solution of a mathematical problem. For d ’Alembert as for Euler the notion of such 
a solution does not depend on the way in which it is defined [...] rather the solution represents a 
certain reality endowed with properties that are independent of the method of defining the solu
tion. To reveal these properties diverse methods are acceptable, including the physical reasonings 
employed by d’Alembert and Euler.” (Demidov 1982,37)

A biographer of d’Alembert (Grimsley 1963, 248) has noted his insistence on 
“the elementary truth that the scientist must always accept the essential ‘giveness’ 
of the situation in which he finds himself.” The sense of logical freedom that is 
inherent in modem mathematics was notably absent in the eighteenth century.

U niversity o f  Toronto
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Notes

 ̂ In his history of analytic geometry Boyer (1956,190) observes that for Euler “analysis was not the 
application of algebra to geometry; it was a subject in its own right—the study of variables and functions— 
and graphs were but visual aids in this connection [...] it now dealt with continuous variability based on 
the function concept [...] only with Euler did it [this meaning of analysis] take on the status of conscious 
program.”

2 Emphasis in the original.

3 This view is most clearly presented by Mahoney (1973,36 and 39):

“In the Introduction to the Analytic Art, as in the whole of the Analytic Art itself, algebra was 
transformed from a sophisticated sort of arithmetical problem-solving into the art of mathematical 
reasoning itself, insofar as that reasoning was based on combinatory operations [...] the analytic 
art rose to a position subsuming all combinatory mathematics, whether arithmetic, geometry, or 
trigonometry”.

“The elevation of algebra from a subdiscipline o f arithmetic to the art of analysis deprived it of 
its content at the same time that it extended its applicability. ViSte’s specious logistic, the system 
of symbolic expressions set forth in the Introduction, is, to use modem terms, a language of 
uninterpreted symbols. As a formal language, specious logistic can itself generate problems of 
syntax alone.”

4 In his Die Grundlagen derArithmetik (1884, §10) Frege rejected the use of induction (as it was understood 
in the physical sciences) as a valid principle of arithmetic. He wrote:

“For here there is none of that uniformity, which in other fields can give the method a high degree 
of reliability. Leibniz recognized this already: for to his Philathethe, who had asserted that ‘the 
several modes of number are not capable of any other difference but more or less; which is why 
they are simple modes, like those of space’ ”.

He returns the answer

“That can be said of time and of the straight line, but certainly not for the figures and still less of 
the numbers, which are not merely different in magnitude, but also dissimilar. An even number 
can be divided into two equal parts, an odd number cannot; three or six are triangular numbers, 
four and nine are squares, eight is a cube, and so on. And this is even more case with the numbers 
than with the figures; for two unequal figures can be perfectly similar to each other, but never two 
numbers.”

Later in this section Frege continues:
“In ordinary induction we often make good use of the proposition that every position in space 

and every moment in time is as good in itself as every other. Our results must hold good for any 
other place and any other time, provided only that the conditions are the same. But in the case of 
the numbers this does not apply, since they are not in space or time. Position in the number series 
is not a matter of indifference like position in space.”

5 Our account of Fermat’s number theory is based on Ore (1948), Hoffmann (1960-1962) and especially 
Mahoney (1973, Chapter VI).

6 I quote from Heath translation Euclid (EH).

7 “Tout nombre premier mesure infailliblement une des puissances -1 de quelque progression que ce soit, 
et l ’exposant de la dite puissance est sous-multiple du nombre premier donnd -1 [...].”
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8 Quoted in translation in Mahoney (1973,329).

9 We use the term “coordinate geometry” to designate the subject known since around 1800 as “analytic 
geometry”. The first work to contain the latter term in its title was J.B. Biot’s Essai de giomitrie analytique 
(1803). Loria (1923,142-143) identifies analytic geometry with the “method of coordinates” and states 
that it “has as its goal the investigation, with the aid of coordinates, of all figures that are conceivable in 
the plane or in space.” The employment o f coordinate methods to investigate the elementary plane and 
solid geometry of Euclid, the use of transformations to study conic sections and higher-order polynomial 
curves, more broadly the study by means of coordinate methods of any class of geometric curves, all lie 
within the province of analytic geometry.

Coolidge (1945,20-21) writes:

“This dreary problem, whose algebraic solution gives a conic immediately, seems to have haunted 
the Greek mind. We noted at the beginning of the present chapter Apollonius’ statement that 
others had unsuccessfully tried to solve it. But Apollonius himself does not appear able to carry it 
through. Certain modem mathematicians have put not a little time and strength into the attempt to 
complete such proofs by what we might call strictly Greek methods”.

He mentions Zeuthen (1886,126-63) and Heath for his edition of Apollonius (Apollonius CH, cxxxviii-
c l ) .

11 Pappus’s discussion is in Pappus (Cl, part I). On pp. 587-591 of part two Jones (following Zeuthen 
(1886)) provides an account of how a synthesis of the four-line locus might have been achieved by 
earlier Greek mathematicians, especially Aristaeus.

12 Mahoney (1973, ch. 3) provides an account of Fermat’s researches in coordinate geometry.

1 ̂  With the invention and increasing development of the calculus analytic geometry weakened as an area 
of research. Boyer (1956,153-154) writes:

“In general, l ’Hospital (like Descartes) was more interested in analytic geometry as a means of 
expressing loci algebraically than as a method of deriving the properties of a curve from its equa
tion. This latter aspect he seems to have felt belonged more properly to work in the calculus.”

In reference to the eighteenth century he (1956,193) observes “there was a natural tendency for material 
on curves to be meiged with that on the calculus, and hence analytic geometry sometimes lost its identity.”

1 4 Scott (1938, ch. 4) gives a good account of Wallis’ treatise.

^W estfall (1980, ch. 4) provides an account of Newton’s early mathematical researches. Newton’s papers 
from this period are published in Newton (MP, I.).

16 Both Westfall and Whiteside comment on this difference of approach, although neither identify the 
fundamental character of Newton’s innovation as consisting precisely in his decision to use equations 
between Cartesian variables. Whiteside (1960-1962,245) writes:

“The advance Newton has made on W allis’ inductive approach to integrals— taking the upper 
bound of the integral variable—is that, in allowing a free variable (and its powers) into the pattern, 
he has been able to use the ordering of coefficients given by powers of the variable to point a more 
general aspect of the pattern lost in Wallis tabulated numerical instances.”

Westfall (1980,114-115) writes:

“[...] Newton realized that Wallis’s method was more flexible than Wallis himself had realized.
It is not necessary always to compare the area under a curve with the area of the same fixed square.
In the case of the simple power functions (y = x, x2, x3,...), for example, any value of a: provides a

EULER’S ANALYSIS 77

base line that can be divided into an infinite number of segments, and with the corresponding value 
of y  it implicitly defines a rectangle with which the area under the curve can be compared.”

17 Varignon does not give the derivation of this equation. It may be obtained from the polar equation

b2
----- = 1 + — cos 6 (6 = Z  BCL)
2 ar a

by differentiating with respect to 0, eliminating sind and setting dz=rdd. Since notation for the 
trigonometric functions has not yet been invented, Varignon would have worked from an equation of the 
form

b2 _ c (CM)

2 ar a r

where CM is the projection of CL on the axis AB.

18 ’Tonamus omnia ista rectangulorum aggregata possibilia, vel omnes viarum possibilium difficultates, 
repraesentari per ipsas KV, curvae VV odinatas ad rectam GK normales [...].” English translation from 
Struik (1969, 278).

1 9 Cf. Jakob Bernoulli (1691), Newton (MF, 176-178) and Newton (MP, III, 312-313) (for the draft from 
the early 1670s). The seventeenth-century history of this problem is described by Whiteside Newton 
(MP, III, 308-311) who writes (ibid., 308):

“The development of this length-preserving transformation in the three decades preceding 1670 
is a fascinating case-history in human insight and preconception which has never been systemati
cally explored in the monograph needed to do it full justice.”

20 In his treatise on the differential calculus Euler provided a detailed account of this procedure for 
introducing higher-order differential coefficients. A discussion of this subject is provided by Bos (1974).

21 “Corollarium 8: Hoc ergo pacto quaestiones ad doctrinam linearum curvarum pertinentes ad Analysin 
puram revocari possunt. Atque vicissim, si huis generis quaestio in Analysi pura sit proposita, ea ad 
doctrinam de lineis curvis poterit referri ac resolvi”.
Scholion 2: “Quanquam huius generis quaestiones ad puram Analysin reduci possunt, tamen expedit eas 
cum doctrina linearum curvarum coniungere. Quodsi enim animum a lineis curvis abducere atque ad 
solas quantitates absolutas firmare velimus, quaestiones primum ipsae admodum fierent abstrusae et 
inelegantes ususque earum ac dignitas minus conspiceretur. Deinde etiam methodus resolvendi huismodi 
quaestiones, si in solis quantitatibus abstractis proponeretur, nimium foret abstrusa et molesta; cum 
tamen eadem, per inspectionem figurarum et quantitatum repraesentationem linearem, mirifice adiuvetur 
atque intellectu facilis reddatur. Hanc ob causam, etsi huius generis quaestiones cum ad quantitates 
abstractas turn concretas applicari possunt, tamen eas ad lineas curvas commodissime traducemus et 
resolvemus. Scilicet, quoties aequation eiusmodi inter x  e ty  quaeritur, ut formula quaedam proposita et 
composta ex x  ety y, si ex ilia aequatione quaesita valor ipsius y  subrogetur et ipsi x  determinatus valor 
tribuatur, maxima fiat vel minima, turn semper quaestionem transferemus ad inventionem lineae curvae, 
cuius abscissa sit x  et applicata y, pro qua ilia formula W fiat maxima vel minima, si abscissa x datae 
magnitudinis capiatur.”

22 “Methodus ergo ante tradita multo latius patet, quam ad aequationes inter coordinatas curvarum 
inveniendas, ut quaepiam expressio Jzdx fiat maximum mimimumve. Extenditur scilicet ad binas 
quascunque variabiles, sive eas ad curvam aliquam pertineant quomodocunque, sive in sola analytica 
abstractione versentur.”
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23 Carathdodory (1952, xxii) offers a different account of this part of theMethodus inveniendi1, he writes:

“[...] die Beispiele, die imerstenTeildesselbenKapitels (Nr. 1 bis 14)behandeltwerden,k6nnen 
as Probme fur die Kovarianz der Eulerschen Gleichungen bei beliebigen Koordinaten- 
TYansformationen bewertet werden. Somit finden wir im Eulerschen Buche die ersten Ansatzen zu 
einer Theorie, die erst in unseren Tagen systematisch entwickelt worden ist.”

In his index (ibid., lix) of Euler’s variational calculus he places these examples under the heading 
“Kovariante transformation von variationsproblemen.” Goldstine (1980,84) also observes:

“It is remarkable that as early as 1744 Euler was already concerned with the problem of the 
invariance of his fundamental equation or necessary condition. In the first part of his Chapter IV 
he indicates that this fundamental condition remains invariant under ‘general’ transformations of 
the coordinate axes [...] he considers a number of examples where*, y  are not related by being 
cartesian, rectangular coordinates, and shows the utility of his ideas on covariance [...]. It is truly 
in keeping with Euler’s genius that he should have worked at ideas that were only to be satisfacto
rily and completely discussed in modem times.”

In our view one should not speak of transformations, invariance or covariance in reference to Chapter 
Four. Although coordinate transformations had appeared in a memoir published by Hermann (1729) 
and were employed by Euler in his Introductio (1748, II, ch. II; for further references cf. Boyer 1956, 
ch. 7) they appear nowhere in theMethodus inveniendi. Euler does not have to show anything when he 
writes down the fundamental equation (5) in polar coordinates; its validity is a logical consequence of 
the generality of the variables in the original derivation. It is unnecessary to invoke concepts of modem 
differential geometry in order to reach a full appreciation of his theory.

24 Other examples are the fundamental theorem of the calculus, the theorem on the change of variables in 
multiple integrals and the fundamental lemma of the calculus of variations.

25 “Pour l ’example que je viens d ’alleguer ici, comme il est forme & fantaisie, on pourrait aussi douter, si 
ce cas se recontre jamais dans la solution d ’un probl&me reel. Mais les memes exemples, que j ’ai rapports 
pour 6claircir le premier paradoxe, serviront aussi & eclaircir celui-ci.”

26 Daston is identifying the sense in which the term metaphysics is used by Burtt and others. She is somewhat 
critical of this usage because it does not take into account the various actual historical systems of 
metaphysics which prevailed in the early modem period. To the extent however that the term serves to 
designate certain extra-scientific or extra-mathematical attitudes in past research it remains a useful 
concept of historical analysis.

EDITH DUDLEY SYLLA

JACOB BERNOULLI ON ANALYSIS, SYNTHESIS, 

AND THE LAW OF LARGE NUMBERS

I Introduction

Jacob Bernoulli was the earliest mathematician to prove a law of large numbers. 
Following in the directions opened by Christiaan Huygens’s On calculations in 
gam es o f  chance (1657), he knew how expectations could be calculated for games 
in which the possible outcomes result from the design of game pieces such as dice 
or cards. He was interested, however, in developing an “art of conjecturing” that 
would apply mathematics to make prudent decisions in civil, moral, and econom
ic matters. By his proof of the law of large numbers, he believed he had shown that 
observed relative frequencies could be reliably used in such calculations. Bernoul
li’s law of large numbers showed that if, for example, one has a die with a one- 
sixth chance of falling with any given side up, then as the die is repeatedly thrown, 
it becomes more and more probable that the observed relative frequency of that 
side being up will fall within some small interval around one-sixth. In the proof of 
this law, Bernoulli assumed that there are a  p r io r i equally likely possible cases in 
a given ratio and demonstrated that, if so, then the observed relative frequencies 
will tend to converge toward the a p r io r i ratio of cases over a large number of 
trials. He also implied, however, that the truth of this proposition meant that it 
would be possible to find, within narrow limits, otherwise unknown ratios of cas
es a p o sterio ri, from the outcomes of frequently repeated trials:

“[...] another way is open to us by which we may obtain what is sought. What cannot be ascer
tained a priori may at least be found out a posteriori, that is from the results many times observed 
in similar situations, since it should be presumed that something can happen or not happen in the 
future in as many cases as it was observed to happen or not to happen in die past in a similar state 
of things.”1 (Bernoulli 1713,224)

Although Jacob Bernoulli was a pioneer in the development of the mathemat
ical theory of probability, his The A rt o f  Conjecturing had less immediate influ
ence than it might have had because he left it unfinished at his death. While large 
parts of the work were completed in the 1680s, well before Bernoulli’s death in 
1705, the book was not published until 1713, by which time Pierre Remond de 
Montmort, Abraham De Moivre, and Nicholas Bernoulli were all active in the
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field of mathematical probability and in direct communication with each other, so 
that they tended to be more influenced by each other than by Jacob Bernoulli’s 
work directly2. Because of this publication history, it may be difficult to discern 
Jacob Bernoulli’s personal understanding of the foundations of mathematical prob
ability and hence difficult to understand what he intended to accomplish through 
his proof of the law of large numbers. Ian Hacking, in particular, has raised prob
lems about the correct understanding of Bernoulli’s intended interpretation of the 
law of large numbers (Hacking 1975, ch. 17 ,154-165)3. These problems are com
pounded by the fact that Bernoulli’s work breaks off immediately after his proof. 
In one sense it does not matter what Bernoulli intended, since the proof of the 
theorem holds mathematically no matter how Bernoulli himself understood it. 
Nevertheless, we may more easily place Jacob Bernoulli within in the history of 
probability theory if his own interpretation of his work is understood. If I seem to 
belabor my criticism of Hacking’s discussion of Bernoulli’s work, it is because it 
has been influential in shaping subsequent research concerning the early history 
of probability theory.

Why, then, did Bernoulli believe that his proof of the law of large numbers 
implied that, if one makes a sufficient number of observations, it is possible to 
discover the ratio of cases, within narrow limits, a p o sterio ri in a trustworthy 
way? Why did he believe that his proof was such a significant achievement, more 
significant than if he had discovered a way to square the circle—a discovery which, 
even if it would have been great, would have been of little use?4 Is there evidence 
elsewhere in his work in general and in The A rt o f  Conjecturing in particular that 
would help to answer this question?

In this paper I attempt to discern Jacob Bernoulli’s understanding of the sig
nificance and use of his law of large numbers by first examining what Bernoulli 
had to say on mathematical methodology, and in particular on the uses of mathe
matical analysis and synthesis. For Bernoulli, a mathematical synthesis moves 
from what is prior and better known to what is posterior, but a mathematical 
analysis lacks this sense of direction. When Bernoulli contrasts an analytic meth
od to a synthetic one, by an analytic method he almost always means an algebraic 
one. The central lemmas of Bernoulli’s proof of the law of large numbers are 
algebraic and so analytic in his sense.

After examining what Bernoulli had to say about analysis and synthesis and 
how he went about proving the law of large numbers, I then describe how the law 
of large numbers and its proof fit into Bernoulli’s more general world view. Jacob 
Bernoulli developed his art of conjecturing or doctrine of chances with the under
standing that God has designed the universe to follow natural laws or regularities 
and that we only use ideas of chance where we lack knowledge of the underlying 
causes—not that these underlying causes do not in fact exist. To God everything is 
known and certain. In Bernoulli’s view, the law of large numbers shows that over
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the long run the underlying regularities of nature will manifest themselves. Final
ly, Bernoulli’s particular use of algebra and of the properties of binomial expan
sions to prove the lemmas that form the core of his demonstration of the law of 
large numbers fit with this “God’s eye” view of the universe, in which everything 
is immediate and there is no scope for ordering into what is mathematically prior 
or posterior. Thus Jacob Bernoulli’s ideas about God and the world combine with 
his reliance on algebra in proving the law of large numbers to explain what has 
seemed so problematic to critics like Hacking about Bernoulli’s intended interpre
tation of his law of large numbers: why he “assumed” the existence of a ratio of 
cases in his proof of the law of large numbers and nevertheless believed that the 
proof justified the use of observed frequencies to discover such ratios to a close 
approximation. Thus an understanding of Bernoulli’s ideas of analysis and syn
thesis helps to clear up modem philosophical perplexities about his intended in
terpretation of the law of large numbers.

II Jacob Bernoulli on Analysis and Synthesis

Part I of The A rt o f  Conjecturing is a reprinting with notes of Christiaan Huy
gens’s On Calculations in G am es o f  Chance. In it Huygens, and Bernoulli follow
ing him, frequently derive expectations in games of chance iteratively, by building 
up from the simplest cases (for instance to find players’ relative expectations when 
one more round will determine the winner) to more complex cases (for instance to 
find the players’ relative expectations when the game is broken off considerably 
before the end). In games in which each player’s chances depend on those of other 
previous players and vice versa, however, Huygens and Bernoulli sometimes use 
simultaneous equations to determine the expectations. About this resort to alge
bra, Bernoulli says in his note on the first problem of Huygens’s Appendix:

“Now since all these chances are different and unknown and since any preceding chance depends 
on the following chance and the following chance in turn on the preceding [...] it follows that this 
Problem cannot be solved, at least by the Author’s method [...] otherwise than by means of alge
braic analysis.”5 (1713,50)

But Bernoulli seems to think a synthetic approach is preferable. Thus, earlier, 
in his note on Huygens’s Proposition XIV, Bernoulli writes:

“The Author in this Problem is compelled for the first time to employ algebraic analysis, while in 
the preceding only synthesis was used. The difference between these two is that in all the former 
propositions the expectation sought was derived from other expectations that were either totally 
known and given, or, indeed, not known, but naturally prior and simpler, and not dependent in 
turn upon that sought. For this reason, it was possible, by beginning with the aid of the simplest of 
all of them, to proceed step by step to unravel other more complex cases without any analysis. 
Here, however, the matter is different [...]. It is worthwhile to have observed this, so that by a clear
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example it may appear what the difference is between the two methods and when one or the other 
is to be turned to."6(ibid., 47-48)

Bernoulli follows this by suggesting his own alternative method that can be 
used both when synthesis is normally used and when algebraic analysis had been 
resorted to:

“I have said that it cannot be done following in the author’s footsteps. There is, however, still 
another special way by which I may pursue what is sought short of any analysis. This additional 
way may also be usefully employed in what follows. Let us, in place of the two alternate players, 
hypothesize infinitely many players, to each of whom in order, one after the other, only one throw 
is conceded [...]. (ibid., 60-61)

Further, the method familiar to us may also be used with regard to this hypothesis, nor is this 
method less compatible with questions that are commonly solved by synthesis alone than with 
those that require analysis.”7 (ibid., 48)

Since Bernoulli’s terminology alternates between “algebraic analysis [analysis 
a lgebra ica]” and simply “analysis [analysis]”, it is clear that by “analysis” he 
often means, in our terms, simply algebra. Elsewhere, following Huygens, he calls 
“analysis” the working out of the solution to a problem (ibid., 2-3)8. On the other 
hand, as is clear from his definitions of analysis and synthesis, he does sometimes 
have a directional differentiation between analysis and synthesis in mind. In Ber
noulli’s terminology a “synthesis” is mathematical reasoning that goes step by 
step from what is prior and already known to what is at first unknown, while 
“analysis” is a line of mathematical reasoning that may involve recursion and/or 
solution of simultaneous equations. Discussing a problem in which three players 
in turn draw stones without replacing them from an um originally containing 12 
stones, Bernoulli states that in the end one comes down to known chances, so that 
the problem can then be reversed to build up a synthesis from the simplest cases:

“If, again, the sense of the problem were that the stones taken from a common supply of 12 were 
not replaced after being taken from the um, then the first player indeed would, after playing, take 
third place and the third player second place and the second player first place, but, on that account, 
the players would not exchange among themselves chances equal to those that existed at the start, 
as happened under the preceding hypothesis. Rather, they would continually acquire new chances, 
different from the earlier chances, because of the changed number of stones. These chances would 
be simpler to the extent that more black stones were withdrawn and such that finally they end in 
chances that are altogether known. On account of this, we can begin, using the Author’s accus
tomed method, from the simplest cases, and proceed backwards through all the intermediate cases, 
arriving finally at the case proposed in the question, having used the method of synthesis."9(ibid.,
59)

In sum, Bernoulli uses the word “synthesis” in the sense standard from the 
time of the Greeks to mean a demonstration beginning from axioms, postulates, 
or what is prior and better known and moving to what was previously not known 
or not proved. “Analysis,” on the other hand, for him as for the Greeks, is a 
method that does not begin from what is better known, but from something not
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known, or not yet proved. Bernoulli is unlike the Greeks, however, because he has 
a method of analysis in mind, namely algebra, or the solution of simultaneous 
equations with unknowns.10 While there is a perennial question about Greek geo
metrical analysis, because it seems to assume unjustifiably that the deductions of 
the analysis will always be reversible to construct the desired synthesis (Mahoney 
1968), there is no such problem with algebraic analysis, which is, in this sense, 
directionless. Thus Bernoulli understands Huygens’s On Calculations in Gam es 
o f  Chance to exhibit or demonstrate a small number of approaches or methods, 
both synthetic and analytic, by which problems concerning games of chance may 
be solved. While a synthetic method may be more natural, building up from the 
prior and better known to what is sought, an algebraic method also achieves the 
desired results, and that without the necessity of being supplemented by a synthe
sis.

I ll A  P riori, A  P osteriori, and the Law of Large Numbers

When in Part IV of The A rt o f  Conjecturing Bernoulli introduces his law of large 
numbers, he does not use concepts of analysis and synthesis to indicate directions 
of reasoning, but rather the concepts of a p r io r i and a posteriori. After the lines 
quoted above (at note 1), Bernoulli goes on:

“If, for example, there once existed three hundred people with the same age and body type as 
Titius now has, and you observed that two hundred of them died before the end of a decade, while 
the rest lived longer, you could safely enough conclude that there are twice as many cases in which 
Titius also may die within a decade as there are cases in which he may live beyond a decade. 
Likewise if someone for several years past should have observed the weather and noted how many 
times it was clear or rainy or if someone should have very frequently watched two players at a 
game and should have seen how many times this or that player won, just by doing so one would 
have discovered the ratio that probably exists between the numbers of cases in which the same 
outcomes can happen or not happen in the future in circumstances similar to the previous ones.”11 
(1713, 224-225)

The method of arguing a posteriori, or empirically, in this period could also be 
called “analysis,” as Isaac Newton does in his famous Query 31 of the Opticks:

“As in Mathematicks, so in Natural Philosophy, the Investigation of difficult Things by the Method 
of Analysis, ought ever to precede the Method of Composition. This Analysis consists in making 
Experiments, and Observations, and in drawing general Conclusions from them by Induction [...].
By this way of Analysis we may proceed from Compounds to Ingredients, and from Motions to the 
Forces producing them; and in general, from Effects to their Causes, and from particular Causes to 
more general ones, till the Argument end in the most general. This is the Method of Analysis: And 
the Synthesis consists in assuming the Causes discover’d, and establish’d as Principles, and by 
them explaining the Phaenomena proceeding from them and proving the Explanations.” (Newton 
1704, 404-405)
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Here Newton links the methods of analysis and synthesis in mathematics and 
in physics, explaining physical analysis as induction from experimental data. This 
might lead us to believe that Jacob Bernoulli also intended his a posteriori meth
od to be based on induction. But in turning to the proof of his law of large num
bers, Bernoulli shows no concern about problems of induction. Rather, in order to 
justify the use of observed frequencies as the basis for decisions or predictions, 
Bernoulli thinks he needs to show two things. First, he wants to demonstrate that 
as the number of observations increases, the probability that the a posteriori ob
served ratio of outcomes corresponds closely to an a priori ratio also increases— 
this is something even ordinary people commonly assume, but they do not know 
how to prove it:

“This empirical way of determining the number of cases by experiment is neither new nor un
common. The author of The Art o f Thinking [i.e., Antoine Amauld], a man of great acuteness and 
talent, made a similar recommendation in Chapter 12 and following of the last part [i.e., Part IV], 
and everyone consistently does the same thing in daily practice. Neither should it escape anyone 
that to judge in this way concerning some future event it would not suffice to take one or another 
experiment, but a great abundance of experiments would be required, given that even the most 
foolish person, by some instinct of nature, alone and with no previous instruction (which is truly 
astonishing), has discovered that the more observations of this sort are made, the less danger there 
will be of error. But although this is naturally known to everyone, the demonstration by which it 
can be inferred from the principles of the art is hardly known at all, and, accordingly, it is incum
bent upon us to expound it here.”12(1713,225)

But, second, beyond demonstrating the effect of increasing numbers of obser
vations, Bernoulli also wants to prove that the process does not reach a limit of 
certainty or probability beyond which greater probability is impossible:

“But I would consider that I had not achieved enough if I limited myself to demonstrating this 
one thing, of which no one is ignorant. Something else remains to consider, which perhaps no one 
has thought about up to this point. It remains, namely, to ask whether as the number of observa
tions increases, so the probability increases of obtaining the true ratio between the numbers of 
cases in which some event can happen and not happen, such that this probability may eventually 
exceed any given degree of certainty. Or whether, instead, the problem has an asymptote, so to 
speak; whether, that is, there is some degree of certainty that may never be exceeded no matter how 
far the number of observations is multiplied, so that, for example, we may never be certain that we 
have discovered the true ratio of cases with more than a half or two-thirds or three-fourths parts of 
certainty.”13 (ibid.)

With this introduction, Bernoulli then goes on to his proof, which assumes a 
priori ratios exist, although they may or may not be known. What then is the 
relationship of analysis and synthesis, or the relationship of the a priori and the a 
posteriori, in this proof? Given Bernoulli’s earlier discussions of mathematical 
analysis and synthesis, we should expect him to take a consistent position on these 
matters14.
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IV Bernoulli’s Proof of the Law of Large Numbers

In order to investigate this question further, it will be worthwhile to examine 
Bernoulli’s proof of his law of large numbers. Bernoulli achieves his proof by first 
demonstrating five lemmas concerning the terms of a binomial expansion. He 
then is able to prove his law essentially by showing how the various terms of the 
binomial expansion correspond to possible outcomes of nt trials of a situation in 
which there are r cases for a positive outcome and s cases for a negative one, 
t = r + s, and n is some large integer. Todhunter states the essentials of the proof 
quite clearly and succinctly:

“We will now state the purely algebraical part of the theorem. Suppose that (/■+$)"' is expanded 
by the Binomial Theorem, the letters all denoting integral numbers and / being equal to r + s. Let 
u denote the sum of the greatest term and the n preceding terms and the n following terms. Then by 
taking n large enough the ratio of u to the sum of all the remaining terms of the expansion may be 
made as great as we please. If we wish that this ratio should not be less than c it will be sufficient 
to take n equal to the greater of the two following expressions:

log c + log(5 + 1) s s— -------------(1+— ) -  —
log(r + 1) -  log r r + 1 r + 1

and

log c + log(r -  1) r 1—------------- (1 +----- ) - ----- _
10g(j+ 1) -  log 5 5 + 1 5 + 1

[...] Let us now take the application of the algebraical result to the Theory of Probability. The 
greatest term of (r+5)m, where / = r+5 is the term involvingrJ'rsn’. L etr and 5 be proportional to the 
probability of the happening and failing o f an event in a single trial. Then the sum of the2n+ l 
terms of (r+s)M which have die greatest term for their middle term corresponds to the probability 
that in nt trials the number of times the event happens will lie between n(r-1) and n(r+1), both 
inclusive; so that the ratio of the number of times the event happens to the whole number of trials

lies between r  + -- and - — -  . Then, by taking for n the greater of the two expressions in the 
/ t

preceding [...], we have the odds of cto  1 that the ratio of the number of times the event happens to

r +1 r -  1
the whole number of trials lies betw een------  a n d -------.” (Todhunter 1949,71-72)

t t

Now, because the central work of the proof is done by means of lemmas con
cerning any binomial expansion, it is not immediately clear whether Bernoulli 
would consider the reasoning in his proof of the main theorem to have been ana
lytic or synthetic. But Todhunter’s labelling of the lemmas as “the purely algebra
ical part of the theorem,” provides a needed clue: the five lemmas are in a sense 
Bernoulli’s analysis of the problem, while the synthesis is what Todhunter calls 
“the application of the algebraical result to the Theory of Probability” and what 
Bernoulli himself calls the demonstration of the principal proposition15. In the
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proofs of his lemmas, Bernoulli takes it for granted that mathematicians know the 
series expansions of binomials to various powers, and he treats them as pure math
ematics, abstracted from any particular application16. He raises the possibility in a 
scholium that someone may object to the way he has made use of infinites in his 
proof of Lemmas 4 and 5, but provides an alternative interpretation for such ob
jectors that requires only finite numbers and not infinites17. The proof of the sec
ond lemma is an informal induction18.

Based on the algebraic analysis of the lemmas, Bernoulli’s proof of the law of 
large numbers is synthetic, starting from what is known through the lemmas and 
moving to prove the desired conclusion. How he gets from the pure mathematics 
of the lemmas to the proof of his law of large numbers is, in his terms, simply “by 
the application of the foregoing lemmas to the present purpose”, that is, by inter
preting the terms of the binomial expansion as expressing the numbers of ways in 
which various possible outcomes of a series of observations can occur. Bernoulli 
writes:

“Demonstration. Let nt be the number of observations to be taken, and let us ask how great is 
the expectation or how great is the probability, that they will all be fecund except for, first, none, 
then 1 ,2 ,3 ,4 , etc. sterile. But since in any observation there are, by hypothesis, t cases at hand, 
and of them r are fecund and s sterile, and the individual cases of one observation can be combined 
with the individual cases of the other, and those combined can be joined again with the individual 
cases of the third, fourth, etc., it is easy to see that this situation fits the Rule in the Notes appended 
to the end of Proposition XIII. [ji'c, should be XII] in Part I, and its Corollary 2, which contains a 
general formula, with the help of which it is seen that the expectation of no sterile observations

nt jnt c nt n t-1 nt r nt{flt — \ ) nt-2 nt ris r :t , of one — r  s : t  , of two -------------- r s s : t  o f  th ree
1 1-2

nt(nt -  l)(nt -  2) m_3 3
------------------------r s

1- 2- 3
t"' and so forth. Consequently, omitting the common denominator

/" th e  degrees ‘of probability or the numbers’ of cases in which it can happen that all the experi
ences are fecund, or all except one sterile one, or all except 2 ,3 ,4 , etc. are expressed in order by

nt nt_i n t ( n t - l )  nt_2 nt(nt -  \){nt -  2) „,_3 3 ...................... .....  .
, —  r s ,------------- r ss,-------------------------r s etc. Now these, in fact, are the

1 1-2 1- 2- 3
terms of the power nt of the binomial r+s, investigated just now in our lemmas. Then all the rest is 
completely evident. Indeed, it is clear from the nature of the progression that the number of cases 
that combine ns sterile experiences with nr fecund ones is the maximum term M, or the term that 
ns terms preceed and nr follow, by Lemma 3.”l9(Bemoulli 1713,236-237)

Thus Bernoulli bases his demonstration upon the algebraic lemmas, interpret
ing the terms of the binomial expansion in terms of the probabilities of various 
outcomes of a series of observations. The largest term of the binomial expansion 
represents the numbers of ways in which the ratio of fertile to sterile observations 
may equal the underlying ratio of cases.
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V Cases (casus) and Bernoulli’s Conceptions of God and the World

What in Jacob Bernoulli’s larger world view justified his belief that cases of death, 
or of weather, or of winning at tennis, and so forth could be represented by the 
terms of a binomial expansion as he represented them in his proof of the law of 
large numbers? Or why would a prudent physician or insurance agent be wise or 
justified in using observed ages at death of people in various situations to calcu
late the life expectancies of living people of given age and circumstances? Not 
only did Bernoulli not know what the fundamental a priori ratios of cases were for 
diseases or the weather or any other of the political, moral, or economic situations 
to which he hoped to apply the art of conjecturing, but also, from our point of 
view, he did not know that there were fundamental a priori ratios of cases.

Leibniz raised this objection in correspondence with Bernoulli near the end of 
the latter’s life, arguing that the risks of various diseases are not known and, in 
fact, may not be stable. In response, Bernoulli admitted that the situation quite 
likely changes over time. Modem life expectancy, Bernoulli reasoned, was doubt
less different from the life expectancy in Biblical times. Nevertheless Bernoulli 
was optimistic that there was enough stability in the real world for his a posteriori 
method to be useful. A central reason for this optimism was that even if we do not 
know anything about the ratios in real world cases, God knows. Things are uncer
tain to us, but not to God:

“All things under the sun, which are, were, or will be, in themselves and objectively always have 
the highest certainty. This is evident concerning past and present things, since by the very fact that 
they are or were, these things cannot not exist or not have existed. Nor should there be any doubt 
about future things, which in like manner, even if not by the necessity of some inevitable fate, 
nevertheless by divine foreknowledge and predetermination, cannot not be in the future. Unless, 
indeed, whatever will be will occur with certainty, it is not apparent how the praise of the highest 
Creator’s omniscience and omnipotence can prevail.’’20(i7>/d., 210-211)

Responding directly to Leibniz’s argument, Bernoulli said:

“Let me remove a few objections which certain learned men have raised against these views. [...] 
They object first that the ratio of stones is different from the ratio of diseases or changes in the air: 
the former have a determinate number, the latter an indeterminate and varying one. I reply to this 
that both are considered to be equally uncertain and indeterminate with respect to our knowledge.
On the other hand, that either is indeterminate in itself and with respect to its nature can no more be 
conceived by us than it can be conceived that the same thing at the same time is both created and 
not created by the Author of nature: for whatever God has made, he has, by that very act, also 
determined at the same time.”21 (ibid., 227)

Thus Jacob Bernoulli did not believe that nature or even human life is inher
ently statistical or probabilistic22 (Daston 1992). Although he was not sure how 
human freedom could be reconciled with the fact that God determines and fore
sees everything that will happen, Bernoulli nevertheless believed that everything
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is determined by God23. Humans use probabilistic reasoning, he said, not because 
the world is inherently governed by chance, but because we do not know its hid
den mechanisms. The laws of physics and the initial conditions determine which 
side of a die will fall facing up. We say that each face has a one-sixth chance of 
facing upwards because we do not know the exact initial conditions or perhaps all 
the laws of physics, but the fall of the die is nonetheless physically determined.

Bernoulli’s understanding that there are a p r io r i ratios of cases in real world 
situations helps to elucidate the cryptic statement with which The A rt o f  C onjec
turing ends:

“Whence at last this remarkable result is seen to follow, that if the observations of all events were 
continued for the whole of eternity (with the probability finally ending in perfect certainty) then 
everything in the world would be observed to happen in fixed ratios and with a constant law of 
alternation. Thus in even the most accidental and fortuitous we would be bound to acknowledge a 
certain quasi necessity and, so to speak, fatality. I do not know whether Plato already wished to 
assert this result in his dogma of the universal return of things to their former positions, in which he 
predicted that after the unrolling of innumerable centuries everything would return to its original 
state.”24 (ibid., 239)

To a modem eye this passage seems to mean only that if all events of all 
eternity are taken into account, then they will have some ratio to each other, what
ever that may be. Bernoulli, however, when he says, “fixed ratios and with a 
constant law of alternation,” implies that there will be some lawlike ratios of 
integers, small or large, but not unrecognizable as such.

Up to this point, I have been translating “casus” when it appears in Bernoulli’s 
Latin as “cases,” as when he says in introducing his a posterio ri method of deter
mining the ratios of cases, “it ought to be anticipated that something can happen 
or not happen in the future in as many cases as it was observed to happen or not to 
happen in the past in a similar state of things.”25 (ibid., 224) When, in the eight
eenth century, other authors writing about games of chance translated “casus” in 
this sense into English, they almost always translated it as “chances.” If I translat
ed Bernoulli as saying, “it ought to be anticipated that something can happen or 
not happen in the future with as many chances as it was observed to happen or not 
to happen in the past in a similar state of things,” then Bernoulli might seem to 
believe that chance was intrinsic to physical reality and not only to our thinking 
about it.

What, then, is a “casus” for Bernoulli? His models or metaphors for casus 
come first of all from games. Casus sometimes correspond to stones to be drawn 
out of an urn26. Dice and cards also provide common models. With stones in an 
urn there may be many stones of the same color any of which is equally likely to be 
drawn. Cards provide a more complicated set of possibilities of a similar type. 
With normal dice, on the other hand, each die might be thought to have an equal 
proclivity for falling with any of its faces up. Hence, with stones in an urn or cards
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or dice, the “casus” correspond to separable aspects of physical reality, but their 
ease in occurring may depend on various factors configuring the situation, as well 
as on the items themselves. It is not essential to these models that the game pieces 
themselves have some inherent “proclivity” to exhibit one or another case, that is, 
that they have in themselves some inherent “probability” of appearing one way or 
another. Jacob Bernoulli in The A rt o f  Conjecturing never uses “probability [pro- 
babilitasY ’ to refer to inherent properties or proclivities of stones or cards or dice, 
but always to refer to degrees of certainty about the truth of propositions.

While Abraham De Moivre in his The D octrine o f  Chances consistently uses 
“chances” with regard to alternative possibilities, his statements about these chances 
show that he too did not believe that the underlying reality was governed by chance 
as we understand it. In a typical problem, he says:

“To find the Probability of throwing a Chance assigned a given number of times without inter
mission, in any given number of Trials.” (De Moivre 1718,254)

Here the “chance assigned” could be anything, say to throw a 7 with two dice: the 
“chance assigned” is some specific outcome, one of several possible outcomes. 

After De Moivre has discussed the law of large numbers he says:

“Chance, as we understand it, supposes the Existence of things, and their general known Prop
erties: that a number of Dice, for instance, being thrown, each of them shall settle upon one or 
other of its Bases. After which, the Probability o f an assigned Chance, that is of some particular 
disposition of the Dice, becomes as proper a subject of Investigation as any other quantity or Ratio 
can be.

But Chance, in atheistical writings or discourse, is a sound utterly insignificant: It imports no 
determination to any mode o f Existence1, nor indeed to Existence itself, more than to non-exist
ence; it can neither be defined nor understood: nor can any Proposition concerning it be either 
affirmed or denied, excepting this one, ‘That it is a mere word.’” (ibid., 253)

Shortly before this passage, De Moivre wrote:

“From what has been said, it follows, that Chance very little disturbs the Events which in then- 
natural Institution were designed to happen or fail, according to some determinate Law; for if in 
order to help our conception, we imagine a round piece of Metal, with two polished opposite faces, 
differing in nothing but their colour, whereof one may be supposed to be white, and the other 
black; it is plain that we may say, that this piece may with equal facility exhibit a white or black 
face, and we may even suppose that it was framed with that particular view of shewing sometimes 
one face, sometimes the other, and that consequently if it be tossed up Chance shall decide the 
appearance [...] yet the appearances, either one way or the other, will perpetually tend to a propor
tion of Equality [...]. What we have said is also applicable to a Ratio of Inequality [...]. And thus 
in all Cases it will be found, that altho’ Chance produces Irregularities, still the Odds will be 
infinitely great, that in the process o f Time, those Irregularities will bear no proportion to the 
recurrency o f that Order which naturally results from Original Design.” (ibid., 250-251)

Thus, for De Moivre, and I suggest also for Jacob Bernoulli, there are laws of 
nature which in the long run will appear, however “chance” may obscure them in
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the short run. Moreover, according to De Moivre, it is God who has determined 
and continues to determine these regularities, not some intrinsic propensities or 
proclivities of material bodies:

“[...] such Laws, as well as the original Design and Purpose of their Establishment, must all be 
from without', the Inertia of matter, and the nature of created Beings, rendering it impossible that 
any thing should modify its own essence, or give to itself, or to any thing else, an original determi
nation or propensity. And hence, if we blind not ourselves with metaphysical dust, we shall be led, 
by a short and obvious way, to the acknowledgment of the great Maker and Governour o f all; 
Himself all-wise, all-powerful and good." (ibid., 252)

From this point of view, then, for De Moivre (and for Bernoulli as well) it is 
clear that consistently observed frequencies of events in the world reveal the laws 
of nature or structures built into the universe no less than faces built into a die:

“As, upon the Supposition of a certain determinate Law according to which any Event is to 
happen, we demonstrate that the Ratio of Happenings will continually approach to that Law, as the 
Experiments or Observations are multiplied: so, conversely, if from numberless Observations we 
find the Ratio of the Events to converge to a determinate quantity, as to the Ratio ofP to Q; then we 
conclude that this Ratio expresses the determinate Law according to which the Event is to happen.

For let that Law be expressed not by the Ratio P:Q, but by some other, as R:S\ then would the 
Ratio of the Events converge to this last, not to the former: which contradicts ourHypothesis. And 
the like, or greater, Absurdity follows, if we should suppose the Event not to happen according to 
any Law, but in a manner altogether desultory and uncertain; for then the Events would converge 
to no fixt Ratio at all.” (ibid., 251 -252)

Thus De Moivre’s “chances,” no less than Bernoulli’s “casus”/“cases”, reflect 
the laws of nature built into the existence of things and not something “desultory.” 
They come “from without,” that is from God or the First Cause, who, in creating, 
gives determination to creation. If there is chance in creation, it is only because 
God, like a dice maker, has designed into creation certain features that will result 
in the appearance of events with certain frequencies, as the designer of a die 
designs the die to come up one-sixth of the time on each of its faces. It is these 
features of God’s design that can be found out a posteriori by observing the ratios 
of outcomes in the world over sufficiently long periods of time.

That there will be ratios in events observed over long periods of time results 
from God’s design, but ratios observed a posteriori will not always correspond to 
the most fundamental structures of reality. In his commentary on Huygens, Ber
noulli at first assumed that the ratios of cases used in the calculations resulted 
from the nature of the game pieces, but as he went on he noticed that Huygens 
sometimes treated the numerator and denominator of a fraction representing an 
expectation as if they represented numbers of cases, even if they were derived in a 
different way:

“It helps here to observe that the Author supposes that any expectation expressed as a fraction 
may also be considered as if  it resulted from as many cases for obtaining the stake a  as are indi
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cated by the numerator of the fraction and as many cases for obtaining nothing as are signified by 
the difference between the denominator and the numerator, notwithstanding that perhaps that ex
pectation was arrived at in another way. Thus although the person who undertakes to throw two 
sixes in two tries arrives at his expectation of (71/1296)a by a case for obtaining a and 35 cases for 
(1 /36)o, nevertheless one could judge him to obtain it by 71 cases for obtaining a and 1225 cases 
for 0.” (Bernoulli 1713,29)

Thus the ratios of cases observed in wins and losses of tennis players over time 
may not correspond directly to some basic features of the minds or bodies of the 
players or their equipment, but to complex interactions of many factors. In an 
early consideration of tennis published in 1686, Bernoulli stated that the underly
ing ratio of cases may be incommensurable27.

Mathematically, “cases” enter Bernoulli’s proof of the law of large numbers in 
two ways. First of all, there are the fundamental cases with which the proof be
gins, that is r cases for a fertile outcome and s cases for a sterile one. But after nt 
observations have been made, there are also more complex cases, first the case in 
which all outcomes are fertile or positive, then the case in which the first trial is 
sterile, but the rest fertile, and so forth. The largest term of the binomial expan
sion is shown to represent the numbers of cases in which the individual outcomes 
are in the ratio of the underlying cases (corresponding to the two terms of the 
binomial, r and 5 ). The probability that the ratio of outcomes will fall within some 
small interval around the ratio corresponding to the ratio of the underlying cases 
is explained to be proportional to the sum of a certain number of terms of the 
binomial expansion on either side of the largest term. Then the ratio between this 
sum and the sum of all the terms outside the limits is shown to increase without 
limit as the number of trials, nt, increases. A very large number of trials is re
quired if it is desired that there be a very high probability that the ratio fall within 
very narrow limits. In interpreting this result, Bernoulli assumes that he is look
ing for ratios of integers and he talks about finding, determining, or discovering 
the ratio28. He seems to take it for granted that it will be obvious what the “real 
ratio” of cases is, even if the observed ratio of frequencies after many trials should 
deviate from it very slightly29.

Did Bernoulli think that there really were in the outside world “cases” corre
sponding to various diseases or other possible causes of death and that by examin
ing statistics for death rates he could discover underlying causes? Given his remark 
in commenting on Huygens’s treatment of the numerators and denominators of 
expressions for expectation as if they referred to numbers of cases, I conclude that 
Bernoulli thought that the ratios found by experience might not represent funda
mental cases or causes in the external world, but that they would represent the 
result of complex interactions of such cases or causes. In the proof of the law of 
large numbers, at first the cases are simple successes and failures, but once one 
has observed nt trials, then the cases become not just the r  cases for success and s
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cases for failure in a single trial, but instead the case of nt successes, the cases of 
n t - 1 successes combined with one failure, etc., up through the case of nt failures. 
When Bernoulli talks about diseases or the weather, he sometimes talks as if the 
diseases would be the cases, but twice (in a letter to Leibniz and in The A r t o f  
Conjecturing) he chooses the word “tinder” (fomitem ), which seems to be a pur
posefully vague or multivalent word with some connotations like “seed” or “germ”30.

The one work in which Bernoulli did apply his method to a concrete situation 
was his L etter to  a F riend  on the game of tennis, published together with the A rs  
Conjectandi in 1713. His idea was that it would be possible to take the ratios of 
points or games that players won when playing against each other and to use these 
ratios to predict, for instance, the likelihood of victory when such individuals 
played as parts of doubles teams. The sorts of factors that Bernoulli then consid
ered were, for instance, whether the opponents would consistently try to hit to the 
weaker player, whether the player who has to hit more balls will become tired 
sooner, etc., such things meaning that the strength of a team could not be sup
posed to be simply equal to the strength of the better player, nor simply the aver
age between the two players.

In the introduction to the L etter to a Friend, Bernoulli writes as if he were 
cognizant of our question about the physical meaning of the concept of “cases.” 
Bernoulli writes that his friend has seen a thesis of his concerning the game of 
tennis and:

“[...] you ask me if these propositions contain some reality that can be demonstrated or if they are 
only founded on pure conjectures made in the air and which have nothing solid about them. Ac
cording to what you say, you cannot conceive that the forces of players can be measured by num
bers, much less that one can draw the conclusions from them that I have drawn.”31 (ibid., new 
numeration, 1)

After referring to games of chance in which the numbers of cases are known a  
p rio ri, he discusses games of skill in which they are not:

“[...] it is not the same with games that depend only or in part on the genius, the industry, or the 
application of the players, such as tennis, chess, and most card games. It is very clear that one 
could not know how to determine by their causes ora  priori, as one says, how much one person is 
more knowledgeable than another, more skillful, or more able, unless one had a perfect knowl
edge of the nature of the soul and of the disposition of the organs of the human body, which the 
thousand hidden causes that interact make absolutely impossible. But this does not prevent one 
from knowing this almost as certainly a  posteriori, by the observation of the outcome many times 
repeated, doing what can be done even in games of pure chance when one does not know the 
number of cases that can occur."n (ibid., new numeration, 2)

Bernoulli then goes on to describe the drawing of tickets from an urn without 
knowing the number of tickets of each kind that it contains. If, he says, he drew 
out a black ticket a hundred times and a white ticket two hundred times, he would 
not hesitate to conclude that the number of white tickets was about double the
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number of black tickets. Having referred to his proof of the law of large numbers, 
Bernoulli then says that the same reasoning can be applied to games of skill. If, he 
says, he observed two men playing tennis and one man won 200 or 300 points 
while the other won 100, then he would judge with sufficient certainty that the 
first man was a two or three times better player than the second. The first player 
would have, so to speak, two or three times as many cases or causes making him 
win as the other33. Thus in the one concrete application that we have, Bernoulli 
makes no claims of knowing what in the real world corresponds to his cases or 
causes, only that the observed ratio of outcomes can be used as a ratio of cases in 
making judgments or predictions. If he knew what percentage of the time player A 
had beaten player B  over a long series of games in the past, this did not mean that 
Bernoulli knew what it was that made one player more or less likely to win, but 
only that he thought he could predict the future reliably or with probability.

VI Algebra and the Law of Large Numbers

With this discussion about the meaning of “casus” or “cases” in hand, let me 
return to an examination of Bernoulli’s proof of the law of large numbers. What
ever else “cases” or, for that matter “chances” were, they were always countable, 
or represented by integers. One always has some number of cases or chances for 
some outcome, never a fractional amount. The fact that Bernoulli’s intuitive un
derstanding of the “cases” is, to use modem terminology, digital rather than ana
log, may explain why, even though the infinitesimal calculus was in development 
by this time, he did not think to try proving the law of large numbers using calcu
lus or even geometry, but instead used algebra34. Once Bernoulli began to think of 
his law of large numbers in algebraic terms, the mathematics itself may have 
become for him a model of the processes he was dealing with. The fact is that in 
the algebraic part of Bernoulli’s proof of the law of large numbers, that is in the 
lemmas which are “pure mathematics” and which, indeed, contain the whole proof 
aside from its “application” or interpretation in terms of possible outcomes or 
expectations, there is no “prior” or “posterior,” but everything is, so to speak, at 
the same cognitive level. One considers, as if laid out together in an array, all the 
possible outcomes of nt trials. This is not like the analysis of a game in which one 
round of the game precedes the next and in which the ratios of cases or chances 
may change depending upon the outcomes of the various rounds. Time is not a 
factor (nor is “sampling” from a larger population). The mathematics takes a 
“God’s eye” point of view, in which every possibility is present and on an equal 
footing. On the other hand, each “snapshot” of the situation is for some nt number 
of observations. One chooses the level of risk one is willing to take (or the probability 
of being correct that one requires) and then determines how many observations 
are necessary to keep the risk that low (or the probability of being correct that
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high). As the number of trials is never infinite, the risk is never zero (or the 
probability never one). One may always be wrong. As long as nt is not infinite, it 
is always possible to observe a ratio of frequencies that does not reflect the under
lying law of nature. All the law of large numbers tells you is what the chances are 
that you are wrong or the probability that you are right or very nearly so. What the 
art of conjecturing then provides as a mathematical instrument for decision mak
ing is knowledge of how to maximize your expectations before the fact and how to 
measure the chances that you may be wrong. If, after acting on the basis of the art 
of conjecturing, you lose, you nevertheless have the consolation of knowing you 
followed prudent strategy35.

VII Summary

In this paper, I have made the following points. Jacob Bernoulli had notions of 
mathematical analysis and synthesis that were not atypical of his times. For him, 
a mathematical synthesis moves from what is prior and better known, while a 
mathematical analysis may move in any direction, sometimes deducing what is 
mathematically prior or better known from what is mathematically posterior. Like 
many others of his time, even those who, like himself, were in the process of 
developing infinite or infinitesimal analysis, Jacob Bernoulli when he used the 
word “analysis” frequently meant nothing more than algebra. Previous historians 
of probability theory, and in particular Ian Hacking, have questioned Bernoulli’s 
intended interpretation of his law of large numbers, because his proof of the theo
rem presupposes that there are a p r io r i ratios of cases and yet the theorem is 
supposed to justify discovering these ratios a posteriori. Bernoulli’s world view, 
like that of De Moivre, indeed assumes that the universe displays design and that 
this design is incorporated in laws of nature that undergird observed frequencies. 
To God, Bernoulli says, all things are known and certain in the past and present 
and in the future as well. The law of large numbers shows that, despite temporary 
fluctuations, in the long run the structure of the world will manifest itself. The 
lemmas of Bernoulli’s proof of the law of large numbers, that is the algebraic parts 
of the proof or the analysis, mirror this “God’s eye” perspective on the universe in 
the sense that there is nothing prior or posterior, but all is equally present and 
evident. They are pure mathematics and self-contained. All that is required to 
apply them to prove the law of large numbers is to interpret them to apply to the 
outcomes of experiments. Thus, both Bernoulli’s world view and the way in which 
he used algebra to prove his lemmas explain why he saw no problem in assuming 
the existence of a p r io r i ratios of cases when he was proving the law of large 
numbers—and then boasting that the proof of the law of large numbers shows 
why one can reliably discover ratios of cases a posteriori. The ratios of cases so 
discovered were not necessarily ratios of fundamental underlying causes, but rath
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er ratios of cases that could be prudently used, with the rest of the art of conjectur
ing, to make decisions in civic, moral, and economic situations.

N orth C arolina State U niversity 
D epartm ent o f  H istory

Notes

1 The translations of the Ars Conjectandi for this paper are my own, part of a joint project with Glenn 
Shafer to publish an English translation of The Art o f Conjecturing with supporting materials. I shall 
quote in notes the original texts.

“ Verum enimvero alia hie nobis via suppetit, qua quaesitum obtineamus; & quod a priori elicere 
non datur, saltern a posteriori, hoc est, ex eventu in similibus exemplis multoties observato eruere 
licebit; quandoquidem praesumi debet, tot casibus unumquodque posthac contingere & non 
contingere posse, quoties id antehac in simili rerum statu contigisse & non contigisse fuerit 
deprehensum.”

2 Nicholas Bernoulli was familiar with his uncle Jacob Bernoulli’s work in mathematical probability long 
before the work was published. In 1709 Nicholas defended a mathematical-legal thesis De Usu Artis 
Conjectandi in Jure, that made use of his uncle’s ideas, and throughout the period just before the 
publication of Jacob Bernoulli’s Ars Conjectandi, Nicholas collaborated with Montmort in their work 
on probability theory, culminating in the publication of a number of letters from Nicholas to Montmort 
in the second edition of Montmort’s Essai d’analyse sur les jewc de hazard (1713). These letters included 
an alternative approach to proving a law of large numbers. De Moivre’s first publication in probability 
theory was his De mensura sortis seu de probabilitate eventuum in ludis a casu fortuito pendentibus 
in Philosophical Transactions (1711). This was followed in 1718 by his The Doctrine o f Chances: or, 
A Method o f Calculating the Probability o f Events in Play (1718). De Moivre first dealt with Bernoulli’s 
proof of the law of large numbers in his Miscellanea Analytica de Seriebus et Quadraturis (1730). In 
the first edition of his Doctrine o f Chances, he only said, at the end of the preface:

“Before I make an end of this Discourse, I think myself obliged to take Notice, that some years 
after my specimen was printed, there came out a Tract upon the Subject of Chances, being a 
Posthumous Work of Mr. James Bemoully, wherein the Author has shown a great deal of Skill and 
Judgment, and perfectly answered the Character and great Reputation he hath so justly obtained

The tone was set for all these later works by Christiaan Huygens, De Ratiociniis in Ludo Aleae as it 
appeared in Latin translation in F. Van Schooten, Exercitationum mathematicarum (1657). In 1692 
John Arbuthnot published an English translation of much of Huygens’s book (Arbuthnot 1692). Montmort 
said, in the first edition of Essay d’analyse sur les jeux de hazard (1708, iii-vi) that he was motivated to 
attempt to calculate expectations in games of chance by the reports about the manuscript of Jacob 
Bernoulli’s Ars Conjectandi, made in the iloges at the time of Jacob’s death.

3 Here what he writes (1975, ch. 17,154-165):
“Chapter 5 of Part IV of Ars conjectandi proves the first limit theorem of probability theory. The 

intended interpretation of this result is still a matter of controversy, but there is no dispute about 
what Bernoulli actually proved [...]. Bernoulli proves what is now called the weak law of large 
numbers [...]. Bernoulli’s proof is chiefly a consequence of his earlier investigation of combinatorics, 
for it proceeds by summing the middle terms in the binomial expansion. Notice that this result is a 
theorem of pure probability theory, and holds under any interpretation of the calculus [...]. Bernoulli’s 
exposition has a basic difficulty that has led to repeated misinterpretation. It is still a matter of
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controversy [...]. Bernoulli plainly wants to estimate an unknown parameterp. His favourite ex
ample is the proportion of white pebbles in an um. An estimator is a function F from data to 
possible parameter values, in this case, possible values oip. Bernoulli uses an interval estimator 
which maps given data onto a set of possible values ofp, ‘bounded by two limits’ [...]. Inevitably 
[...] we come to consider his problem as one of estimating an unknown aleatory probability, or 
chance. Moreover, we wonder if he wanted to know the epistemic probability that a given estimate 
of chance was correct [...]. We are [...] confident that Bernoulli did not make any simply fallacious 
‘inverse’ use of his theorem [...]. He thought [his theorem] had application to inverse inference, 
but does not make clear exactly why.”

Stephen Stigler (1986,66), also brings into question the correct interpretation of the significance of 
Bernoulli’s theorem: “This modem synopsis is inaccurate in several respects, however, as is the occasional 
claim that Bernoulli presented the first example of an interval estimate of probability.” Lorraine Daston 
(1988,188-190), chides Hacking more generally for anachronism in his interpretation of Bernoulli’s 
ideas:

“In Ian Hacking’s thoughtful discussion of theory conjectandi, for example, Bernoulli emerges 
as both more prescient and more quaint than a less anachronistic reading would warrant. On the 
one hand, Hacking credits Bernoulli with anticipating a frequentist ‘security level’ for inductive 
inference [corr. ex influence] [...] and on the other, he saddles Bernoulli with a ‘useful equivoca
tion’ between de re andde dicto senses of possibility and corresponding epistemic and physical 
senses of probability.”

On Bernoulli’s inverse use of his law, cf. also ibid., 234ff. A general corrective to Hacking’s history of 
the emergence of probability is to be found in Garber and Zabell (1978). The process of translating 
Bernoulli has made it clear to me that Bernoulli’s use of the term “probabilitas” is always epistemic— 
the word is never used by Huygens or by Bernoulli in the first three parts of theAry Conjectandi dealing 
with games of chance.

4 Cf. Bernoulli (W, vol. Ill, 88; from Bernoulli’s notebook Meditationes, p. 91): “NB. Hoc inventum 
pluris facio quam si ipsam circuli quadraturam dedissem, quod si maximS reperiretur, exigui usfls esset.”

5 “Quoniam enim omnes istae sortes differentes sunt et incognitae, earumque praecedens quaelibet a sequente 
et postrema vicissim a prima dependet, uti ex subjuncta operatione constabit, non poterit Problema istud 
Auctoris saltern methodo, perea quae ad Propos. ulL annotata sunt, aliter quam mediante analysi algebraica 
expediri.”

6 “Auctor in hoc Problemate primum adhibere cogitur analysin algebraicam, cum in praecedentibus sola 
synthesi usus fuisset: cuius differentiae ratio est, quod in illis omnibus expectatio quaesita fluebat ex aliis 
expectationibus vel in totum cognitis et datis, vel incognitis quidem, at natura prioribus ac simplicioribus, 
et quae ab hac vicissim non dependebant; quapropter incipiendo ab omnium simplicissimis earum ope 
gradatim pergere poterat ad enodandos alios casus magis magisque compositos absque analysi ulla. 
Secus vero se hie res habet; nam expectationem meam, quam possideo cum collusorem ordo jaciendi 
tangit, Auctoris more aestimare non possum, nisi cognitam habuero sortem, quam acquire ubi vices 
jaciendi ad me devolvuntur: sed et hanc cognoscere nequeo, nisi priorem illam compertam habeam, quae 
tamen ea ipsa est quam quaerere intendo; unde cum utraque sit incognita, et altera ab altera vicissim 
dependeat, non possunt Auctoris vestigiis insistendo aliter quam analyseos ope ex se mutuo elici: id 
quod operae pretium est observasse, ut utriusque methodi discrimen, et quando haec illave in usum 
vertenda sit, perspicuo aliquo exemplo pateret.”

7 “Dixi, Auctoris vestigiis insistendo non posse; datur enim adhuc alia peculiaris via, qua quaesitum 
consequi possum citra analysin ullam, et quam in sequentibus quoque utiliter adhibere licet. Fingamus 
loco duorum altematim ludentium infinitos Collusores, quibus singulis ordine uni post alterum singuli 
tantum concedantur jactus [...].”
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“Methodus porro nobis familiaris etiam in praesente hypothesi locum habet; neque enim hanc magis 
respuunt eae quaestiones, quae communiter sola synthesi solvuntur, quam quae analysi opus habent.”

8 Huygens’s Preface addressed to Franciscus Schooten (1657,519) begins,

“Cum in editione elegantissimorum ingenii Tbi monumentorum, quam prae manibus nunc habes,
Vir aarissim e, id inter coetera Te spec tare sciam, ut varietate remm, quarum tractationem instituisti, 
ostendas quam late se protendat divina Analytices scientia, facile intelligo [...].”

And in ending (ibid., 520) Huygens says,

“Horum Problematum nonnulla in fine operis addidisse me invenies, omissa tamen analysi, cum 
quod prolixam nimis operam poscebant, si perspicue omnia exequi voluissem, turn quod 
relinquendum aliquid videbatur exercitationi nostrorum, si qui erunt, Lectorum.”

Bernoulli then echoes Huygens’s reference to the working out of solutions to problems as “analysis” 
(1713,49): “Coronidis loco Auctor Tractatui suo subjunxit sequentia quinque Problemata, sed omissa 
analysi vel demonstratione, quam Lectori eruendum reliquit.”

9 “Si porro sensus Problematis sit, ut assumpti in commune calculi 12 non reponantur, postquam ex uma 
exempti fuerint; observandum est, quod per continuam eductionem calculorum nigrorum, primus quidem 
collusor transeat in locum tertii, tertius in locus secundi, secundus in locum primi, non idcirco tamen 
pariter sortes, quas ab initio ludi habuere, invicem permutent, ut factum fuit in praecendente hypothesi, 
sed quod subinde alias novas et a prioribus diversas ob mutatum calculorum numerum acquirant, easque 
tamen simpliciores quo plures calculi nigri educti fuerint, atque ita comparatas, ut tandem desinant in 
sortes omnino cognitas. Quapropter incipiendo consueta Auctoris methodo ab omnium simplicissimis, 
et pergendo retro per omnes intermedias, perveniemus ultimo sola synthesi utendo ad casum in quaestione 
propositum.”

19 c f . Boyer (1968,97-98 (“Perhaps more genuinely significant is the ascription to Plato of the so-called 
analytic method [...]. Plato seems to have pointed out that often it is pedagogically convenient, when a 
chain of reasoning from premises to conclusion is not obvious, to reverse the process. One might begin 
with the proposition that is to be proved and from it deduce a conclusion that is known to hold.”); 210 
(“Pappus describes analysis as ‘a method of taking that which is sought as though it were admitted and 
passing from it through its consequences in order to something which is admitted as a result of synthesis. ’ 
That is, he recognized analysis as a ‘reverse solution,’ the steps of which must be retraced in opposite 
order to constitute a valid demonstration.”); 352 (“Viete had been one of the first to use the word ‘analysis’ 
as a synonym for algebra”); 418-419 (“One who has read our chapters on Greece will see that Wallis 
was far better as a mathematician than as a historian, for he equates algebra (or the analytics of Vidte) 
with the ancient geometrical analysis.”)).

11 “Nam si ex. gr. facto olim experimento in tercentis hominibus ejusdem, cujus nunc Titius est, aetatis & 
complexionis, observaveris ducentos eorum ante exactum decennium mortem oppetiisse, reliquos ultra 
vitam protraxisse, satis tuto colligere poteris, duplo plures casus esse, quibus & Titio intra decennium 
proximum naturae debitum solvendum sit, quam quibus terminum hunc transgredi possit. Ita si quis a 
plurimis retro annis ad coeli tempestatem attenderit, notaveritque, quoties ea serena aut pluvia extiterit: 
aut si quis duobus ludentibus saepissime adstiterit, videritque quoties hie aut ille ludi victor evaserit, eo 
ipso rationem detexerit, quam probabiliter habent inter se numeri casuum, quibus iidem eventus praeviis 
similibus circumstantiis & posthac contingere ac non contingere possunt.”

1 2 “Atque hie modus empiricus determinandi numeros casuum per experimenta neque novus est neque 
insolitus; nam et Celeb. Auctor Artis cogitandi magni acuminis et ingenii Vir Cap. 12 et seqq. postremae 
Partis haud dissimilem praescribit, et omnes in quotidiana praxi eundem constanter observant. Deinde 
nec illud quenquam latere potest, quod ad judicandum hoc modo de quopiam eventu non sufficiat sumsisse
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unum alterumque experimentum, sed quod magna experimentorum requiratur copia; quando et 
stupidissimus quisque nescio quo naturae instinctu per se et nulla praevia institutione (quod sane mirabile 
est) compertum habet, quo plures ejusmodi captae fuerint observationes, eo minus a scopo aberrandi 
periculum fore. Quanquam autem hoc naturaliter omnibus notus sit, demonstratio, qua id ex artis principiis 
evincitur, minime vulgaris est, et proin nobis hie loci tradenda incumbit

13 “Ubi tamen parum me praestiturum existimarem, si in hoc uno, quod nemo ignorat, demonstrando 
subsisterem. Ulterius aliquid hie contemplandum superest, quod nemini fortassis vel cogitando adhuedum 
incidit. Inquirendum nimirum restat, an aucto sic observationum numero ita continuo augeatur probabilitas 
assequendae genuinae rationis inter numeros casuum, quibus eventus aliquid contingere et quibus non 
contingere potest, ut probabilitas haec tandem datum quemvis certitudinis gradum superet: an vero 
Problema, ut sic dicam, suam habeat Asymptoton, hoc est an detur quidam certitudinis gradus quern 
nunquam excedere liceat, utcunque multiplicentur observationes, puta, ut nunquam ultra semissem, aut 
2/3, aut 3/4 certitudinis partes certi fieri possumus, nos veram casuum rationem detexisse.”

141 make this point because of Hacking’s discussion of Bernoulli and the law of large numbers. Cf. Hacking 
(1975 as quoted above, note 3, and 159):

“Remember, however, that at the time Bernoulli wrote, the problem of induction had not yet been 
stated as a central problem of philosophy [...]. One thing Bernoulli was not trying to do was to 
solve some publicized problem of induction, for when he wrote there was none.”

15 Cf. Bernoulli (1713,236):

“Propos. Princip. Sequitur tandem Propositio ipsa, cujus gratia haec omnia dicta sunt, sed cujus 
demonstrationem sola Lemmatum praemissorum applicatio ad praesens institutum absolvet.”

Cf. also (ibid., 228):

“Ut prolixae rem demonstrationis qua licet brevitate et perspicuitate expediam, conabor omnia 
reducere ad abstractam Mathesin, depromendo ex ilia sequentia Lemmata, quibus ostensis caetera 
in nuda applicatione consistent.”

1 6 He says, e.g., at the start of his demonstration of lemma 3 (ibid., 229): “ Nota res est inter Geometras, 
quod potestas nt binomii r+s, hoc est (r+s)nl hac serie exprimitur [...].” Cf. also his use of “abstractam 
Mathesin” in the quotation at the preceding note (15).

1 ̂  “It may be objected against Lemmas 4 and 5, by those who are not accustomed to speculations about the 
infinite, that even if, in the case of an infinite number n, the factors in the expressions for the ratiosA//L 
and Ml A, namely nr±nml, 2 ,3, etc [...]. I cannot reply to this uneasiness better than by showing how to 
assign an actually finite number to n, or a finite power to the binomial, so that the sum of the terms within 
the bounds L and A will have to the sum of terms outside a ratio larger than a given ratio however large 
[...]. When this has been shown, it will be seen that the objection necessarily also collapses.”

18 Cf. (ibid., 229):

“Every integral power of a binomial r+s is expressed by one more term than the number of units 
in the index of the power. Thus a square is composed of 3 terms, a cube of 4, a biquadrate of 5, and 
so forth, as is known.”

19 “Dem. Ponatur numerus capiendarum observationum nt, & quaeratur, quanta sit expectatio, seu quanta 
probabilitas, ut omnes existant foecundae, exceptis primo nulla, dein una, duabus, 3 ,4  &c. sterilibus. 
Quandoquidem autem in qualibet observatione praesto sunt ex hyp. t casus, eorumque r foecundi &s 
steriles, & singuli casus unius observations cum singulis alterius combinari, combinatique rursus cum 
singulis tertiae, 4 tae &c. conjungi possunt, facile patet, huic negotio quadrate Regulam Annotationibus 
Prop. XIII. [sic, should be XII] primae Part, in fine subnexam, & ejus Corollarium secundum, quod
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universalem formulam continet, cujus ope cognoscitur, quod expectatio ad nullam observationem sterilem

nt nt ,srt r : t , ad unam nt- 1 »— r s : t
1

ad duas steriles
n t ( n t - 1) nt- 2  nt
------------- r ss : t

1-2
, ad tres

n t( n t- \ ) ( n t - 2 )  w_3 3
------------------------r  5

1-2-3
t m & sic deinceps; adeoque (rejecto communi nomine t"9 quod gradus

probabilitatum seu numeri casuum, quibus contingere potest, ut omnia experimenta sint foecunda, vel 
omnia praeter unum sterile, vel omnia praeter duo, 3, 4 &c. sterilia, ordine exprimantur per

■ nt n t ( n t - l )  nt_2 nt(nt -  l)(nt -  2) „,_3 3 „ . . . ,
, —  r  5 ,------------- r  ss,------------------------ r s , &c. ip sissim os nem pe term inos

1 1-2 1- 2- 3
potestatis nt binomii r+s, in Lemmatis modo nostris excussae: unde jam caetera omnia oppido manifesta 
sunt. Patet enim ex progressionis natura, quod numerus casuum, qui cum ns sterilibus experimentis nr 
foecunda adducunt, sit ipse terminus maximus potestatis M, utpote quern ns termini praecedunt, & nr 
sequuntur, per Lemm. 3.”

20 “Omnia, quae sub Sole sunt vel fiunt, praeterita, praesentia sive futura, in se & objective summam 
semper certitudinem habent. De praesentibus et praeteritis constat; quoniam eo ipso, quo sunt vel fuerunt, 
non possunt non esse vel fuisse: nec de futuris ambigendum, quae pari ter etsi non fati alicujus inevitabili 
necessitate, tamen ratione turn praescientiae turn praedeterminationis divinae non possunt non fore; nisi 
enim certo eveniant quaecunque futura sunt, non apparet, quo pacto summo Creatori omniscientiae & 
omnipotentiae laus illibata constare queat.”

21 “Objiciunt primo, aliam esse rationem calculorum aliam morborum aut mutationum aeris; illorum 
numerum determinatum esse, horum indeterminatum & vagum. Ad quod respondeo, utrumque respectu 
cognitionis nostrae aeque poni incertum & indeterminatum; sed quicquam in se & sua natura tale esse, 
non magis a nobis posse concipi, quam concipi potest, idem simul ab Auctore naturae creatum esse & 
non creatum: quaecunque enim Deus fecit, eo ipso dum fecit, etiam determinavit.”

22 While I do not agree with every part of Daston’s analysis, her basic point is soundly established, namely 
that there is no real chance in Jacob Bernoulli’s universe.

23 Cf. (ibid., 211), immediately following the passage quoted at note 19: “Let others dispute how this 
certainty of future occurrences may coexist with the contingency and freedom of secondary causes; we 
do not wish to deal with matters extraneous to our goal.”

24 “Unde tandem hoc singulare sequi videtur, quod si eventuum omnium observationes per totam 
aetemitatem continuarentur, (probabilitate ultimo in perfectam certitudinem abeunte) omnia in mundo 
certis rationibus & constanti vicissitudinis lege contingere deprehenderentur; adeo ut etiam in maxime 
casualibus atque fortuitis quandam quasi necessitatem, &, ut dicam, fatalitatem agnoscere teneamur; 
quam nescio annon ipse jam Plato intendere voluerit, suo de universali rerum apocatastasi dogmate, 
secundum quod omnia post innumerabilium seculorum decursum in pristinum reversura statum praedixit”

25 For Latin see note 1 above.

26 On the um model, cf. Daston (1988,237 ff.)

22 Cf. Bernoulli (1686,238): “ Animadverto, subducto calculo, peritias Colllusorum esse incommensurabiles 
inter se, id est, veram illorum rationem nullo numero posse exprimi, tametsi id fierit prope verum possit.” 
This incommensurability would follow if it was assumed that one player could concede the other a 
certain number of points in a fair game and then asked how much better the first player must be than the 
second if this concession of points makes their chances of winning the game equal.
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28 Cf. Leibniz (GM, III, 1,78; letter of Bernoulli to Leibniz, October 3,1703):

“Unde jam determinate possum, quot observations instituendae, ut centies, millies, decies millies 
etc. verisimilius (adeoque tandem ut moraliter certum) sit, rationem inter numeros casuum, quam 
hoc pacto obtineo, legitimam et genuinam esse.”

In (1713, 227), Bernoulli uses the word “inventam,” or “found.” Earlier (225), he uses the word 
“detexerit,” and (226), he uses the word “determinare.”

29 Cf. Stigler (1986), 66:

“Bernoulli [...] dealt only with the case where the numbers of fertile cases (r) and sterile cases (s)

r
were integers, not with the modem situation in which the proportion------- is allowed to range

r + s
over all real numbers in the interval [0,1]. His aim was to show that, in essence, the exact ratio 

r
------- could be recovered with ‘moral certainty’ for a sufficiently largeN  [...]. He did view the
r + j

ra tio ------- as possibly an approximation to the real state of affairs, and he knew thatr and s were
r + s

not identifiable ( r ’ = lO rands’ = 1 Os would give the same ratio as r ands). But up to the order of 
approximation determined by a given r+s he sought to determine the ratio exactly, as his state
ments and examples make clear.”

Hacking, (1975,158) assumes that Bernoulli uses the observed ratio of cases after some number of trials 
plus or minus some small error term as an “estimator” of the a priori probability of the outcome, and he 
is concerned that Bernoulli, not having a notation for conditional probability, has confused the probability 
that the a priori probability p  falls within a small range around the observed ratio given that prior 
probabilityp, with the probability that thep  falls within that same small range around the observed ratio 
given that observed ratio. When he quotes the passage in Bernoulli’s letter to Leibniz quoted in the 
previous note, (163), reads his interpretation into the text by translating: “that the ratio between the 
number of cases which I estimate is legitimate and genuine [i.e. within some allowed error].” While 
Leibniz and Bernoulli in their letters (April 1703, October 1703) do write of estimating probabilities 
(“doctrina deprobabilitatibus aestimandis"), they are thinking of epistemic probabilities rather than 
directly of frequencies. The Emergence o f Probability has been very influential, but here and elsewhere 
Hacking reads later issues back into earlier authors in a way that creates rather than solves problems of 
understanding what the historical actors intended.

30 Cf, Bernoulli (1713, 226): “Si loco umae substituamus aerem, ex. gr. sive corpus humanum, quae 
fomitem variarum mutationum atque morborum intra se, velut uma calculos, continent [...].” Cf. Leibniz, 
(GM, III, 1, 88). So the diseases could be the cases, but apparently Bernoulli is thinking that some 
diseases are more common than others, so that some would count for more cases.

31 “ Vous me demandez, si ces Propositions renferment quelque realite qui puisse etre demontree, ou si elles 
ne sont fondles que sur de pures conjectures faites en l’air, et qui n ’ont rien de solide; ne pouvant pas 
concevoir, & ce que vous dites, que l’on puisse mesurer les forces desjoudurs par nombres, et encore 
moins en tirer toutes les conclusions, que j ’en ay tirees.”

32 “Qu’il n ’en est pas de mSme des jeux, qui dependent uniquement, ou en partie, du genie, de l’industrie 
ou de l ’adresse des joueurs, tels que sont les jeux de la paume, des dchecs, & la pluspart des jeux de 
cartes; 6tant bien visible, que Ton ne sauroit determiner par les causes, ou d priori, comme Ton parle, de 
combien un homme est plus savant, plus adroit ou plus habile qu’un autre, sans avoir une parfaite
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connoissance de la nature de l’ame, & et la disposition des organes du corps humain, laquelle mille 
causes occultes, qui y concourent, rendent absolument impossible. Mais cela n ’empgche pas, qu'on ne 
puisse le s?avoir presque aussi certainement, dposteriori, par l ’observation de l ’6v6nement plusieurs 
fois reiter£e, en faisant ce qui se peut pratiquer dans les jeux meme de pur hazard, lors qu’on ne s^ait pas 
le nombre des cas, qui peuvent arriver.”

33 Cf. Bernoulli (1713, new numeration, 3):

“Je juge par 1&, avec assez de certitude, que le premier est deux ou trois fois meilleur jou&ur que 
1’autre, ayant pour ainsi dire deux ou trois parties d ’adresse, comme autant de cas ou de causes qui 
luy font gagner la bale, IS oil l’autre n ’en a qu’une.”

34 Cf. Hald (1990, 263):

“His proof was worked out at the latest in 1690. It must have seemed rather unsatisfactory, to 
Bernoulli himself as well, when he included it in the manuscript 15 years later in view of the fact 
that the integral calculus had been developed in the meantime. In 1705 it would have been natural 
to evaluate the areas (sums) by means of integrals instead of limiting ordinates [...]. The need for 
a revision of the proof may have been another reason for Bernoulli’s hesitation to publish.”

I know of no evidence that Bernoulli thought his proof unsatisfactory.

35 John Arbuthnot, in his (1692), a work incorporating an English translation of large parts of Huygens’s 
De ratiociniis in ludo aleae, makes this point in his Preface:

“All a wise Man can do in such a Case is, to lay his Business on such Events, as have the most or 
most powerful second Causes, and this is true both in the great Events of the World, and in ordi
nary Games [...] that only which is left to me, is to wager where there are the greatest number of 
Chances, and consequently the greatest probability to gain [...] and tho it is possible, if there are 
any Chances against him at all, that he may lose, yet when he chuseth the safest side, he may part 
with this Money with more content (if there can be any at all) in such a Case.”
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CARLOS ALVAREZ JIMENEZ

MATHEMATICAL ANALYSIS AND ANALYTICAL SCIENCE*

I Introduction

The development of physical sciences during the eighteenth century is inconceiv
able without also taking into account a major development in mathematical anal
ysis itself. The birth of a new analytical mechanics, of a new physical theory of 
sound, of a new capillarity theory or, at the beginning of nineteenth century, of the 
theories of heat and elasticity, all follow nearly the same procedure consisting in 
the definition of variables and equations to describe the phenomenon. This treat
ment of physical sciences, that took a long way from purely descriptive approach
es, or even of geometrical models, has been qualified as “analytical”. This style 
can be found in the great scientific treatises of eighteenth century as a kind of 
“method” of approaching natural phenomena.

At first glance it can be said that a physical science becomes “analytical” as 
soon as mathematical analysis is used to express the equations describing the 
physical phenomenon. This way of mathematisation contrasts with a previous 
one, where the description was done by geometry, for example, as was the case in 
the first science of movement by Galileo or even with Newton’s Principia whose 
underlying mathematical style can be considered as a sort of “geometry of limit 
positions”(De Gant 1986). But the role played by mathematical analysis in the 
new physical theories is more than just a way for expressing physical concepts 
that were previously defined; the algorithms through which this new style of math
ematisation is realized become also the means for the constitution of the concepts 
for an analytical science. The role played by mathematical analysis, as the privi
leged mathematical mean to describe a wide scope of physical phenomena, in
cludes the first descriptions in mechanics up to those of heat theory. In the preface 
of his Theorie Analytique de la Chaleur, Fourier describes this wide application 
of mathematical analysis:

“Les Equations analytiques, ig n o res  des anciens g6om6tres, que Descartes a introduites le pre
mier dans 1 ’6tude des courbes et des surfaces, ne sont pas restreintes aux propri6t6s des figures, et 
& celles qui sont l ’objet de la mdcanique rationnelle; elles s ’6tend k tous les ph6nom£nes gdndraux.
II ne peut y avoir de langage plus universel et plus simple, plus digne d ’exprimer les rapports 
in variables des Stres naturels.
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Consid6r6e sous ce point de vue, 1’analyse math^matique est aussi 6tendue que la nature elle- 
m6me; elle d6finit tous les rapports sensibles, mesure les temps, les espaces, les forces, les 
temperatures; cette science difficile se forme avec lenteur, mais elle conserve tous les principes 
qu ’elle a une fois acquis; elle s ’accroit et s ’affermit sans cesse au milieu de tant de variations et 
d ’erreurs de l’esprit humain”. (Fourier 1822, xiij-xiv)

But even if the so called analytical sciences, such as mechanics, probability 
theory or heat theory, come closer to a model where mathematical analysis plays 
the central role, it must be said that its particular status—concerning the model 
that it follows or the model that it imposes—and also the history of its birth and 
the history of its radical separation from the previous models of explanation, can
not fit into a general explanatory framework.

Let us take the example of mechanics. Since the Newtonian synthesis between 
celestial mechanics and terrestrial mechanics, it can be said that the two main 
scientific texts on mechanics from the eighteenth century, J. L. Lagrange’s Meca- 
nique Analytique (1788) and P. S. Laplace’s Mecanique Celeste (1799-1725), 
represent the highest expression of that theoretical movement introduced by New
ton in his Philosophiae Naturalis Principia Mathematica (1687). With this in 
mind it could be said that a common point of view ought to be shared by Lagrange 
and Laplace concerning their approach towards dynamics and its analytical treat
ment. But we find in Laplace one hypothesis that runs through his Mecanique 
Celeste, and also through other fields, such as capillarity, heat or light, that could 
hardly be found in Lagrange’s texts: it is the hypothesis establishing that these 
phenomena are the result of the action through distance of certain attractive and 
repulsive forces between molecules. This model of explanation is clearly expressed 
in his historical notice of the XII book of his Mecanique Celeste:

“Au moyen de ces suppositions, les phdnomdnes de l ’expansion de la chaleur et des vibrations 
des gaz sont ramen6s & des forces attractives et r6pulsives qui ne sont sensibles qu’&des distances 
imperceptibles. Dans ma thdorie de Taction capillaire, j ’ai ramend & semblables forces les effets de 
la capillarity. Tous les ph6nomdnes terrestres ddpendent de ce genre de forces comme les ph6nomdnes 
cdlestes dependent de la gravitation universelle. Leur considdration me parait devoir Stre maintenant 
le principal objet de la philosophic mathdmatique.” (Laplace, 1799-1825, V 99)

With Lagrange, on the other hand, the analytical treatment of phenomena 
seems to go against any hypothesis concerning any physical approach for them. 
Lagrange’s Mecanique Analitique is a text where the formal expression of the 
main concepts, and the role they play therein, make possible the wide scope of 
applications they have. A remarkable example is given by the principle of “virtual 
velocities”, treated as a kind of axiom of mechanics, which states that a system of 
forces is in equilibrium if these forces are in an inverse ratio to their virtual speed. 
Lagrange’s general formulation of this principle states

“Si un systdme quelconque de tant de corps ou points que 1 ’on veut tirds, chacun par des puissances 
quelconques, est en dquilibre, et qu’on donne & ce systdme un petit mouvement quelconque, en
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vertu duquel chaque point parcoure un espace infiniment petit qui exprimera sa vitesse virtuelle, 
la some des puissances, multiplides chacune par l’espace que le point oft elle est appliqude parcourt 
suivant la direction de cette mdme puissance, sera toujours dgale £ zero, en regardant comme 
positifs les petits espaces parcourus dans le sens des puissances, et comme ndgatifs les espaces 
parcourus dans un sens opposd.” (Lagrange 1788,11-12)

This principle is immediately expressed through a differential form:

Pdp + Qdq+Rdr + ... = 0

where P, Q, R, ... are forces acting on different bodies and dp, dq, dr, ... are the 
differentials of the quantities p ,q , r , ... which represent the line distances from the 
bodies where the forces act, to their centers of mass.

The great advantage of this formal expression for the principle of virtual ve
locities, is that in this way it might be used to solve all the problems that might 
appear towards equilibrium of forces. In this sense the principle plays the role of 
principle of unification of the, at least, static of solid bodies and the static of 
fluids. This unification will make use of a formal calculus particularly well adapt
ed for this purpose, the calculus of variations, that will make possible the reduc
tion of mechanics to analysis, before making the reduction of analysis to algebra. 
This theoretical reduction is already announced in the preface of the Mecanique 
Analytique:

“On a ddj& plusieurs T ra ils  de Mdcanique, mais le plan de celui-ci est entidrement neuf [...]. Les 
m6thodes que j ’y expose ne demandent ni constructions, ni raisonnements gdomdtriques ou 
mdchaniques, mais seulement des operations algdbriques, assujetties & une marche rdgulidre et 
uniforme.” (Lagrange 1788, v-vi)

And he states also that

“Ceux qui aiment T Analyse verront avec plaisir la Mdchanique en devenir une nouvelle branche 
et ne sauront grd d ’en avoir dtendu ainsi le domaine.” (Lagrange 1788, vi)

This way of understanding the analytic methods underlying mechanics as a 
sort of translation into algebraic means, could be identified with the synthesis 
which Descartes made between algebra and geometry.

At first glance it could be said that the analytical method can be declared as 
the inheritor of Cartesian thought: the subordination of geometry to algebra, a 
procedure well justified by le Discours de la Methode and la Geometrie, states 
that the knowledge of geometric properties of bodies is obtained by an ascension 
in the order of magnitudes that, just as the order of reasons, follows a way moving 
from the complex to the simplest one. In this way algebra carries out the role of 
“reason” in its investigation of spatial “extension”, and it also carries out a means 
of expression which, more than a mere description for phenomena, becomes the 
means for rational comprehension. By recognizing the origin of this tradition in
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Descartes it is possible to say that the analytic methods all live in the theoretical 
frame of modernity created by him1.

This treatment and diffusion of formal procedures within calculus, and therein 
through physical sciences, becomes an ideal which is more than a simple proce
dure to generalize certain properties; it is considered the most important means to 
propagate knowledge. A typical example for this is Condillac who conceived that 
“analytical” procedures were the most appropriate ones to guarantee an accord 
and fidelity with regards to the nature and methods of verification of ideas. But for 
the success of this project, a particular language able to transmit the research 
procedures as well as conceptual changes and transformations, was needed. This 
language is algebra, since, for Condillac, it is the only well-formed language where 
nothing is arbitrary (Dhombres 1982-1983).

We think that Laplace shares this point of view concerning the support that 
analytical-algebraic procedures give to the constitution of knowledge, as well. In 
his seventh lesson given at the Ecole Normale, and maybe because of the great 
influence that Condillac’s thought had therein, Laplace states that

“Pour bien connaitre les propridtds des corps, on a d ’abord fait abstraction de leurs propridtds, et 
l ’on n ’a vu en eux qu’une dtendue figurde, mobile et impdndtrable. On a fait encore abstraction de 
ces deux demidres propridtds gdndrales en considdrant l ’dtendue simple comme figurde. Les 
nombreux rapports qu’elle prdsente sous ce point de vue sont l ’objet de la g6om6trie. Enfin, par 
une abstraction encore plus grande, on n ’a envisage dans l’dtendue qu’une quantitd susceptible 
d ’accroissement et de diminution; c ’est l ’objet de la science des grandeurs en gdndral, ou de 
l ’arithmdtique universelle, [...]. Ensuite on a restitud successivement aux corps les propridtds dont 
on les avait ddpouillds; l ’observation et l’expdrience en ont fait connaitre de nouvelles, et l ’on a 
ddtermind les nouveaux rapports qui naissaient de ces additions successives, en s ’aidant toujours 
des rapports prdcddemment ddcouverts. Ainsi, la mdcanique, l ’astronomie, l ’optique, et 
gdndralement toutes les sciences qui s ’appuient & la fois sur l ’observation et le calcul, ont dtd 
crddes et p e rfe c tio n 's . Vous voyes par Id que ces sciences diverses s ’enchainent les unes aux 
autres, et qu’elles ont une source commune dans la science des grandeurs dont 1’utile influence 
s ’dtend sur toute la philosophic naturelle. Cette mdthode de decomposer les objets et de les 
recomposer pour en saisir parfaitement les rapports, se nomme analyse. L’esprit humain lui est 
redevable de tout ce qu’il sait avec precision sur la nature des choses.” (Laplace LEN, 87)

So far we have talked only about those changes that took place within mechan
ics and its transformation into an analytical science, but what can be said about 
other analytic sciences? A quick look at Fourier’s Theorie Analytique de la Cha- 
leur shows clearly that the sense of what “analytic” means here— in what sense is 
the theory of heat an “analytic theory”—has partially changed. In Fourier’s theo
ry of heat there is no attempt to reduce the explanation of heat phenomena to 
algebraic deductions. Certainly the preface to the Theorie Analytique gives a clear 
idea of the role that mathematical analysis played in the general constitution of 
the theory, but it is also clear that in this treatise, mathematical analysis is by no 
means just a subset of algebraic methods. His approach to heat phenomena states 
that they are not reduced to mechanical theories, since they are not related with
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the question of movement and of equilibrium of bodies, nor are they related with 
attractive or repulsive forces between bodies or molecules. This point of view, 
clearly different from “Laplacian molecularism” opens new horizons to mathe
matical physics: his main purpose is to give the mathematical description for the 
problem of diffusion of heat into a solid body, the question of transmission of heat 
from one body to another, the question of heat loss. In this sense the analytic 
questions to be solved are those of finding the correct expression of the “tempera
ture function” v at each point of a solid body when a source of heat is applied at 
one point o of the body, the question of finding the heat flow after a time t, and the 
problem of the heat loss, after a time t, at each point of the body, when this source 
is no longer in contact and ceases its action over the body.

Considering that the value v of the temperature at each point of a body is given 
through a function/(x, y, z, t) of the variables x, y, z which give the position of the 
point, and of the variable t which gives the time that a heat source has been in 
contact with one extreme of the body, the heat flow is given through the differen
tial equation

dv _ K rd 2v d 2v d 2v >
~dt~~CD[^c2 +

Where K  gives the specific conductibility of heat of the body—the heat content 
transmitted through the body in a unity of time— C is the specific heat capacity— 
the necessary heat content needed to raise the temperature of a unity of the mass 
body from the temperature 0, the temperature of the melting ice, to temperature 1, 
the temperature of boiling water—and D is the density of the body. Now, consid
ering that the heat flow is to be found using this equation, whose particular condi
tions justify the general solution given through a trigonometric (convergent) series, 
and considering Fourier’s proof that not only this particular function of heat flow, 
but “any function” can be developed into a trigonometric series, it seems clear that 
the “mathematical analysis” working in this treatise is not to be identified with a 
branch of mathematics whose main advantage is its possible reduction to algebra. 
Already in the introduction to his Theorie Analytique, Fourier remarks that new 
methods, and not only “algebraic deductions4*, are needed in his treatise:

“Les dquations du mouvement de la chaleur, comme celles qui expriment les vibrations des corps 
sonores, ou les demidres oscillations des liquides, appartiennent d une des branches de la science 
du calcul les plus rdcemment ddcouvertes, et qu’il importait beaucoup de perfectionner. Aprds 
avoir dtabli ces dquations diffdrentielles, il fallait en obtenir les intdgrales; ce qui consiste d passer 
d ’une expression commune, & une solution propre assujettie & toutes les conditions donndes. Cette 
recherche difficile exigeait une analyse spdciale, fondde sur des thdordmes nouveaux dont nous ne 
pourrions ici faiie connaitre 1’objeL La mdthode qui en ddrive ne laisse rien de vague et d ’inddtermind 
dans les solutions; elle les conduit jusqu’aux demidres applications numdriques, condition
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ndccessaire de toute recherche, et sans Iaquelle on n ’arriverait qu’d des transformations inutiles.”
(Fourier 1822, xij)

It seems clear to us that between the two analytic treatises by Lagrange and 
Fourier respectively, the meaning, the role and the scope of “mathematical analy
sis” have changed. This change is not only related to any particular style of math- 
ematisation, but it concerns the mathematical theory that constitutes the base and 
the possibility for all those analytical projects. In other words, we think that there 
have been some transformations in mathematical analysis, just like there have 
been some transformations in physical sciences.

In this text we will analyze some of the changes that took place in mathemat
ical analysis in the period between these two analytic treatises, Lagrange’s Meca- 
nique Analytique and Fourier’s Theorie Analytique de la Chaleur. However, we 
have to point out that we will not refer to the “underlying mathematics” of these 
two treatises; we will not refer to the Calculus o f  Variations nor to Fourier's 
Series or Fourier's Analysis. The problem we want to analyze is rather that of the 
emergence of some concepts of mathematical analysis, mainly those of “continu
ity” (of functions) and of “convergence” (of series), which determined the devel
opment of this branch of mathematics during the nineteenth century. We think 
that it is the emergence of these concepts which makes possible the dissolution of 
a link between “algebra” and “analysis”, a link that is conceived, and valued by 
Lagrange, as a relation of “subordination” of the latter to the former. After the 
dissolution of this particular link, a new shape was given to mathematical analy
sis, creating a new branch of mathematics, valued “in itself’ by Fourier.

The emergence and use of those new concepts will be followed through the 
evolution of mathematical analysis and the theory of functions, and it could be 
said that after their appearance algebra itself will not be able to overlook the new 
“analytic methods”2.

II The Algebraic Foundation of Mathematical Analysis

Regarding the main transformations within mathematical analysis, it seems that 
the first great change in the eighteenth century was introduced by Euler, who 
made the concept of “function” the central one. The reorganization given by his 
Introductio in Analysin Infinitorum (1748) introduced a new attitude towards the 
field of “quantities”. Up to that moment mathematical analysis had been con
ceived as a kind of algebra of infinitely small or vanishing quantities, out of which 
the mechanical or geometrical problems could be solved. Euler’s Introductio gives 
a new treatment for quantities—constant, variable, infinitely small or infinitely 
large— through those “calculus expressions” which are “functions”. The field of 
quantities is conceived as being formed out of constant and variable quantities—
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which are “like the gender or the species towards the individual” (ibid., I, 4). 
With a variable quantity it is possible to define another variable quantity through 
“an analytical expression made out of this quantity and other constant quantities” 
(ibid). The variable quantity obtained by this procedure is a “function” of the first 
variable quantity, and functions are classified according to the analytical proce
dures used to define them. The Introductio is above all a treatise that intends to 
give a complete classification for functions, and through them a classification of 
curve lines. It is in this general scope that algebra becomes the privileged mean to 
express a function and to develop the theory of functions itself. This algebraic 
treatment of functions, that constitutes a new branch of mathematical analysis 
namely “algebraic analysis”, became a necessary background that preceded infin
itesimal calculus.

Now, even if the main trends for Euler’s mathematical analysis are to be found 
in the algebraic treatment of functions, it must be pointed out that the algebraic 
form is above all the way through which a variable quantity is transformed in 
order to define a function, and so a function is more than just an equation through 
which an unknown quantity is to be found. As a variable quantity, a function runs 
through different values, depending on the values given to the variable quantity. 
A function Z of the variable z might be “algebraic” or “transcendent”.

“The first ones are obtained through variable quantities that are combined among them by using
only the common algebraic operations; the second ones depend on other operations [...].” (ibid., I,
5-6)

Algebraic functions might be “irrational” or “rational”, according to whether 
the variable z is submitted to root operations or is free of them. Another distinc
tion between functions is given after the first one: “rational” functions are always 
“uniform”—only one value for the function is obtained for each value given to the 
variable quantity—while “irrational” functions are always “multiform”—many 
different values for Z might be obtained for each value given to the variable quan
tity. Now the way in which the quantity Z  takes different values, as the variable z 
runs through different values, is given precisely through an algebraic, analytic, 
expression. If the algebraic expression is such that Z is a “multiform” function, it 
might happen not only that for some values of z, Z takes two or more different 
values, but also that for some values of z, Z might be no longer a real but an 
imaginary quantity. In this case, the way in which the quantity Z takes its corre
sponding different (possibly manifold) values might not follow a “continuous 
course” in the domain of quantities. But for uniform functions, Euler considers 
valid, because of its algebraic form, the following property: if a uniform function 
Z(z) takes, for z -  a, the value Z = A, and for z - b ,  the value Z -  B, then while the 
variable quantity z runs through the values between a and b, the function Z must 
take, at least ones, each value between A and B. Euler’s argument states that
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“Since Z is a uniform function of z, for every real value of z, the functionZ takes also a real value, 
and if the quantity Z, in the first case, when z -  a, takes the value A, and in the second case, when 
z -  b, the value fi; thenZ  could not run from A to 5  without passing through all the intermediate 
values. Then if  the equation Z -A  -  0 and the equationZ -fi -  0, have a real root, the equationZ - 
C -  0 will have also one w heneverC lies between A andfi.” (ibid., 1,20)

With this general property for uniform functions, Euler proves that for a uni
form function Z of z, whose highest exponent is an odd number 2n+1, the func
tion Z has at least one real simple factor. In his proof, besides the intermediate 
value property, he uses a formal calculus for infinite quantities as if they were any 
real and finite quantities:

If the function Z is of the form

2n+l , 2n , __2n-l , 2 ,z + pz +qz +rz +...
when z -  all the terms disappear in relation to the first one, and the function 
takes the form Z -  (oo)2«+1 = oo; but when z = -°°, the function takes the form 
Z = (~oo)2n+1 = -oo. Now for any real value C, since C lies between and °°, the 
theorem states that Z cannot run from -°o to °o without passing through C. That 
means that the equation Z -C  -  0 has a real root. If C -  0 the conclusion is that the 
function Z has a real simple factor (z - c ), where c lies between and °°.

Before giving the intermediate value property, Euler stated the two following 
properties for an entire function:

1. The function given through an algebraic expression of the form

z" + pz"-1 +qzn~2 + rz"-3+... 

is equal to the product of n simple (linear) factors3.
2. The simple factors might be real or imaginary, but the imaginary simple factors 
are always in even number.

Clearly these two properties were sufficient to proof that an entire function 
whose highest exponent is an odd number has at least one real root, but as we have 
seen, Euler used the intermediate value property, as if some hidden reason, not 
explained in his Introductio, made the conclusion without this argument illegiti
mate.

Concerning properties 1 and 2, the first one is obtained directly from the state
ment that any equation of nth degree has n roots; the second one establishes that 
imaginary roots are always in even number. For the second property Euler gave 
no general proof, nevertheless he realized that in some sense this property was 
closely related with the fact that a polynomial is equal to the product of simple or 
double real factors. The only argument given by him to support this statement 
goes as follows: first he assures that if a function/(* ) has two simple imaginary
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factors, then the product of these two factors is a real double factor: without any 
hypothesis concerning the nature of imaginary roots4, Euler states that if P(x) 
denotes the product of the simple real factors of/(jc)—and so P(x) is real of degree

f (x)
(n -2)— , the product of the two imaginary factors is - which is a real double

P ( x )
factor. After this he assures that if a function is the product of four simple imagi
nary factors, then it can be given as the product of two double real factors; to prove 
this fact he takes as imaginary quantities those of the form a + b 4 - I  . Once this 
property for functions that are the product of four imaginary factors is proven, 
Euler makes a generalization: for a function Z of the variable z it is always possi
ble to combine in couples the imaginary factors to obtain a (double) real factor5, 
For this argument Euler states simply that

“If there are only two imaginary factors, it is clear that their product will be real, and if  there are 
four imaginary factors their product, as we have seen, can be given as the product of two double 
real factors of the foun fz2+gz+h. Even if the same proof is not valid for higher powers, it seems 
clear enough that this property holds for any number o f  factors, so that instead o f 2n simple 
imaginary factors, there will be rt double real factors. So any entire function of the variable z is 
equal to the product of simple or double real factors. If the truth of this proposition is not proved 
here completely, it will soon become stronger.”6 (ibid., 1 ,19)

After this argument, which cannot be considered as a proof for the general 
case, Euler shows, using the two facts: that a polynomial of odd degree has at least 
a real root, and that those polynomials which are equal to the product of four 
imaginary factors are equal to the product of two double real factors, that the 
polynomials

a + bzn + cz2n + dz3n

a + bzn + cz2" + dzin + ez4"

a + bzn + cz2*1 + dzin + ez4" + f z 5n

accept the same factorisation by real or double simple factors. These cases con
firm the hypothesis that any entire function—any polynomial—is equal to the 
product of simple or double real factors7.

“So if there were still some doubts concerning the factorisation of any entire function, they should 
vanish almost completely.” (ibid., 1,117)

In any case, as it will be clearly admitted by Lagrange (1798, note 1 ,111-113), 
the proof about the factorization of any polynomial in real factors, the hypothesis 
about the even number of the imaginary roots, and therefore the nature of the 
imaginary roots8, is based on the property that any equation of an odd degree has
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a real root. Euler considered that the purely algebraic conclusion from the equal
ity in number of roots and the degree of the equation, and of the fact that imagi
nary roots are always in an even number, could not be used as an argument to 
prove that an equation of odd degree has a real root. For Euler, the intermediate 
value property appears already as one which algebra could not ignore.

The intermediate value property which Euler proves for uniform-rational func
tions explicitly rests on the assumption that once the variable quantity Z has reached 
two different (real) values, it should run through all the values between them. 
Two facts of different kind are involved here; first the fact that Z is a uniform- 
rational function: because of the algebraic nature of the function Z—no roots for 
the variable z appear—while z runs through all the real values, Z takes only real 
values and no “jumps” might occur in this case, since the only possibility for a 
jump is when an irrational or multiform function takes imaginary values. Consid
ering the general algebraic form for a multiform function Z of z:

Z n + PZn~l + QZn l  + R Zn~3+...= 0 (1)

where P, Q, R, ... are uniform functions of z, the different values of Z  are given 
through the different n roots of the polynomial, but in this case each “root” of the 
equation is a function of z that might take only real values, or is a function that 
might take imaginary values for some values of z. Euler gives the example of a 
“biforme” function Z 2-2PZ+Q  «= 0 (where P and Q are uniform functions of z), 
where for each value of z the two values of Z are given, the first one by 
Zj (z) = P + y]p2 - Q  , and the second one by Z2 (z) = P -  yjP2 - Q  . So if the 
uniform function P is such that for every value of z P 2 > Q, the two values of Z are 
always real; but for those z where P 2 < Q, the values of Z will be imaginary. And 
he asserts, again from the intermediate value property, that when both conditions 
hold and there are some values of z such that P 2 > Q, and some other values of z 
such that P 2 <Q , then there must exist at least one value of z between them, such 
that P 2 = Q. In this case the two values of Z coincide and are given through the 
function P. From the algebraic theory of equations Euler assures that if n is an 
odd number, at least one of the root-functions is a uniform real function, and 
whenever a value of z gives an imaginary value for one of the root-functions, this 
same value of z will give imaginary values for at least another (always in even 
number) root-function. So if Z(a) -  A and Z(b) -  B, but Z does not take the value 
C which lies between A and B, it is because while the variable z runs from a to b, 
Z  takes imaginary values.

The second fact related with the intermediate value property deals with the 
nature of “variable quantities”: since they are magnitudes which include all deter
mined quantities, it is in their nature to take all values between two fixed ones.
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That is why in geometry a variable quantity is representated correctly by a straight 
line, and a function can be represented by a curved line: a line all of whose points 
take as abscissa a value of z, and as ordinate the corresponding value(s) of Z. The 
remarkable fact in Euler’s geometric interpretation of functions (when for each 
value of z the corresponding value of Z is given, then by taking the first one as 
abscissa and the second as ordinate, a line is obtained) is that a (curved or straight) 
line is obtained here with “all” the points out of which it is assembled; this makes 
possible to study geometric curves independent of the idea of “mouvement” or 
“fluxion” of a point. With this approach even “mechanical curves” might be stud
ied as formed by functions.

“Even if  we can describe mechanically many curve lines by the continuous mouvement o f a 
point which presents the whole curve to our sight, we will consider them as obtained by functions.
This approach is more analytic, more general and appropriate to calculation. In this way any 
function of z will give some straight or curve line and, conversly, any curve line will be related to 
a function.” (Euler 1748, II, 6)

When the function Z is uniform, the curve representing it, will be produced 
continuously and indefinitely, and at any point of the horizontal axis representing 
the values of the variable z, a perpendicular line will cut the curve exactly at one 
point. When the function is multiform, and is given by a polynomial of the previ
ous general form, the curve representing it might be intercepted by a perpendicu
lar straight line in n, n -2 , n -4 , ... points; making certain that if n is an odd 
number, any perpendicular will intercept this curve at least once; but when n is an 
even number, it may happen that at some points of the horizontal axis a perpen
dicular line does not intercept the curve representing the function at all, making 
clear that the intermediate value property “might” fail in this case.

Euler is certain that the intermediate value property depends only on the alge
braic nature of the function: if the property fails it is because function Z takes also 
imaginary values. Besides, “continuity” for functions and for “curves” is con
ceived by him as a property related with the permanence of the analytic expres
sion: no matter how the curve that represents it looks like, a function (and the 
curve) is continuous whenever it is obtained through a single analytic expression. 
That means that “continuity” is a property that is ruled by “analysis”—through 
the analytic expression—and not by geometry9. For a multiform function, even if 
the curve related to it might be formed by different branches and the intermediate 
value property does not hold, it is considered by him as a continuous curve (gen
erated by one analytic expression). On the other hand, “discontinuous” curves are 
for him “mixed” curve, obtained with two or more different functions.

For Euler the way in which a variable quantity runs between two fixed values 
needs no further description to guarantee the fact that it does it “continuously”. 
Considered as a variable quantity, the variable z bears no “jump” nor any “gap” in
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the domain of real quantities; and the same happens with the function Z, as long 
as it remains in the domain of real quantities. For Euler there is no need to state 
that if the variable z runs “continuously”, the analytic law which defines Z also 
makes it follow a “continuous” path through the values it takes10.

The continuity of functions—in Euler’s sense— is a question that cannot be 
generally answered just by stating that a function is a variable quantity obtained 
from another (variable) quantity through an analytic expression; the analytic form 
has to be given in such a way that the permanence of the analytic expression could 
be identified without any doubt. Considering the classification given by Euler at 
the beginning of his Introduction it seems that for algebraic-rational functions 
there is no problem at all: the polynomial form becomes the mean to express 
them. For algebraic irrational functions and for transcendent functions the gener
alization from polynomials to infinite power series becomes a necessary step to be 
given. Through the infinite power series it might be said that the difference be
tween algebraic and transcendent functions almost vanishes: the possibility to 
reduce those functions which require the transcendental operations (mainly the 
logarithmic and the exponential functions) to power series makes them appear as 
“continuous” (always in Euler’s sense) functions, too.

After having analyzed some features of Euler’s continuity o f  functions, let us 
look closely at the expression of a transcendent function in power series. Two 
general hypotheses concerning the nature of real quantities, are made to justify 
the development of the logarithmic function in power series: first a formal calcu
lus for infinitely small and infinitely large quantities is used as a generalization of 
the calculus for finite quantities; secondly a general hypothesis about finite quan
tities: the assumption that they all can be obtained as the product of an infinitely 
small and an infinitely large quantity. For the calculation of the power series for 
the logarithmic function another main algebraic principle is used by Euler: New
ton’s binomial formula for the case where the exponent is any real quantity. This 
formula, admitted without proof11, is here justified as the result of a formal proce
dure that is already valid in the case of a positive integer exponent.

The series for the logarithmic function will be calculated also by Lagrange and 
Cauchy, and we will analyze the solutions given by them as a paradigmatic exam
ple that will help us to better understand the changes that took place within alge
braic analysis from Euler’s Introductio to Cauchy’s Cours d’Analyse.

Starting from an arbitrary quantity a and an infinitely small quantity to, since 
a" is > 1 if a > 1, then a03 = 1 + yr, where y/ is another infinitely small quantity. It is 
possible to write the last one as a function of the first one: yr=ka) and aa -  1+kco. 
If L denotes the characteristic for logarithms of base a, then co-L(l+ka)) and 
i(o- Lil+ka))1, and since “it is clear that when the number i increases, the value 
(1+£g>)' goes beyond the value of the unity (ibid., I, 88)”, then (1+ka>)1- (1+x) 
and I © - L ( l  + k6))'« L(l+x).  Starting from (1+k(o)i -  (1+x), Euler states
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(1 + £g> )-(1  + x)^ , and then, by a sim ple algebraic substitu tion , 

i6) - —|(l + x )‘ — 1J. By developing the term inside the parenthesis through New

ton’s formula

L ( l  +  X) =  16) =  -j£-|(l +  x )^  - 1 |  =

( i - l ) x z  ̂ (i -  l)(2i -1 ) at ( i - l ) ( 2 i - l ) ( 3 i - l ) x  |
i i • 2 i i • 2 i • 31 i • 2 i • 3i • 4i

-1

When i becomes an infinitely large quantity, Euler establishes that a quotient of 

the form — —^  , becomes equal to -  and so he finally gets
(n + l)z n + 1

L(l + x) = — 
k

(  2 3 4 ^X X X
X ~2 3 ” T

( 1 )

From the equality aw -  l+kyr Euler gets a ib> = (l+&6))‘ for any value i; and 
from Newton’s binomial formula this one is equal to

1+ik(0 + t  V  + -  M b ?) k W  + <(< - 1)(i - M z  3>_ t  w - h . .
2 2-3 2-3-4

Euler takes a finite number z and makes i = ^ ; so that number i be infinitely
. (  z \

large. From this am -  (1 + k(o)1 = 1 + k — . And again from Newton’s formula

f  z ^  
l + k -

V i )
= 1 + kz + ̂ — ^ - k 2z2 +

2 i
(i -  l)(i - 2 )  k 3 ^ 3  + ( i - l ) ( i - 2 ) ( i - 3 ) /:4_4 +

2i • 3/ 2 i • 3 i • 4i
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Since i is an infinitely large quantity, the value of a quotient ---------  becomes
(n + l)i

equal to —-— , so the series takes the value

uo 1 , , , * V  , k 3z 3 , k 4z4 ,
2 2-3 2-3-4

When io) -  1, the expression

a — 1 + k  H------ 1------- 1---------
2 2-3 2-3-4

+... (2)

gives the relation between the values a and k. With relation (2) it is possible to 
state that a -  ek, and so k = ln(a). The series expansion (1) for the logarithmic

1 /  2 3 4 A1 X X X
function is then equal to L( 1 + *) = ------  x ------H--------------K.. .

4 ln (a )[  2 3 4 J

Euler’s proof is a good example of what a formal procedure, given under the 
general frame of analytic thought, looks like: the series development for the loga
rithmic function is obtained through a purely algebraic calculus where the rules 
for the infinitely small and infinitely large quantities, and also a purely formal 
justification for Newton’s formula, completely fill any conceptual gap that might 
appear.

Lagrange’s point of view concerning algebraic analysis is close to Euler’s 
ideas about the role that algebra has to play in the development of the theory of 
functions. The intermediate value property will play an important role in relation 
with the nature of the roots of algebraic equations; but it will play a central role 
also in the calculation of the remainder of an infinite series, out of which this 
series could be replaced by a finite polynomial. Besides these facts, the continuity 
property plays an important role in the proof of the binomial formula as a special 
case of the Taylor series.

In his Discours sur Vobjet de la theorie des fonctions (Lagrange 1799), a 
short but deep manifesto for algebraic analysis, he states that the foundations of 
mathematical analysis are to be given by the new discipline defined through its 
relation with algebra: theory of functions. In a sense, Lagrange states that algebra 
is precisely a theory of functions, since those quantities algebra deals with appear 
as functions of other quantities. Through this theory of functions differential cal-
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cuius becomes a particular branch that will no longer need to consider infinitely 
small quantities, vanishing quantities or fluxions: the methods introduced through 
the calculus of these infinitely small quantities just try to find out the first terms of 
the infinite power series development for the function.

“II est [...] plus natural et plus simple de consid6rer imm6diatement la formation des premiers 
termes du d6veloppement des fonctions, sans employer le circuit mdtaphysique des infiniments 
petits ou des limites; et c ’est ramener le Calcul diff6rentiel & une origine purement algdbrique, que 
de le faire d6pendre uniquement de ce d6veloppement.” (ibid. 1799,234)

This algebraic style rules not only over the power series development of func
tions, but introduces, above all, a “canonical form’’ that resumes in itself the re
duction of mathematical analysis to algebra. In his Theorie des Fonctions 
Analytiques, all the possible applications of the analytic theory of functions are 
already contained in the canonical expression for a function given by its Taylor 
series: it is possible to proceed from the formal expression to the geometrical and 
mechanical domains. It is also through its formal nature that the theory of analyt
ic functions includes all possible kinds of calculus; not only differential calculus, 
but also the calculus of variations, “this type of calculus which does not require a 
new analysis but only a special application of the theory of functions” (Lagrange 
1797, 200-201).

Using this approach, Lagrange’s theory of functions completes a theoretical 
program that includes mechanics and the calculus of variations as two moments 
to give a reduction of mechanics to a purely algebraic reasoning12.

From the developm ent in power series for the function f ( x + i ): 
f(x + i)  = f(x)+ ip(x)+ i2q(x) + i3r(x)+... 13, Lagrange obtains the canonical devel
opment given through the derived functions14

•2 -3
f<,x + i) = f ( x )  + i fX x ) + l— f" ( x )  + j ^ f  (3)

It is through this canonical form that Lagrange calculates the series develop
ment for the binomial formula and for the exponential and the logarithmic func
tion L(l+;t). In order to give a proof for the binomial formula, Lagrange tries to 
give the development of (1+*)'" with a power series as an application of the ca
nonical form for the power function f ( x )  = x m .since then f ( x  + i) = (x + i)m. In 
this way, “by the simple rules of arithmetic or the first operations of algebra” 
(ibid., 15) it is possible to show that the first two terms of (x + i )m are x m + mixm~l ,

so clearly, by equating with the series (3), f ' ( x )  = mxm~x, and he obtains15:
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(x + i)m = x m+imxm~l + — rn(rn-\)xm-2 +

i 3 t
l)(m - 2)jc 3+...

(4)

In this way Newton’s binomial formula (4) is obtained through the “canonical 
form” for the power function. Once “the first operation of algebra” led him to the 
first derived function, the series (3) justifies all the rest; there is no need to fall 
back on the principles of differential calculus for a justification of this formula.

Lagrange considers that formula (4) is valid for every rational number m, but 
in order to consider it valid when the exponent is any real number, two implicit 
assumptions are made: first an assumption about the “dense” distribution of ra
tional numbers, secondly the assumption that considering the exponent as a vari
able, the power function behaves as a continuous function16:

“Comme tout nombre irrationnel peut Stre renfermd entre des limites rationnelles aussi resserr6es 
que l ’on veut, on en pourrait conclure tout de suite la v6rit6 du r6sultat pr6c6dent pour une valeur 
quelconque irrationelle dem, puis qu’on peut, en resserrant les limites, diminuer l’erreur a volont£.” 
(Lagrange 1806,16)

Once this binomial formula is proved, the series for the exponential and the 
logarithm ic functions can be obtained. For the function f ( x ) = ax, 
f ( x  + i) = ax+i= a x a ‘, the problem is now to find the first two terms of the series 
for a \  By putting a -  1 + b, and by the binomial series, Lagrange gets:

a‘ = (1+b)‘ = l + ,fc+ M ^  + ‘(‘ - W - 2 ) bi 
2 2-3

+ . . .

So after developing the products and rearranging the series for the increasing 
powers of i, it is easy to see that

a1 = (l+ bY  = l + i b4 )b ------+ ----------- + ... +.
v 2 3 4

With these two first terms, Lagrange states that ax+i= a x-a‘ = a x(l+iA+...),

b 2 b 3 bA
where A = b ------+ -------- so by the development (3), he gets f '(x )  -  Aax,

2 3 4
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and the algorithm to find the derived functions gives f" (x )  -  A2ax\ / '"(* ) -  A3a x; 
with these functions, the complete series can be obtained:

f ( x  + i) = a x+t = a x
(  ;2 .-3 \

1 + Ai + A 2 —  + A3-----+.
2 3 ' 2

From this equality, after dividing by ax and changing i for jc he obtains

r 2 r 3
qx = 1 + Ax + A2 -----1- A3------ K..

2 3-2 (5)

A2 A3When x  = 1, the value for a is given by a = 1 + A 4- - y  + j y +...

For the value x = — a A = 1 + 1 + -—H— -— I---------- h.. which is the number e;
A 2 3-2 4-3-2

_L i
a A = e or a -  eA. Clearly — = L(e) and A = ln(a); so a = eA = eha . When f(x )

A

2  3JC JC
= ex the series (5) gives e -  1 + jcH----- 1------- +.. since in this case the value

2 3-2
A = \n(e) = 1.

By introducing now as a new function f ( x )  -  L(x), then x = a ^ x\  and 

f(x + i) = L(x+ i), so x  + i = a ^ x+l^. Again, the series development is solved once

the derived functions are found; in this case Lagrange finds17 f ' ( x )  = —  . By
xA

putting this last function in the form f ' ( x )  = — x , the algorithm already found
A

1 - 2  1for the derivation of a function of this form, gives f " ( x ) -  — ~ x ~ — —  ̂ ;
Ax'

2 2
f ' ”(x) -  — x~3 = — - ......The development (3) gives:

A Ajc
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i t’2 / 3
L(x + i) = L(x) + ------------- -  + ■

Ax 2 A x2 3 A x3 

By making x  = 1 and putting x  instead of i he finally gets:

L(l + * )=  — 
A

f  2 3 4 AX X X
2 3 4v z J * y

1
ln(fl)

/■ 2 3 4 A_ X _ + X__ x
2 3 4V £ j  L\ j

since A -  ln(ct). This is the same series development already given by Euler.
With this series, Lagrange tries to find the logarithm of any real quantity y. By 

making y -  1 + x, the series for the logarithm gives

L(y) = 1
ln(<z)

(y -1 ) ( y - D 2 , ( y - 1 ) 3 ( y - i ) 4 '
(6)

which is a convergent series only for those values of y  “which are close to the 
unity” (Lagrange 1797, 20). So Lagrange now comes to the problem of finding 
the logarithm of any quantity y, even if it is not so close to the unity; that means, 
even if the series (6) does not converge. Since it is always possible to find another 
quantity r, big enough, so that z = yfy is close to the unity, a new convergent 
series can be find to calculate the logarithm, no matter how big the quantity y  
might be. The series for this quantity z is

L(z) =
ln(<z)

(z-1)2 . <z-l)3 (z-1)4 ^

so that

i.(z) = i.O 07 = —  '
r ln(a)

(z -1 )2 . ( z -1 )3 (z~  1)4 A
(z-1 ) - ^ — ^ -  +

V

and from this Lagrange gets
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L(y) =
ln(a)

(7)

Clearly Lagrange’s aim is to make possible the transit from the formal expres
sion of a series, obtained from the general development (3), to the numerical value 
of a function18. But the question raised goes farther and becomes a question about 
the series development (3). Since this series is obtained by substituting (x+ i) for at 
in/(jc), at each step a new function appears:

f ( x  + i) = f(x ) + iP{x,i)
P(x,i) = p(x) + iQ(x,i)
Q(x,i) = q(x) + iR(x,i) ...

Each function iP, iQ, iR , ... is zero when i = 0, but when i is a very small 
quantity, these functions take also very small values. Already in the first step, 
when Lagrange affirms that if i -  0 then f ( x  + i) = f ( x ), he suggests at the same 
time that when i is a very small quantity—the term “infinitely small quantity” has 
been explicitly proscribed from the Theorie des Fonctions Analytiques— the re
minder iP  becomes also a very small quantity and so is the difference between 
f(x + i)  and f ( x ) 19. To make clear the behavior of these functions, Lagrange con
siders the curve whose abscissa is equal to i and whose ordinate is given by one of 
these functions. This curve has a continuous path, so:

“[...] le course de la couibe s ’approchera peu i  peu de l ’axe avant de le couper et s’en approchera, 
par cons6quent, d’une quantity moindre qu ’aucune quantit6 donn6e, de sorte qu’on pourra toujours 
trouver une abscisse i correspondant a une ordonn6e moindre qu’une quantit6 donn6e, et alors 
toute valeur plus petite de i rdpondra aussi a des ordonndes moindres que la quantitd donn6e.” 
( ib id . ,  12)

This property is in fact a fundamental principle for the whole theory of func
tions, and it has been always assumed implicitly in the differential calculus and in 
the calculus of fluxions. With this property a bound for the reminder functions iP , 
iQ, iR, ... can be given so that more than their specific values, it is possible to 
have a clear idea of the error, when only a finite number of terms of series I are 
considered.

Series (3) gives the value of f ( x  + i), in order to obtain a series development for 
/(*), Lagrange takes x - i  in the place of x  in (3) and he obtains
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i2 i 3
/  (*) = f ( x  -  i) + if' (x - i )  + —  f  "(x -  i) + —  /  " \x  -  i)+...

and by making xz  = i

f  U ) = f i x  -  xz) + xzf '(x  -  xz) +

f " ( x -  xz) + y y  /  '"(* -  xz)+...
(8)

clearly if z = 0 this series reduces to the equality f ix )  = /(*), and for z -  1 it 
becomes20

/ W  = / (0 )+ ^ f '( 0 )  + | - / " ( 0 )  + ̂ - / " '( 0 ) + . . .  . (9)
z  3*2

Through this transformation Lagrange’s aim is not only to give a series devel
opment for fix ) , but to obtain the value of f ix )  only with a finite number of terms 
of the series. The series (8) and (9) suggest that it is possible to obtain a value 
which will come closer and closer to f ix )  as more and more terms of the series are 
added; but the “meaning” of the equality sign in the series (3), (8) or (9) should 
be, Lagrange thinks, the same as in any equation where both terms are considered 
to represent exactly the same quantity—out of which the equality sign can be used 
to link them—, and so equations (3), (8) and (9) are exact only when “all” the 
terms of the series are really added. But to obtain the value of the function for a 
specific value of x, the quest for the reminder that could help to avoid the infinite 
series becomes necessary

“Tant que ce d6veloppment ne sert qu’£la  g6n6ration des fonctions d6riv6es, il est indifferent que 
la s£rie aille & l’infini ou non; il est aussi lorsqu’on ne considdre le d6v61oppement que comme une 
simple transformation analytique de la fonction; mais, si on veut l ’employer pour avoir la valeur 
de la fonction dans les cas particuliers, comme offrant une expression d ’une forme plus simple & 
raison de la quantity i qui se trouve d£gag£e de dessous la fonction, alors, ne pouvant tenir compte 
que d ’un certain nombre plus ou moins grand de terms, il est important d ’avoir un moyen d ’6valuer 
le reste de la s6rie qu’on n£glige, ou du moins de trouver des limites de l ’erreur qu’on commet en 
ndgligeant ce reste.” (Lagrange 1806)

Faced with this problem, Lagrange looks for the value of a “remainder” that 
helps to find the exact value for/(jt) with just a finite number of terms.

From the series development (8) it is possible to write

f ix )  = fix -xz)+ xP iz)
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Where P(0) = 0. In the case z = 0, the development reduces to the equality 
f ix ) = fix). By deriving the two members of this equation with respect to the 
variable z, the following equality is obtained

f 'ix -x z )  = P'iz) (10)

So the reminder P is obtained by looking for a function of the variable z whose 
derivative regarding this variable is equal to f 'ix -xz), and is such that P(0) = 0. 
Once this condition for the reminder P is given, and if z = 1, the equality

/ ( * ) = / ( 0 ) + jcP (1)

is obtained.
By following to the next term of the series (8) it is possible to write

f ix )  = fix-xz)+ xzf'ix-xz)+ x2Qiz)

where £)(0) = 0. By repeating the process of derivation in both members of the 
equation, a value for Q' is obtained

Q' = zf"ix-xz)  (11)

Again, when z * 1 Lagrange obtains now 

/ ( * )  = / ( 0 ) + jc/ ' ( 0 ) + x 2Q(1)

Repeating the process again for the expression

2 2
f ( x )  = f i x _ xz) + xzf>ix _ xz) + f » i x _ xz) + x^Riz) 

the value for the reminder R is given through

R ' -  z *2 f " ' i x - x z )

and for z * 1, the value

f *> = /  (0) + xf '(0) + ~  f  "(0) + x3Ri 1)

( 12)
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Since the new functions P(z), Qiz), R iz ) , ... are known through their deriva
tives—from the relations a, b, c, ...—Lagrange gives upper and lower bounds for 
them: by defining first a function F(z) such that F '(z)  = zmZ(z), where Z(z) is 
another function such that N  < Z{z) < M  when a < z<  b, and if f iz )  is another

function such that f ' ( z )  = zm( M - Z ) ,  then f ( b ) > / ( a ) 21. Since

M zm+X
f ' ( z ) = z mM  -  F '(z), then f ( z )  = ----------- F iz) and the following inequality

m + 1
holds

Mbm+l x Ma' x
--------—  F{b) = f{b )  > f i a )  = --------—  F(a)

m+1 m+1

from this inequality it is possible to write

m+1

F(b) < F(a) +
m + 1

In a completely similar way, by taking now f \ z )  = z miZ  -  AO, the following 
inequality is obtained

Fib) > F ia) +
JV(fcm+1-<2m+1)

m+1

giving finally

N (bm" - a m*1) M (bm*l - a m+1)
F ( o )  + — ---------:-------’-<F(b)<F(a)+ ----------

m+1 m + i
(13)

This is applied to the functions Piz), Qiz), Riz), ... First by assuming that 
P = Fiz), it follows that P ' = F \z )  = f'(x -xz), and since it has been assumed that 
F Xz) = z mZiz), by making m = 0, then Z(z) = fX x -x z)  • Whenever a -  0 and b -  1, 
P(0) -  0 -  Fia) and F(6) -  P (l) . In the case that N  < f\x -x z )  < M  whenever
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0 < z <  1, it is possible to obtain from the inequality (13) the inequality: 
N < F ib ) - P i \ ) <  M.

In a similar way Lagrange obtains for the function Qiz), by making m -  1, that

N  M
if N x < f 'X x - x z )  ^ A fj, then — k < Fib) = Qi 1) < . And for the function

R (z), by making m = 2, that if / " ' ( * - x£> then
2 2 2

? f < F ( b )  = R(

If in the variable quantity u = x -x z , the variable z runs through the interval 
[0,1], then u runs through [0,*], Lagrange concludes then, with the help of the 
intermediate value theorem, that N  < f ' i x - x z )  = f ' i u )  < M  , and so any value

between Af and Mean be given as/"(u) for some u in [0,x]. So the valueP(l) takes

this form. For the same reason there are values of u such that Qil) = — /  "(w) and
1 2 

Ril) = -^—̂ f " ' iu )  . From these facts his conclusion is the following theorem:

“En designant par u une quantite inconnue mais renfermee entre les limites 0 et x, 
on peut developper successivement toute fonction de x  et d ’autres quantites quel- 
conques suivant les puissances de x  de cette maniere

f i x )  = fiO )-h x f'iu )

x 2f i x )  = f i0 )  + x f'i0 )  + ^ r f" iu )

x 2 x 3
f i x )  = fiO ) + jf'iO ) + —  f"iO ) + —  f'" iu)+ ... (Lagrange 1797, 49)

So the canonical form (3) and the formal series (9) might be replaced by a 
finite polynomial, but this substitution does not mean an “error” in the calculus of 
the value for f i x + i) or fix ) .

Two levels in Lagrange’s theory of functions become clear: first a purely for
mal representation for functions where the canonical form (3) carries the reduc
tion of all the theory to the algebraic scope, as well as the application of this 
theory of functions to geometry and mechanics. The second level is given when 
the effective calculation is wanted; the fact that the “remainder” of the series
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exists and takes the general form x  f  M , reduces the canonical form to a finite 
and effective process. n *

But as we have seen, Lagrange’s arguments are strongly supported by a simple 
assumption that is hardly justified within the frame of this algebraic function 
theory: all functions are supposed to behave as “continuous” functions. This as
sumption was made in relation with the theorem concerning the possibility to 
bound the reminder functions iPy iQ, iR,... It was made also concerning the inter
mediate value property of the derived functions.

The property of continuity, treated up to now as an evident truth through a 
geometric image, is a main tool to justify the passage from the formal representa
tion to the effective calculation. But the need for this property shows, as it was 
already the case with Euler’s algebraic analysis, that a theory of functions can no 
longer ignore it. Even more, making now a deeper gap between the analytical 
ideal, identified as an algebraic foundation for function theory, and the means to 
carry out this ideal, the fundamental proposition for algebra is also involved and 
needs this continuity property.

The relation between the coefficients of an equation, the degree of this equa
tion and the number of its roots, is a problem that goes back to the algebra of 
Cardano and Viete. In his De aequationum recognitione et amendatione (1615) 
Viete shows the possibility to write a general equation of third and fourth degree 
as a product of linear factors. Concerning the relation between the maximum 
number of roots for an equation and its degree, an important background is given 
in Girard’s Invention nouvelle en I’alg&bre (1629) and in Descartes’ Gtometrie 
(1637), related to fact that a polynomial of degree n has n roots and also that it can 
be divided by each one of the n linear factors formed by these roots.

So, behind the classical form for the fundamental theorem of algebra, stating 
that a polynomial of degree n with real coefficient has n roots, several problems 
are involved. Among them the most important are:

1. The problem related with “existence” of the roots for a polynomial.
2. The description of the “form” that these roots may have.
3. The “number” of roots that might exist for a polynomial.
4. To find the roots of the polynomial through the linear factors that divide 

this polynomial.
Historically the first problem to appear is the one related to the number of 

roots for an equation. This problem, treated in some sense by Girard and Des
cartes, also involves the fourth problem: if the nth degree polynomial P(x) is

equal to the product (x- * 1)(;c- jc2)...(jc- jc|), it is because the polynomial admits as
n

many roots as its degree. The equality P(x) = J J  (x -  xf) ,  states not only that we
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can divide P(x) by any of the factors (x -x ), and so each quantity x. is a root for 
P(x); but also that P(x) can be divided by (x-x.) whenever x. is a root22.

Now, when the problem is not to “prove the existence” of the roots, but to
n

justify the equality P(x) = J J  (x -  x ,), then it is necessary to establish which val-
i=i

ues make the equality possible. As we know, Descartes states that in order to
assure that any polynomial P(x) of degree n is equal to a product of linear factors, 
it might be necessary to “imagine” some of these quantities that make possible the 
factorization. All through 17th and 18th centuries, the controversy about the na
ture of these “imaginary quantities” was at the center of all the questions concern
ing algebraic equations and their roots, until D ’Alembert’s proof (1746), that 
these quantities can only have the form x  + yV-1 . An immediate consequence is 
then that the number of imaginary roots is even23. When the degree of the polyno
mial is odd, the only possibility to admit this fact, and the one stating that the 
number of roots is equal to the degree of the equation, is that in this case the 
equation must have at least one real root.

At the beginning of his Traite de la resolution des equations numeriques de 
tous les degres, Lagrange gave two theorems where “the foundation for the theory 
of equations is given” and for which the continuity becomes necessary:

“Si 1 ’on a une Equation quelconque, et que 1 ’on connaisse deux nombres tels qu’6tant substitute 
seccessivement & la place de l ’inconnue de cette 6quation, ils donnent des r6sultats des signes 
contraires, l ’6quation aura ndcessairement au moins une racine r611e dont la valeur sera entre ces 
deux nombres.

Si, dans une 6quation qui a une ou plusieurs racines rtelles et in6gales, on substitue successivement 
& la place de Pinconnue deux nombres, dont Pun soit plus grand et l’autre soit plus petit que Pune 
de ces racines, et qui different en mSme temps Pun de 1’autre d ’une quantit6 moindre que la 
difference entre cette racine et chacune des autres racines rdelles de Pequation, ces deux substitu
tions donneront necessairement deux resultats de signes contraires.” (Lagrange 1798,6)

For the proof of the first theorem Lagrange proceeds as follows: if it is possible 
to write the equation P(x) as the product of linear factors of the form (x-a.),

where a. is a real or imaginary root, and if by substituting two values p  and q in the
n

place of x in the product (x -  a , ) ,  P(a) and P(b) take different signs, then at
i=i

least one of the factors (x-a.) changes its sign when substituting x by a and b. But
n

in the product (x -  a , ) ,  whenever one of the roots a. has the form a + b 4 - i  ,
i=i

then another root takes the form a - b 4 - 1 . Since the product of the two linear
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factors [ x - a -  byf-Y ^x  - a  + b 4 - 1] is always positive for any value of x, if there 
is a change in the sign of P(x), this change is produced in a linear factor (x-a .) 
where a. is real. But Lagrange recognizes that there is a circular argument: the 
theorem about the nature of the imaginary roots, and the form of the linear fac
tors, depend in some way on the first theorem that was to be proven.

Because of this circular argument Lagrange uses a cinematic image which was 
also used in his lessons at the Ecole Normale (LEN), before becoming a “rigor
ous” proof given in the first note in his 1798 treatise on numerical equations. This 
new argument is considered a rigorous one since it follows “from the nature of the 
equation, independently of any of its properties” (Lagrange 1798, note I, 111): by 
dividing the equation into two parts P and Q, each one of them representing the 
sum of positive and negative terms, when the value of the variable x  is augmented 
“by insensible degrees” the values P  and Q also change by “insensible degrees”. 
By doing this between two values of the variable x  which give, the first one P -  
Q < 0, and the second one P -Q >  0, then between these two values there must 
exist at least one value that makes P = Q,

“ [..Jcom me deux mobiles qu’on suppose parcourir une mSme ligne dans le mfime sens, et qui, 
partant & la fois de deux points difT6rents, arrivent en mfime temps & deux autres points, mais de 
manidre que celui qui 6tait d ’abord en arridre se trouve ensuite plus avanc6 que l ’autre, doivent 
ndcessairement se rencontrer dans leur chemin.” (ibid., note 1, 112)

The fact that a mechanical or geometrical image is used, shows that algebra is 
unable to introduce and give a theoretical place to this notion itself. This limita
tion will show exactly how mathematical analysis finds its own and specific scope. 
The revolution in mathematical analysis caused by Bolzano and Cauchy concerns 
the reorganization of mathematical analysis on the basis of those concepts that 
Lagrange already considered as necessary, but that were not clearly conceivable 
within the frame of a purely algebraic foundation for analysis: the concepts of 
“convergence” (of series) and of “continuity” (of functions). The introduction of 
these concepts will not only show a new stage for mathematical analysis, but also 
a new relation of analysis towards algebra.

in Convergence and Continuity as the Trends of the New Analysis

The introduction of a new concept in mathematics realizes the definition of a new 
kind of objects. In this case, the new changes in mathematical analysis at the turn 
of the nineteenth century could be characterized as the transformations that took 
place within the theory of functions when the new objects known as “continuous 
functions” and “convergent series” were introduced. To see how the introduction 
of these new concepts and objects gave a new structure to mathematical analysis, 
we will look closely at some aspects of the mutual relation between the already
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existing concepts and the new ones. If mathematical analysis reaches a new “mo
dernity” with the concepts of “convergence” and “continuity”, it is because it 
takes on a new structure once these concepts have been introduced.

The new structure given to mathematical analysis by these new concepts of 
continuity and convergence emerges from the fact that they introduce a new ap
proach towards the domain of real quantities. The theory of curve lines, as given 
by Euler in the second part of his Introduction assumes, as we have seen, that the 
course of values which the function runs through is, as well as the one which the 
variable runs through, a “continuous” path. This property was automatically as
sumed from the “analytic nature” (in Euler’s terms) of the function; mechanical 
or geometrical curves could all be seen as the “graph” of an appropriate analytic 
function. In his theory of curve lines, and in the proof of the intermediate value 
property—a property which could be deduced from the algebraic nature of func
tions—there is no special approach towards the “values” that the function takes, 
as the variable runs through different values. The assumption that an extreme 
value could not be reached by a function without reaching before all the interme
diate values, is enough to deduce the properties related with continuity. Contrary 
to this style, a new approach towards real quantities, considered as the main con
dition to articulate the new trends of mathematical analysis, is introduced by the 
works of Bolzano and Cauchy. Bolzano’s Rein Analytischer Beweis (1817), and 
Cauchy’s Cours d’Analyse (1821) state the basis of this new approach, and with 
this new approach they give a new sense to what the “analytical style” ought to be.

We think, for example, that the main point of the “purely analytical proof’ for 
the intermediate value property, given by Bolzano, is the proof of the existence of 
a certain quantity: the “real root” of an equation that takes values of different sign. 
We want to underline that when Bolzano argues that a purely analytical proof for 
this theorem is needed, it is not because of some misleading fact about geometry 
or mechanics, but rather because they are unable to support an argument that is, 
or should be, a “fundamental” one. Geometry or mechanics could only support a 
plausible argument, whereas it is necessary to give a foundation for the “truth” of 
the proposition. In Bolzano’s words a proof should not be only a “confirmation” 
but rather a “justification [BegriindungenT (Bolzano 1817, preface, 160). The 
property to be proved, equivalent to the fact that a function “never reaches a high
er value without first going through all lower values” (ibid., preface, 162), is a 
property of “continuous functions”, even if it can be more immediately “seen” as 
a property of continuous curves. After the radical changes that Euler introduced, 
and that we have already analyzed, curve lines should be considered as emerging 
from functions and so the property has to be proved in the scope of (continuous) 
functions. Even more, since this property has always been admitted as an evident 
fact of “continuity”, the concepts of “continuity” and of “continuous function”
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have never been explicitly given. Bolzano introduces the concept of continuous 
function; with this concept he introduces a new objet into mathematical analysis:

“A function /(* )  varies according to the law of continuity for all values of x  inside or outside 
certain limits [...] if [...] the differencef(x+ (o)-f(x) can be made smaller than any given quantity 
provided<ucan be taken as small as we please.” (ibid., preface, 162)

The property holding for algebraic equation, as describes by Euler or Lagrange, 
is a result of the following schema of argumentation; which is the correct way to 
prove that for any equation P(x) taking values of different sign for two values a 
and b of the variable x , a real root exists:

[1.] If two functions of the variable*, f(x)  andg(*), vary according to the law of continuity either 
for all values o f*  or only for those which lie between a  and >3, and \ig(a) > f ( a ) andf(ff) > g(fi), 
then there is always a certain value of*  between a  and fi for which/(* ) -  g(x). (ibid., § 15,177)

[2.] Every function of the form

[P(x) =] a+bxm+cxn+...+pxr

in which m ,«,..., r, designate whole positive exponents, varies according to the law o f continuity 
for all values o f*  (ibid., §17,180).

[3.] If a function o f the form

[P(x) =] x?+ax"-l+bxr-2+...+px+q

in w hichn denotes a whole positive number, is positive for * -  a  and negative fo r*  -  f}, then the 
equation

x"+ax^l+bxn-2+...+px+q = 0

has at least one real root lying between a  and fi. (ibid., §18,181)

The purely analytical proof is based on the following auxiliary theorem, which 
states the existence of the least upper bound for an (upper) bounded set, and which 
also establishes the necessary relation between the property of “continuity” for 
function and the property of “continuity” for the domain of real quantities:

“If a property M  does not belong to all values of a variable *, but does belong to all values which 
are less than a certain u, then there is always a quantity U which is the greatest of those of which it 
can be asserted that all smaller* have property M.” (ibid., §12,174)

By taking as M  the property of all those values of x  for which / ( x) < g(x) (if 
a< p and f ( a ) < g(a)), then for the quantity U, whose existence is guaranteed by 
the theorem, the continuity of the functions /a n d  g will m ake/(t/) -  g(U). For if 
f(U ) < g(U), since / and g are continuous functions, it could be possible to show 
the existence of a real quantity s, such that/(£ /+ s)< g(U + 5 ), and so U would not 
meet the condition established by the theorem. By reasoning in a similar way, if
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f{U ) > g(U) it would be possible to show that f (U -s )  > g (U -s ) and the same 
conclusion is obtained about U.

The proof of the auxiliary theorem, which shows the “existence” of the quan
tity U, goes as follows: if the property M  is satisfied for all the values x  < u, but 
not for all the values of the variable x, then there exists one number D > 0 such 
that M  is not satisfied for all x < V = u+D. By considering now the following 
sequence of values

Vn\Vn =u +
_D
2n

with n an increasing number, and V = VQ> Vx> V2>...> Vn >..., Since M  is not 
satisfied for every x  < V0, it is possible to ask if there is some Vn such thatM  holds 
for every x < Vn; if there is no such quantity Vn, then U « u and the theorem is 
proved. But if there exists a number n such that the property M  is satisfied for all 
x  < Vn, but not for every jc < V (n is the first number with this property) the 
procedure starts again. Considering now the sequence

W W = V +r r m> rrm v n ^
D

with an increasing number m, and W0-  Vn l—since Vn_{ = V n + ~  n 2"
Now M  does

not hold for every x < WQ. Since WQ > Wl >...Wm>...> Vn, if there is no integer 
number m such that M  holds for every x < W , then U = V and the theorem is 
proved; but if there is a number m with the desired property (and again it might be 
assumed that m is the first one), then M  is satisfied for every x < W m, but not for 
every x < W r In this case the procedure is repeated again. If it happens that after 
a finite number of steps the property M  holds for every

x < Z r
D D D

u + -----1--------- K..+------------2n 2n+m 2n+m+-+r ’ but there is no positive integer number s

such that M  holds for every x < u + —  + —̂ +.. .-1------- —------ , then U = Z . If,
J 2n 2n+m 2n+m+-+r+s

on the other hand, it is not possible to find such a value, then the sequence of 
values

D D D D
«,«H----- ,u+  + ,. ..,m-i— — +

2" ’ 2n 2 2”
D D
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represents a sequence whose terms increase while the difference between two con
secutive terms decreases in a reason that is less than a geometric progression. The 
quantity U is in this case the “limit” of this sequence. Bolzano assures that:

“If a sequence of quantities 

F lt o , F 2(x),f',C*)......F  (*).......FnJ x ) , ...

has the property that the difference between its n-th term /^O ) and every later term Fn+r(x), how
ever far from the former, remains smaller than any given quantity if n has been taken large enough, 
then there is always a certain constant quantity, and indeed only one, which the terms of the 
sequence approach, and to which they can come as close as desired if the sequence is continued far 
enough.”24{ibid., §7,171)

Since the sequence u, Vn, Wm, ... Zr,... has this property, the existence of the 
quantity U the limit of this sequence, is guaranteed by the last statement.

As we said before, a main point in Bolzano’s argument is the proof of the 
existence of a certain quantity. The existence of the quantity U, which becomes 
the root for the equation, is given through the auxiliary theorem—stating the 
existence of the “least upper bound” for a bounded subset of numbers— , whose 
proof rests upon the convergence of a sequence having the so called Cauchy prop
erty25. For Bolzano a proof for this last property is possible, and his argument for 
the existence of a limit for a “Cauchy sequence” is that the assumption of the 
existence of such limit bears no contradiction:

“The assumption of an invariable quantity with this property of proximity to the terms o f our 
series is not impossible because with this assumption it is possible to determine the quantity as 
accurately as desired.” {ibid.)

This means that the existence of the limit quantity can be asserted since its 
value can be approached as accurately as desired through the successive values of 
the sequence. The value of the limit of the sequence might not be known, but it is 
possible to approach this value through the sequence, and this possibility is the 
main reason to assure the existence of the limit. Otherwise, if there was no real 
quantity the sequence approaches, the terms of the sequence would not approach 
each other as they increase; “for anyone who has a correct concept of “quantity” 
the idea of this value is the idea of a real, i.e., “actual”, quantity”. Clearly Bol
zano’s conclusion would not be valid if the domain of real quantities had a “gap”; 
but he considers that when a sequence behaves as the theorem says, then it is 
convergent, since for a non convergent sequence the “non approaching behavior” 
is essential. It is possible to accept the existence of a quantity, being the limit of 
the series, and then to consider this hypothesis among the rest of “truths” of anal
ysis26.

But if the existence of the limit of the sequence might be concluded, the prop
erty out of which this is deduced, the so called Cauchy property, is far from con
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taining the existence of a limit. In other words, in a Kantian sense, the proposition 
“any sequence or series having the Cauchy property has a limit” is not “analyti
cal” but “synthetical”. Since in the statement “for any positive quantity, no matter 
how small this might be, there exists a positive number n such that the difference, 
in absolute value, between the term an and any other term an+r of the sequence, is 
smaller than the given quantity”, there is nothing involving the “existence of a 
limit value”; and that is why the existence o f the limit must be proved.

With regards to this point Cauchy’s procedure is different. First he works with

limits of functions: he proofs that if for the increasing values of the variable x, the
f i x )

difference f ( x + 1 ) - f (x )  “converges” to a limit k, then the function ------  con

verges to the same limit. In the proof of this statement, Cauchy makes clear the 
meaning of the sentence “the difference f(x+  1 )-/(* )  converges to a limit

“On pourra donner au nombre h une valeur assez consid6rable pour que.x 6tant 6gale ou sup6rieur 
& h, la difference dont il s’agit soit constamment entre les limitesJfc-e etfc+e. (si eest un nombre 
possitif aussi petit que l ’on voudra).” (Cauchy 1821,54)

For any function, or any sequence which is to be considered as a function/(l), 
/(2 ), ... , it converges to a limit k if, given any positive value e no matter how 
small it might be, there is a positive number h such that if n> h, the term /(n) lies 
between the limits k - e  and k+e. After this explanation of the concept of conver

gence for sequences, Cauchy explains the convergence of series in detail: for a
__  n

series ^<3, , let sn = ^<3, be the sum of the first n terms, if the terms of the form
i=i

sn form a convergent sequence whose limit is s, the series is convergent and its
oo

limit is s (and so it might be written s = y^ q, ). Now for a series to be convergent
i=l

it is necessary that it satisfies the “Cauchy condition”: for any positive quantity,
no matter how small this might be, there exists a positive number n such that the 
sum of the terms an+...+an+r of a series £a., is smaller than the given quantity. But 
for the converse property Cauchy simply states that “when this condition is filled, 
it can be assured the convergence of the series” (ibid., 126). So he finally consid
ers that concerning the question which was “proved” by Bolzano, really there is 
nothing to prove.

The relation between convergent sequences and series and continuous func
tions is a basic one, since whenever the variable quantity x has X  as a limit, and 
f(x )  is a continuous function, f(x )  becomes a variable quantity whose limit is f(X). 
That means:
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l im / ( * )  = / ( * )
x-*X (14)

With this basic relation Cauchy proves the intermediate value property: if the 
function f ( x ) remains continuous between the two limits x  = x0, x  = X, and if the 
two valuesf (x 0) and f(X )  have different signs, then it is possible to find a solution 
for the equation/(x) = 0, at least with one real value of the variable x  between xQ 
and X.

If x0< X, h = X - x 0, and m > 1 is an integer number, since the two quantities 
f (x Q) andf(X )  have different signs, it is possible to compare two consecutive terms 
of die sequence

f ( x 0X f
h

x0 + — 
m / 1

A') x0 +2 — , 
m ̂ . / , f ( X )

m

and there must exist at least two consecutive terms f ( x {) and f(X ')  having different

signs. Clearly x  < x. < X ' < X , and X ' -  x x = — = — (X  -  x0) .
m m

Once these consecutive terms x { and X ' have been found, it is possible to find 
two values between them, x2 and X ", giving values f ( x 2) and f (X " )  of different 
signs, and holding the conditions xx < x2< X "  < X ', and

X " - x 2 = - ( X ' - x l ) = \ ( X - x 0) 
m m

By continuing in this way two sequences are given: an increasing sequence of 
values

*o ’ * xr  -  (15)

and a decreasing sequence

X , X ' , X " , . . .  (16)

The terms of sequence (16) are all greater than those of sequence (15), and the 
difference between two respective terms of these sequences decreases: X -*0«= h,
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It must be concluded that the terms of the sequences (15) and (16) will con
verge to a common limit a. Since f(x )  is a continuous function, the terms of the 
sequences

f{xQ) ,f{ x x) , f( x 2), ... a m //(X )./(X 0 ,/(* * ) , ... 

converge also towards the lim it/(a) which must be equal to zero.

Nevertheless, Cauchy states another relation between convergence and conti-
n

nuity. When speaking of a convergent series, since the partial sums sn =
i=l

indefinitely approach a certain limit s, the difference between the limit s and the
partial sum decreases as the number n increases. This difference, the “reminder” 
of the series, is a variable quantity whose limit is zero27. The fact that the terms of 
the series are constant or variable quantities does not change this property of the 
reminder: to be an infinitely small quantity. Now, when the terms of the conver
gent series are all continuous functions—each term is a function for which an 
infinitely small variation for the variable produces an infinitely small variation in 
the value of the function itself—the variations for the value of the limit function, 
when infinitely small variations takes place for the variable, are proportional to 
the variation for the reminder itself, but this last variation must be infinitely small 
since the reminder itself is already an infinitely small quantity. From this argu
ment Cauchy concludes that:

“Theorem I: Lorsque les differents terms de la serie sont des fonctions d ’une meme variable x, 
continues par rapport & cette variable dans le voisinage d ’une valeur particuli&re pour Iaquelle la 
s6rie est convergente, la somme s de la s6rie est aussi, dans le voisinage de cette valeur particuliSre, 
fonction continue d e x .” ( ib id .,  131-132)

The conclusion is obtained by stating the properties of a “fixed” object, the 
limit of the series, from the behavior of a “mobile” object, the reminder of the 
series; but the properties that can be stated about the reminder are obtained from 
the existence of the limit: it is the existence of the limit which determines that the 
reminder must be an infinitely small quantity, and this property is enough, in 
Cauchy’s view, to state that the limit function is continuous when the terms of the 
series are all continuous functions.

Many articles and texts have been written around this famous “wrong theo
rem” proved by Cauchy. Some of them have pointed out “why” it is a wrong 
statement (since Cauchy does not give the precise condition on the way in which 
the series converges; i.e. that the series should be a “uniformly convergent” se
ries); others have tried to point out in which sense Cauchy’s argument could be 
read as a correct statement. But very few have remarked on the “place” that this
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statement takes in the whole text of 1821: it is used to justify a crucial step in the 
proof of the binomial formula.

As we said before, the introduction of a new concept is not reduced to the 
statement of a new definition, the role of continuous functions does not stop with 
the intermediate value property or with the relation between continuity and con
vergence. Besides Newton’s binomial formula, another outstanding and well-known 
statement gets a new foundation through the concept of a continuous function: the 
fundamental theorem of algebra (FTA). And it is precisely through these two 
propositions that it could hardly be said, that mathematical analysis gets its foun
dation through algebra. Contrary to this, it will be algebra—and precisely its fun
damental theorem—which will find a new proof, and so a new foundation as 
Bolzano affirmed, through mathematical analysis.

Cauchy’s proof of the binomial formula, and the development of the logarith
mic series, are given in the scope of the solution of functional equations. The 
problem is to find the continuous functions that satisfy the following conditions:

1. <t>(x+y) = 0(x)x0(y)
2. 0(xy) = 0(x) + 0(y)
The solutions given by Cauchy for these equations are:
1. 0(x) = Ax, with A a positive constant value.
2. 0(x) = aL(x), with a a constant quantity and L the characteristic of the 

logarithmic function.
For the solution of these equations the assumption that they should be contin

uous functions is necessary. As to the first one, Cauchy remarks that the function 
takes only positive values: from the equality 0(x + y) = 0(x)-0(y), he gets

0(2x) -  [0(jc)]2; and by taking ^  x in the place of x  he gets now <f>(x) = K H f -

By taking a positive number a  and a positive integer m, it follows from equation 1 

that <f>(ma) = [0(a)]m. If now 0 = ^Ja, from the two equalities <p(ma) = [<j>(a)]m

and ma -  n0, it follows 0(0) = 0(^-a) = [0 (a)]" • By the “density” of the rational

numbers, and from the property of continuity of the function 0, Cauchy gets final

ly 0(jua) = [0 (a )]^ . The case - a  -  1 gives = [0(1)]^ , and by taking the limit 

when n->Q> 0(0) = 1. From the initial condition it follow s that 

0(-/z) = = [0(l)] **, which proofs that for any positive or negative value of
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the variable x, the equality 0(x) = [0 (1)]* holds. If A = 0(1), Cauchy gets the 
solution 0(x) -  Ax.

To find the proof of Newton’s binomial formula, a problem related with the 
convergence of a series has to be solved: the only “legitimate” way to prove that 
the equality

( i+ * y , = i+ # » +
K 1 2 2-3

holds (for every real number n), is that the infinite series which is the right mem
ber of the equality—which is infinite unless fi represents a positive integer—
“converges” to the value of the left member. The “root” tests for the convergence

00

of series, when the terms of the series ^  are functions of the form u.(x) = ax', 

takes the form: ,-°

Let A be the lim sup . The series converges for every value x between the
n—

limits x = —j  and x = + - j ; the series diverges for every x outside these limits 
A  A

(the value A defines the “radius of convergence” of the power series).

For power series, Cauchy proves also the algebraic closure related to the sum
00 00

and the product: if the two series ^ a nx n, ^ b nx n are convergent for some value
n=0 n=0

of the variable x, and if their respective sums are s and s', the power series
00

+bn)xn is also convergent and its sum is s+s'. Under the same conditions,
W—0 00

if each one of the series is absolutely convergent, the series with
n=0

Cn = -bt , is a new convergent series whose sum is ss'.
k+l=n

By taking as a general coefficients for the two series

M(M ~ 1)(m -  2)... (ji -  n + 1)
and

n\
- n  + l)

nl

(17)
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where m and m ' are two arbitrary quantities, if - 1  < jc < 1, by the root test states 
they are (“absolutely”) “convergent”, and the general term of the “product series” 
is

(M + MXm + M-1Xm + M-2)...(M + M - w + 1) (18)

Cauchy writes <p(fi) = ^ a nx n , and when the coefficients take the values given 
«=o

in (17), it satisfies the equality

, x , MM- 1) 2 MM -  1)(jU -  2) 3 
= 1 + fJx H------—---- x  -)--------- 2~~3------- X +••• (19)

Now for the sum of the second series, Cauchy writes 0'(/z) = ^  bnx n and it satis
fies n=o

0(M ) = 1+ fl'x + m (m - d  2 , i i ' i n ' - w - D *
X +

2-3
jr+ .. (19*)

Clearly 0(/z + M) = ^ cnx n , when the coefficients cn take the form (3); in this
n=0

way the function f(jn) satisfies the equation

0(/z)-0(M) = <f>(n+nl (20)

From equation (19), and by taking -1 < * < 1, theorem I assures thatjim) is a 
continuous function for the variable m that satisfies the functional equation (20)

and so 0(ju) = [0(1)]^ = (l + x Y . That means,

( l  +  ;c )M =  1 +  fJX + H (H -l) 2 , M M -lX /^ -2 ) 3x  +
2-3

x  +. (21)

whenever -1 < x  < 1 for any real value of n. Newton’s binomial formula is com
pletely proven.

As an immediate consequence of this formula, Cauchy gives the series devel
opments for the exponential function for the natural logarithmic function ln(l +*)
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and for the logarithmic function of any base a, L(1+jc). First by putting in the

equation (21) /i = — and substituting x with ax then 
a

(1+^ =1 + X + M X2 + M 1 Z M X3+...
v '  2 2-3

if —1< ax < 1—or < x  < — • Taking the limit when a—>0 the series
a  a

1 2 3
lim (l+cec)a = l + x + 4 -  + ̂ —+... 
a-> o 2 3*2

is convergent for — < x < <». When x — 1, the series

-  1 1
lim (l + a ) a =1 + 1 + — + -----+... defines the number e, and
a-»o 2 3*2

_L 2 3
ex = lim(l + a* )a = 1 + * + ̂ -  + ̂ —+... 

a-* o 2 3*2
(22)

By subtracting 1 to each member of equation (21), and then dividing by and 
taking the limit when ju—>0, he gets

(1 + jc)m- 1  x2 x3 A------L------ -- x ------+ ------ ...
2 3lim

li—>o M
(23)

and since (l + jc) = e/(1+JC),

(l + x Y  = = M(l + x) t /x2[i(i + *)]2 t /n3[l(l + x )?  |
'  '  1 2 2-3

and

(l + x f - l  Z(1 + jc) m[*(1 + *)] M2 [*(! + *)]-------------- = ---------- -1----------------- 1-----------------
M 1 2 2-3

(24)



140 CARLOS ALVAREZ JIMENEZ

From (23) and (24) he gets

lim
fl-4 0

(l + x ) '* -! = 1(1 +x) = (25)

whenever -1 < x  < 1.
For the function L( 1 -hx)—the logarithms of base a—Cauchy uses the well-

known equality ^ ( \  + x) _ 1(1 +x) ^  from (22) it follows that 
L(a) 1(a)

L(l + x) (26)

Two conditions play a fundamental role in the developments of these func
tions and also in the proof of Newton’s formula: the series must converge, and the 
functions represented through the series are continuous— the function 

= UK l)f  = (1 + x )M is a continuous function for the real variable jx because 
of theorem I, the “wrong theorem’’. Those theorems and series developments that 
were proved before by Euler and Lagrange are here submitted to these conditions; 
from now on, mathematical analysis and “analytical style” will be related with 
them. Mathematical analysis was a branch of mathematics that under the concep
tual basis given by Euler, became mainly a theory of functions, and made the 
natural means to develop functions out of polynomials and infinite series. With 
Lagrange, the development of functions by a Taylor series achieved the reduction 
of theory of functions to algebra. In the new scope of mathematical analysis given 
by Bolzano and Cauchy, the concepts of continuity and convergence rule the ex
tent of the “algebraic generalizations” —the possibility to develop a function 
through an infinite series is necessarily submitted to the fact that the variable of 
the function should vary within the radius of convergence of the series.

The proof given by Cauchy for the binomial formula states another feature for 
the new analytic style: it is possible to finish with the vicious circle—already 
detected by Euler—, between the binomial formula and Taylor’s series for a func
tion. In Lagrange’s algebraic theory of functions, the binomial formula appeared 
as a particular case of the Taylor series for f(x )  = V, although for the justification 
of the Taylor series development, a proof for the relation f'(x)  = nxn~] is needed. 
This relation is proved precisely by using the binomial formula. For Cauchy two 
facts are clearly stated: the binomial formula is based on the principles of purely 
“algebraic analysis”—which in the tradition opened by Euler states that there is
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no need to call for any principle of differential or integral calculus—and, because 
of that, it needs no other justification than those coming from basic concepts of 
continuity and convergence, as we have already seen.

As for the upcoming relation between algebraic analysis and infinitesimal cal
culus, these concepts state how algebraic analysis should precede infinitesimal 
calculus: let us just point out that without them it is not possible to define the two 
main concepts of calculus: in Cauchy’s lessons on infinitesimal calculus (1823), 
and since then, the derivative and the integral of a function are defined as a “lim
it” (of a quotient or a series). The “definite integral” for a function, with this 
definition, becomes independent of the derivative of a function. This makes possi
ble and necessary the proof of the fundamental theorem of the calculus.

The core of Cauchy’s analytical ideal, as given through his Analyse Alge- 
brique, is not only to introduce the concepts that will give the new foundation to 
infinitesimal calculus. We think that Cauchy’s aim is, contrary to Euler and La
grange, to present algebra as founded by analysis. This aim is finally reached with 
his proof of the fundamental theorem of algebra (FTA):

“Theorem 1. For any real or imaginary values for the constantsa0, av, av an l, an, the equation

a0x n + a, x"~l +...+an_lx + an = 0 (27)

where n is an integer positive number >  1 , has always real or imaginary roots.”

With this general theorem the following ones are also given

“Theorem 2. For any real or imaginary values for the constants a0, a [t a2, a n l, an, the polyno
mial

a0x"+ a lx n~'+...+an_lx  + an = f ( x )  (28)

is equal to the product of the constant a0 and n linear factor o f the form x - a -  f t y f - l .

“Theorem 3. For any real or imaginary values for the constants a0, at, a2, a nl,an, the equation 

a0x" + alx n~'+.. •+a„.lx  + an=0 (29)
has always n real or imaginary roots, and it could not have more.” {ibid., 343)

According to (28), f(x ) is a real or imaginary, but always “entire” function. 

With this notation, equation (27) states that/(x) «= 0. By taking x = u + vV-T and

by substituting this value inf (x ), then f [ u  + vV -I) = 0(«,v) + i//'(w,v)V-l , where 

now <t>(u,v) and yr(u,v) are real functions of the real variables u and v. Under this
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new form equation (27) becomes </>(u,v)+yf(u,v)yf-i = 0 ; and this is satisfied 
only when the two equations

<f>(u,v) = 0 
y/(u,v) = 0

(30)

are satisfied  at the same tim e, or when the equation
F(u> v) = [0(«, v)]2 + [y/(u, v)]2 = 0 holds. So the proof for FTA becomes the proof 
of the existence of two real values, u and v, that satisfy the equation F(u,v) = 0. 
Two main properties of the function F(u,v) are obtained: first that this function is 
not bounded when one of the two values w, v increases more and more

“La fonction F(u,v) ne peut conserver une valeur finie qu ’autant que les deux quantit6s u, v 
resoivent elles-m6mes des valeurs de cede espfice, et devient infiniment grande dds que l ’une des 
deux quantity  croit ind6finiment.” (Cauchy 1821,334)

The second property for F(u,v) is that it is also a continuous function of the 
variables u and v. Now, since F(u,v) > 0, the two properties for this function, 
being continuous and becoming infinite whenever u or v become infinite, allow 
Cauchy to conclude that the function reaches its lower limit with finite values of u 
and v.

uF(u,v), variant [avec les variables w,v] par degr6s insensibles, et ne pouvant s ’abaisser au-dessous 
de z6ro, atteindra une ou plusieurs fois une certaine limite inferieure qu ’elle ne d^passera jamais. ” 
(ibid., 334-335)

By calling A this lower limit and (u0,v0) one couple of values such that 
F ( uq,vq)  -  A, Cauchy proves that A -  0. Clearly the main point here is the state
ment that the lower limit A is reached by the continuous function F(u,v)— out of 
which the “existence” of the couple (w0,v0) is obtained, and by this the existence of 
the root of the equation. Once again, as it happened with Bolzano, the goal is the 
proof of the existence of a quantity (which now could be not only real but also 
imaginary), and this existence is obtained through a property that the function 
F(u,v) should hold as a continuous function: this function reaches its lower bound 
since whenever u or v —» » ,  F(u,v) —> oo28.

At the end of seventeenth century Mathematical Analysis was not a well-rec
ognized mathematical theory. Certainly a new approach towards quantities, re
quiring the study of entire and infinitely small quantities, became the main attribute 
of a new style of working the algebra of quantities; the need for this new algebra 
was already justified by the works of Descartes and Leibniz. But as we said before, 
at the beginning of nineteenth century Mathematical Analysis was considered the 
core of the mathematical expression of physical phenomena. As Fourier stated in
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the Introduction to his Thcorie Analytique de la Chaleur, it is not only a well- 
recognized mathematical theory, but even the “heart” of all mathematics; the great 
development of this theory in the nineteenth century in some sense confirmed 
Fourier’s vision. But as we have seen, the methods, the content, and the concepts 
of Euler or Lagrange that articulate this theory are not the same as in Cauchy or 
Riemann. Certainly the development of mathematical analysis after Cauchy is not 
conceivable without the concepts of “continuity” and “convergence”, even if wid
er classes of functions were discussed after Riemann—the class of “integrable 
functions” which includes “continuous functions” as a particular subclass, the 
class of measurable functions, the “Baire” functions, etc.

The birth of a new physics in the eighteenth century happened because of an 
“analytical ideal” that made possible their treatment out of the purely descriptive 
explanations. Now, it seems to us that the main consequence the “analytical ide
al” had for mathematical analysis itself was precisely the need for the production 
of the concepts of continuity and convergence, that support the theoretical struc
ture for the new analysis and their distinction from purely “algebraic generaliza
tions”.
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Notes
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1 As J. Sebestik says “Since Descartes up to the beginning of 19th century, modem science has lived under 
the regime of analytical theories”. (Sebestik 1992,25).

2 In her profound work, Hourya Sinaceur (1991) points out the differences between Lagrange and Fourier, 
with regard to the question of the resolution of algebraic equations, starting from their different conceptions 
of what the analytic methods ought to be.

3 “The simple factors of an entire function Z of z are found by equating the function to zero and by looking 
for the roots of this equation; since they give one a simple factor for the function Z. ” (Euler 1748,17)

4 In 1746 JeanleR ondd’Alembert(1746)provedthatany imaginary quantity is of the form a + b 4 - 1 
In 1749 Euler gave a proof of the same fact in his “Recherches sur les racines imaginaires des Equations” 
(1749), although he had presented a previous version of his memoir in 1746. Concerning this proof 
given by Euler and d ’Alembert cf. Gilain (1991).

5 Clearly if the imaginary quantities are supposed to be complex quantities of the form a + b^l-l , the 

conclusion comes out immediately: if a + by[-1 is a root of the equation, then a -  6 -/-1  is also a root, 

and the product of the two imaginary factors [a + b-J-l j  [a -  b-J-1 j  is a real double factor.

6 “Quod quamvis non summo rigore sit demonstratum, tamen eius veritas in sequentibus magis 
corroborabitur”.
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7  The proposition that any entire function is equal to the product of double or simple real factors implies 
both properties: that any equation of odd degree has a real root, and that imaginary roots are always 
“complex” quantities.

8 In chapter IX o f his Introductio (1748,108), Euler says that

“It is sometimes difficult to find the imaginary factors [...] but if the nature o f imaginary factors 
is such that the product of two of them is real, it is then possible to find all o f them by looking for 
the double factors that are real, but whose simple factors are imaginary; since it is clear that ones 
we know all the double factors o f the formp-qz+rzI 2 included in the function a+bz+gz2+dz3+ ... , 
we will have then all the imaginary factors”.

9 This is one of the main differences between algebraic analysis in the scope o f E uler’s Introductio and 
that o f Cauchy’s Cours d’Analyse. Euler is certain that his definition of continuity is “analytic”, and 
Cauchy thinks exactly the same about his definition.

This last condition towards the property o f  “continuity” o f functions, which will be clearly given by 
Bolzano and Cauchy, cannot be stated in the algebraic frame for mathematical analysis given by Euler.

11 Euler’s attempts to prove Newton’s formula in the case of a non integer exponent are given later. Cf. 
Dhombres(1987).

12 As is clearly stated by Amy Dahan (1992,186):

“Ce que Lagrange veut accomplir dans la Mecanique Analytique [...] c ’est un mouvement de 
double reduction: de la m6canique & 1 ’analyse et de 1 ’analyse & 1 ’algdbre. Si la premiere partie du 
programme y est fealis6e gr&ce au calcul des variations, la deuxidme rdduction est £ l ’oeuvre dans 
la Theorie des Fonctions Analytiques",

13 Obtained, as it is well known, from the idea that when substituting the variable* for the variablex+i, 
f(x+i) takes the place of/(*), with the obvious condition that they must be equal whenever i -  0. In the 
expression forf(x+i) , it should be possible to separate those terms that do not depend on i, from those 
that are equal to zero when/ -  0. That means that it is possible to write/(x+/) = f(x)+iP, where P  -  P(x,i) 
is an expression depending on both* and /. By repeating his reasoning Lagrange states that also for the 
function P(x,i) it is possible to separate that part which depends only on the variable* from another part 
which also depends on / and must be equal to zero when / -  0, that means P(x,i) -  p(x)+iQ, so 
/ (* + /)=  /(*)+/p(*) + /2(2- C o n tin u in g  in th is  way a d e v e lo p m en t o f  the  form  
/(* + /)  = f(x)+ip(x)+flq(x)+Pr(x)+... is obtained.

1^ W here each “derived function”/ ' (* ),/" (* ),... is obtained from the previous one and coincides with a

differential quotient: f ' ( x ) = -1 ^ 1 .  f / " ( * )  = ^  ^  
dx dx

1^ Clearly Lagrange takes for granted that if /  '(*) = rn*m_1, when / ( * )  = x m , then the algorithm will 

give for the second derived function / " ( x )  = m ( /n - l)x w~2 ; for the th ird  derived function  
/  " '(*) = m(m - 1  )(m -  2)xm~3 , and so on.

16 Two assumptions that become explicit and clear in Cauchy’s proof for Newton’s binomial formula.

I7 If x + i = a/ix)+° = a flx) -a°, by writing 0 = » / '(* )+ y / " ( * )  + j - j / '" (* )+ ...  and substituting this

1 + Ao + A —  + A y ^ -+ .. .  | . D iv id in g  by * he  g e tsvalue in (5), x + i = a f(x)-a° =a f M
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— = Ao+ A2 — + + . . .  . Dividing then by /, replacing then the value of o, and rearranging according 
* 2 3-2

to the increasing powers o f 1, leads to the expression:

7  = A f \ x )  + ^[A f"(x)+ A ^fH x)]+ ...

All the terms that are multiplied by i disappear, since / is an indeterminate value which does not appear 

in the quotient — , and so — = A f' (*) .

18 In his Legons sur le Calcul des Fonctions, he goes one step further and states that no matter how big the 
number y might be, a number r can be found so that the value of L(y) lies between two values:

W a)[l~ ^ \ < L{y) < l ^ a j ( ^ ~ l) .

19 This fact would give the prove of the continuity of/(x).

20 This development takes the form / ( * )  = A + Bx + Cx2 + Dx3+... already known from the general theory 

of equations and, given in particular by Euler. Lagrange says that on the basis of the theory of derived 
functions from the development / ( * )  = A + B x+ C x2 + Dx3+... itiseasy tosay that/(0 ) = A ,f \  0) = B, 
/" (0 )  = 2 C ,...

21 Lagrange uses the theorem as a main tool stating that

“Si une fonction prime de* telle que/'(x) est toujours positive pour toutes les valeurs de* depuis 
* = a jusqu’d * = b, b 6tant > a, la difference des fonctions primitives qui fepodent & ces deux 
valeurs de*, savoirfQ>)-j{a), sera n6cessairement une quantife positive.” (Lagrange 1797,45)

(This theorem says that a function/(* ) such that/'(x ) > 0 is always increasing).

22 This problem, the converse of the first one, is treated by Cauchy in relation with the “interpolation” 
problem, the problem to determine completely an entire function once a certain numbers of values are 
given.

23 Since whenever *  + y-J-l is a root of an equation, then so does the quantity * - y V ^ T .

24 This theorems affirms that a sequence of numbers having the so called “Cauchy property” is convergent.

25 These two propositions are, as it is well known, equivalent and they both characterize the continuity 
property for the set of real numbers.

26 Here we agree with Philip Kitcher (1975) when he assures that for Bolzano the hypothesis stating the 
existence of the limit for a Cauchy sequence is completely compatible with the “fundamental laws” of 
analytical quantities.

27 “An infinitely small quantity” , according to the sense given to this notion in his Cours d’Analyse.

28 The only possibility that the continuous function F(u,v) not reach its lower limit would be that this lower 
lim it be reached “at infinity”, i.e., that whenever u or v -»  °°, F(u,v) —> A.



JEAN DHOMBRES

THE ANALYSIS OF THE SYNTHESIS OF THE ANALYSIS... 

TWO MOMENTS OF A CHIASMUS: VIETE AND FOURIER

I Introduction

Old as it is, the debate over analysis versus synthesis is not a foundational one in 
mathematics. By indistinctly referring to Plato and Theon or more precisely to 
book VII of the Mathematical Collections of Pappus—a text dating from the 4th 
century AD—most commentators assign a secondary position to the debate, even 
if they only do so in a rhetorical way1. Such a position mainly proves that the 
conscious surge of analysis, either as a rival to synthesis or a complement to it, is 
first of all a criticism of mathematical reasoning and its practice. In other words, 
it is as a historical move that the couple analysis/synthesis finds its way in episte
mology and no further explanation is necessary. Yet very little would have been 
said, had we not simultaneously stated the strong evolution through centuries of 
the very acceptance of the two words. They even switch their parts, in a similar 
fashion to mask-plays in Elizabethan theatre. Paradoxically, in the same way as in 
this theatre Oberon acts in a timeless world, assigning the debate there is a risk of 
putting aside time. And therefore there is a risk of excluding history under the 
pretext that the opposition analysis/synthesis would just be a form taken by the 
eternal problem of what logically comes first and what comes second, but could 
arguably come first as well. Unfortunately this circuit is made all too easily by 
restricting this opposition to a philosophical one between induction and deduc
tion, or even between empiricism and rationalism. The timeless nature of this 
opposition may therefore be due to the intellectual question of equivalences or, to 
use a less anachronistic expression, to the mathematical back and forth motion2. If 
this motion will be my principal object here, I do not wish to forget its historical 
insertion, precisely in order to reach its scientific meaning.

At least one should easily recognise, like Titiana under the influence of the 
philtre that generated the transformations, that the opposition between analysis 
and synthesis also depends on the tradition of teaching mathematics. Therefore, it 
depends on the way mathematics takes its grasp on societies, each one organizing 
the transmission of knowledge in its own way and therefore according a meaning
ful logic to the teaching of a science for which an added value is provided for what
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could remain a pure technique (as was, for example, the case in classical Chinese 
culture). Is not mathematics the oldest object of teaching in the Western world? 
From Boethius proposing the first book of Euclid’s Elements as a model for school 
exercises to Antoine Amauld’s ruling through a Geometrie the Petites Ecoles of 
Port-Royal3; from the Jesuit fathers’ great expectations for the exemplary Colle- 
gio Romano4 to the enthusiastic adepts of modem mathematics during the sixties5 
of our century, how many personalities have neglected mathematics for the sole 
benefit of its presupposed effects? If didactics at a given period is scarcely read as 
serving the description and the structure of a science, it unavoidably serves a 
culture. Then it makes history run. And, as a consequence, looking for history in 
our search concerning the analysis/synthesis debate, we may be tempted to restrict 
ourselves to text-books and to teaching methods. When a study of analysis and 
synthesis is intended to be historical, not one but many projectors must be used in 
order for it to be efficient; many questions have then to be selected and pursued. It 
may even form a structure. Then one must be aware that this structural multiplic
ity ipso facto overthrows the historical localization; each cause having its own 
particular historical rhythm. The teaching of mathematics does not have the same 
historical rhythm as mathematics! This is the reason why I decided to reduce 
observations strictly to two mathematical texts only.

Indeed, I do think that historians of mathematics—and sometimes mathemati
cians may play that role—contributed more to keeping alive the opposition be
tween analysis and synthesis than to the individual meanings successively attributed 
to the two terms. It could be more interesting to shed light on the stability of the 
opposition built by an “historical” line of thought than to follow the commentaries 
of mathematicians themselves or of philosophers. One way would be to decon
struct some classical histories of mathematics. We only quote certain names to 
recall a long line of thought; Etienne Montucla, Abraham Gotthelf Kastner, Charles 
Bossut, Maximilien Marie, Moritz Cantor or Gino Loria, etc.6 We do not intend to 
proceed in this analytical manner through historiography here, but at least we 
may recognize that the mobility of meanings of the two terms in the analysis/ 
synthesis couple is the other side of the historical stability of the opposition. The 
paradox does not lie in the fact that the “mathematical” back and forth motion 
generates a “historical” back and forth explanation in mathematics, but that in the 
long term only one antagonistic couple was fixed by historians. I would like to 
argue that this perennial opposition finds its mathematical value via the inver
sions it generates. As this is the value I am looking for, the times of inversion 
must be privileged.

In spite of the different meanings, determinations and causalities linked with 
various historical and social contexts, and transient as it may be, the pure episte
mological question of analysis and synthesis does not lose any of its dialectical 
interest. It can easily be seen in a universal way, with many historical concretiza-
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tions. Without yielding to a facile mise en abime—the analysis of the synthesis of 
the analysis...—we may suppose some depth to the couple in its game of transfor
mations. And hence in its efficiency as a representation. The philosopher Maurice 
Blondel, who remarkably perceived the general role played by analysis and syn
thesis in the sciences— an abstract generality and a linking by way of necessity in 
one instance and for the other one a synthetic and quantitative individualized 
intuition—explains that this duality cannot be solved. At least, it cannot be solved 
through the sciences alone:

“In their continuous work of integration, [the sciences] constantly appeal to a synthetic process; 
it is the only one able to provide a material which could be said to be a formal one. But even this 
initiative o f the thought escapes the sciences; they are alien to themselves [...]. As for what they 
know, they do not know it the way they know it. ” 7 (B londel 1893,61)

By deciding to illuminate some moments precisely where meanings turn up, that 
is when analysis becomes synthesis and when synthesis constructs analysis as 
well, we try to specify the back and forth motion of mathematics; we reach the 
crossings of what we metaphorically call a chiasmus. Thus we may localize the 
strong thought of Maurice Blondel in order to show it is just an artefact.

In order to act on the analysis/synthesis opposition within the conditions of a 
historical view I tried to circumscribe in the preamble, my display of the moments 
of a chiasmus requires a temporal determination of at least two periods. But two 
moments already require a lot. Thus, I will speak of the end of the 16th century 
using Fran5 ois Viete’s work, and of the early 19th century using Joseph Fourier’s 
contribution. Two names, but as already stated two texts only and each treating 
quite different subjects: we look at a style and at a method, and less at specific 
objects. In order to examine two cases when analysis and synthesis exchange their 
meanings, the comparison is none too pleasant, as two different languages are at 
work. There is the pompous Latin of a Renaissance already influenced by the 
baroque, and there is the severe French style of mathematical physics looking for 
a style somewhere between the analytical description derived from the Enlighten
ment and the rigorous style of convergent series of the positivist period. We have 
to win over the heterogeneity of the two texts in order to build a meaning: its 
validity and its soundness should be measured by a critical appraisal which may 
give back their own fragrances to the two periods.

II Viete or Analysis Seen as an Appeal for a Constructive Synthesis

In a printed text of 1593, Viete works out the sum of all terms of an infinite 
geometric progression (1593, ch. XVII). Even though it is the first occurrence of 
such a formula, Viete wishes his explanation to be a very short one:
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“The whole science o f geometric progression almost reduces to one theorem only, for which four 
relations among the datas are naturally deduced.” (ibid., 28)

He then abruptly asserts:

“When magnitudes are in a continued proportion, the largest term o f the ratio is to the smallest as 
the sum o f all terms is to this sum to which the largest term has been subtracted.” i (ibid.)

A proposition which, as Viete is its author, we immediately have to try to read 
using notations. By setting a first term as D, which is necessarily “the largest” of 
the progression9, then its second term B, and the sum F, we write

F D
F - D  ~ B

It therefore comes as a surprise that in the specificative transcription of the theo
rem in letters, Viete introduces a supplementary notation, someX which is a some
what restive “smallest term” of the progression as a whole. Its presence has the 
advantage to build a well-balanced proportion which can be visualized in a mod
em way by a formula and was appreciated by Viete’s contemporary readers from 
the rhetorical expression:

F - X  D 
F - D  ~ B

A  quite simple interpretation can be given, at least if we restrict ourselves to a 
progression with only a finite number of terms. In fact, in more modem terms,

choosing an integer n (> 1) and letting the general term be xn = x^rn~x (D then
k=n

corresponds to n -  1, or to and B to x2) the sum Fn = ^ x k for a geometric
k=\Xi

progression of ratio r — —  (in the modem sense) can be written as10 
x2

Fn~X n = *1 
Fn - x 1 x2

And it is easy to go to infinity by replacing Fn by F  and therefore xn by x j

F - x ^  _ x {
F - x j x2
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What is simple for us was as simple to Viete’s readers in their time because they 
had read Euclid". In this respect, the emphasis of this author writing the “small
est term” is surprising. In other words, it solicits some reflexion, for as he does not 
even provide proof of the theorem-in the expression of which we have to recall 
that the term X  does not appear. Here lies our major observation. From a literary 
form to a literal one, something more is made apparent which is something less in 
terms of mathematical efficiency.

Unfolding a beautiful analytical process, Viete deduces some other formula
tions in his form using X, admitted for the duly accepted theorem. Precisely four 
formulations as there are four quantities being displayed, F, D, B and X. The last 
X  from which we cannot escape is set up at the same level as the others. Four ways 
of expressing any one of the quantities in terms of the three other quantities. It is 
a display of analysis first referred to by means of a classification but Viete explic- 
itely refers to analysis at the end: “Vf hcec in Analyticis abunde demonstrata, & 
exemplificata sunt"12 (ibid., 29). He organizes his material according to an alge
braical script13 and, moreover, he introduces the required formula by the word 
“6e66|ievov” each time. In the literary play of Renaissance texts, this is an allusion 
to Euclid’s Data (AeSopsva); a typical text of analysis, for which some elements of 
a drawing are determined from other elements which are postulated as given. In 
short, Viete clearly proclaims analysis, and for our purpose we have no need to 
examine it in more detail.

The text does not stop here. Surprisingly—and the effect is deliberate—here 
there is a question in Viete’s exposition: “Shouldn’t we say that X will go down to 
nothing when magnitudes are in a continued proportion to infinity” (ibid.). If this 
is the first time that infinity is mentioned in the text, it was present ineluctably 
from the early lines. It was hidden in the literary expression used for the theorem: 
as it only mentions three things, the theorem cannot make any sense to any reader 
if conceived for a progression with a finite number of terms14. On the opposite 
side, using the game played by X from which infinity is revealed (“smallest term”), 
the literal transcription makes sense in both finite and infinite cases. Finally, with 
the notation X, a name is given to what provides an additional meaning to the 
literary form of the theorem. Then, abruptly, there is a change in the stylistic 
register of Viete’s text. An opinion is given, as in any good scholastic text: “And 
Mechanists15 will assure us that it vanishes as the smallest quantity subsides in the 
intellect only” (ibid.). In short, the reader is aware of what is suggested. In its 
literary form, the theorem sounds true for the reason that is suffices to make the 
smallest term of the literal form equal to zero. A form which can be said to be the 
indefinite writing of the sum of a geometric progression (n as a integer, the number 
of terms, is not specified and might as well be infinite). Isn’t this the added value 
of algebra?
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Viete’s analysis could therefore end here with only the well regulated game of 
a computation: reduce to 0 an infinitely small quantity and obtain a formula quite 
close to the one we usually adopt when we reach for the sum of a convergent 
geometric progression,16

X \ _  x \ ~  x 2 

F x,

The scholastic parenthesis might then just have been a stylistic effect. And analy
sis will have remained the main tool.

Indeed, the text proceeds further and from now on analysis recedes to give 
place to synthesis. A synthesis in the sense that there is a construction which 
answers the question: shouldn’t we say that... The question is really about the 
maintenance of analysis. Synthesis symptomatically begins by a definition; in this 
case an original definition of an increment (cremento): “what the difference of 
[any] term of the ratio is to the [immediately] inferior term of the ratio, the small
est [magnitude] is to the increment” (ibid., 29). For a progression with a finite

number of terms, the increment A possesses a unequivocal definition —!------ = —  .
*2 A

But it obviously depends on the integer n, a parameter in a way too talkative in the 
literal form, and excluded by the literary one. We could better denote An, and write 
Fn as well, for the finite sum with n terms. In the case of an infinite progression,

the definition of the increment can be read as —— — = — , or better said in the
x 2 A

manner of proportions using then A^. Unfortunately, the second ratio is a quotient 
of two quantities, each one equal to zero (according to the “Mechanist” opinion); 
the quotient is therefore a non-assignable quantity. Equipped with such a defini
tion, the result of a synthesis may however appear:

“As the difference of [any] term of the ratio is to the [immediately] superior term of the ratio, so 
is the largest magnitude to the one composed of all terms plus the increment.” (ibid.)

In algebraic notation,

*1 ~*2 _ *1 
Xj F + A
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To see this better, it is possible to rewrite it as:

The increment A corresponds to a failure; it measures what fails to an infinite sum 
when one stops after a finite number of terms. Nothing will fail once the infinite is 
reached. From a finite n to an infinite, from the literary meaning to the literal one, 
a continuity of meaning is restored, by means of a synthesis.

Proceeding further in this line of reasoning consists in establishing the need to 
put the so-defined increment to zero. At this step however, Viete is no longer 
looking for a complete reasoning: it seems enough for him to refer to a result 
which Archimedes splendidly and synthetically explained—“and there is a fact”— 
in the Quadrature o f the Parabola (proposition XXIII; Archimedes OO, II, 310):

“Let there be continuously proportional magnitudes to infinity17, with an under-quadruple ratio, 
and let 3 be the largest o f all. The composed magnitude will be 4. And there is a fact18; to these in 
continuous under-quadruple ratio magnitudes, the largest being 3, nothing as small as possible 
can be added without the composed magnitude being larger than 4.” (Vi&te 1593,29)

The allusive style is unequivocal: it is by a double reductio ad absurdum typical of 
the method of exhaustion that the increment can be verified to be zero. The only 
short way is to use the particular case of the Archimedean progression as if it were 
the general case. Continuity is restored on an historical order as well.

Viete still does not stop here. He went from analysis to synthesis; but he raised 
a question rather than having solved one. The reference to the tradition of the 
method of exhaustion of which Archimedes is the most celebrated artist, is in no 
way an authoritative argument. Viete does not even criticise this tradition; he 
merely states that it contains a type of satisfactory proof for which no sequence 
can be provided. Moreover, it seems impossible to follow an algebraical path, or 
rather, a filiation to the tradition would denature the algebraical way. Indeed, 
using an algebraical relation, Viete associates the smallest term of a progression 
to the increment. But there is no link with the double reasoning by contradiction 
alluded to, which would be enough to validate the theorem on the sum of an 
infinite progression. Then Viete essentially shows the requirement of a “new al
gebra”. This algebra does not appear as a natural one. It has to deal with indefinite 
quantities like A or xm, for which a correct writing is available only in the case of 
a finite term progression.The new quantities can be combined in some algebraical 
way as their possible ratio is equal to a well defined ratio of finite quantities. And
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equating these quantities to zero according to the formula of likelihood, some
thing true is obtained. Viete’s is a testimony of this essential experience.

He then concluded by refusing an end and this is undeniably an appeal for a 
sequel. Vidte explicitly says of the reduction to zero: “But Platonicians will agree 
with difficulty, as the whole of Geometry essentially lies in the intellect” {ibid.). 
Will the sequel be an analysis or a synthesis? Wavering has the value of erasing 
the differences. For our purpose, it is enough to have shown that in Viete’s case 
the passage from one style to another in the direction of a necessary future, served 
to make us aware of the uselessness of a motion back and therefore helped to 
suspend the back and forth move. We recognize a suspended analysis in this text.

I ll Fourier or the Synthesis Appearing as an Analytical Necessity

With the appearance of the Theorie analytique de la chaleur (1822), the localiza
tion in analysis seems indisputable. Fourier at least displays the banner of an 
analysis, by using the specific adjective in the title of his book. Therefore, as there 
is no apparent ambiguity, we are compelled to present our study in a manner 
different from the one used for Viete’s text. We first have to question the validity 
of the analytical reference. Using this title, couldn’t Fourier mainly be displaying 
a stylistic filiation to Lagrange’s Mecanique Analytique (1788). Published in 
1811-1815, the second edition of this book, corrected by the famous author, was 
considered as the example of a mathematization of the real world. In fact, classi
fying the content of Fourier’s book at an epistemological level, the analogy with 
Lagrange appears less deep than the title may at first suggest. It was Auguste 
Comte, a thorough reader of Fourier whom he was persistently inviting to attend 
his first course in positive philosophy during the year 1829, who understood that 
Fourier was competing with Newton’s Principia (1687). For even if there are 
some traces of analysis, Newton’s book openly maintains the genre of a synthetic 
composition which resulted in some stylistic obscurity as has so often been ob
served19. By endowing heat theory with its phenomenological and mathematical 
concept, the flux20 (which is the analogous concept to velocity in mechanics, and 
even its exact mathematical counterpart as a derivative) and by using the tech
nique of a thermal balance implying an invariance, Fourier succeeded in estab
lishing a partial differential equation governing temperature. Thus is the so-called 
heat equation to which commentators usually reduce the Fourier’s achievement 
from the point of view of physics21. In his turn and for the specific physics of heat, 
he thus realized the Newtonian program which had been exemplified by the der
ivation of differential equations of motion from universal laws of attraction.

“I do not fear to pronounce, as if I were ten centuries from now, that since gravitation theory, no
mathematical creation was more valuable than this one for the general progress of natural philoso
phy.” 22 (Comte 1830-1842,1. 31, II, 592)
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Thus Auguste Comte speaks of Fourier’s achievements. And to increase the weight 
of this judgement, he adds something which is not far from the important distinc
tion between a metaphysical era—Newton—and a positivist one:

“even so, by seriously scrutinizing the history of those two great thoughts, we could find that the 
foundation of mathematical thermology by Fourier was less made ready than the foundation of 
celestial mechanics by Newton.” (ibid.)

Such a judgement ipso facto states that Fourier’s theory composes a synthesis: 
apparently it comes from nowhere and it is totally built and “positively” explained; 
it has therefore definitively acquired the status of a scientific and perennial work:

‘T h e  new theories which are explained in our work are for ever united to the mathematical 
sciences and, like them, they rest on invariable foundations; they will preserve all the elements 
which they now possess, and will continuously grow in extention.” (Fourier OD, I, xxviii)23

Thus Fourier did not hesitate to proclaim his achievements and he was taking 
advantage of a language which had been dominant for centuries, namely the lan
guage surrounding Euclid’s Elements, always an admired model for synthetic pres
entation of the science of magnitudes24.

Let us then give up the reference to Lagrange. The analytical way is perhaps 
not yet Analysis! This latter would then appear in the text of Fourier, not as a style 
subordinate to the explanation, but far better as a whole new branch of Mathemat
ics. It is clearly during the 19th century that any specific denomination for Anal
ysis was abandoned25: it is no longer in Analysin infinitorum as it used to be with 
Euler (1748), but forcibly without any adjective in Cauchy’s Cours d ’Analyse 
(1821). And this is more visible as the first part of the course accounts only for 
algebraical analysis. A contemporary of Cauchy, could not Fourier be the instiga
tor of Analysis as well? For more than fifteen years, he had been refining the 
various aspects of his Theory: it is sufficient to read any page of the Theorie 
analytique at random to notice his chiselled wordings. A consultation of the long 
table of contents at the end of the book, where classification in the finest detail 
takes care of the very connections of the reasoning itself26, would convince any 
reader that the literary structure of the text was deliberately chosen to adapt as 
close as possible both to the reasoning and to the part of the real which is investi
gated. “Looked from this point of view, mathematical analysis has an extension as 
large as Nature herself” (Fourier OD, I, xxiii), so he claims in his preliminary 
discourse to the Theory. If the word Analysis receives then a privilege, it stays in 
the book without any further definition. Darboux, later editing the Theorie analy
tique for the Complete Works of Fourier, will find himself obliged, in printing this 
sentence, to add a capital “A” to Analysis.

However, the organization of our quest would be upset if we were to pursue the 
building of Analysis on this path. We had far better go to the conclusion to his
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work provided by Fourier himself. There, he feels the need to explain that even 
though it is the main object of his Theorie, he has not chosen to derive in a unique 
form the various integrals found for the heat equation belonging to the various 
situations met within different kinds of solids subject to heat propagation. He 
claims that such “transformations require long computation and they suppose al
most every time that the form of the results is known in advance” (Fourier OD, I, 
525, n° 428). He thus affirms that he could not have purely followed an analysis, 
even in the sense Pappus acknowledged where analysis has to start from what has 
to be reached.

If we were to adopt the qualification of “historical” for Fourier’s presentation 
we might avoid choosing between analysis and synthesis and reach some kind of 
equilibrium. This seems to be a valid statement to start with27. Using the word 
“historical” requires us to play with the double meaning this word usually takes 
in the sciences. It certainly means a narration, with its chronological and critical 
unrolling of a thought concerning an object of science, but it also means the 
account of a systematic look at the real world. This last meaning is precisely the 
one in “natural history”, a familiar expression used throughout during the 18th 
century and early 19th century. Fourier is first of all an original thinker (or 
scientist) because while allowing to read history of his thought, he turns it into a 
history of Nature herself28. Individually neither an analysis nor a synthesis, but a 
history of the real to which reason belongs as well.

A history of thinking and a history of objects; this double function is an old 
one in the construction of science. The swinging implied by these meanings is 
certainly one of the major ambiguities of history of science as such, at least as an 
intellectual mode. And this explains why we are aiming at the stylistic swinging 
of a chiasmus. The Theorie analytique appears to be accomplished in the same 
way as any historical account which is always told using a past time; as any syn
thesis, the Theorie keeps no trace of a past and bears no error before a future. If the 
Theorie has to be an analytical discourse, it is because so is Nature herself; not 
only in the interpretations given of the efforts made to analyse it, but in the very 
way those natural effects are produced. At the end of a section “the object of which 
almost entirely belongs to Analysis”, when he evokes the structure of a differen
tial equation, Fourier aptly qualifies it as the equation of the phenomenon, be
cause this equation represents “in the most distinct manner the natural effect. 
This is the principal condition we always had in view”29 (ibid., I, 525, n° 428). 
The equation is not a model, or a reduction. For Fourier, there exists no middle 
locus between a mathematical thought and the real; fiction is not a resource which, 
even through the assumed risk of a logical fault, might account for the adequation 
of a thought.

Could we say then that we have a synthesis of the analysis! Such a genitive 
case is used too rashly. In order that the expression might have a meaning which
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convenes to Fourier’s work, we should have to consider, as at any cross-road with 
no sight-of-crossing sign, that the order of the two words, analysis and synthesis, 
is indifferent. If Fourier calls the motion which animates his Theory ‘analysis’, in 
fine  he summarizes what explicitly is a synthesis30. He turns up the older defini
tions of the two names; he locates himself at the crossing of the chiasmus.

As a question, the adequation of the analytical style to the synthetic content 
makes the purpose of our inquiry. We have to understand why analysis only, by 
sheer accumulation of deductive signs, could not have been sufficient in Fourier’s 
eyes to build the Theorie. It could have achieved the status of synthesis only once 
it was entirely accomplished, that is once ended. Synthesis would have been the 
result of the unrolling of analysis. However, Fourier himself prevents us from 
adopting such a compromise which would provide an orientation for the branches 
of the crossing by explicitly naming each one. His exposition of facts, so he claims, 
coincides with the discovery of the facts; it is an invention as such and therefore 
his account cannot be smelt into a synthesis, the unrolling of which necessarily 
requires some axiomatic method. Even a man like David Hilbert would never 
state that the axioms precede thought in an inquisitive mind: they have to become 
the frame for intuition as a construction of the mind. Nevertheless, it is a history 
of the inquisitive mind of a natural philosopher which is the true account of Fou
rier, and he claims that it is the account of Nature herself. Analysis and synthesis 
are unequivocally mixed.

Analysis and synthesis are combined in the fate of Fourier’s work. Those two 
words intervene directly in his intellectual and objectal filiation, and they are to 
be simultaneously written. They are endowed with a precise meaning, and fortu
nately there is no questioning about it: it is simply decomposition and recomposi
tion. It is after Fourier, in a way rather a long time after him but in an explicit 
reference to his work, that everybody spoke of the harmonic analysis of a function 
and of its synthesis31. In the same manner as for the adjectivation of Analysis, 
even the word function had to disappear when a branch of mathematics was final
ly organized—Harmonic analysis—but this is no restriction but a metonymy as 
this branch contains harmonic synthesis as well. The maintenance of the expres
sion “Harmonic analysis” is a rare phenomenon in mathematics, a science which 
is generally chary of distinctions among its various enterprises; the expression of 
Fourier Analysis is less common, but with the same metonymy that implies syn
thesis as well. The last expression follows from the fact that elementary functions 
are necessarily associated with the very idea of a periodic function: they can be 
called “simple” modes32, the obtaining of which for a given function comes from 
a computation of integral coefficients, the so-called Fourier coefficients33. Such is 
analysis. Once the coefficients associated to the modes are known, according to an 
infinite addition naturally induced by a numbering by integers—this is the num
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bering of simple modes—a function is entirely found again or reconstructed: this 
is its synthesis34.

Even if we positively follow the mathematical practice of the domain launched 
by Fourier, we have not yet reached a clear and distinct explanation concerning an 
analysis which should be followed by a synthesis, in the sense that, historically 
and epistemologically, we cannot use for long the apparently nice but “frivolous” 
distinction made by Condillac who places a “before” and an “after” in order to 
point up the link between the two operations of decomposition and recomposition. 
Fourier’s operations show this clearly. First obtained from a laborious algebraical 
technique proceeding through the elimination of variables, a computation of Fou
rier’s coefficients acquires a rational transparency only once orthogonal relations 
intervene35. These orthogonality relations exhibit such properties of simple modes 
that each one may reach an independent existence; each one is taking advantage 
of the freedom and therefore of the status of a dimension in geometry. These 
relations provide analysis with its own legitimacy and shape analysis as an inde
pendant moment of the reasoning, i.e. of the proof. However, as efficient opera
tions, such orthogonality relations are available at the very moment of the synthesis 
of a function only; and practically as well as formally they can be omitted from 
what could be seen as the pure moment of the analysis. In short, orthogonality 
relations cannot be metaphorically viewed as the knuckle-joint linking in this 
order analysis and synthesis. But curiously we have to ascertain that analysis does 
offer an explanation in its own right only once synthesis is concluded36. Contrary 
to what has so often been said with good reason by classical epistemologists for 
whom roads without crossings are the best warrant for a scientific construction— 
it is the no noise syndrome— , synthesis is not the justification for analysis. Syn
thesis is certainly not the occurrence of a formalization according to an accepted 
mathematical canon, from which we can absolve those scientists who are not 
looking for rigour37. In fact, it happens as a crucial experience, and possibly as the 
main mathematical activity, that the computation yielding Fourier’s coefficients 
works correctly even if, at the moment of synthesis, we were to “forget” certain 
simple modes38. As the conclusive example requires some technical preparation, 
it will be given somewhat later. Fourier proceeds in the same way, giving it at the 
very end of his book (this is a supplementary proof, if such is required, that his 
display is not a linear one; we already used the qualification of enveloping dis
play). Before proving, we go to the consequences. Analysis has its own independ
ence; but it is not automatically conducive to truth. Synthesis is not a conclusion 
which functions as a validation; it is an interpretation of an earlier analysis which, 
in this very process, changes for a new meaning: a cycle begins.

Fourier has not underestimated the aporetic conclusion which confuses the 
order for intellectual operations, analysis/synthesis. He even cancels the opposi
tion. An aporia, which etymologically is what prevents an idea from providing a
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path, conspicuously gave him the possibility of creating a theory: he had to erase 
the opposition, or the parallelism and lack of a meeting point of analysis and 
synthesis. This seemed necessary to turn “simple” modes into “proper” modes. 
The adjective has a value of reality. The path followed by Fourier is a thought in 
itself. The chiasmus analysis/synthesis is no longer the algebraical effect of a 
presentation: it is part of the work of science.

Such modes, so Fourier explains, are intrinsically linked with a periodic func
tion conceived as a mathematical object; the reason being that Nature so con
structs them. The study is that of heat propagation in solids. Ineluctably, at least 
from an analytical study, periodic functions do appear in the case of heat.There 
exist “waves” of heat. Mathematically, a “wave” is a mixing of a periodic oscilla
tion and of a decreasing exponential in the variable describing the distance from 
the heating source. Therefore, analysis reveals a phenomenal property in its own 
right. Proper modes make their appearance from physics analytically pursued, 
and they go far beyond periodic functions; they are appearing under the inventive 
pen of Fourier in many other circumstances, for example with the so-called Bessel 
functions if we wish to point out only one other example39. We find the essential 
fact which instaures a generality: proper modes are present in all phenomena of 
heat propagation, and this is why the word “proper” is physically valid. But they 
“properly” too happen with the harmonics in sound propagation or in the expla
nation of tides. Both are quite distinct physical phenomenoms. If Harmonic Anal
ysis becomes a mathematical theory, it is because of its universality. But this brings 
no loss of a “proper” property: the simple character of a mode is not changed into 
proper by the technical play of the mathematical game which is unable to confer 
such a quality to its objects. Even by folding analysis into synthesis. Fourier has 
eliminated any “middle”, even mathematics, between a thought—his thought— 
and the world.

The nature of these modes has to be the object of a proof, for which we are at 
the active cross between analysis and synthesis. However, if the chiasmus is not 
yet discemable, it is because we have not sufficiently enveloped it with mathemat
ics. Fourier is not providing a rhetorical discourse; he intends to speak like Nature 
herself.

In which sense, in fact, could one prove the “proper” property of an object 
which is deduced or built from an analysis? As a form has been exhibited, there 
can be no doubt about the very existence of proper modes; synthesis does not play 
the somewhat restrictive part of an ontology. By the way, in the case of periodic 
functions, such modes are reduced to the brave functions sine and cosine for inte
gral multiples of the variable and are quite elementary functions. Clearly, by lead
ing to a reconstruction of a function from its proper modes, synthesis gives credit 
to modes in their status of proper modes. It is not sufficient enough as a proof. 
Here synthesis appears for what it is etymologically, just an addition. It is not
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sufficient for a good reason: in its own proof, synthesis shares the defect of analy
sis. It works, but it does not help the understanding. A scandalous situation, a 
contradiction indeed to the purpose of providing a proof of a “proper” property.

To get rid of the contradiction, the first way chosen by Fourier is just a bias in 
order to prove synthesis, i.e. the sum of a function developed into a trigonometric 
series (Fourier’s series). It relies on the development of the function in power 
series. He then uses what was more or less called Taylor series, manipulated all 
through the 18th century, but certainly not rigorously proved, and eventually made 
the very basis of Analysis by Lagrange in his Theorie des fonctions analytiques 
(1797). Long as it is, with even a strange formal play on a typical constant like n 
used as a variable for differentiation—a game no longer authorized by acceptable 
science during the early nineteenth century—Fourier’s proof sufficiently shows 
that he conferred on his manipulation no more value than a linking one. Fourier 
just helps to join his new mathematics with already known mathematics40. His 
bearing is a normal one for someone introducing an invention when one does not 
locate it as a revolution. The intention of this proof is not to mathematically fix 
what “proper” means; but this is the purpose of the theory!

There is no difficulty in proving or ascertaining the adjective “simple” for a 
mode. For the partial differential equation which governs heat propagation, a 
simple mode appears as a solution whose variables are separated: it has to be the 
product of a function of one of the variable by a function of another variable. This 
is, by the way, how from a computational point of view, such modes are obtained. 
It is a pleasant and efficient analytical characterization which the first year stu
dents usually are compelled to undertake. However, this characterization is a for
mal one; it cannot “prove” anything “proper”; it is a trick to reach such modes. 
Guile cannot provide a proof of what “proper” is!

There is another way which tempted Fourier, but it led him to nowhere. This 
failure is rather surprising to our modem eyes, in that the way is the one which 
will lead to proper vectors and proper values. Here the usual language adopted in 
English is unfortunately improper, and we have to think of the original German 
meaning of Eigen in Eigen-vectors or Eigen values. At least in French or in Ger
man, the maintenance of the adjective ‘proper’ or ‘eigen’ in linear algebra as well 
as in linear analysis, has a historical meaning. Fourier, effectively, shows some 
stability, and this stability is no longer a formal situation like the one where ‘sim
plicity’ just meant separation of variables. To explain this, we have now to enter 
some mathematics and at least a drawing, even if Fourier, as a presumed analyst, 
is rather parsimonious of such graphic representations.

We consider an infinite rectangular lamina: thus we have a two-dimension 
problem, with two space variables x, y and a physical mind may fancy that the 
lamina has an indeterminate depth. The two long lateral sides of the lamina are at 
a fixed temperature, melting water being a good choice in order to suggest the

THE ANALYSIS OF THE SYNTHESIS OF THE ANALYSIS... 161

idea of a muffler isolating the lamina at the sides, isolating it to the point of 
suppressing even the unavoidable dilatation which the lamina has to undergo. At 
the bottom of the lamina freedom reigns for the fancy of the experimentalist math
ematician. He may impose a constant temperature—and this is how first Fourier 
began an analytic computation41—or he may impose any function. That is, he may 
decide any ordering of values of temperature along the internal DE, but only on 
this real interval where a real variable y is running: in other words, a free function 
f ( y )  is available (variable x  runs on the oriented median edge of the lamina). As 
we are at an intermediate moment of the analysis, time is no longer playing a role.
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It is presupposed that the regime of heat is a permanent one, temperature is sta
tionary as an equilibrium has been achieved between the lateral muffler and the 
given and generous source of heat at the base. Temperature at every point of the 
lamina is a function F  of the space variables * and y only.

Fourier establishes a connection between the two functions,/(y) at the bottom 
of the lamina—the given function—and F(x,y) which is the sought for tempera
ture in the lamina. Physically speaking, the connection seems obvious: only one 
regime of temperature is obtained. Fourier takes the opportunity to prove this 
uniqueness from the physics of the flux he has launched. Mathematically speak
ing, there is also a connection, and this is original as well. Function F is altogeth-
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er a solution of a partial differential equation of the second order: the Laplacian of 
F is equal to zero

d 2F d 2F 
dx2 + dy2

=  0

and it satisfies three more conditions:

F
f

= F K
= 0

F(0, y) = fly)

Lim F(x, y) = 0 for all y  in
_ n  n
~ J ’ 2 where Lim x  = OO

The indissoluble association of boundary conditions to the very partial differential 
equation is an innovation due to Fourier: it helped him to understand the corre
spondence between /  and F, even at a moment when the concept of function was 
the prey of transformations to which the work of Fourier was to contribute42. It 
happens that proper modes are such that, if such a mode is an input at the bottom 
of the lamina, in the form of some function /  any trace of F  at any horizontal 
segment of the lamina is equal to the given/(up to a constant multiplying factor). 
As an exam ple43, if f ( y )  = c o s ( l ly ) , then F( x, y)  = A /(y) = A cos(lly ),

where X = 1 • From this remarkable stability, which we call to-day a prop
er property in a mathematical sense, Fourier deduces no mathematical action; he 
let it stay as a physical determination. In other words, he does not try to character
ize “proper” modes functionnally as the invariants of the correspondance from /to 
F (up to a multiplying factor which we learned nowadays to call an eigen-value). 
The lamina remains as an intermediate object of the correspondance: it has not 
been identified through a relation. For Fourier, the proper character is not yet 
proven.

In a sense, we have not to regret Fourier’s failure to detect the “proper” math
ematical character in the invariance of a direction in a functional space. The irre
pressible need of the determination led him to where what he brought is formidable: 
he affirms that synthesis of a function from the addition of its proper modes covers 
all thinkable functions. What prevails is the “arbitrary” character of the function; 
the adjective is thoroughly used by Fourier and associated with the expression
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fonction generate. Sure enough, a combined mathematical and historical criti
cism may eventually say that this character was brought about by the pure analyt
ical computation of Fourier’s coefficients, in the sense that, for this computation, 
just the integral of a function operates, if we multiply the function by a proper 
mode44. In Fourier’s time an integral was conceived as an area, therefore any 
“arbitrary” function possessed an area. However, our account of Fourier’s display 
would not be sufficient if we were to restrict ourselves indicating a necessity due 
to the form of the computation; or, as could be said using an other description, we 
are too sensitive to the architecture of Analysis as it becomes independant of Ge
ometry. Historically we think in terms of the building of Analysis. The possibility 
of the arbitrariness of a function, independently of the computational technique, 
is precisely for Fourier where the foundation of a mode as a proper mode lies.

We should less emphatically say that Fourier had the capacity to link two 
concepts, the one of proper mode and the one of arbitrary function. But this is not 
the knot of the whole situation.

In order finally to justify our description, the proof (which we consider now in 
order to show from what defect synthesis is suffering), is more remarkable be
cause it plays with oblivion. Let us suppose that a “proper” mode, or better “sim
ple” mode has been forgotten, for instance some sin (nkx) for a certain integer nk. 
Nothing would have been changed concerning the analytical computation of all 
other coefficients: we already said that the first part of analysis was independent 
of any synthesis. Strong as he is thanks to the orthogonal relations, Fourier how
ever takes notice that any function synthetized with all the other proper modes 
would at least be orthogonal to this, willingly forgotten, mode. Forgotten, but still 
perpetuated by a sign

in
J  f ( x )  sin (nkx)dx = 0

The fact that an integral is zero is really a condition imposed on the function /. 
Therefore/is in no way an arbitrary function. Synthesis forgetting a mode is then 
a false synthesis. To give warrant to the arbitrariness of the temperature function 
at the bottom of the lamina is the way to offer to modes their “proper” property. 
“Proper” properly means an unavoidable property and thus it is an intrinsic prop
erty. Nature, which governs heat, cannot avoid proper modes: it is Nature who 
compels the mathematician, or better the natural philosopher, to think the ab
straction of an arbitrary function, a function upon which no condition can be 
imposed. Obtained via analysis, the nullity of an integral helps to understand why 
forgetting some mode makes synthesis wrong: but this understanding comes only 
once synthesis is viewed as working for an arbitrary function. This condition of
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the arbitrariness—I dare call it that way— ipso facto intervenes for the practise of 
analysis itself. We were to eager to find a knuckle-joint between two styles and in 
fact we have found arbitrary functions as a general condition for both styles; we 
have acknowledged the shift from one style to the other. This is precisely what 
orders the Theory as constructed by Fourier; and it is the localization of a chias
mus.

In this move, the whole construction of the Theorie Analytique is at stake. To 
ensure the arbitrary character of the functions used or to avoid using just a name, 
Fourier has to exhaust all possible cases. He undertakes a systematical journey 
through different cases of heat propagation in quite different solids. Totality of the 
journey is necessary to fill the freedom provided by the arbitrariness of functions. 
From to-day, the word “total” precisely refers to the concept ruling mathematical
ly proper modes, at least once some functional spaces are specified. A system of 
modes is total when there exists no function outside the zero function which may 
be orthogonal to all modes. Fourier did not have this ingredient at his disposal 
and was therefore obliged to verify the exhaustivity of proper modes by totalizing 
all possible cases. Analysis could provide a convincing proof of the proper charac
ter of a mode, only once all cases are synthetized. Each case, individually, is then 
a renewed analysis, and not simply a reproduced one. The risk of a chiasmus is 
not a unique risk in the theory: its very moment is therefore a scientific creation. 
With each case the theory can be falsified; the synthesis of one case helps the 
analysis of its successor. It also renews the analysis of the previous ones.

No redundancy at all45! Fourier organises its presentation according to an or
dering of successive solid forms where heat propagates—lamina, prismatic beams, 
cylinders, armillas, or cubes—and each case provides, not only a confirmation, 
but its contribution to an understanding of propagation. This is an unavoidable 
proof that analysis alone is insufficient. Here is the answer to our original ques
tion. By specifying for each body a particular form, heat draws its proper geome
try. This is this “reality”, which has to be drawn for each case, and analyzed to 
each occurrence, from which at the end a structure —thermogeometry—is found. 
Each case has to be recomposed and informs the analysis of the previous case, 
thus modifying the meaning of analysis already made. Solved case by case, 
Fourier’s thermogeometry is not the result of a synthesis: it is, in its ordered mul
tiplicity, a direction for an analysis always reformed by synthesis.

As in any analysis properly done, there is the problem of the end of the theory, 
that is the moment where the back and forth move has to be stopped. It is here 
signalled by pure repetition, when any new case only brings computations but no 
renewed analysis. Fourier does not theorize, perhaps because he judges repetition
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as not being sufficiently objective. And he was right, as his intellectually richest 
experience came long after he had thought his Theory ended.

IV Fourier’s Transform: an Erasing of Synthesis

The most remarkable example of the efficiency of this style is provided by Fouri
e r’s transform, for which we first of all have to recall the extraordinary success in 
contemporary sciences, from solid-state physics to pseudo-differential operators, 
from wavelets and magnetic nuclear resonance, to a spectacular spread out in 
chemistry or medicine. It is the last case considered by Fourier in his quest for 
mere heat propagation46, a case which he considered only in his text of 1822 
almost without manuscript preparation. It is moreover a case for which the geom
etry is the flattest, just presenting an indescemible diffusion of “heat motion in an 
homogenous solid mass whose dimensions are all infinite” (ibid., I, 387, n° 342)47. 
A case which would not be the possible focus of an analysis had not previous 
results shown the role of proper modes. The indiscernible geometry of the space 
can now be structured into a thermogeometry and therefore made analyzable: by a 
feed-back, in this process the mirror effect from the apparently dull geometry 
helps in turn to better “see” previous analyses of more particular cases.

By separation of variables, proper modes are easily found for the general “spa
tial” case which can be summarized by a partial differential equation (for which 
there exist a constant k, obviously a positive one which reflects physical parame
ters). This equation rules temperature allocation T(x,t) where jc runs through all 
real values—this is spatial freedom—and time t runs through real positive values 
only48.

dT _ d 2T
dt “  dx2

Right away, the case is a functional one as Fourier allocates an initial distribution 
of temperature—he writes F(x)—and makes clear, in his rigorous manner, that 
this function has to be an arbitrary one, under the specification that the function is 
defined over an (arbitrary) segment. A purely mathematical analogy is thus pre
pared with the case of the lamina for which the bottom temperature— involving a 
repartition on another segment—was also thought of as an arbitrary function on a 
given segment. Such a situation gave place to Fourier series (developed in a co
sine series). Strong as he is from this result, Fourier may now begin by imposing 
a symmetry property to function F: it will be an even function (F(x) -  F(-x)) as is 
the cosine function and the definition segment will have the origin as its middle 
point. But this is pure commodity.
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Proper modes are many, e"*?2* c o s ^ , with a positive real parameter q, and the 
trick for the computation is just to look for “simple” modes: Fourier no longer 
tries to prove their “property”; it has been seen in the lamina case, in the armilla 
case, etc. The passage from the discrete situation—that is all previous cases with 
a enumerable numbering of proper modes—to the continuous situation of the new 
geometry imposed by the freedom offered to parameter q, presents no difficulty; 
neither to Fourier nor to any mathematician of his time49. All have learned how to 
manage the passage by precisely using Calculus and by replacing a discrete sum 
by an integral. Without batting an eye, and by sheer analogy with the formula 
obtained in the lamina case, Fourier writes for the temperature T at point x and 
time t

T (x,t) = J Q(q)e kq ' cos qxdq ,
o

where Q is a function of the only variable q, the integral being extended to the 
whole domain of q, that is from 0 to °°. This domain is not a fiction invented by 
the mathematician: it really is the space of what is “proper” and it does not depend 
upon the nature of function F or of the segment where it is defined. In the same 
way as with the lamina where one was compelled to suitably compute coefficients 
relative to the discrete family of proper modes, here “the difficulty lies in suitably 
determining function Q” (ibid., I, 390, n° 345). The initial condition (t = 0) in
deed yields a functional equation for Q.

F(x)  = j Q(q)cosqxdq 
o

In this equation, function F  is known and function Q is the unknown. In other 
words, analysis has its object. But this is not the last aspect. In its turn, synthesis 
will change the object in order to present a new object to analysis: this will be the 
Fourier transform. But everything in its own order. In a suggestive fashion, 
Fourier speaks of an “inverse problem” as he is confronted to what, after I. Fred
holm and D. Hilbert, we call an integral equation of the first class. He is conscious 
of the novelty and the interest of this “singular problem” (ibid., I, 391, n° 346). In 
order to solve it, he reinterprets the result obtained in the lamina case: such a back 
and forth move is the main component of his method. For the lamina, the n-th 
order Fourier coefficient of the even function is obtained through an integration 
by summing the product of the temperature allocation by function cos nx. Then, 
multiplying this computed coefficient once more by function cos nx, and summing
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this time over all integers n, the original allocation /  is found once again. Such is 
the lesson given by an investigation of the formula for even and 2tc-periodic func
tion. In order to avoid the exception of the coefficient of zero order, and precisely 
to avoid putting the analogy to come at a disadvantage, Fourier uses all integers, 
positive and negative, to exhibit a formula for the lamina case:

In

d n ~  2n J f (x )C O & n x d x  

0

and

n=+oo
f ( x )  = ^ a n cosnx

n = - o o

Thus, in the new case Q where the “proper” domain for q is no longer the set of 
integers but the interval of all real numbers from 0 to °°, Q has to be obtained by 
an inversion

Q(q) = ijF(x)cosqxdq

Symmetry of the roles played by F and Q is now apparent: up to a constant, the 
same formula links the two. Judiciously, Cauchy (1817) speaks of “reciprocal func
tion”. An explicit involutive relation is available. This is equation (E) as Fourier 
calls it (OD, I, 408, n° 36) in order to magnify its importance51.

F(x) =  j  j F(a) da J cos q(x-a)dq ^
-o° 0

The straightforward meaning of (E) is an absurd one: an interpretation. But 
this task appears to Fourier more as the duty of his posterity than his own51. To 
award the merit of the invention of (E) possibly to Cauchy does not in fact modify 
Fourier’s office. Not only was his part to provide a unique meaning to the word 
“sum” appearing in two occurrences in the lamina case— integration and discrete 
summation—but also to show that the two opposite functional operations of har
monic analysis and of harmonic synthesis were the same operation of a “sum” 
after a multiplication by a proper mode. Summation in the sense of integration in 
one occurence, summation in the sense of series in the other: the difference is a 
technical one, not a basic difference. This is what function Q brought to attention,
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and what the “spatial” case of heat propagation brought back to all other cases: Q 
is obtained from F  by an “inverse” operation of the one which yields F  from Q. An 
inverse operation, but as well a similar operation. Analysis and synthesis in this 
sense are formally identical operations. We already underlined the back and forth 
motion from analysis to synthesis; their formal identification, in some way, is the 
final result of the philosophical quest of Fourier.

He knows that the process he followed cannot replace a satisfactory mathemat
ical proof: an analogy is no proof. But nevertheless the formula gives the general 
allocation of temperature. Fourier is eager to give an integral which, due to an 
exponential term, obviously converges:

T(x,t)  = F( a ) d a j e  ^  1 (cosqx)(cosqa) dq
o o

Such a representation, without any doubt, is the aim of the Theorie, as the 
concrete numerical computation is never forgotten: it is the only way to get a 
verification. However, this concretization does not hid the main idea, a functional 
one, which is the “equivalence” between functions F  and Q. This very idea moulds 
a second one, the idea of a transformation: so occurs the Fourier transform52. A 
transform for which, after what may be called experimental computations for spe
cial and elementary functions53, Fourier individualizes a property. It is the transfer 
of a derivation or an integration operating on a function into a multiplication of 
the transformed function by a power of the variable, either positive or negative. 
This transfer is directly linked to the arbitrariness of the functions in order to fix 
a regulating principle:

“By this transform, a function in some way acquires all the properties of trigonometric quanti
ties; differentiations, integrations, summations of series are as well performed on general functions 
in the same way as they apply to trigonometric or exponential functions.” {ibid., 1,505, n° 419)

This is the use of such a principle which gives its value to distribution theory, a 
large and powerful generalization of the concept of function which was organized 
in the 20th century by Sobolev and Laurent Schwartz. The direction which has to 
be taken by posterity appears therefore as obvious for Fourier: “the use of such a 
proposition gives at once solutions of partial differential equations with constant 
coefficients” ({%/.)• The solutions are precisely obtained using the method of “prop
er modes”; in the instance of these equations they are exponentials on which it is 
now possible to work inasmuch as “theorems of which we speak give to general 
and arbitrary functions the qualities of exponentials” (ibid.). “Representation” is 
thus an extraordinary tool for the “expression of complete solutions”. Nowadays, 
it makes the kernel of pseudo-differential operators, an expression which wonder
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fully adheres to the idea of Fourier “representing” as well differentiation and gen
eralizing it54.

If technically speaking, for trigonometric series as well as for integrals, Fouri
er has shown that the analogy between analysis and synthesis lies in their being 
reciprocal, at the same time he justified the necessity of the back and forth motion 
followed in the Theorie analytique de la chaleur. His theory is altogether an anal
ysis and a synthesis.

V The Scientific Sufficiency of a Chiasmus

In the two historical cases we investigated—Viete, Fourier—the passage from 
analysis to synthesis is no stylish pride of the author: it seems a required one, due 
to the nature of the mathematical objects and to the project of the inventor. There
fore it may be appraised as a scientific style. Moreover, in both cases, de facto 
there is a calling into question of what analysis is. But in both cases we find no 
soothing substitutions through synthesis. A synthesis may certainly be sought for 
by Viete, but he has not achieved it, which is an acknowledgement in itself. For 
Fourier, synthesis is viewed as impossible, or better not useful. In both cases, a 
criticism is dispatched in the mathematical way, that is on the edge of a problem, 
and not for itself. This is precisely the in concreto which Kant judiciously as
signed to mathematics.

As such a mathematics is a culture, the question immediately arises of the 
relation between such criticism and more general thought. At the time when Fou
rier wrote, simultaneously a particularly severe criticism of the analytical way had 
been made by Kant and the scientific world itself was questioning its efficiency55. 
Kant invented the synthetic judgment a priori in order to maintain the idea of a 
progress, a progress which professionals themselves were no longer seeing as an 
inexorable chase56. One might think that this was the end of an era, and this was 
thought by contemporary thinkers57. In the time of Mete, the questioning was no 
less active; but it was in a context of analysis perceived as a new way, a way which 
may then stumble over tradition.

A suspensed analysis with Viete, a synthesis by analytical exhaustion by Fou
rier, the dissolution of differences between analysis and synthesis is striking in the 
two texts we have chosen. And the dissolution is independant of the particular 
meanings the concepts of analysis and synthesis may have had. What makes his
tory then, is that in order to solve a problem—and I take the word in its general 
epistemological meaning—no appeal was made in either cases to some other in
tellectual resource. It thus ascertained that science is self-sufficient. The judge
ment which Blondel gave about the imposssibility of science to know itself is not
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always justified by the history of mathematics. It may be a valid judgment of the 
value of science in some times of restlessness, but not of all times of restlessness. 
Centre F. Viete o f  the History and Philosophy o f  Sciences,
University o f  Nantes

Notes

1 The constant reference to Pappus as an origin for the meaning o f the analysis/synthesis opposition, is 
certainly fascinating. We may think that F ra n c is  Vidte has some responsibility for this reference in 
modem times (using perhaps the recent Latin edition o f Pappus by F. Commandino (1588)):

“II y a une voye aux Math6matiques pour enquerir et rechercher la verity, laquelle est dite avoir 
6st6 premidrement trouv6e par Platon, et par Theon appellee Analyse; et d ’icelles d6finies 
l ’Assumption du requis comme conced6, paries consequences au vray concede.” (Vidte IV, 13)

However, one should not neglect the following, also historical, fact: ViSte explicitly refers to the Ancients 
in his Isagoge in artem analyticam (1591 a) in order to offer a new kind of analysis o f epistemological 
thought. He coins a specific name for this new analysis (exegetics). Therefore, Vi£te interprets past 
mathematics in order to justify the advent of a new approach. Mutatis mutandis, we could say the same 
for Pappus: by exploring analysis he was obliged to locate it opposite to synthesis and he also claims his 
novelty. Isn’t it true that mathematics is an action?

2 To qualify the opposition between analysis and synthesis as part of a back and forth motion seems a 
natural conclusion once the usual reference to Pappus has been stated. We use a translation from the 
French version of Ver Eecke in order to emphasize Pappus’ choice (“that is called the domain of analysis, 
as I conceive it...”):

“Now analysis is the path from what one is seeking, as if it were admitted, through its conse
quences to something that is admitted in synthesis. That is to say, in analysis we suppose what is 
sought as if it had been achieved, we look for the thing from which it follows and again from what 
comes before that, until by regressing in this way we come upon some of the things that are already 
known, or that occupy the rank of a first principle; and we call this kind of method ‘analysis’, as if 
to say a reduction backwards.” (Pappus VE, II, 477)

3 More Cartesian than it was possible to be, in his Elemens de Geometrie (1667) Antoine Amauld imposes 
a “natural order” to the display for the various objects of mathematics; he was, paradoxically, aiming at 
shaping a “natural” thought. Cf. Gardies (1984, ch. 4) and Dhombres (fc a).

4 A general feature o f mathematics as it was fervently taught in the first Jesuit colleges was to develop 
reasoning according to Euclidean synthesis. But no effort was made to render synthesis as an objective of 
the teaching. Cf. Dhombres (1996a).

5 In his thesis, P. Trabal (1995) tries to describe the move around modem mathematics using a sociological 
approach. He gives perhaps too much credit to the novelty of an event without inserting it into the long 
history of teaching mathematics.

6 By contrast, one could underline the weak part played by analysis/synthesis opposition in histories of 
mathematics which emphasize technical aspects. An example is provided by the. Elements d’histoire des 
mathematiques, according to Nicolas Bourbaki (1974). Cf. Dhombres (fc&). 2

2 It may be useful here to add a quotation from I. Kant, which Blondel certainly refers to, but he refutes the 
idea it implies:
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“[...] all the steps that Newton had to take from the first elements of geometry to his greatest and 
most profound discoveries were such as he could make intuitively evident and plain to follow, not 
only for himself but for every one else.” (Kant 1790, § 47, quoted from Kant (CJM))

8 “Si fuerint magnitudines continue proportionales, Erit vt terminus rationis maior ad terminum rationis 
minorem, ita composita ex omnibus ad differentiam com posite ex omnibus & maximae”.

As I do not intend to enter here upon philological explanations, I will not explain why the word ‘ratio’ 
does not denote here the quotient of two successive terms o f the progression, but, by metonymy, the 
progression itself.

9 That the progression is convergent to provide a sum is guaranteed by the decrease o f the successive 
terms.

10 For a mind o f the Renaissance, the intervention of Fn in a proportion is the equivalent of an exact 
equality providing Fn.

11 A possible reference is proposition VII, 12 of Euclid’s Elements.

12 Vi&te’s bibliographical reference is unfortunately obscure to us inasmuch as we find no identical 
algebraical computation in an earlier book of Vidte (1591a). But some works of Vifcte are lost; cf. Grisard 
(w.d.).

13 In his use o f letters, at least in geometry, Vidte makes a distinction between vowels used for known 
quantities and consonants used for the unknown ones. In the text under scrutiny, only consonants appear. 
It must be understood that each quantity, in its own turn, is an unknown to be computed from the three 
others. One of the relations fixes the value ofX and states “On the contrary if,D, B, F  are given,X will be 
given. In fact it is certain

B times F 
+D square 
- D  times F

B

will be equal to X ” (1593,29).

x  F ‘V td—x F
In modem notation, this reduces to x<x> = —----- 1— -— .

*2
14 If there is such a sophisticated literary composition, it means that V o te ’s reader is considered by him as 

his equal. Such a reader cannot fail to notice that in its litteral form the theorem uses only three imputs 
and this is contradicted by its transcription through four relations.

1^ That is the way we chose to translate “mechanici”. (“Et euanescere afferent Mechanici...”)

1 6  This is the usual form of this result during the 17th century which is equivalent to our modem formula

n = o o

Y a x " - 1 = -------. Apparently three traditions exist for the proof and in each one it is proved that
«=i x

something goes to 0. One tradition, a logistic one, is Vtete’s way which will be used by Fermat; a second 
one, a geometrical approach which inscribes computation in a drawing was founded by Gregory of 
Saint-Vincent; the last one, using a mechanical device, is chosen by Isaac Barrow (Dhombres 1995).
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17  In Greek in the original (eosq Arteipov). Archimedes ’ sums 3 + — + —  + and for this he establishes
4 4 2

3 3 3 1 3 f 3 )the formula for the remainder 3 + — + — +...+-----h------- = 3 — . A double reasoning by contradiction
4 42 4" 3 4" U J

3 3 3
yields 3 + — + — + ...=  4 . On this example, Vidte’s notations can be interpreted with F  -  4 and

4 42 4”

^  “Composita ex omnibus fiet 4—Neque enim magnitudinibus

* 9 Roger Cotes is explicit in his preface to the second edition of the Principia (1687; 2nd ed. 1713), when 
he describes the third class among those who cultivate natural philosophy:

“They proceed therefore in a twofold method, synthetical and analytical. From some select phe
nomena they deduce by analysis the forces of Nature and the more simple laws o f forces; and from 
thence by synthesis show the constitution of the rest.” (quoted from Motte-Cajori translation)

20 The name with its meaning is due to Fourier.

2 1 Wither, C  andD being constants having a physicical meaning, heat equation in written in the form:

dr K ( d 2T d 2T d 2T 1 

dt ~ CD { dx2 + dy2 + dz2 J

where T (x,y , z, t)  is the temperature at point (x,y, z) and at time t. This equation is the kernel of the 
Theory. Analysis can then be described as all that has to be developped in order to make use of this 
equation. In the Mecanique analytique, Lagrange was putting to test a different ambition: he tried to 
interpret the whole science of motion from a unique abstract theorem, the so-called principe o f  virtual 
velocities. For sure, he found both Newton’s law and velocity in its mathematical acception, but these 
two notions were not coming first. There is therefore a great temptation to attribute to Lagrange the 
organization of the analytical way, which has to be distinguished from Analysis.

22 An edition of Comte’s Cours, unfortunately a critical one, was prepared by M. Serres, F. Dagognet, H. 
Sinaceur (Comte SDS).

23 References to the Theorie will be quoted from the edition o f  (Euvres de Fourier (OD), edited by 
G. Darboux. We add a numbering due to Fourier himself, in order to help references to the original book 
or to the English translation by A. Freeman.

24 To make a comparison with the perennial quality o f  the Elements does not imply that Fourier adopted 
an axiomatic method. In the Theorie analytique de la chaleur, we have no unfolding from propositions 
to propositions and from common notions to definitions. The construction is of a very different kind, for 
which the qualification of an enveloping movement is far better. We can but evoke this construction here, 
at least in the aspect which may concern analysis and synthesis.

25 To answer such a question, or rather to see its meaning, we should have to go back to the old debate on 
mathematical rigor. It is historically and mathematically well known that the qualification of rigor was 
given to Cauchy, for his Analysis (1821), but refused to Fourier for his Theorie (1822). Is it possible to 
conceive any kind of rigor if  no construction project is at stake?
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26 The table of contents takes twenty one pages o f the Theorie in the edition o f the Complete works o f 
Fourier, for a text totalling five hundred and sixty three pages. Sometimes, this table shows more than 
what is explicitly proved in the corresponding article; as if Fourier had written his table in the manner of 
a programme to be completed and, later, would have had to reduce his ambitions. One would, at least, 
admit that such an ambivalence leads us to the trail o f an analysis corrected by some kind of synthesis. 
But we will have to take a far longer path in our study of analysis and synthesis as organized by Fourier.

27 We cannot properly justify here such a description o f the work done by Fourier. Many authors have 
thoroughly described the Theorie analytique de la chaleur, first o f all Auguste Comte whom we already 
quoted. There is also Gaston Bachelard (1928). Among historians, we may quote I. Grattan-Guinness 
(1972) and J. Herivel (1975) and, with the ambition to deal simultaneously with the biography and the 
scientific work, J. Dhombres and J.B. Robert (1996).

28 Properly speaking, history of science, i.e. history of what was done before Fourier, almost never intervenes 
in his Theorie. Probably this refusal of a past is based on the fear that it may bring a kind o f contingency 
to the construction; it may generate unjustified images contradicting the objective o f unrolling a proof 
which pretends to be as close to Nature as possible. In other words, anything concerning a past history 
will appear under Fourier’s pen as a counterpoint. It thus has two purposes; one is to measure the progress 
made by Fourier himself and the second is to make past errors conspicuous, in order to avoid them. In a 
very concrete way, we find here the attitude of Auguste Comte about the positive interest of history of 
science. And this is precisely where he mentions analysis and synthesis:

“Various sects of metaphysical philosophers so abused, for a century, of those two expressions, 
using such a variety of logical and deeply different acceptions, that any righteous mind to-day 
should loath to introduce them in the discourse, at least when the circumstances of their use do not 
specify in a natural way their positive meaning.” (1830-1842,1.35, vol. Ill, 33)

29 Perhaps we should linked this with an expression which Newton used, “the nature o f things”.

30 Although commentators frequently overlook its meaning, the synthetic aspect is very strong in the 
remarkable Remarques generates sur la methode qui a servi a resoudre les questions analytiques de 
la chaleur (General remarks on the method which has been used in order to solve the analytical 
questions o f  hear, Fourier OD, 1 ,524-531, n° 428). We cannot avoid noticing that the method itself is 
not stated as being an analytical one: the qualification is only used for the questions which the Theorie 
arouses.

31 The history of the expression “harmonic analysis” is a curious one: it started from the domain of 
mathematical instrumentation during the 19th century (Harmonische Analysatoren) to the theory during 
the 20th century (as in the title Harmonic Analysis used by Norbert Wiener (1930 and 1938)).

32 For a 2^-periodic function, if we add the unit function, those simple modes are cos nx and sinnx where 
the integer n runs from unity.

33 To do the harmonic analysis of a 2 ̂ -periodic function is to associate to this function its Fourier coefficients

 ̂ 2 n j 2n j lit
a„ = — [ / ( * )  cosnxdx  and bn = — f f(x )s in n x d x  for n >  lan d  a0 = —  \ f ( x ) d x  

K 1 n J 2 n J
0 0  0

Fourier was obliged to explicitly state the boundaries of a definite integral: his notation is so 
instrumentalized that the integral becomes an operator. In order to explain Fourier’s integrals, he later 
will use an for negative integers n.
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34 The synthesis o f a 2^-periodic function is, using its Fourier coefficients, to reconstruct /  from the infinite

oo

sum ^  (an cosn x + bn sin nx).
n-0

2k

35 Such orthogonality relations are o f the form J  cos n x  cos wrote =  0 fo r« * m . J .B .P 6cot( 1992) provides
o

an excellent historical and epistemological presentation of these relations over two centuries.

3 6 1 am not pretending to reconstruct the genesis of invention in the case of Fourier in a few lines; I am not 
trying to confirm or to refute what he himself claims. I already said that the genesis he describes is 
presented by Fourier as a part of his Theorie', both as a tale and as an account: therefore I mainly keep the 
order he has given. Whatever is the computation leading to Fourier’s coefficients, in the precise case of 
orthogonality relations obtaining them is always a second move. Even if such relations were unconsciously 
copied by Fourier from Euler, Fourier first presented analytical computation for the coefficients, both in 
his early manuscripts as well as after he has had time to synthetically polish his Thiorie analytique de la 
chaleur. The book issued in 1822 is the last form of many earlier manuscripts, a first and complete one 
finished in 1807, a second in 1811, part of which was published by the Academy o f sciences (Fourier 
1819-1820) later after obtaining a “Grand Prix” in January 1812.

37 if  i willingly omitted to stipulate as a preamble that Fourier’s work was inscribed in physics, it was to 
avoid, at least for a modem mind, the anachronistic opposition between pure and applied mathematics. I 
wanted to avoid a too easily thought prejudive of a weaker kind of rigor for a mathematician working on 
real objects and on the real world, for whom the distinction between analysis and synthesis could have 
been minimal, distinctions seemingly relevant to the pure world of mathematics only.

38 The example of the so-called Bessel’s function is an important one for Fourier. The reason of the emphasis 
is that it helps him universalizing his method by removing it from the too restrictive category of 
trigonometric series. Orthogonality of the Bessel functions, which is certainly not an obvious result as in 
the case of trigonometric functions, becomes therefore both a tool and an explanation. This orthogonality 
interprets the orthogonality of trigonometric functions: it is not only viewed as a generalization but, as an 
understanding.

39 Once more, we have to rely on what the reader knows of Fourier’s mathematics (see bibliographical 
list); we are in no way attempting to describe the originality of his treatment o f the so-called Fourier 
series, Bessel functions or of the Fourier integrals.

40 Both in physics and in mathematics, Fourier’s theory is literally unchanged; it has been the subject of a 
considerable formalization by the practise of teaching. Therefore, the objective of the proof for a “proper” 
character no longer appears as essential: it seems already known. This is often the result of the conjugate 
weight of history and objectivity: this is also the main difficulty in any history of objectivity.

41 With a functionf (y)  -  1, Fourier was compelled to express 1 as a trigonometric expansion:

------ cos(2n + l)y
2« +  l

It gave him the way to express temperature F(x, y ) at any point (x, y) of the lamina.

A OO f
F(x, y) = -  y  (-1)" — eH2n+l)x cos(2 n +1 )y

*7o 2n + l
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42 This transformation of the function concept is certainly one important part of the constitution of Analysis 
as a domain. The fact that Fourier is linked with it is not just a chance. It is part of his project: the 
Discours preliminaire of his Theory is explicit.

43 In general, for fly )  -  cos (2n+ l)y , F(x, y) -  kf(y)  w ith A =  — ( - I n — -— L-<2n+1>Jt.
n 2n +1)

44 in the twenties of the 19th century, Cauchy has ended this conception by defining a definite integral from 
“Riemann’s sums”. In the process, area becomes a property but not a universal one. Thus, a continuous 
function possesses an area, but not necessarily an arbitrary function. Fourier took no notice of this change.

45 Contrary to what has been claimed by some positivist commentators, even like G. Bachelard: they regret 
that Fourier renews his analysis in each case, and therefore forget the “proof’ by exhaustion provided by 
Fourier. In other words, they take for granted the claim of Fourier’s adequation to the world, whereas the 
author makes efforts to prove it. In this sense, scientific positivism is not a defect o f Fourier!

46 Sumptuously entitled “On diffusion of heat”, the last chapter of the Theorie analytique signals that no 
particular geometrical body overtightens the spread o f heat.

47 The ordering of cases where heat propagation is to be studied is an important part of the construction of 
the theory; it is neither an organization issued directly from the empirical world; nor an organization 
ruled by the criterium of Cartesian simplicity as the simplest case, the purely spatial one, is the last. The 
ordering has as its objective to let analysis and synthesis interact.

48 For reasons of symmetry, the three space variables are reduced to one only. As usual with Fourier, even 
with a final case, a first step begins by an analysis and therefore by a reduction of the problem. This 
simplified model has many possible interpretations: one is the diffusion of heat in the space when the 
temperature is known in a band (portion between parallel planes) and constant on each intermediate 
plane.

49 is it necessary to recall here that, concerning sizes, there is no difference made during the time of Fourier, 
between an enumerable infinite and a continuous one. Cantor will exhibit the difference in the 1870’s, 
opening a new era for mathematics as a whole, and for analysis in particular.

50 Equation (E) is written in the general case and F  is no longer required to be an even function; this 
explains only cos qx cos qd’s replaced by cos q(x-a)

51 Posterity will work as Fourier predicted: it only took far more years than we expected and in the process 
the memory of Fourier as a decent mathematician will suffer. We have attempted to “tell the story” in the 
last chapter of Dhombres and Robert (1996).

52 Let us give a standard definition of Fourier’s transform.

33 Thus, he computes the Fourier transform for power functions and is led to

Many other formulae are given, a sort of first dictionary for Fourier transform.

54 The main difference between to-day’s attitude and Fourier’s way is that he realizes the transform as 
describing the operations duly made by Nature. On the contrary, the modem point of view is a formalist 
one: it is just the adaptation of a theory, using an analytical form subjected to algebraical handlings, in 
order to find solutions to partial differential equations.
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55 b . Timmermans (1995) remarkably pointed this philosophical inquiry, and doubt, about analysis at the 
end o f the 18 th century.

56 To recall the existence o f a restlessness, it is enough to mention some sentences of Evariste Galois. He, 
around 1830, proposed to jum p over computations, as analytical deductions were no longer inventive 
tools.

57 in  a collective way, as it represents the opinion o f the members o f the First Class o f the Institute, the 
impression of having to create the conditions of a new era can be seen in Delambre (1810).

MORITZ EPPLE

STYLES OF ARGUMENTATION 

IN LATE 19TH CENTURY GEOMETRY 

AND THE STRUCTURE OF MATHEMATICAL MODERNITY

I Introduction

In this paper, the distinction between analysis and synthesis in mathematics will 
be related to a second distinction, that between concrete and abstract forms of 
mathematical argumentation or, more generally, of mathematical practice.

As discussed in other contributions to this volume, the distinction between 
analysis and synthesis in mathematics has a long history, involving topics of a 
rather different nature. There is the proof-theoretical aspect, which appeared first 
in the ancient Greek uses of the term. There is the aspect of epistemology, which 
played a central role in Descartes’ Discours de la methode and Kant’s Kritik der 
reinen Vernunft, bearing on central issues in the philosophy of mathematics; and 
there is the aspect of two different research styles in geometry, made possible by 
the merging of geometry and algebra in early modem times and which evolved 
into a great controversy in 19th century projective geometry.

The situation with regard to the distinction between concrete and abstract con
cepts, knowledge, or argumentations is similar. Again, this distinction has a long 
history, including its connections with mathematics. Suffice it here to say that 
Aristotle used the Greek counterparts of abstraction (dcpaiQEOiq and xwpicrpoq) to 
describe the ontological status of the objects of mathematical knowledge as well 
as the epistemic perspective which mathematicians make their own in looking at 
real (that is for him: concrete) objects as mathematicians'. And even more than is 
the case with the terms ‘analytic’ and ‘synthetic,’ the expressions ‘concrete’ and 
‘abstract’ have often been used in a rather intuitive way, without explicitly intro
ducing them as notions with a clear meaning. (Even though there is at least one 
technical sense to which one could refer: namely the technique of defining math
ematical terms “by abstraction”, i.e., by means of invariance under an equiva
lence relation2.)

Here I will not try to give a comprehensive history or philosophy of the role of 
this distinction in mathematics or even in modem mathematics. Instead, I want to
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begin my discussion with a rather limited historical question, namely: what be
came of the controversy between the analytic and the synthetic style of geometry 
towards the end of the 19th century? If one uses the term ‘mathematical moderni
ty’ for the period after the great changes in 19th century mathematics (as I shall 
do), then the controversy about analytic and synthetic geometry seems to be a 
premodern affair. Later there arose a new, modern difference in geometrical style, 
exemplified by the geometric writings of Felix Klein on the one hand, and David 
Hilbert on the other. It is a difference of this latter type which I want to describe in 
the following, using the distinction between a concrete and an abstract style of 
mathematical reasoning.

After a few remarks on the historical developments in question, I will try to 
make my use of the terms ‘concrete’ and ‘abstract’ a little more precise philoso
phically. It will turn out that, as in the case of the analysis-synthesis distinction, 
the difference between an abstract and a concrete mathematical argumentation is 
not confined to geometry, but represents a rather general difference in the style of 
mathematical reasoning. Finally, I want to relate this difference to the historical 
reconstruction of mathematical modernity due to Herbert Mehrtens. My proposal 
will be to use the distinction between abstract and concrete mathematical styles 
as an internal criterion to judge the modernity o f a piece o f mathematical re
search. In the course of the discussion, a historical example—the invention of the 
braid group—will be discussed in some detail in order to bring out how this crite
rion could work in historiographical practice.

II From Synthesis and Analysis to Concrete and Abstract Styles of 
Mathematical Argumentation

H.1 Concerning the development of geometric argumentation during the 19th 
century, I shall restrict myself to some rather general remarks, most of which are 
due to the historical writings of Felix Klein. Certainly, they do not really capture 
the complexity of the historical development. However, they may serve the pur
pose of setting the stage for the discussion that follows. Let me begin by recalling 
some aspects of the controversy between synthetic and analytic geometers in the 
early 19th century.

It is well known that a revival of a “pure” approach to geometry was advocated 
by important pupils of the French mathematician Gaspard Monge3. This approach 
avoided the algebraic formulation of geometric relations which had proved so 
successful since the appearance of Descartes’ Geometrie (1637). Instead, a re
search program gradually evolved which aimed at finding and using purely geo
metrical techniques to investigate properties of various geometrical objects in the 
plane or in space. A typical example was Poncelet’s use of the machinery of the 
polar correspondence between points and lines with respect to a given conic sec
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tion in order to translate theorems about point configurations into theorems about 
lines and vice versa. This research program, which eventually also found support
ers in Germany, was particularly successful in the investigation of projective prop
erties of geometric figures. For instance, Jacob Steiner had shown in 1832 how to 
generate conic sections and certain surfaces by means of projective corresponden
ces between pencils of lines or planes4.

On the other hand, some French and German mathematicians immediately 
realized that the projective properties which had become the focus of geometrical 
research could equally well be treated by means of algebraic equations. The main 
step in this direction was the introduction of adequate systems of coordinates by 
Mobius and Plucker in the late twenties of the last century. The relation between 
pole and polar with respect to a given conic thus appeared, for instance, as a 
simple consequence of a bilinear equation in homogeneous coordinates. It did not 
take long before mathematicians like Plucker and Hesse handled the formulas of 
projective geometry quite masterfully and could use them to establish astonishing 
facts like the configuration of inflection points of a general curve of third order. 
Their achievements contributed essentially to the rise of the new field of algebraic 
geometry.

synthetic analytic

C : f ( x , y , z )  =  0 
P : ( x ' , y ' , z ' )

df
dy

l - .^ -x ' + ^ y '  + ^ - z '  = 0 
dx

sL
dz

1: Pole-polar correspondence

II.2 It soon became clear that most parts of projective geometry could be formu
lated either synthetically or analytically, and both parties competed in re-proving 
results of the other party in their respective idioms. Thus it is obvious that these 
were not two different branches of mathematical knowledge but rather two differ
ent modes of presenting, acquiring and justifying this knowledge. Modem theo-
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ries of scientific knowledge have furnished us with a number of concepts to de
scribe such differences. Ludwig Fleck’s notion of a thought style or Gerald Hol
ton’s notion of a pair of methodological themata would apply here (Fleck 1980 
and Holton 1978).

This view was expressed already by Klein in his Elementary mathematics 
from a higher standpoint of 1908:

“Synthetic geometry is that which studies figures as such, without recourse to formulas, whereas 
analytic geometry consistently makes use of such formulas as can be written down after the adop
tion of an appropriate system of coordinates. Righdy understood, there exists only adifference of 
gradation between these two kinds of geometry, according as one gives more prominence to the 
figures or to the formulas. [—] In mathematics, however, as everywhere else, men are inclined to 
form parties, so that there arose schools of pure synthesists and schools of pure analysts, who 
placed chief emphasis upon absolute ‘purity of method.’” (Klein 1908-1909, II, 55)

To show that the controversy lay in fact on this level, we may look at the 
critical objections of the synthetic geometers against analytical arguments. One 
such objection ran as follows: In a sequence of algebraic manipulations of a for
mula, it may be impossible to keep track of a sequence of geometric steps to which 
the formal manipulations should correspond. Therefore, we arrive in the end at a 
geometrical statement without knowing what its place in the system of geometric 
truths is. As Chasles put this argument: “Is it then sufficient in a philosophic and 
basic study of a science to know that something is true if one does not know why 
it is so and what place it should take in the series of truths to which it belongs?”5 
Obviously, Chasles refused to consider an analytic derivation as a adequate justi
fication of geometric knowledge, even though he allowed for the correctness of 
the result of such a derivation.

Synthetic geometry thus appeared as a form of methodological purism. A par
ticular argumentative context was specified—for example, the geometry of sys
tems of projection rays6—and criteria were given which singled out the accepted 
types of questions and arguments relative to that context. The same was true for 
geometers with strong analytic commitments: here the argumentative context was 
the manipulation of algebraic equations in the space of homogeneous coordinates7.

11,3 In the second half of the 19th century, the most fruitful lines of geometrical 
research were no longer structured by the research programs of analytic and syn
thetic geometry. These lines were, first, the one leading to the development of 
algebraic and differential geometry, and, second, the line leading to a strictly ax
iomatic approach to geometry. Klein’s later geometrical writings were intended to 
convey to the reader some main ideas of the first line, ideas which were due to 
people like Clebsch, Riemann, or Lie. To Moritz Pasch and David Hilbert we owe 
the classics of the second line8. Let me briefly illustrate this reorientation with
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some remarks pertaining to Klein’s Vorlesungen iiber hohere Geometrie (1893) 
and Pasch’s Vorlesungen iiber neuere Geometrie (1882).

Felix Klein had been one of the first to make clear that the opposition between 
analytic and synthetic geometry had lost its importance. In a note to his Erlanger 
Programm he had written in 1872: “The difference between recent synthesis and 
recent analytic geometry has no longer to be considered as an essential one, since 
the ways of reasoning on both sides have gradually evolved into quite similar 
forms.” (Klein 1872, 74) Later he spoke of a “certain petrifaction” in geometry, 
due to the exaggeration of purist orientations9.

Klein himself avoided a commitment to one of the sides. Early in his Vorlesun
gen iiber hohere Geometrie he said: “We pronounce it already here as a principle 
that we shall always combine the analytic and the geometric treatment of our 
problems and will not take a one-sided point of view.” (1893, 26) In fact, Klein 
himself built both aspects simultaneously into his own unifying conception of 
geometry. If he proposed to study geometric properties in terms of invariants un
der a group of transformations, he also combined new algebraic notions with typ
ical synthetic questions. For the topics presented in his Lectures on Higher 
Geometry, he favoured the name “algebraic geometry,” making explicit his inter
est in the geometric properties of algebraic objects, from zero sets of polynomials 
to differential equations. The list of topics mentioned is—as with most of his 
writings—impressive. It includes, besides traditional material of analytic and syn
thetic geometry, multilinear equations and determinants, quadratic forms, ration
al and algebraic functions, algebraic curves and surfaces, Gaussian differential 
geometry, differential equations, invariant theory, group theory, Riemann surfac
es, and some of Lie’s ideas. But also he hinted at subjects like graphical statics or 
the theory of cogwheel profiles.

II.4 Like Klein, Moritz Pasch acknowledged the importance of synthetic as well 
as analytic points of view. In the Preface to Pasch’s Lectures of 1882, we find the 
remark: “Analytic geometry has learned from synthetic geometry, and in case of a 
further fusion, there may emerge a higher geometry of a unified nature.” (1882,2) 
Perhaps, Pasch would have accepted Lie’s or Klein’s geometrical writings as a 
candidate for that higher, unified geometry. However, his own conception of geo
metry was directed at different aims. As is well known, he strove for a “pure,” 
axiomatic development of elementary geometry, making it a rigorous mathemati
cal theory by establishing its theorems on the basis of the smallest possible set of 
“core notions” and “core propositions” (ibid., 4 and 15). His basic notions and 
propositions are synthetic notions like points, planes, and incidence, and Pasch 
even placed his work in the tradition of synthetic geometry (ibid., 1). Only at the 
end of the book do we find a discussion of coordinates and of the continuum of 
real numbers, by which, as he says, analytic geometry is made available for the
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field of projective geometry (ibid., 179). However, it is quite clear that Pasch’s 
central aim was not intuitive, but conceptual, logical clearity. This comes out in 
his extension of the use of the basic notions, e.g. the use of “point” for a “bundle 
of rays” which reduces the number of necessary basic propositions, or his famous 
criticism of the logical gaps in Euclid’s Elements.

In Pasch’s book, we find again a consciously cultivated purity of method. We 
do not, on the other hand, find the wealth of connections to other mathematical 
disciplines present in Klein’s lectures. Neither do we see Pasch switching con
stantly between algebraic, geometric or even intuitive arguments. He remains strictly 
within the conceptual framework set out at the beginning of his presentation.

In this methodological respect, there is but a small step to Hilbert’s Grundla- 
gen der Geometrie (1899)10. Certainly, in Hilbert’s text the interpretation of the 
axiomatic method is rather different from Pasch’s view. (For the latter, geometry 
is still to be considered as part of “natural science” (ibid., 3); the basic notions 
and propositions encode empirical evidence (ibid., 16).) Moreover, the mathemat
ical treatment is complete in a quite different sense. But the style of Hilbert’s text, 
the strict adherence to a well-defined argumentative context and method, is quite 
close to Pasch’s and indeed very far from Klein’s.

II.5 The difference between the two lines of geometrical thinking connected to 
the names of Klein (or Riemann or Lie) on the one hand and Pasch or Hilbert on 
the other is not merely a difference in style but also a difference in the topics 
investigated. The inquiry into the relations between curves, surfaces and algebraic 
function theory leads to different mathematical questions than those concerned 
with the relations between the different groups of geometrical axioms. However, it 
is obvious that there is still an important difference in style between Klein’s Lec
tures on Higher Geometry and Pasch’s Lectures on Recent Geometry. It is a dif
ference in style of this kind which may be understood as replacing the issue of a 
synthetic or an analytic treatment of geometry in the context of mathematical 
modernity11. In order to mark this shift, let me propose to use the distinction 
between a “concrete” and an “abstract” style of geometrical argumentation. For 
the moment these are but two names. I want to explain my choice in the following, 
making the notions of a concrete and an abstract argumentative style more precise 
at the same time.

Let me begin by noting two rather obvious features of the shift from the anal
ysis-synthesis opposition to that of the concrete and the abstract, i) While the 
beginning of the century had seen a controversy between two competing, more or 
less purist methodologies, the interesting opposition by the end of the century is 
better described as one about methodological purity vs. methodological diversity. 
Pasch and Hilbert made a deliberate choice of methodological purism. Klein, on 
the other hand, explicitly favoured the use of different methods, and most of his
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mathematical achievements are closely related to this diversity of methods, ii) The 
second feature is a very different view of the generality of a piece of mathematics. 
The axiomatic style of Pasch and Hilbert sought to guarantee the general applica
bility of its results by reducing the argumentative context to its uttermost mini
mum. (It is only implicitly encoded in the axiomatic basis of a mathematical theory.) 
In Klein’s style, on the contrary, it was precisely the density of the argumentative 
context, the rich variety of topics and points of view discussed, which was intend
ed to show the general relevance of the ideas presented.

I ll A Philosophical Analysis of Concrete and Abstract Arguments

III.1 At this point I would like to sketch a philosophical analysis of the relation
ship and differences between an abstract and a concrete style of argumentation. 
Thus I leave history aside for a moment and make a digression into the philo
sophy of mathematics.

It seems that a more precise description of abstract and concrete arguments 
can start from two premises. The first is that mathematical arguments are pieces 
of mathematical practice, i.e., we have to deal with a question of the pragmatics of 
mathematics. The second premise is that one should begin with a consideration of 
the relation in question from a local point of view. That is to say, one should look 
at a small piece of argumentative practice and try to explain the difference there.

I take the practice of mathematical argumentation to be a complex of actions, 
such as defining, conjecturing, proving, etc.12 (These mathematical actions are 
immersed in communicative and social actions like publishing, giving talks, ap
plying for positions, organizing meetings, and the like.) Argumentative practice 
is organized in smaller units, which I shall call ‘mathematical games', using a 
notion for complexes of actions going back to Wittgenstein13. In the first half of 
the 19th century, synthetic geometry was guided by a set of methodological con
straints that defined a certain mathematical game, and similarly, analytic geome
try may be viewed as another, though related, argumentation game. Such games 
may be described by specifying the possible situations belonging to the game and 
the rules guiding possible actions in these situations. A part of the rules is deter
mined by, or rather, determines the mathematical subject of the game (e.g. geome
trical objects), and another part fixes the techniques, types of arguments etc. 
considered legitimate. Thus the games of analytic and synthetic geometry show a 
partial, but not a complete correspondence of action-rules. For instance, the pole- 
polar correspondence could be used in both games to derive dual theorems. (A 
closer look shows, however, that we have in fact two rules here: a purely geomet
ric construction, on the one hand, and a correspondence determined by a bilinear 
equation, on the other14.)
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We can immediately translate the two features of an abstract and a concrete 
mathematical style noted above into this language. A domain of mathematical 
argumentation is methodologically pure if it belongs to a single, well-defined ar
gumentation game. Diversity on the other hand means playing more than one 
game at a time, or switching frequently between different argumentative con
texts15. Whether a context of argumentation is (relatively) “poor” or “rich” may 
be judged by the degree of detail of the descriptions of situations and rules of the 
game(s) in question. Still, this may not be clear enough. Let me thus turn to my 
example, by means of which I can complete the local description of the distinction 
between an abstract and a concrete argument.

ffl.2 The example was included by Wilhelm Blaschke in the third edition of 
Klein’s Lectures on Higher Geometry, published posthumously in 1926, as one of 
five topics under the heading “Examples of geometric research of the last dec
ades” (Klein 1893). In fact, it is a topological example, namely Artin’s Theory o f 
braids, which had appeared in 1925 in the Hamburger Abhandlungen (Artin 1925- 
1926). The inclusion of this example into Klein’s book is revealing for several 
reasons. First, it shows how broad the conception of geometry was which Blas
chke ascribed to Klein, and in fact I think he was essentially correct. Second, 
Artin’s work on braids was rooted in Klein’s favourite subject, the geometric the
ory of algebraic functions. (For details concerning the history, of the next §IV.6.) 
Third, it was one of the few topological problems which could in some sense be 
solved completely by group-theoretic methods at the time. This last feature makes 
the example particularly suited for my purposes.

Artin defined his braids as follows:

“By a braidZ of n-th order we understand the following topological object: Let a rectangle with 
opposite sidesg,, g2 and hr h2 (the ‘frame’ of Z) be given in space. Letn points A,, Ar . . An and 
B{, Bv . . Bn be given on each of the sides g, and g2, counting from h , to hr  With every point A . 
we associate uniquely a pointBr(0 with which it is connected by a curve without double points 
and without intersections with any other curve mk. Let the curve m. be oriented from A. to Br([).” 
{ibid., 47; see fig. 2.)

In addition, Artin required that every curve cuts a plane orthogonal to hx and h2 at 
most once.

Two such braids are considered “equal” (says Artin), if they can be deformed 
into each other without self-intersection. Obviously, Artin introduces here an equiv
alence relation between braids without being too explicit about that, as was still 
common practice at this time. (In fact, definitions by abstraction had been ana
lyzed logically only some 20 years earlier, by Peano (1901) and Weyl (1910 and 
1913)16.) Further on, he sometimes speaks of the topological objects as braids, and 
sometimes of the equivalence classes under isotopy. Only in his second, more
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rigorous attempt to deal with braids in the late 1940’s Artin did draw a clear 
distinction between “weaving patterns” and “braids,” which are equivalence classes

A j A 2 A 3 A 4

Figure 2: A braid o f 4th order

of weaving patterns (Artin 1947, 101-126 and Artin 1950, 112-119). Let me call 
the weaving patterns “concrete” braids, and equivalence classes of weaving pat
terns “abstract” braids.

By joining two concrete braids and removing the joining line, we get a third 
braid (cf. fig. 3).

C, C2 c 3 c 4

Figure 3: Joining braids
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This makes abstract braids into digroup. Artin’s first step is to “arithmetize” braids, 
i.e. to give a symbolic presentation of the group of abstract braids. This is achieved 
by looking at the elementary braids in which only the i-th curve crosses the (j'+l )-th 
(cf. fig. 4 below). These braids generate the whole group. In this way, Artin finds 
a new definition of the group in question (in fact it would be more precise to say: 
of an isomorphic group): It is the group with symbolic generators ov ov ... o ^x 
and relations

A i

OjOj = a  j o i ,for |i -  j| > 2,

GiGi+\Gi = Gi+\GiGi+\-

Figure 4: The elementary braid a.

By this argumentative move, Artin had related the topological problem of classi
fying isotopy classes of concrete braids to problems of combinatorial group theory. 
In fact it turned out that the topological problem is equivalent to the word problem 
in the braid group, and Artin’s main theorem presents a solution of the latter.

III.3 Now what is really going on here (and in the wealth of similar examples)? 
At first sight, we have a situation very much similar to the situation in early 19th 
century projective geometry. We may compare the topological point of view to the 
synthetic approach, and the group-theoretical standpoint to the analytic approach. 
In the language introduced above, we have two mathematical games, the game of 
weaving patterns, and the game of the symbolically defined group. However, what 
really matters for a description of Artin’s argumentative practice is not the differ
ence between these two mathematical games but the way they are related. What 
Artin showed is that the group-theoretical game may be embedded, as I shall say, 
into the topological one. I.e., we can redescribe certain situations, rules and moves 
of the topological argumentation game in such a way that they appear as situa
tions, rules and moves of the group-theoretical game. (This I take as a definition 
of the notion of embedding of games17.) This embedding of group theory into 
topology allows Artin to change his perspective during his arguments from one to 
the other. In particular, and this seems to me the essential point, he has two ways
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at his disposal to deal with the braid group. Either he can deal with it as a purely 
symbolically defined object, disregarding its topological interpretation. Or he can 
look at the group elements as equivalence classes of concrete braids and use the 
whole topological context to make arguments (provided he does not violate the 
necessary invariance under isotopy)18.

Now there is clearly a significant difference between the two possibilities. The 
first involves only a single game. In this sense, arguments restricted to it are 
(relatively) abstract: they are methodologically pure, and their argumentative con
text is (relatively) poor. Arguments of the second alternative, however, are (rela
tively) concrete: they use the methods of two mathematical games, and thus also 
the argumentative context is (relatively) rich.

Let me give you examples of an abstract and a concrete argument about the 
braid group.

a) By a sequence of symbolic calculations, we may deduce that the braid group 
is generated by the two elements and a := oJo2 ... on l .

Figure 5: A braid equation

b) The same fact may be learned from the fig. 5. Iterating the idea of this 
figure we understand that ako la~k = ok+l holds. Therefore, a and o  generate the 
braid group. (Here we face a typical situation: The concrete arguments seem to be 
intuitive. This is interesting from the pragmatical point of view, but not logically 
essential: Imagine the argument formulated in a rigorous language, say of piece- 
wise linear topology. Hence it is more adequate to say: By the game change from
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combinatorial group theory to topology, more intuitions are made accessible which 
may eventually be turned into rigorous arguments.)

III.4 The situation which we encountered in the example (the embedding of an 
abstract game into a concrete one) is the elementary, local situation in which the 
difference between an abstract and a concrete argument, as I propose to use it, may 
be illustrated. Before I proceed to extend my description to a more global level, let 
me add some remarks concerning the explanations given so far.

i) It is now possible to relate the names chosen for my distinction to the formal 
notion of abstraction. The embedding of the example depended on a definition by 
abstraction in the technical sense of the term. In fact, definitions by abstraction 
always lead to an embedding of an abstract mathematical game into a concrete 
one, so that the distinction introduced above may be applied. However, this situa
tion is only a special case of the relation between mathematical games which I 
called “embedding”.

ii) Certainly, the above example is mathematically rather simple. Neverthe
less, modem mathematical experience tells us that similar examples abound -  on 
the elementary as well as on more advanced levels. The possibility of embeddings 
of mathematical games has, in fact, itself become a subject of modem mathemat
ical research. This shows that there is no difference in rigor between an abstract 
and a concrete argument insofar as my present analysis is concerned. Thus it is 
clear that the question of using abstract or concrete arguments may again be (as in 
the case of an analytic or synthetic treatment of geometry) a question of style, of 
methodology, and not a question of substantively different mathematics.

iii) Finally, it should be emphasized that the distinction introduced above turns 
out to be a relative one. In the elementary situation of the example, concreteness 
comes about by means of a relation between two games. Only relative to these two 
games (or a more complex interrelation of mathematical games) is it reasonable 
to distinguish between an abstract and a concrete approach to the same questions.

IH.5 I am now in a position to sketch a reconstruction of the global difference 
between an abstract and a concrete argumentative style. It is clear that modem 
mathematics consists of a whole network of mathematical games. The mutual 
embeddings provide, so to speak, the links between these games. An author like 
Klein seeks systematically to exhibit such embeddings, and he does not hesitate 
to change the game continually in order to form a convincing argument (like in 
the concrete argument of the example). A text like Pasch’s or Hilbert’s, on the 
other hand, restricts itself as far as possible to a single, mathematically well- 
defined game (in the extreme case: a single axiomatic system) and argues strictly 
within the context thus defined. On this level, an abstract orientation produces 
with great probability theorems of a rather different type than those that arise
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from a concrete orientation. The search for algebraic invariants of topological 
objects was motivated by the wish to enrich the argumentative context available 
for the treatment of topological (and algebraical) problems. The proof of the inde
pendence of a specific axiom with respect to a given system of axioms, on the 
other hand, is motivated by the intention to clarify the logical structure of a single, 
restricted mathematical game.

One may even go one step further towards a global picture of the abstract and 
the concrete mathematical styles. The games of mathematical argumentations are 
not only linked by internal embeddings. They are also embedded into external, 
non-mathematical domains of scientific and social practice. In the light of such 
embeddings, there is also a scale of concreteness ranging from the pure to the 
applied. (Think of Klein’s discussion of graphical statics and of cogwheel pro
files.)

III.6 Are there other mathematical disciplines in which the distinction between 
an abstract and a concrete argumentative style played a role in late nineteenth and 
early twentieth century mathematics? I think there are. I have discussed a topo
logical example above. In fact, the development of algebraic topology provides a 
wealth of examples which could be analyzed in terms of abstract and concrete 
argumentative styles. Another field of mathematics where the distinction seems to 
have been relevant is number theory. Dirichlet and Riemann had shown how to 
embed number theory into complex analysis (by means of Dirichlet series and 
Riemann’s ^-function). Thus the argumentative context of number theory became 
richer, and Hadamard’s and de la Vallee-Poussin’s success in proving Gauss’s 
conjecture on the asymptotic distribution of primes motivated a whole generation 
of number theorists to employ the concrete style of analytic number theory. On the 
other hand, an elementary, abstract approach finally succeeded in proving the 
prime number theorem, too (Erdos and Selberg). A revival of elementary number 
theory was the consequence (Echeverria 1992,249ff.). As in the case of geometry 
it seems to be the analytical side which tends to methodological diversity, while 
the synthetical, elementary side is committed to methodological purism.

It is an interesting question whether the shift which I described in the develop
ment of geometry could be related to the shift in the philosophical conceptions of 
mathematics from Kant to the end of the 19th century. Whereas Kant’s philoso
phy of mathematics was centered on the analysis-synthesis distinction, two of the 
most important thinkers in philosophy of mathematics of the end of the century, 
namely Frege and Husserl, tried hard to make clear the second distinction as 
applied to mathematics.
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IV The Role of Concrete and Abstract Argumentative Styles in 
Mathematical Modernity

IV.l It seems that the shift from the controversy about analytic and synthetic 
geometry to that between a concrete and an abstract style of geometrical argumen
tation described in the first part of this paper is related to the formation of what 
has been called “mathematical modernity”. Let me now turn to explaining briefly 
how the distinction introduced above could contribute to a better understanding of 
the modernity of modem mathematics.

Herbert Mehrtens has drawn an impressive and detailed picture of the process 
of mathematical modernization in his book, Moderne-Sprache-Mathematik 
(1990). Mehrtens tries to show that there are two fundamentally different types of 
reactions to the changes in 19th century mathematics. The first, in an emphatic 
sense modem reaction, was to fully accept the new autonomy and to pursue math
ematics as a free, creative enterprise, with no bounds on mathematical production 
other than internal coherence and success. Among the modernists, Mehrtens points 
to pure mathematicians like Cantor, Hausdorff, and Hilbert as the “general direc
tor.” On the other hand, there is a second type of reaction which tries to re-estab
lish the threatened ontological basis and epistemic certainty of mathematical 
knowledge and the links of mathematics to science under the new conditions. A 
typical representative of this counter-modem type of reaction is Felix Klein, who 
was engaged in reforming mathematics at technical universities, and who favoured 
applied mathematics while constantly emphasizing the role of intuition as a basic 
pre-requisite for doing mathematics.

Mehrtens’ thesis is that the modem and the counter-modem attitudes together 
provided a framework for mathematicians’ sense of self-identity at the beginning 
of the twentieth century. These attitudes helped to justify mathematical research, 
and played a role in the fight for positions and prestige. The professional politics 
of the two Gottingen leaders, Hilbert and Klein, was determined by the difference 
between modem and counter-modem attitudes as well as the later Grundlagen- 
krise between “formalists” and “intuitionists.” While in the case of Hilbert and 
Klein, their different attitudes did not preclude the possibility of “forging of an 
intellectual alliance” between the two in the fight for Gottingen mathematics (Rowe 
1989, 195 ff.), after the take-over by the German National “Socialists,” there ap
peared, according to Mehrtens, a fatal connection between radical counter-mod
ernists and the fascist ideology.

IV.2 In order to draw his picture, Mehrtens needs criteria which allow him to 
place his actors on the modem/counter-modem scale. In fact, his historical narra
tive tries to exhibit such criteria along the way. The autonomy of modem mathe
matics is best described, so he claims, by viewing mathematics as the production
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of a language, the meaning and uses of which are not determined beforehand. 
(“That, by which the discipline of mathematics identifies itself, is the self-referen- 
tial language Mathematics in the products of the mathematicians, i.e. the texts.” 
(Mehrtens 1990, 404)) Consequently, the difference between the modem and the 
counter-modem attitude must be expressible in terms of the attitude towards mathe
matical language. Mehrtens uses the linguistic distinction between “signifying” 
and “signified” to describe this difference. He writes: “The modem and the coun
ter-modem conception give rise to different conceptions of the realm of mathe
matical language. Modernity is oriented in the Hilbertian formalism at the signifiers 
which it interprets as the empirically treatable signs on the paper. Counter-mo
dernity resorts to an a-priori psychology by postulating a unifying subjectivity 
with the gift of an original intuition, in which all mathematicians partake” {ibid., 
414). And due to this C/r-intuition, there is a guarantee of access to that which is 
“signified.”

The main criterion for being a modem is thus, in Mehrtens’ view, whether one 
is prepared to dispense with an explanation of what the meaning of mathematical 
language is, be it the meaning of mathematical expressions like “point”, “line”, 
“field” etc., or even the cultural meaning of mathematical discourse as a whole. A 
counter-modem, on the contrary, would insist on precisely that. Mehrtens illus
trates this criterion with Hilbert’s Foundations o f Geometry, which in fact does 
without an explanation of the meaning of the basic notions like point, line, etc. 
From this standpoint, Frege’s critique of Hilbert’s axiomatic definitions may be 
the philosophically most self-conscious counter-modem attack on modernism. It 
revealed that not only questions of the semantics of mathematical language are 
concerned but also questions of mathematical truth and questions pertaining to 
what mathematics is really about.

IV.3 Mehrtens’ book is an example of a very elaborated kind of external histori
ography. His sources are mainly the programmatic declarations of the mathe
maticians involved and the documents of their institutional activities. Mehrtens 
does not attempt to analyze some of the more advanced productions of modernist 
or counter-modernist mathematicians, and, in fact, he makes no claims about the 
internal construction of modem mathematics. Thus we are left in a somewhat 
unclear position if we accept his narrative. Was the struggle between modems and 
counter-modems only a meta-mathematical drama, staged for reasons of self-inter
pretation and disciplinary politics? Or does the conflict also manifest itself in the 
“regular discourse of mathematics,” as Mehrtens described it, i.e., in the research 
activities and programs, in the mathematical writings of the period under consid
eration? Apart from some rather general remarks on the semiotic structure of 
modem mathematical texts {ibid., ch. 6.3), Mehrtens leaves this question entirely 
open.
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In any case, Mehrtens’ thesis would lose much of its attractiveness, if it could 
not be complemented by an analysis of the modernity or counter-modernity of 
pieces of mathematical research. Thus we may ask: is there a difference between 
Hilbert’s and Klein’s, or between Landau’s and Bieberbach’s mathematics? That 
is, between the styles of their mathematical texts, the mathematical games they 
played? As Mehrtens is silent on this point, we are free to look for our own an
swers to these questions.

IV.4 Evidently, there is a difference between a text such as Klein’s Lectures on 
Higher Geometry and Hilbert’s Foundations o f Geometry. I have tried to describe 
this difference in the second part of this article and I ventured at a philosophical 
analysis of its core in the third. Thus the question arises whether we could rea
sonably use the distinction between an abstract and a concrete argumentative style 
as an internal criterion for the degree of modernity of a mathematical text. A 
typical modem piece of mathematics should then argue in a strictly abstract fash
ion, while counter-modem texts should be written with a concrete style of argu
mentation. For the two texts of Klein and Hilbert, the statement holds.

In fact there is some evidence in favour of such a proposal. The form of math
ematical texts and the type of mathematical questions discussed in the first dec
ades of the twentieth century show strong variations on the scale concrete/abstract. 
To mention two other names: Henri Poincare, a counter-modem according to Me
hrtens’ classification, introduced the fundamental group and the homology groups 
of a manifold. In this way, he established a far-reaching embedding of the games 
of group theory into those of geometry, or rather, topology. Felix Hausdorff, placed 
among the modems, became famous for his axiomatization of the game of set- 
theoretical topology.

Let me add immediately that a schematic thesis of the type: “Modems only 
wrote abstract texts, counter-modems only concrete ones” seems very problematic. 
Counterexamples are too obvious. Frege’s Fundamental Laws o f Arithmetics (1893- 
1903) are evidently abstract in the sense introduced here, and hence should be 
called a modem text according to my criterion. On the opposite side, one could 
mention Hausdorff’s very concrete proof that there exist non-measurable subsets 
of the circle and the sphere (Hausdorff 1914, 428-433), not to speak of much of 
Hilbert’s mathematical work. Rather, the use of this criterion to judge the moder
nity of a piece of mathematics will lead to modifications of Mehrtens’ picture. A 
grey scale will appear between the white modems and the black counter-modems. 
And I think it will also become clear that (and how) concrete and abstract argu
mentative styles stimulated each other.

IV.5 Nevertheless, differences in mathematical style existed, and often they cor
responded to the metamathematical views of the authors. This correlation would
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find a partial explanation if we could relate Mehrtens’ semantic criterion for be
ing a modernist to the internal criterion of an abstract argumentative style.

In order to establish such a relation we have to ask whether the use of abstract 
or of concrete arguments leads, or may lead, to different attitudes toward the mean
ing of mathematical language. Let us go back to the example of the braid group. 
In fact the difference between viewing the group elements a) as words in the 
symbolic generators <x, or b) as isotopy classes of weaving patterns, can be de
scribed as a difference in semantics. Disregarding the topological game means 
considering braid words as uninterpreted strings of symbols. The only possibility 
of ascribing meaning to them is to explain the rules governing their use in the 
argumentation game we play. If we connect the group theoretical game to the 
topological game, we open up the possibility of an interpretation of the group 
symbols: we may call the “isotopy class of concrete braids with one positive twist 
between the first two threads” the meaning of the symbol a ,19. Thus the passage 
from an abstract to a concrete perspective on a mathematical game creates mean
ing, while the converse passage suspends it.

In this way, we have found, on the local level, a counterpart to Mehrtens’ 
criterion of meaning. The language of abstract arguments is, relative to the given 
embedding of mathematical games, devoid of that element of meaning which a 
concrete argument exploits to enable game changes. It seems quite probable that 
mathematicians who strove for axiomatizations developed a distaste for the vari
eties of meaning alluded to in concrete argumentations. These meanings occupied 
the mathematical mind, tending to obscure the logical structure of an argument or 
a theory. Authors like Klein or Weyl, on the other hand, must have been fond of 
every new facet of meaning which they could exhibit in mathematical language.

The relativization of Mehrtens’ criterion of meaning to an embedding of math
ematical games even allows one to reconstruct some of Mehrtens’ statements about 
the attitude of mathematicians towards the cultural meaning of mathematical dis
course. If mathematical argumentation moves in a complex network of mathema
tical games, the outer ends of which are embedded into non-mathematical practice, 
then a concrete argumentative style in the outer parts of the net creates meaning 
outside the cultural system called ‘mathematics’. Klein’s love for concrete argu
ments goes a long way toward embeddings of mathematical argumentations into 
non-mathematical contexts. (Again I come back to the cogwheels.) The least one 
can say is that this corresponds to his conviction that mathematics had a meaning 
for physicists, or for engineers.

IV.6 To finish, I want to discuss once again Artin’s braids, but now from a histor
ical point of view. This is meant to illustrate the use of the concrete-abstract dis
tinction as a criterion for the modernity of mathematical argumentations in 
historiographical practice.
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The original context for the topological objects called 'braids’ by Artin was 
the theory of Riemann surfaces, viewed as branched coverings of the complex 
plane. After some earlier results on two-sheeted surfaces, Hurwitz investigated in 
1891 n-sheeted Riemann surfaces with a finite number k of branch points. In 
particular, he counted the number of inequivalent surfaces for low n and k which 
had only simple branch points, i.e. points where exactly two sheets of the branched 
covering meet. Hurwitz’ text is certainly concrete in my sense: he defined the 
surfaces by the then usual cutting and pasting techniques, thus aiming at a topo
logical definition of Riemann surfaces (without explicit reference to complex func
tion theory). In the next step, he translated the problem of classifying these surfaces 
into a group-theoretical problem. (To every surface, there corresponds a transitive 
subgroup of permutations of the sheets, generated by the permutations arising at 
branch points. The associated presentation of this group determines the surface.) 
Thus he established an embedding of mathematical games.

In the course of his arguments, he came to consider the following situation: 
Suppose that, for a given surface, we move the branch points in the basis of the 
covering in such a way that they never meet, but reach a permutation of the orig
inal point configuration in the end. By continuously deforming the surface along 
the way, we arrive at a new surface with the same number of branch points and 
sheets in the end. Viewing time as a third dimension, we see that the movement of 
the branch points in the base plane forms a braid! (Imagine the branch points 
originally on a line; cf. fig. 6.) In fact, Hurwitz showed that (isotopy classes of) 
these movements form a group, and that they induce a transitive action of this 
group (to be called braid group only later) on the set of Riemann surfaces with n 
sheets and k simple branch points.

Figure 6: Moving branch points o f Riemann surfaces

Thus, the original context of the study of braids is a typical, rich context of 
argumentation, involving geometric, complex analytic, and group-theoretic ide
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as20. This rich argumentative context almost completely disappeared in Artin’s 
definition of the braid group in 1925. There are few doubts that Artin was aware 
of Hurwitz’s work and that it was his deliberate decision not to mention it. (Rath
er, he placed his braids into a more recent context, namely the problem of classi
fying knots.) Artin’s move even led to a quite common opinion that he had actually 
invented the braid group.

Artin not only restricted his argumentative context by cutting off the connec
tion to Riemann surfaces and function theory, but originally he even aimed at a 
purely abstract argumentation on the local level described in III. 2. He hoped to 
solve the classification problem for braids by solving the word problem of the 
braid group using only methods of the group-theoretical game. This hope is doc
umented in his acknowledgements to his colleague Schreien “My special thanks 
are due to Mr. Otto Schreier, who forcefully supported me in the writing of this 
paper, in particular with the complicated calculations by means of which we first 
hoped to get through” (Artin 1925-1926, 47). Thus the argumentative strategy 
seemed clear enough: i) define braids topologically, ii) “arithmetize” braids, i.e. 
introduce the argumentation game of group theory, and then iii) solve the classi
fication problem exclusively in the latter. It is even possible that the main inten
tion of the paper was not to contribute to knot theory by classifying topological 
braids, but rather to find an interesting example of a group presentation with a 
non-trivial, but solvable word problem21.

The tendency toward abstract argumentation makes Artin’s paper on braids a 
modem piece of mathematics. This is in agreement with his general position in 
German mathematics in the twenties. His lectures on algebra were one of the 
sources of the strictly axiomatic approach of van der Waerden’s Modern Algebra 
(1930-1931); the other being Emmy Noether’s work, of course. From 1926 to 
1937, when he was dismissed by the Nazis, he held one of the chairs at the Mathe
matical Seminar at the University of Hamburg, which certainly was one of the 
liveliest centers of mathematical modernity in Germany during the decade before 
33. (The other chairs were held by Blaschke and Hecke. The activities of the 
seminar are documented in the very successful journal of the seminar, the Ham
burger Abhandlungen.)

However, the abstract strategy of solving the word problem of the braid group 
did not quite work. The symbolic calculations which Artin and Schreier under
took turned out to be tedious, and the solution which Artin gave in the paper rests 
essentially on topological arguments and on frequent changes between the group- 
theoretic and the topological argumentation game. A close analysis of the proof 
even shows a certain “return of the repressed”: the topological methods employed 
have a strong connection to the methods which had been used earlier in the con
text of complex function theory. (In particular, this holds for the method of calcu
lating the fundamental group of a closed braid, which was essential for Artin’s
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argument. The method was due to Wilhelm Wirtinger, a Viennese mathematician 
who specialized in algebraic function theory.) Hence, counter to his original in
tention, Artin was forced into a concrete argumentative style.

In later years, Artin was completely dissatisfied with the argument he gave in 
1925. He felt it was too intuitive, and the proof of the main theorem was, as he 
said, “not even convincing” (Artin 1947, 101). Again we see the abstract impulse 
of modernity. Nevertheless, even the second attack on the braid group did not 
achieve a purely group-theoretical treatment. Instead, concrete braids were de
fined more cautiously in order to make rigorous topological arguments available. 
When Artin wrote a popular article on braids in 1950, he emphasized that “the 
theory of braids shows the interplay of two disciplines of pure mathematics— 
topology, used in the definition of braids, and the theory of groups, used in their 
treatment” (Artin 1950, 112).

Perhaps these remarks mirror some general features of the fate of the abstract 
style in mathematical modernity. The tendency towards abstract reasoning proba
bly revealed more about the hopes of committed modernists than it did the struc
ture of the actual arguments at the cutting edge of mathematical research. The 
rigorous axiomatization of mathematical theories even made it possible to clarify 
the relations between different mathematical games in such a way that concrete 
arguments lost the flavour of being intuitive and imprecise, as was the case in the 
braid example. Some of the deepest research of modem mathematics concerned 
the relations between different mathematical games (or structures, if you wish), 
but there are few examples where a single mathematical game was carried on for 
a long time without being related to other ones.

Of the two modem lines of geometry at least, the strictly abstract approach of 
Pasch and Hilbert seems soon to have lost its fertility, while the branches of differ
ential and algebraic geometry lead to exciting results and open questions up to the 
present day. Not only the strict adherence to the methodological purism of analyt
ic or synthetic geometry, but also the adherence to the methodological purism of 
abstract argumentations led, as Klein had said, to a “certain petrifaction”.

University o f Mainz 
Department o f Mathematics

Notes

1 Cf. e.g. Aristotle, Metaphysics, 1029a, 1061b; Second Analytics, 92b.

2 Cf. the survey by Thiel (1988). See also below, III.4.

3 On Monge, compare Glas (1985).
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4 For general historical information about the development of projective geometry, see e.g. Kline, (1972, 
ch 35). A wealth of information is contained in Felix Klein’s Vorlesungen iiber die Entwicklung der 
Mathematik in 19. Jahrhundert (1926-1927).

5 Cited after Kline (1972,836).

^ This characterization eventually evolved in a modem mathematical notion of projective space: the 
projective space of a vector space is the set of its one-dimensional linear subspaces.

7 Two “purist” classics of 19th century geometry are mentioned in Klein’s Lectures on Higher Geometry 
of 1893 (to be discussed below): “Hesse (1861) purely analytic; Reye (1866-1867) (purely synthetic). 
Both methodically one-sided, but in their treatment very elegant.” (Klein 1893,5).

8 Certainly, the discovery of the non-Euclidean geometries contributed essentially to the need for a 
clarification of the logical foundations of geometry. However this can hardly be the “only” reason for 
axiomatic thinking in geometry (which was then a common trend in other parts of mathematics as well).

9 Klein (1908-1909, II, 55 f.):
“The analytic geometricians often lost themselves in blind calculations, devoid of any geometric 

representation. The synthesists, on the other hand, saw salvation in an artificial avoidance of all 
formulas, and thus they accomplished nothing more, finally, than to develop their own peculiar 
language formulas, different from ordinary formulas. Such exaggeration of the essential funda
mental principles into scientific schools leads to a certain petrifaction; when this occurs, stimula
tion to renewed progress in the science comes principally from ‘outsiders’.”

10 For the relations between Pasch’s and Hilbert’s work, see Toepell (1986, in particular 51 ff.).

11 Certainly, it may be objected that Klein’s Lectures on Higher Geometry represented a rather singular 
way of treating geometry. However, I hope it will become clear in the following that the stylistic differences 
on which I focus here are characteristic not only for texts like Klein’s and Pasch’s.

12 Unfortunately, questions of mathematical pragmatics are still rather unexplored in recent philosophy of 
mathematics. This is partly due to the fact that the Fiegean tradition has focused on parts of mathematics 
which are far from actual mathematical practice (such as elementary arithmetic). With the revival of 
methodological and epistemological questions (Lakatos, Benacerraf, Kitcher), the situation has changed 
to some extent. There seem to be quite a number of valuable ideas still waiting to be unearthed in the non- 
logicist classics of twentieth century philosophy of mathematics as, e.g., Husserl or Wittgenstein.

13 For an account of the history of the comparison between mathematical practice and games, see my 
(1994). David Bloor has developed an “anthropological” perspective on mathematics as a system of 
language games in his (1983). Although I doubt that my view of mathematical games coincides with his 
notion of language games, some of the remarks below might contribute to his perspective.

14 It seems possible to formalize the notion of a mathematical game: one would then be led to a pragmatic 
interpretation of the formal systems which Hilbert introduced in his metamathematical work. However, 
a rigid notion of mathematical games certainly would restrict the range of phenomena in mathematical 
practice to which it could be applied in an instructive way.

15 Bloor speaks of a “superposition of language games” (1983, llOff).

16 Cf. Thiel (1988).

12 Or of “superposition”, cf. note 15. Whether or how this definition applies to the embedding of mathematical 
into social games—the situation which interests Bloor most—will be left open here. Also Lakatos stresses 
the importance of embeddings of contexts of argumentation into each other, cf. e.g. (1976, ch. 1, section 
2) .
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18 in fact, we have three ways to play a braid game (that is, to investigate braids): 1) We may only look at 
the topological definitions, disregarding the embedded group structure. This we could call the “synthetic 
braid game”. 2) We may only look at the group presentation, disregarding the topological context. The 
“analytic braid game”. 3) We may interpret the group sometimes topologically, sometimes symbolically, 
using both methods as it suits in studying braids. The “mixed braid game.” Only in the last two cases, the 
object of argumentation is really the braid group. Thus the alternative above.

We are not compelled to interpret this type of meaning as reference. We may equally view it from the 
standpoint of a “use” theory of meaning: by embedding the group-theoretical game into topology, we can 
make a different use of the symbol than without. It is this extension of its possible use which gives a 
new “meaning” to the symbol, not necessarily its connection to an object.

20 To Hurwitz’ ideas, one must still add the connection between braids and the mapping class group of the 
complex plane withn points removed, which appeared in Fricke and Klein (1897-1912,1). Cf. Magnus 
(1974).

2 1 Combinatorial group theory was still in its beginnings, and there was considerable need for good examples. 
Cf. Magnus (1974), and Chandler and Magnus (1982).

II. Philosophy
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FROM BACKWARD REDUCTION 

TO CONFIGURATIONAL ANALYSIS

I Introduction

Ancient Greek geometers devised the method of analysis and synthesis for solving 
construction problems. According to Pappus (ca. 300 AD), it was also used for 
proving theorems, the other class of propositions conceived by the Greeks. He 
gave the only extensive ancient methodological account of analysis that survives. 
The term “analysis” has a variety of usages, but only this mathematical one is 
studied here.

Pappus described analysis as the reduction of a proposition to be solved or 
proved successively backward to its antecedents until arriving at a proposition 
whose solution or proof is known (Section II). This is the “directional interpreta
tion” of analysis.

Modem studies of analysis in terms of the directional interpretation have fo
cused on its logical character. The question has been whether the analysis of the 
ancients is deduction or reduction, which is not deductive in general. Hintikka 
and Remes (1974), notably, try to read the latter interpretation into Pappus’s de
scription. This is forced, because almost all examples of analysis in the Greek 
mathematical corpus are in fact deductions. Of course, these deductions are also 
reductions, because they are to be convertible into syntheses, but there is little 
evidence of non-deductively reductive analyses. I shall call such analyses “purely 
reductive”.

The few examples of Greek purely reductive analyses were devised by com
mentators rather than mathematicians with original contributions (Knorr 1986, 
ch. 8). The first purely reductive directional interpretation of analysis in a meth
odological description that I know of is by Duhamel (1865, ch. X and XI). He goes 
so far as to regard the deductive analysis of the ancients as defective, because it 
ignores concerns of convertibility of an analysis into a synthesis. He says further 
that modem analysis, which is (purely) reductive, does not suffer from this defect. 
It is trivially convertible.

But purely reductive analysis appears in mathematical practice much earlier: 
Galileo’s manuscripts on mechanics contain a purely reductive analysis (Maenpaa
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1993, section 7.2). Nevertheless, it doesn’t seem to appear in the methodological 
discussions of the 1600’s. Analysis was discussed extensively then, notably by 
Descartes and Newton. Their conception of analysis is deductive in methodologi
cal accounts as well as in mathematical practice.

Mathematical language and method changed decisively around 1600 in the 
hands of Viete and Descartes. They introduced a new kind of algebra, explicitly 
based on the ancient Greek method of analysis (Section III). The main innovation 
of their algebraic language was the introduction of variable symbols for all given 
and unknown quantities. The Greeks used no variable symbols before Diophantus 
introduced one in his Arithmetic in ca 250 AD. (The present account deals with 
Descartes only, see Maenpaa 1993, ch. 5-7 for Diophantus, Viete, and Newton.)

At the same time, Descartes’s methodological description of his algebraic 
method of analysis introduced an important novelty with respect to Pappus’s de
scription. Descartes said that analysis serves to determine how the unknown quan
tities of a problem depend on the given ones. Instead of seeking a deductive 
connection between the proposition to be solved or proved and propositions whose 
solution or proof was known, Descartes sought to determine the dependencies of 
the unknown quantities on the given ones. This is the “configurational interpreta
tion” of analysis.

On the face of it, the configurational interpretation is a simple specification of 
the directional one. The analyst works backwards by reduction from the sought 
conclusion to given premisses (Pappus). More specifically, he thereby establishes 
a dependency of the sought quantities on the given ones (Descartes).

But this specification has deeper methodological and logical significance. It 
shifts the focus of the analytical method from the analysis of a deductive connec
tion to the analysis of what is in more modem terms a “functional” connection. 
Analysis is, according to the configurational interpretation, a study of the func
tional dependencies in a mathematical configuration with known as well as un
known constituents.

In the Greeks’ twin method of analysis and synthesis, synthesis served to put 
together the sought objects from the given ones, making use of their functional 
dependencies uncovered in analysis. This concerns problems. In the case of theo
rems, the task of synthesis was to convert the analysis into a demonstration of the 
proposition to be proved from ones known to be true.

This informal description gives the impression that the configurational inter
pretation suits problem solving better, while the directional interpretation suits 
theorem proving. To get a more precise and deeper understanding of the situation, 
we shall describe the analytical method in formal terms. This is intended as a 
theoretical explanation of the configurational and directional interpretations. It 
aims at finding a theoretical structure behind the phenomena, so to say, of the 
examples of analysis in the mathematical literature and of informal methodolog
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ical accounts. Devising such a theoretical explanation is quite clearly a task that 
calls for a logical formalism as a conceptual tool. The resulting reconciliation of 
the two interpretations of analysis serves to spell out in relevant theoretical (logi
cal) terms what they are and how they relate to one another.

The question of how the analysis of problems relates to the analysis of theo
rems is also a logical question. This is why it is answered in the most satisfactory 
way, from the systematic point of view, in terms of a logical formalism. In partic
ular, the formalism must describe adequately functional dependencies between 
configurations (-constructions) as well as deductive connections between propo
sitions.

Descartes’s algebraic analysis has had a remarkable success due to its prob
lem-solving power. It soon became the lingua franca of the exact sciences, and 
that it remains today. What is more, it has served as a standard system of forms of 
understanding ancient historical materials in mathematics beginning from Zeu- 
then in the late 1800’s (cf. e.g. Zeuthen 1893). Yet the reduction of ancient histor
ical materials to Cartesian algebra does not preserve mathematical content. One 
possibility of dealing with this difficulty is to refrain from using anachronistic 
concepts as forms of historical understanding. Another possibility, which is made 
use of here, is to employ a system of concepts that is general enough to preserve 
mathematical content in full.

We shall then be in a position to see, for instance, the precise difference in 
meaning between the informal expressions

“deduction of a construction”,
“deduction of a proposition”

current in modem studies of ancient mathematics. This has not been possible 
before, because there has been no conceptual system for relating the notion of 
construction to the notions of deduction and proposition in a satisfactory way 
before constructive type theory (from now on: type theory), which we shall em
ploy here (Section IV). Type theory (Martin-Lof 1984) is one of the main current 
approaches to the foundations of mathematics and computing science.

This formal system of concepts helps us to understand the systematic source of 
the heuristic usefulness or problem-solving power of analysis. Furthermore, it lets 
us see new things in historical and informal mathematical materials, using the 
new forms of understanding.

Hintikka and Remes (1974 and 1976) brought the configurational interpreta
tion into recent methodological discussion, and coined the names of the two inter
pretations. They described analysis in terms of predicate logic, both the 
configurational and the directional interpretation. They also refuted conclusively
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Mahoney’s (1968) claim that the analysis of problems is not a method that can be 
described in logical terms, in contrast to the analysis of theorems.

Analysis is, in their configurational interpretation, a study of the functional 
dependencies among the constituents of a definite mathematical configuration. In 
the case of geometry, for example, the configuration is a geometrical figure. They 
also introduced the term “constructional interpretation” as a synonym for config
urational interpretation, and “propositional interpretation” as a synonym for di
rectional interpretation.

Besides bringing the modem methodological study of analysis to a new, theo
retical level of precision, by employing modem logical concepts, they identified 
the crucial heuristic role of “auxiliary constructions” in analysis. Taking apart a 
definite configuration into its constituents is routine compared to inventing the 
auxiliary constructions that are needed to amplify the configuration in order to 
find the solution to nontrivial problems (Section V). Auxiliary constructions are 
in fact indispensable also in finding the proof of nontrivial theorems, and this is 
one important logical connection between the analysis of problems and of theo
rems. Hintikka and Remes describe also auxiliary constructions in terms of pred
icate logic.

Now it has turned out that the logical tools used by Hintikka and Remes do not 
suffice for a natural logical description of the configurational interpretation and 
of auxiliary constructions (Maenpaa 1993). The systematic reason for this is that 
predicate logic does not recognize constructions. In its stead, I use type theory, 
which enriches predicate logic with a functional hierarchy that exactly captures 
on the formal level the informal notion of synthesis as functional composition of 
constructions of various types, like points, circles, and line segments in geometry, 
and of analysis as its inverse operation, functional decomposition of a construc
tion into its constituents.

Despite its introduction of quantifiers and individuals, predicate logic is still 
too close to propositional logic in order to serve as a formal tool for describing the 
analysis and synthesis of constructions adequately, which the configurational in
terpretation of analysis requires. Propositional and predicate logic suit the direc
tional interpretation better. It turns out that predicate logic fails, for instance, to 
describe geometrical construction postulates, which are used in solving geometri
cal problems.

Auxiliary constructions receive a logical description that is eminently natural 
in view of the informal way of understanding them as constructions that are not 
constituents of the configuration originally subjected to analysis (Section VI). 
That is, auxiliary constructions are constructions that are constituents of neither 
the given nor the sought objects.
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II The Directional Interpretation of Analysis: Pappus’s Description

The directional interpretation of analysis runs as follows in Pappus’s classical 
description in the seventh book of his Mathematical Collection (the English trans
lation is from Jones’s edition of Pappus (CJ, 82-85); I have added the Greek terms 
in square brackets). Part of the description may originate in older sources, proba
bly in Euclid (Knorr 1986, 354-360).

“That which is called the Domain of Analysis, my son Hermodorus, is, taken as a whole, a 
special resource that was prepared, after the composition of the Common Elements, for those who 
want to acquire a power in geometry that is capable of solving problems set to them; and it is 
useful for this alone. It was written by three men: Euclid the Elementarist, Apollonius of Perge, 
and Aristaeus the elder, and its approach is by analysis and synthesis.

Now analysis is the path from what one is seeking [zetoumenori], as if it were established, by 
way of its consequences [akobutha], to something that is established by synthesis. That is to say, 
in analysis we assume what is sought [zetoumenon] as if it has been achieved, and look for the 
thing from which it follows, and again what comes before that, until by regressing in this way we 
come upon some one of the things that are already known, or that occupy the rank of a first 
principle. We call this kind of method ‘analysis’, as if to say anapalin lysis (reduction backward).

In synthesis, by reversal, we assume what was obtained last in analysis to have been achieved 
already, and, setting now in natural order, as precedents, what before were following, and fitting 
them to each other, we attain the end of the construction of what was sought [zetoumenon]. This 
is what we call ‘synthesis’.

There are two kinds of analysis: one of them seeks after the truth, and is called ‘theorematic’; 
while the other tries to find what was demanded, and is called ‘problematic’. In the case of the 
theorematic kind, we assume what is sought [zetoumenon] as a fact and true, then, advancing 
through its consequences [akoloutha], as if they are true facts according to the hypothesis, to 
something established, if this thing that has been established is a truth, then that which was sought 
[zetoumenon] will also be true, and its proof [apodeixis] the reverse of the analysis; but if we 
should meet with something established to be false, then the thing that was sought [zetoumenon] 
too will be false. In the case of the problematic kind, we assume the proposition as something we 
know, then, proceeding through its consequences [akoloutha], as if true, to something established, 
if the established thing is possible and obtainable, which is what mathematicians call ‘given’, the 
required thing [protathen] will also be possible, and again the proof [apodeixis] will be the re
verse of analysis; but should we meet with something established to be impossible, then the prob
lem too will be impossible. Diorism is the preliminary distinction of when, how, and in how many 
ways the problem will be possible. So much, then, concerning analysis and synthesis.”

The translation of certain Greek terms deserves comment. Issues of transla
tion depend on how the logical character of analysis is understood.

Pappus calls analysis as applied to theorem proving “theorematic’ and as ap
plied to problem solving “problematic” in Jones’s translation. I use the terms 
“theoretical” and “problematical” instead, because they have become standard, 
although Jones’s terms avoid the ambiguity inherent in “theoretical” between the 
terms “theorem” and “theory”.

Jones translates “anapalin lysis” as “reduction backward”, whereas Heath (in 
his translation of Euclid’s Elements, I, 138-139) translates it as “backward solu



tion”. Hintikka and Remes (1974, 8-10) follow Heath. I find Jones’s translation 
preferable, because Pappus describes analysis as a method that applies also to 
theorem proving, not only to problem solving. Note however that Pappus does not 
use the technical term “apagoge” for reduction here. The term “lysis” is nontech
nical (Knorr 1986, ch. 8). Knorr translates “lysis” as “resolution”, but I prefer not 
to do so, because I shall use resolution as a technical term for the second part to be 
distinguished in analysis.

In sum, Pappus says that if the end-point of analysis is an impossible problem 
(or absurd theorem), then synthesis is not needed, and the original problem is also 
impossible (or the original theorem absurd). That is, analysis constitutes a reduc- 
tio ad absurdum. This is quite conclusive evidence for the interpretation that Pap
pus conceives analysis as deductive, because a purely reductive analysis could not 
constitute a reductio ad absurdum.

If analysis leads to a problem whose solution is known (or a theorem whose 
proof is known), a synthesis is needed. The synthesis reverses the analysis and 
yields a solution to the original problem (or a proof of the original theorem). 
Pappus’s description of synthesis as complementing analysis would be pointless if 
he regarded analysis as purely reductive, because this would make synthesis trivi
al and superfluous.

Strangely enough, Pappus does not have anything to say about the nontrivial
ity of this reversal. He does mention that the analyst must in general determine 
the conditions of solvability of a problem, the “diorisms [diorismos]”. They are 
part of establishing reversibility, because they are conditions under which an anal
ysis is reversible.

Hintikka and Remes translate “akoloutha” as “concomitants” in order to leave 
room for their interpretation of analysis as a purely reductive procedure. Previous
ly “akoloutha” had been translated as “consequences”. The evidence provided by 
the Greek mathematical corpus renders Hintikka and Remes’s translation implau
sible, because the extant Greek analyses are deductive, with the few exceptions 
devised by commentators. It is hardly conceivable that Pappus, in describing the 
analytical works of the corpus, should have described analysis in a way that is not 
consistent with those works.

On the other hand, an important precursor of analysis was the method of re
duction (apagoge), which was not deductive (Knorr 1986, 23-24). A well-known 
application of apagoge is Hippocrates’s (pre-Euclidean) reduction of the problem 
of duplicating a cube to the problem of finding two mean proportionals between 
two given line segments. Proclus, who flourished in the fifth centrury AD, says in 
his commentary of Euclid’s Elements (PEEL, 212-213) that

“ ‘Reduction [apagoge] ’ is a transition from a problem or a theorem to another which, if known
or constructed will make the original proposition evident. For example, to solve the problem of
doubling the cube geometers shifted [metethesari] their inquiry to another on which this depends,
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namely, the finding of two mean proportionals; and thenceforth they devoted their efforts to dis
covering how to find two means in continuous proportion between two given straight lines. They 
say that the first to effect reduction of difficult constructions was Hippocrates of Chios, who also 
squared the lune and made many other discoveries in geometry, being a man of genius when it 
came to constructions, if there ever was one.”

(I have inserted some Greek terms in square brackets from Friedlein’s edi
tion.) Neither Pappus nor anyone else of the ancients seems to relate analysis to 
apagoge methodologically. The only testimony we have is their mathematical 
practice. Judging from that, analysis and apagoge seem to have been distinct 
methods, and the modem purely reductive interpretation of analysis applies to 
apagoge rather than to analysis in Greek mathematics.

I ll The Configurational Interpretation of Analysis: Descartes’s 
Description

Descartes introduced his algebra as a new tool for solving mathematical prob
lems. It turned out so powerful that those problem domains that it applies to were 
studied in great depth, while those falling outside its scope received less attention 
after Descartes. Its application in geometry, in particular, required that geometry, 
as practised in the tradition established by Euclid and his contemporaries, be ab
stracted to algebra.

The non-algebraic aspects of geometry gradually fell out of the scope of what 
is now known as analytic geometry. A case in point is an elementary construction 
problem like the first proposition in Euclid’s Elements, to construct an equilateral 
triangle on a given line segment. This is why Descartes’s method of algebraic 
analysis is not a general mathematical method. To study analysis in all its gener
ality requires a system of concepts that does not reduce mathematical content. 
This requirement concerns the systematic as well as the historical point of view. 
Cartesian algebra has been widely used as a system of concepts for studying an
cient geometry historically, but this approach falls short of describing the histori
cal materials in full, because it abstracts the geometrical materials to algebraic 
forms.

Here is how Descartes describes his analytical algebraic method. Rule Seven
teen of his Rules for the Direction o f the Mind (ROP) reads as follows (quoted 
from Descartes PW, I, 70-71).

“We should make a direct survey of the problem to be solved, disregarding the fact that some of 
its terms are known and others unknown, and intuiting, through a train of sound reasoning, the 
dependence of one term on another.

[...] the trick here is to treat the unknown ones as if they were known. This may enable us to adopt 
the easy and direct method of inquiry even in the most complicated of problems. There is no 
reason why we should not always do this, since from the outset of this part of the treatise our 
assumption has been that we know that the unknown terms in the problem are so dependent on the
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known ones that they are wholly determined by them. Accordingly, we shall be carrying out eve
rything this Rule prescribes if, recognizing that the unknown is determined by the known, we 
reflect on the terms which occur to us first and count the unknown ones among the known, so that 
by reasoning soundly step by step we may deduce from these all the rest, even the known terms as 
if they were unknown.”

And in his Geometry (1637), Descartes says in his classical description of 
analytical algebraic problem solving (quoted from Descartes GSL, 6-9) that:

“If, then, we wish to solve any problem, we first suppose the solution already effected, and give 
names to all the lines that seem needful for its construction,— to those that are unknown as well as 
to those that are known. Then, making no distinction between known and unknown lines, we must 
unravel the difficulty in any way that shows most naturally the relations between these lines, until 
we find it possible to express a single quantity in two ways. This will constitute an equation, since 
the terms of one of these two expressions are together equal to the terms of the other. We must find 
as many such equations as there are supposed to be unknown lines; but if, after considering every
thing involved, so many cannot be found, it is evident that the question is not entirely determined.
In such a case we may choose arbitrarily lines of known length for each unknown line to which 
there corresponds no equation. If there are several equations, we must use each in order, either 
considering it alone or comparing with the others, so as to obtain a value for each of the unknown 
lines; and so we must combine them until there remains a single unknown line which is equal to 
some known line [...].”

Descartes shifts the focus of analysis from the deductive connection between 
propositions known to be true and the proposition to be proved to the dependen
cies, that is, the functional connections, between the known and unknown terms 
of a problem. Notice also the shift in terminology: where Pappus connects “some
thing established” or “known” or “given” to “what is sought”, Descartes connects 
“known terms” to “unknown terms”, the “terms” now obviously referring to quan
tities, not propositions.

Descartes is concerned with problem solving exclusively. Pappus, on the other 
hand, uses the word “zetoumenon” for what is sought neutrally with respect to 
theoretical and problematical analysis.

In introducing the configurational interpretation into modem methodological 
discussion, Hintikka and Remes don’t seem to have been aware that it was intro
duced by Descartes. They even say that “Descartes insists on discussing methodo
logical matters in propositional terms or at least in terms of sequences of steps of 
thought” (Hintikka and Remes 1974, 103).

IV Logical Form in Analysis

Consider the elementary geometric construction of a circle from a point and a line 
segment, by a compass as it were, using the point as the centre of the circle and the 
line segment as its radius. This is the third construction postulate of Euclid’s
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Elements, with the slight generalization that Euclid uses one end-point of the 
given line segment as the centre of the circle rather than any given point.

In the formalism of type theory, this can be represented as the rule

a : Point b : LineSegment

c(a,b): Circle

Progressing here from premisses to conclusion by deduction, we synthesize the 
circle c(a,b) in the conclusion from the point a and the line segment b given in the 
premisses. This rule establishes at the same time a deductive connection from the 
premisses to the conclusion and a functional dependency from the constructions 
in the premisses to the construction in the conclusion.

Suppose we seek the construction of a circle. We thus have a variable y: Circle. 
Now if we match this with the conclusion of the type-theoretical rule, and reduce 
the conclusion to the premisses, we get to know that the unknown circle y can be 
composed from a point a and a line segment b, that is, that

y  = c(a,b) :  Circle 

in the formal terms of type theory.
In predicate logic, the same construction postulate could be represented as the 

rule

|— Pointia) |— LineSegment(b)

|— Circle(c(a,b))

This does codify the same informal step of construction, but the forms of expres
sion of predicate logic do not allow systematizing rules of construction in a natu
ral way, in contrast to type theory. A type-theoretical rule like the one above simply 
composes a sought construction functionally in synthesis or decomposes it func
tionally in analysis. Thus a circle c(a,b) decomposes into a point a and a line 
segment b. This reconciles the configurational and the directional interpretations 
of analysis on the level of a single step of construction.

The predicate-logical rule, on the other hand, infers properties of individuals 
from other properties in a way that lacks this natural compositionality, which is at 
the heart of the informal conception of analysis. There is no natural way to ana
lyze the predication Circle (c(a,b)) into the predications Point {a) and Line- 
Segmentijb).
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Another approach in terms of predicate logic is presented by Mueller (1981, 
1-3) in his formal rendering of Hilbert’s axioms for Euclidean geometry. He de
notes lines by upper case letters and points by lower case ones instead of distigu- 
ishing them by predicates.

There is no way to formalize geometric construction postulates like the one 
above for circles. Predicate logic thus reduces geometry to theorem proving, be
cause problem solving requires construction postulates.

The only way to reason about constructions in this predicate-logical approach 
is to lay down existence axioms and then infer existence theorems from them. In 
the tradition of geometry established by ancient Greeks, on the other hand, con
structions are more primitive than existence propositions. Constructions can be 
used for proving existence propositions, but the former do not reduce to the latter, 
as in this predicate-logical codification. Thus, it is not adequate.

Indeed, Hilbert’s notion of abstract axiomatization, as exemplified in his Grund- 
lagen der Geometrie (1899), reduced geometry to theorem proving by reducing 
the existence of mathematical objects to the consistency of the axiomatic system 
that defines them implicitly. In the tradition of the Greeks, in contrast, mathemat
ical objects were defined explicitly by construction postulates, as in type theory. 
Hilbert’s model has spread throughout mathematics in this century, reducing it to 
theorem proving. Problem solving, which was the primary concern of Greek math
ematicians (Knorr 1986, ch. 8), has been ruled out.

One can conclude, then, that predicate logic is a logic of theorem proving. It 
serves to describe the directional interpretation of analysis but not the configura
tional one. To describe the configurational interpretation and problem solving 
adequately requires a richer system of logical concepts.

Already Kolmogorov (1932) proposed developing a logic of problem solving 
and applying it to geometric construction problems. He saw that this requires 
constructive logic, but no one seemed to have taken up the task before my (1993). 
This is surely because an expressive enough logical language, type theory, was 
conceived only in the 1970’s. Kolmogorov gave a problem interpretation for con
structive propositional logic.

In natural deduction terms, the above rule of type theory is an introduction 
rule for the set of circles. So introduction rules of natural deduction in type theory 
serve to analyze a sought construction into its immediate constituents, by regress
ing from conclusion to premisses. Elimination rules, correlatively, serve to ana
lyze a given construction into its immediate constituents. Introduction rules are 
used for defining a set by telling how its elements are constructed. They represent 
formally the construction postulates of Greek mathematicians.
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We have employed the two type-theoretical forms of judgement

a : A 

a=* b: A

that represent, respectively, the informal judgements

a is an element of the set A

a and b are equal elements of the set A

Let us now consider judgements and inferences where constructions have no 
intrinsic interest. In case the construction a has no intrinsic interest, the form of 
judgement

a : A

can be abbreviated to the form

M
The distinction between these two forms of judgement is already present in 

ancient Greek mathematics in the distinction between problems and theorems. 
The solution to a problem consists of a construction of the sought objects from the 
given ones and a proof that the construction satisfies the condition of the problem. 
The proof of a theorem, on the other hand, is just a proof that the given objects 
satisfy the condition of the theorem. Solutions to problems thus contain a con
struction with intrinsic interest and a proof that has no intrinsic interest. A proof 
of a theorem is just the latter, thus without intrinsic interest as a construction (cf. 
Maenpaa 1993, ch. 3 for further information).

Zeuthen (1896) identified problems in ancient Greek geometry with existence 
propositions, proved by constructions. Knorr (1983 and 1986, ch. 8) refutes this 
by displaying and discussing Greek theorems that have explicit existential form. 
In them, existence was not proved by construction, and on the other hand, prob
lems were understood quite simply as tasks of construction rather than as existen
tial propositions. Hintikka and Remes (1974 and 1976), in the same vein as Zeuthen, 
distinguish between problems and theorems in terms of existential form. Prob
lems are for them propositions that have existential form.

Type theory allows us to distinguish problems formally from theorems in a 
more satisfactory way. This requires enriching the forms of judgement of predi
cate logic. Recall that the form of judgement a : A can be used to express that a is 
an element of the set A. More generally, it expresses that a is a construction of 
type A.
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Another particular case of a construction besides an element of a set is a proof 
of a proposition. The above form of judgment can be used to express also that a is 
a proof of the proposition A. In case the proof a has no intrinsic interest as a 
construction, the form of judgement can be abbreviated to the form |-  A by sup
pressing a. This abbreviated form expresses that the proposition A is true. It can 
be used when we are not intrinsically interested in how A is proved, that is, in 
what construction proves it, but only in its truth.

The form of judgement a : A can now be used to formalize the “deduction of 
the construction” a, and the form (- A to formalize the “deduction of the proposi
tion” A.

Thus, the two forms of judgement a : A and a = b : A can also represent the 
informal judgements

a is a proof of the proposition A,

a and b are equal proofs of the proposition A.

Proof here is to be understood in the sense of construction, as employed in 
constructive logic. For example, the conjunction introduction rule

M  \-B

| -  A&B

of propositional logic in natural deduction formulation is seen in type theory as an 
abbreviation of the rule

a : A b : B

(a,b) :  A&B

where the proof (a,b) of the conjunction proposition A&B in the conclusion is a 
pair composed of the the proofs a and b of the propositions A and B, respectively, 
in the premisses.

From the point of view of the traditional distinction between problems and 
theorems, we can now see the abbreviated rule as a rule for theorems and the full 
type-theoretical rule as a rule for problems, because the latter rule displays con
structions.
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Corresponding to the usual natural deduction rules of conjunction elimination 

[- A&B f- A&B

b A b b

type theory has the rules

c : A&B c : A&B

p(c) : A q(c): B

that take apart the proof c of the conjunction in the premiss into the left projection 
p(c) and the right projection q(c), which prove the left conjunct A and the right 
conjunct B, respectively.

The values of expressions obtained by applying elimination rules are deter
mined by “computation rules” of type theory. Each proposition and set has its 
rules of computation. There is nothing corresponding to them in predicate logic. 
Conjunction, for instance, has the following computation rules that determine 
how to evaluate effectively left and right projections:

a . A b : B a: A b: B

p{(a,b)) = a: A q((a,b)) = b :B

Constructions may thus have intrinsic interest already on the level of proposi
tional logic. Representing them as individuals of predicate logic is an artificial 
codification. This strengthens the conception that predicate logic is suitable for a 
logic of theorem proving but not for a logic of problem solving.

Proofs in this type-theoretical sense of constructions are formal functional rep
resentations of proof trees. They are brought into the formal language as objects 
that can be reasoned about like any other objects. This is why they are also called 
“proof objects”.

Each step of constructing a proof tree is at the same time a step of constructing 
a proof object. There is nothing restrictive from the point of view of classical logic 
in this formal procedure, because classical logic uses proof trees just like con
structive logic. Proof trees of classical and constructive logic have representations 
on a par as proof objects in type theory. Type theory just enriches predicate logic 
by bringing proofs into the formalism as objects. Trees that form elements of sets,
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generated by rules like the introduction rule for circles above, are treated on a par 
with proof trees.

Type theory and predicate logic differ in the formalization of sets, like those of 
points, line segments, and circles. The type theorist represents them directly as 
sets, whereas the predicate logician represents them indirectly by codifying them 
as predicates over the single domain of individuals. Correlatively, the terms a, b, 
and c(a,b) are formalized as individuals of the single domain in predicate logic, 
but as elements of the sets Point, LineSegment, and Circle, respectively, in type 
theory. This is because type theory enriches predicate logic so that instead of the 
one domain of individuals, each set is a domain of individuals in type theory.

This account of sets in predicate logic followed our first formalization above. 
In the second formalization above, that presented by Mueller, sets are distinguished 
from each other only by representing their elements by different variable symbols. 
There is thus no real distinction, on the formal level, between a point and a line, 
for instance. Nothing prevents forming meaningless predications like 
Intersects (A,a), where A is a point and a is a line.

To conclude, predicate logic does not recognize constructions and cannot for
malize them naturally, although they can be artificially codified in terms of pred
icates over the single domain of individuals. It is not an adequate system of concepts 
for relating the configurational to the directional interpretation of analysis in for
mal terms. Hintikka and Remes (1974 and 1976) understand the analysis of a 
configuration formally as taking apart propositions into their constituents (by 
making use of the subformula property of natural deduction systems), although 
they describe it informally as taking apart a construction into its constituents.

Now let us consider the parts of a proposition in the Greek sense. A problem 
has “given” objects, “sought” objects, and a “condition” that relates them. A the
orem, on the other hand, has only given objects and a condition on them. There 
are no things sought. A theorem is thus the limiting case of a problem with no 
sought objects. This distinction of the parts of a proposition is introduced by me 
(Maenpaa 1993, ch. 3) in order to discuss analysis in precise logical terms—it 
was not made explicitly by the Greeks. Their zetoumenon was the combination of 
what is here called the sought for objects and the condition. Thus for theorems it 
was just what is here called the condition.

An example of a problem is the first proposition of Euclid’s Elements, to con
struct an equilateral triangle on a given line segment. Here the given object is a 
line segment, the sought object is a triangle, and the condition is that the triangle 
must be equilateral and constructed on the line segment.

An example of a theorem is proposition 32 of the first book of Euclid’s Ele
ments. It states that the angle sum of a triangle equals two right angles. Here the 
given object is a triangle, and the condition is that the sum of its angles is equal to 
two right angles.
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In type-theoretical terms, we can represent the given objects, the sought ob
jects, and the condition schematically as

x : A 

y : B(x) 

b  C(x,y)

respectively. Here x and y are (possibly empty) vectors of objects, because there 
may be any number of given and sought objects. For theorems the vector y is 
empty, so the scheme reduces to

x : A 

\-C (x)

A  problem or a theorem need not even have a condition, as in propositional 
logic, where predicates cannot be used. The existential form of proposition 
(3y : B(x))C(x,y) in the context jc : A can be used to represent a problem that has 
a condition. However, problems are not to be identified with existential proposi
tions, because problems that lack a condition are not be represented as existential 
propositions. And on the other hand, a theorem may be just as well be an existen
tial proposition. This is the case when the condition of the theorem is an existen
tial proposition.

Now analysis can be conceived of as a succession of two parts, “transforma
tion” and “resolution”, following Hankel (1874). Using our distinction between 
the given objects, the sought objects, and the condition, we can refine Hankel’s 
proposal with type-theoretical form. First, transformation reduces the condition 
C{x,y) to a transformed condition T(x,y) that the analyst knows how to satisfy. 
The transformed condition of a problem must also determine some constituent of 
the sought objects y : B(x) in terms of the given objects x : A. Then, resolution 
determines all of the sought objects in terms of the given ones. As theorems have 
no sought objects, their analysis has no resolution.

Synthesis has two corresponding successive parts, already distinguished by 
the Greeks, “construction [kataskeue]” and “demonstration [apodeixis]”. Con
struction corresponds to resolution, because it constructs the sought objects 
f i x ) : B(x) from the given ones x : A. Demonstration corresponds to transforma
tion, as it deduces the condition C(x,f(x)) from the transformed condition T(x,f(x)). 
The synthesis of a theorem has no construction, because there are no sought ob
jects. Schematically, analysis and synthesis have the following form.
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resolution
x :A

Analysis

transformation 
|-  T(xy)

T

y:B(x)
T

f- C(x,y)

construction 
x : A

Synthesis

demonstration
I-7 W W )

i A

1
f i x ) : B(x)

i
|- c ( x M )

In case there is no condition, analysis reduces to resolution and synthesis to 
construction. Analysis uncovers the functional dependency

y =/(■*): B(x)

of the sought objects on the given ones, and synthesis then constructs the sought 
objects from the given ones, using this knowledge.

Downward arrows in the scheme indicate deduction, and upward ones reduc
tion. No direction is indicated for resolution, because it does not have any fixed 
direction. It may proceed either deductively from the given objects to the sought 
ones or reductively in the converse direction (cf. Maenpaa 1993 for further infor
mation).
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Ancient Greek mathematicians deduced the sought objects from the given ones 
in resolution, beginning with the dependency of a constituent of a sought object 
on the given objects that was uncovered in the transformed condition. Thus Pap
pus’s account only describes the transformation part of analysis.

In Greek mathematics transformation was a deductive reduction, that is, a 
chain of equivalent conditions. In synthesis, the transformation was converted 
into a demonstration.

No ancient methodological account seems to exist that discusses the restric
tions that ensue from the limitation to deductive transformations in analysis. Quite 
evidently a large class of propositions admit only a successful analysis whose 
transformation is not deductive. This may be one reason why some Greek mathe
matical works were exposed only synthetically. If analysis is restricted to deduc
tive transformations, its universality as a mathematical method of discovery is 
considerably restricted.

In the case of theorems, the scheme for problems reduces to the following 
special case.

Analysis
transformation

Synthesis
demonstration

|- n * )

T l

T i

|— C(jc) l-  C(x)

V The Heuristic Role of Auxiliary Constructions

The configurational interpretation construes analysis as a study of the functional 
dependencies in a definite configuration. This configuration consists of the given 
and the sought objects, assumed to relate to one another as specified by the condi
tion.

There is one proviso to this description. Determining the sought objects in 
terms of the given ones will not in general succeed by analysing just this definite 
configuration. It must be amplified by auxiliary constructions in the course of
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analysis. This is the heuristically crucial and unpredictable factor of analysis, as 
Hintikka and Remes (1974 and 1976) pointed out forcefully.

Descartes ignores auxiliary constructions in the account of analysis in his Ge
ometry cited above. All he has to say is that in solving a problem the analyst is to 
“give names to all the lines that seem needful for its construction,—to those that 
are unknown as well as to those that are known.”

To understand the systematic role of auxiliary constructions in analysis, Hin
tikka and Remes described their introduction in terms of quantifier instantiation 
rules of predicate logic. They contrast such instantiation steps to other steps of 
analysis, which take apart a proposition into its constituents as prescribed by the 
subformula principle of natural deduction systems of predicate logic.

However, as we have seen, analysing a configuration is more naturally formal
ized as the functional decomposition of a construction in type theory. Introduction 
rules decompose sought objects into their constituents, and elimination rules de
compose given objects.

Let us look informally at a few examples of how auxiliary constructions func
tion in solving problems and proving theorems of Euclidean elementary geome
try. First, consider the proposition I, 1 of the Elements, which is the problem of 
constructing a sought triangle on a given line segment satisfying the condition 
that the triangle is equilateral and constructed on the line segment.

C

Euclid gives only the synthesis of the solution. In its construction part, he 
constructs two circles on the given line segment AB, one centered on point A and 
the other on point B, using AB as the radius. These steps apply his third construc
tion postulate, for circles. Then he connects the points A and B to C, which is one 
of the two intersection points of the circles. These steps apply his first construc
tion postulate, which allows constructing a line segment connecting two given 
points.

A well-known deficiency of the Elements from the point of view of modem 
standards of axiomatic systems is that Euclid does not justify the construction of a
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point by means of two intersecting lines, like point C here, by any construction 
postulate. Rather, he takes it for granted that one may construct a point by letting 
two lines intersect, whether two straight lines or two circles or one of each.

In the demonstration part of his synthesis, Euclid shows that the condition of 
the problem holds by appealing to the definition of a circle. As AC and AB are 
radii of the same circle, they are equal in length. The same goes for BC and BA. 
By his axiom that “things that are equal to the same thing are also equal to one 
another”, the first “common notion” of the Elements, CA is equal to CB and hence 
the sought triangle ABC is equilateral. It is also constructed on the given line 
segment AB, as required.

This solution required the auxiliary constructions of the two circles, carried 
out in the construction part of the solution. Without them, Euclid could not have 
determined the sought triangle in terms of the given line segment, because the 
vertex C of the triangle was constructed from the line segment AB by intersecting 
the circles.

Now consider the proof of a theorem, proposition I, 32 of Euclid’s Elements, 
which states that the angle sum of a given triangle equals two right angles (this 
proof is in fact a version handed down by Eudemus).

C

First Euclid draws a straight line DCE through the vertex C of the given trian
gle ABC parallel to its base AB. Then he argues that ZACD is equal to its alternate 
angle ZA, and likewise ZBCE  equal to ZB, so the angle sum of the given triangle 
ABC equals the sum of ZACD , ZACB, and ZBCE, that is, two right angles.

The auxiliary construction of the line DCE is the heuristically crucial part of 
this proof. Without it, the proof would not succeed. This shows that even though 
theorems have no construction part in their synthesis, auxiliary constructions are 
in general needed in order for their proofs to succeed.

Auxiliary constructions serve to bring forth new relations among the constitu
ents of the configuration that is analysed, so that new propositions can be applied
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in the proof or solution. In the synthesis of theorems, auxiliary constructions are 
performed in the demonstration part, because there is no construction part.

In the present case, the auxiliary construction DCE allows mobilizing the the
orem that a line intersecting two parallels makes the ensuing alternate angles 
equal to one another. This is proposition I, 29 of the first book of Euclid’s Ele
ments.

Now to gain a more general understanding of the significance of auxiliary 
constructions in mathematics, consider the elementary algebraic problem

a2x 4 + abx2 = c

for reals, assuming we know the standard solution to a quadratic equation. Alge
braic equations are equality propositions, to be distinguished from definitional 
equalities, which are represented in type theory as judgements of the forma = b: a. 
This problem has the following parts.

given a,b,c : R
sought x : R
condition (- a2x 4 + abx2 = c

The solution by analysis starts with a transformation. First, substitute the fresh 
variable y for ax2 in the condition. This reduces the condition to the equivalent 
one

\- y 2+ by = c

Then transform this into the equivalent condition

|- y2 + by -  c -  0

We have now hit upon the transformed condition, because this equation is solved 
by the known general solution to a quadratic equation.

The resolution first applies this known solution, which yields the value

y = R.

There is a condition of solvability for y, a diorism in Greek terms, that
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In the second step of resolution, we determine the original thing sought x  in 
terms of y as

-b

x = ± |

bL---- 1-c
4 :R

by means of the known solution for j c  in terms of y from the equation y = ax2: R 
corresponding to the substitution. (Any value of j c  is a solution if a = c = 0 : R.) 
Here, too, we have diorisms,

b
-b  v b2—  ± Ai — + c
2 V 4

a
b a *  0

As algebraic equations of this Cartesian kind are more formal than the above 
propositions of geometry, this example shows more clearly in formal terms how 
auxiliary constructions enter into the a solution or a proof by analysis. They are 
introduced by substitution. We substituted the fresh variable y for the expression 
ax2 in order to find a solution for j c  in terms of a, b, and c.

VI The Logical Role of Auxiliary Constructions

As auxiliary constructions are so central heuristically in analysis, let us discern 
their role in logical terms. Hintikka and Remes characterize them in terms of 
quantifier instantiation, but type theory allows us to represent them logically in a 
way that preserves their informal character faithfully.

In informal mathematics, auxiliary constructions are brought into analytical 
proofs and solutions by substitution. Our algebraic example, for instance, showed 
no trace of quantifier instantiations in bringing in the auxiliary construction. Re
call their other informal characterization, as constructions that are constituents of 
neither the given nor the sought objects.
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The substitution rule of type theory

(x: A)

b : B a :A

b(a/x) : B(a/x)

can be seen reductively as a generalization of the usual cut rule of natural deduction 
systems (Maenpaa 1993, ch. 2). Its first premise means that b : B in the context 
x : A, that is, the premise b : B may depend on the hypothesis j c  : A. Proceeding 
deductively from premisses to conclusion, the rule allows substituting a for j c  in b 
and B.

In analysis, this rule can be used reductively for introducing the auxiliary 
construction x  of type A into the problem of proving some specified proposition C. 
The point is, heuristically, to see C as a substitution instance B(a/x) of a more 
general proposition B that is defined in terms of the auxiliary construction j c  : A. 
Proving the proposition C, that is B(a/x), reduces then to proving the proposition 
B in terms of j c  : A and to constructing an object a of type A.

In our algebraic example the proposition C was the equation a2j c 4  + abx2 = c 
whose solution, the value of x  in terms of a, b, and c, we sought. The heuristically 
crucial step in the analysis was the first step of transformation, where we saw this 
problem as a substitution instance of the problem y 2 + by = c by applying the 
above cut rule reductively. This introduced the auxiliary construction y, which 
matches x  in the rule. Furthermore, the object a in the rule matches the expression 
ax2 in our example.

This rule of cut or reductive substitution has a special role in our logical de
scription of configurational analysis. As introduction rules serve to analyze sought 
objects and elimination rules given objects, there must be some rule for introduc
ing auxiliary constructions, because they do not arise from analysing the given 
and sought objects. This is what the cut rule is for.

In Hintikka and Remes’s logical characterization of analysis in terms of pred
icate logic, the cut rule violates the rules of analysis. They forbid its use altogeth
er, because it does not enjoy the subformula property of predicate logic. Instead, 
they see auxiliary constructions as entering by quantifier instantiation. This con
ception is the only reasonable one in predicate logic, where the cut rule is less 
general than in type theory. It has nothing to do with substitution, because it does 
not deal with individuals at all. In fact, predicate logic has no rule of substitution. 
Substitution operations of informal mathematics are artificially codified by means 
of quantifier rules. This is why predicate logic does not allow representing the
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introduction of auxiliary constructions in a way that is faithful to informal math
ematical practice.

Let us now enrich the schemes for analysis and synthesis by taking auxiliary 
constructions into account.

resolution

Analysis

transformation

j c  : A | -  T(x,y,z) 
T

z : G(x) • (g(xy)lz)

y • B(x)

T

h  C(xy)

construction

Synthesis

demonstration

j c  : A \-n*A xM x))M x))

i i

h (x): G(x)

i i
f{x,h(x) ) : B(x) (- C(xJ(x,h(x)))

Analysis introduces the auxiliary constructions z of type G(x) by substituting 
g(jc,y) for them reductively in the transformation (here z and g(jc,y) denote, again, 
vectors of objects). The original configuration that consists of x  and y is thereby 
amplified by z.

Resolution determines the auxiliary constructions z in terms of the given ob
jects j c  alone. This is why the type G ( j c )  must not depend on the given objects x, in 
contrast to the expression g(x,y) substituted for z reductively in transformation
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(for the logical role of auxiliary constructions in analyses where the proposition 
has no condition, cf. Maenpaa 1993, ch. 3; in this case they have to be both intro
duced and determined in terms of the given objects in resolution).

Analysis uncovers the functional dependencies

z -  h (x ): G(x) 

y = f(x,z) = f(x,h(x)) : B(x)

that are constructed in synthesis. The determination of the things sought y  in 
terms of the auxiliary constructions z and the given objects x  in resolution must 
respect the equation

 ̂= g(x,y) :  G(x)

that corresponds to the substitutions in transformation.
For instance, in our algebraic example we introduced the auxiliary construc

tion y  by substituting the expression ax2 reductively for it. This expression de
pends on the given object a as well as the sought object x. Yet in resolution, we 
determined y in terms of the given objects alone. Then we determined the thing 
sought jc in terms of the given objects and the auxiliary construction y so that the 
equation y = ax2: R corresponding to the substitution was respected.

Notice that substitution doesn’t figure in synthesis. This is why we did not 
discern it in the geometric examples of employing auxiliary constructions from 
Euclid’s Elements (for a discussion of the analyses corresponding to these synthe
ses, cf. Maenpaa 1993, ch. 5).

In the case of theorems, we have the following special case of the above scheme.

Analysis
transformation

Synthesis
demonstration

|~T(x,z)

T i

• (g(xVz) •

T i

b a * ) \-C (x)
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Here the auxiliary constructions do not have to be determined in terms of the 
given objects alone, as in the analysis of problems, because there are no sought 
objects that the auxiliary constructions could be made to depend on in transforma
tion. We can thus directly use the same expression g(x) in demonstration that was 
used in transformation.

Nevertheless, this scheme shows how auxiliary constructions figure in the 
analysis of theorems, and not only in the solution of problems. They do not arise 
by taking apart the given constructions. Rather, the given configuration x  must be 
amplified by z.

The source of the heuristic usefulness of analysis is that it gives the possibility 
of making systematic use of the things sought and the condition as well as of the 
given objects. Plain synthesis, without an antecedent analysis, has to proceed from 
the given objects to the sought ones and then demonstrate the condition blindly, so 
to say, without making systematic use of the sought objects and the condition.

Auxiliary constructions, in particular, function in a subtle way. They can be 
based on the sought as well as the given objects in the substitutions performed in 
transformation. In resolution they are then determined in terms of the given ob
jects alone. This functioning is spelled out in precise formal terms in the above 
schemes.

As theorems have no sought objects, analysis is less useful heuristically for 
proving them than for solving problems. In particular, auxiliary constructions 
function in a less subtle way. They are introduced outright in transformation in a 
way that need not be justified in resolution or in synthesis in another way, because 
they can depend only on the given objects. This explains in part why analysis was 
above all a method for solving problems for ancient Greek geometers (compare to 
the account of Knorr 1986, ch. 8).

Let us reconsider the question whether predicate logic is adequte for describ
ing theoretical analysis. As proving theorems requires auxiliary constructions in 
general, it depends on solving construction problems. Auxiliary constructions are, 
after all, solutions to problems. Therefore predicate logic suffices for describing 
theorem proving adequately only in those scarce trivial situations where auxiliary 
constructions are not needed.

Moreover, auxiliary constructions and constructions in general require a con
structive logic for their logical description, because constructions are formed con
structively by definition. In the mathematical tradition established by the Greeks, 
the construction part of synthesis was constructive in terms of modem construc
tivist standards, whereas indirect proofs were allowed in the demonstration to 
prove properties of constructions. As mathematics has reduced to theorem prov
ing during this century, classical predicate logic suffices to describe it, if auxiliary 
constructions are not taken into account.
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In contemporary mathematics, indirect proofs of existence are allowed every
where instead of constructions, which are carried out by means of construction 
postulates. In particular, auxiliary constructions are replaced by objects whose 
existence is proved indirectly. Then classical predicate logic suffices to describe 
them and theorem proving in general.

In another direction, the constructivists of this century have gone further than 
the Greeks—they require constructive reasoning even in demonstrations of the 
properties of constructions, not only in constructions.

As a surprising recapitulation of ancient mathematical history, computing sci
entists have in recent years started to solve problems in exactly the same sense as 
Greek mathematicians. They carry out constructions (computer programs) and 
demonstrate that they satisfy specified conditions. As programs are formal by 
definition, the need for an adequate formalism has been crucial in computing 
science, in contrast to mathematics.

Type theory has become one of the main theoretical approaches in computing 
science, because it is a programming language as well as a logical system (Mar- 
tin-Lof 1982, Nordstrom, Petersson and Smith 1990). Programs are constructed 
by rules of introduction and elimination and evaluated by rules of computation. 
This allows constructing programs and demonstrating their properties in one for
malism, which is a considerable advantage over traditional programming lan
guages. Predicate logic does not suffice for this, nor does classical logic, because 
they don’t recognize constructions.

Programming was until the 1970’s in a pre-theoretical stage in the way math
ematics was before the Greeks made it a science. In the 1970’s the need arose to 
prove that programs satisfy their specified conditions, that is, do what they are 
supposed to do. This is how programming evolved into a science in the sense 
established by the Greeks. Characteristic of mathematics before the Greeks as 
well as programming before the 1970’s was a stage of algorithmic constructions 
with no specifications or demonstrations of conditions of correctness imposed on 
the constructions. The Greek method of geometrical analysis can be generalized 
into a method of solving all kinds of mathematical problems in type theory by 
taking into account inductively defined problems, which are characteristic of pro
gramming. The method known as top-down programming turns out to be a spe
cial case of analysis (Maenpaa 1993, chs. 3 and 8).
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I Introduction

In this article, we would like to study the importance of the concept of analysis for 
mathematics from three points of view:
-  Firstly, we will be attentive to what, since the Greeks, since Pappus if what I 
have learned is correct, is called “analysis”, and which, as a characteristic proce
dure of geometric reasoning, is put forward by Platonic and Aristotelian philoso
phy as a universal model of thought.
-  Secondly, we would like to understand analysis as the regressive method of all 
transcendental inquiry, following Kant’s suggestion, and to reinterpret this tran
scendental inquiry as necessarily hermeneutical.
-  But finally, we will aim to elucidate, starting from these sorts of considerations, 
the unity of meaning of analysis, that contemporary branch of mathematics whose 
prodigious development in modem times is well known.

There is little doubt that a certain degree of failure in such an undertaking is 
likely. The method which will be followed to attain some results despite the scope 
of the questions raised and the unsettling character of the comparisons we wish to 
establish will consist in a straightforwardly personal reconstruction of certain 
elements of the tradition.

Let us therefore begin with Greek analysis.

II Greek Analytical Suspension: Hermeneutics and deliberation

In the Republic (510 b-d), Plato clearly opposes mathematical and philosophic 
approaches: he considers the latter as essentially regressive, consisting in an up
ward move from any given to the “non-hypothetical principle(s)” belonging to the 
purely intelligible realm. The former is essentially suspensive and progressive, 
laying down certain hypotheses, passing through their consequences while break
ing once and for all with any questioning of them. But on the other hand, the 
method of geometers is readily called up as an argumentative model for philoso
phy. Notably in Meno (86fc-87d), when a provisional phase of the research into 
the essence of virtue must be justified, Plato cites a relatively obscure (in the
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words of Plato’s French editor and translator Leon Robin1) example which does 
seem to be a case of classical “analysis”.

We therefore wish to reflect on Greek analysis to know if it is regressive or 
progressive, suspensive or interrogative, philosophical or mathematical.

The discussion may commence not with Greek sources, but with what, in the 
mathematical tradition, has been defined as the method of analysis. In my case, 
analysis was taught to me, more than two thousand years after the Greeks, as the 
first phase in the treatment of a problem of geometric construction. Faced with the 
problem of constructing a figure, a straight line or a point with such and such a 
property with respect to geometric givens—which are in turn simple figures (point, 
straight line, triangle, circle, etc.)—we are advised to begin by “assuming that the 
problem is solved”: by tracing in a tentative and approximate manner a figure in 
which what must be constructed is present and whose construction we assume to 
be correct (generally speaking, moreover, we know how to adjust distances and 
angles intuitively so as to actually experience the construction as correct or slight
ly incorrect). We may then, on inspection of the figure, begin the work of deduc
tion, whose premises are acquired through considering the properties of the entity 
under construction as satisfied. The process of deduction naturally gives up a 
series of properties, certain of which will be the relations of the entity under con
struction—or more generally the constituents of this entity—to the given entities. 
At a certain point, these relations may be able to indicate and prescribe in trans
parent fashion a possible construction. There then remains, in the phase called 
“synthesis”, the task of demonstrating that what has been constructed in the dis
covered procedure indeed satisfies the stipulated properties of the “problem of 
construction”.

Thus, one assumes that the relations to be satisfied are satisfied (the relations 
of the entity to be constructed to the given entities) so as to deduce other relations 
out of which a construction is possible and recommendable.

How must this procedure be described?
First of all it is suspensive, for it consists in a hypothesis; but the hypothesis is 

the elimination of what is at stake, of the aim, of the problematic originary orien
tation. Thus, there is indeed suspension, at least apparently, suspension at a cer
tain level of the drive toward the goal.

The method is obviously progressive as well: one derives conclusions from the 
hypothesis that the problem is solved, instead of working down from the hypoth
esis to its unquestionable sufficient reasons, or attempting such a philosophic 
regression from the encompassing conditions of the problem. Yet these eventual
ities of a philosophic treatment of the geometric problem have a false ring to 
them, because the context of the problem is immediately non-philosophic: the 
regression to nonhypothetical principles referred to by Plato clearly deals with 
lexical indicators of conceptual signification, rather than with those configura
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tions, leading to a decision, that the problems are. Therefore analysis does appear 
suspensive and mathematical, but suspensive in the sense that it is less the evalu
ation of a thesis that is suspended as the tension of a problem, that is to say a sort 
of strategic meta-thesis.

Let us proceed now to the purely logical plane. The procedure of analysis 
begins by laying down a phrase such as:

3xP(a,x)  [there exists an entity x such that it has a relation P to the given 
objects a].

We now move on the logical deduction, finishing with a phrase such as the 
following:

3 xQ(a,x)  [there exists an entity x such that it has a relation Q to the given 
objects a].

One imagines that there must be a way to attest this new phrase “effectively”, 
to construct the entity(ies) mentioned in the phrase existentially. And one imag
ines as well that this construction is in fact, through certain simple mediations, 
the ipso facto construction of entities jc such that P(a,x), which is to say one 
imagines this to be the solution to the original problem.

This procedure of analysis seems circular: one assumes the existence of an x  
satisfying P to be able to demonstrate the existence of an x  satisfying P. This 
circularity has nothing to do with a vicious circle, because the presupposition is 
logico-existential, and because what is achieved at the end is an effective con
struction. Such a construction can be achieved because the existential description 
a la Russell of the object to be constructed has been transformed into that of 
another object, with the property that a constructive counterpart to it is immedi
ately given, and because the passage from the construction of this new object to 
that of the original can be accomplished.

I am led to conclude that analysis, seen in this angle, is a thoughtful elabora
tion allowing for the transition from the logico-predicative precomprehension of 
an entity to practical comprehension. The underlying presupposition is that cer
tain logico-predicative precomprehensions have always contained their practical 
counterparts: this is but to name and to grasp the traditional idea of a “guiding” 
geometric intuition. The geometric intuition consists in there being practical cor
respondents of the constructive order to certain simple, defined descriptions, pro
viding that the constant parameters of these descriptions themselves be given in 
intuition.

In any case, the drift of my argument is now clear: the procedure of analysis in 
the classical, technical sense of the term that it has acquired since the Greeks in 
the field of geometry is closely related to hermeneutics. It must be pointed out in 
passing that this hermeneutics is opposed to the hermeneutics Heidegger adum
brates in section 63 of Sein und Zeit (1927): for Heidegger, the precomprehension 
of being is practical, ante-predicative, and hermeneutical elucidation consists in a
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bringing into view through predicative speech, whereas here, the passage is from 
a saying that articulates the object to be constructed in such and such a way to a 
realisation of the geometric construction which exhibits the object with the same 
determinations.

This line of thought on Greek analysis can be completed with an account of 
the following passage from the Nicomachean Ethics in which Aristotle conceives 
of the reasoning of the practical understanding as stemming from the model of 
analysis:

“We deliberate not about ends but about means. For a doctor does not deliberate whether he shall 
heal, nor an orator whether he shall persuade, nor a statesman whether he shall produce law and 
order, nor does anyone else deliberate about his end. They assume the end and consider how and 
by what means it is to be attained; and if it seems to be produced by several means they consider by 
which it is most easily and best produced, while if it is achieved by one only they consider how it 
will be achieved by this and by what means this will be achieved, till they come to the first cause, 
which in the order of discovery is last. For the person who deliberates seems to investigate and 
analyse in the way described as though he were analysing a geometric construction (not all inves
tigation appears to be deliberation—for instance mathematical investigations—but all delibera
tion is investigation), and what is last in the order of analysis seems to be first in the order of 
becoming.”2 (1112b, 12-25)

Analysis seems here to be characterised by regressive reasoning, which, prima 
facie, is in total contradiction with Plato’s divide between mathematics and phi
losophy. The connection to the traditional notion of analysis in geometry men
tioned earlier is easy to establish; Aristotle perceives that in practical deliberation, 
the problem is assumed solved as in problems of construction. But the delibera
tion is not analogous to progressive research into the conditions of construction, 
for it is in fact regressive: the regression it enacts is at one and the same time 
purely logical and empirical, conditions are introduced as perfectly regular logi
cal premises of the previously considered condition, and the mind remains con
stantly watchful over the possibility of adjusting practically the world to the present 
condition.

A type of extremely simple mathematical reasoning conforming to this model 
can be cited. Moreover, this type of reasoning is of the greatest importance in 
contemporary mathematical analysis, be it real or complex. I refer here to process
es of reasoning adapting a  to e, to attest a property of continuity or limit following 
the definition prevailing since Weierstrass: let us say, for example, that I wish to 
establish the continuity in 1 of the function x  -» x 2; e > 0 is given, and I will seek 
a  > 0 such that the condition lx-11 < a  implies lx2- l  I < e; what is to be obtained is 
in fact Ix-lllx+ll < e, which follows from lx-11 < e/2 and lx+11 < 2, this last 
condition resulting from lx-11 < 1, so that a  -  Min(l,e/2) agrees. It is clear that 
the “deliberation” involved in this proof requires that a “means” be found of a 
prior (double) “means”, therefore the deliberation already possesses a certain depth. 
Those familiar with contemporary real and complex analysis may witness that
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this sort of procedure, with its essential estimative aspect, is omnipresent therein, 
not necessarily as a global scheme of what is accomplished (modem technicity 
having introduced other general modes of mathematical reflection), but quite of
ten as the decisive and necessary local manipulation.

The question here is whether this deliberative regression a la Aristotle makes 
it “philosophic” in the Platonic sense. Once again, it seems that the distinction is 
marked in Platonic regression being semantic and lexical, aiming for the nonhy- 
pothetical principle, while Aristotelian regression is logical and phrastic, aiming 
at the effectuation of the hypothesis. In the case of ethico-practical deliberation, 
this is the pure and simple concrete faculty instituting a state of affairs in the 
world. In the case of Weierstrassian “deliberation”, the effectuation comes about 
in the mediate discovery of a condition of a type set down in advance, ultimately 
implying the condition taken as final theme.

This other type of analysis can no longer be attached to the hermeneutical 
model, as was suggested above in bringing to light the procedure of analysis in the 
solution of a problem of geometric construction. The two relevant orders, that of 
the logical phrase and its implication on the one hand, that of its effectuation on 
the other, are no longer related in such a way that what takes place in one order 
can be considered as satisfying what is anticipated in the other. Moreover, must 
the hermeneutical path not be an uncertain progression, a drift? Is there in fact 
elucidation if one simply strives through accumulative stages toward a point of 
resolution and actuality? Aristotelian analysis has something in common with 
problem-solving , and nothing of the sort with the hermeneutical circle: the “prob
lem is assumed solved”, but this is not to make it a premise, nor to acquire it as a 
pregiven, but quite simply to make it one’s goal at the end of a logico-rationally 
polarised interval. It will become clear by the end of this paper that this logically 
regressive analysis may however be considered, and doubly so, as a hermeneutics. 
But for the moment we lack the means of grasping this possibility.

At this point of our presentation it is difficult not to want to deal with that 
other historically claimed form of analysis: Kantian transcendental regression.

I ll Transcendental Analysis

In the “Methodology of pure reason”, Kant sets up a famous demarcation between 
mathematics and philosophy, the procedure of philosophy being that of knowl
edge gained through concepts, and that of mathematics as knowledge gained 
through the construction of concepts. His essential aim is to explain how the de
duction of the principles of pure understanding, which appears a posteriori as the 
philosophic result of the Critique o f Pure Reason, is not and could not be a part of 
mathematics. The motive of this divide lies in the nature of the concepts worked 
through in the transcendental inquiry: they are strictly discursive concepts, thus
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with no generic instance in intuition (the procedure of “concept construction”, so 
typical a move in mathematics, is in their case impossible). In a logic of auto
justification which is one of the essential stakes of this passage, Kant explains that 
what may be learned about them is limited to their function as “rules” for the 
synthesis of sensible manifolds in excess of them and under the extraneous legis
lation of the pure forms of intuition. But he also says something else, apparently 
gratuitous and intrinsic, about these concepts: that they are present in ordinary 
human usage, in such a form however that their content is not delimited. And he 
names “analysis” the procedure explicating a norm of correct signification for 
such concepts, opposing this procedure to that of mathematical “definition”.

Once again we then meet with the collusion between the mathematico-philo- 
sophic divide and the figure of analysis, and that between the latter and the idea of 
regression, as will be seen more clearly below. Husserl, reading these passages, 
retained the idea that the regressive method was characteristic of the transcenden
tal spirit a la Kant. In order to refute the Kantian transcendental, he retains as its 
positive principle a partially Cartesian formulation: the transcendental thesis con
sists in saying that all knowledge is knowledge of a subject and is only valid as 
knowledge following the certification of the subject—there can be no meaning to 
the idea of knowledge dictated and validated by the object. Husserl attributes this 
thesis to Kant as a major insight and progress for thought, but he parts ways with 
him over how to describe these subjective formations governing all knowledge. 
According to Husserl, Kant obtains his transcendental invariants, the categories, 
space and time with their own constraints “by regressing from de facto discourse”, 
from de facto thought of the subject in general and of the subject of science in 
particular. But his judgement is that Kant’s method issues in opaqueness of the 
resulting transcendental factors. In Husserl’s view, what is discovered by regres
sion, what is identified as the condition of possibility of a de facto exercise, even 
if it never be present in the exercise, has on principle the right not to have either 
intuitive grounds or evidence for its subject, and ultimately it is likely not to have 
any sense. Whereas, for Husserl, what we name the transcendental character of 
what affects our knowledge must appear as such to us in an examination of our 
subjective performance “on the path” of knowledge. The transcendental factors 
must not be merely linked in a logical relation to the experience of knowledge, but 
must themselves be able to be experimented with their functions within that expe
rience. Husserl’s position interests us for its negative lesson on what could be 
called “conceptual analysis”, the regression from a fact not toward Platonic non- 
hypothetical principles, but to guiding notions, conditions of possibilities, a re
gression that always thinks a logico-significant link: this analysis does not conquer 
evidence, but rather leads us to contents whose strangeness is maintained at the 
very moment their guiding quality is acknowledged.
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But let us listen to the expression of such a conceptual analysis in Kant:

“In the second place, it is also true that no concept given a  p r io r i ,  such as substance, cause, right, 
equity, etc., can strictly speaking, be defined. For I can never be certain that the clear representa
tion of a concept, which as given may still be confused, has been completely effected, unless I 
know that it is adequate to its object. But since the concept of it may, as given, include many 
obscure representations, which we overlook in our analysis, although we are constantly making 
use of them in our application of the concept, the completeness of the analysis of my concept is 
always in doubt, and a multiplicity of suitable examples suffices only to make the completeness 
probable, never to make i ta p o d e ic t ic a l ly  certain. Instead of the term, definition, I prefer to use the 
term, e x p o s it io n , as being more guarded term, which the critic can accept as being up to a certain 
point valid, though still entertaining doubts as to the completeness of the analysis.”3 (Kant A, 729;
B, 757)

It is thus clear that the philosophical procedure of analysis starts with a con
cept given in usage, then attempts to decompose it at the level of signification, 
without however being certain of ever having a complete semantic portrait of the 
concept. This procedure is opposed to that of the definition, characterised in the 
following terms:

“There remain, therefore, no concepts which allow of definition, except only those which contain 
an arbitrary synthesis that admits of a  p r io r i  construction. Consequently, mathematics is the only 
science that has definitions. For the object which it thinks it exhibits a  p r io r i  in intuition, and this 
object certainly cannot contain either more or less than the concept, since it is through the defini
tion that the concept of the object is given—and given originally, that is, without its being neces
sary to derive the definition from any other source.” ( ib id . A, 729-730; B, 757-758)

It is then essential to the notion of analysis that it imply the relationship to a 
given, whereas the definition “gives” itself:

“We shall confine ourselves simply to remarking that while philosophical definitions are never 
more than expositions of given concepts, mathematical definitions are constructions of concepts, 
originally framed by the mind itself [...].” ( ib id . A, 758; B, 730)

Kant insists strongly on the provisional, perfectible character of analysis. Thus, 
in a footnote:

“Philosophy is full of faulty definitions, especially of definitions which, while indeed containing 
some of the elements required, are yet not complete. If we could make no use of a concept till we 
had defined it, all philosophy would be in a pitiable plight. But since a good and safe use can still 
be made of the elements obtained by analysis so far as they go, defective definitions, that is, propo
sitions which are properly not definitions, but are yet true, and are therefore approximations to 
definitions, can be employed with great advantage. In mathematics definition belongs ad e ss e , in 
philosophy a d  m e liu s  e s s e . It is desirable to attain an adequate definition, but often very difficult.
The jurists are still without a definition of their concept of right.” ( ib id . A, 731; B, 759)

Therefore I would like to know and ask to what point this figure of analysis is 
a figure of hermeneutics. The word “exposition” appears for the first time in the 
Critique o f Pure Reason in the transcendental aesthetic, where Kant presents a
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“metaphysical exposition”, clear though not detailed, of space. In this case as in 
that above, the exposition sets forth a content in ignorance of that completeness 
which is its aim, to the point of despair of ever being able to reach such a goal. 
With the problem of space, this impossibility has something principled about it, 
since the very infinity of space, revealed by the exposition, is opposed to its com
pleteness. But this is only one of its aspects: the incompleteness is related as well 
to what the exposition sets forth of what is “anticipated” of space, to what of space 
is “prejudged”, to what geometry will systematise, but which is not yet in itself 
formal or exact, thus displaying an essential incompleteness of determination, 
calling for diverse elucidations. The investigation here called “analysis” has com
mon characteristics with the metaphysical exposition. The principle difference 
being that it is nevertheless a “decomposition”: it works on a word of the lan
guage, a word corresponding to a concept, and attempts to elucidate it in what 
would appear to be the only possible way, i.e. through a list purporting to be 
complete of the semantic contents in which the concept exhausts its meaning. But 
this work is open and incomplete, consisting in a dialogue with the given which is 
at one and the same time a way of prescribing this given, as in the case of the 
metaphysical exposition. In that case, the donation is the celebrated intuitive dona
tion, that of the pure forms of the sensibility to the subject, a donation supposed to 
precede de jure all experience, and which is called pure intuition. While in the 
case of analysis of a concept such as “substance”, the given is that of a semanti- 
cism already shared by the circle of the thinking community. Hermeneutics in its 
most classic concept can only apply to this sort of given, which is easily conceived 
as equally “not given”. This is the structure of the “envelopment of meaning”, a 
sort of a priori structure governing the region of meaning, according to which 
everything having meaning withholds additional meaning that, in one way or 
another, has to be explicated or activated. On the other hand it is not self evident 
to conceive of the mathematical theorisation of space, for example, as a herme
neutic: this is nevertheless what I wished to propose as the best epistemological 
scheme of mathematical activity in my U  hermeneutique formelle (1991), whose 
point of departure was indeed the presentation of the relation to space as a relation 
at once of familiarity and of dispossession, a relation to a given-not given of the 
same sort as that to a lexical unit in which meaning is enveloped. My complete 
thesis, whose main argument I have just in part reproduced, is that the relation 
named by Kant “intuition” is a relation of this sort.

But, as for the usage of the word analysis, there is an important distinction to 
be made. Analysis as a procedure of finite and controlled decomposition is the 
hermeneutical method when it has as its object the natural opaqueness of lexical 
meaning. On the other hand, the mathematical interpretation of space does not 
follow the path of analysis, but rather proceeds by axiomatic enunciation, “syn
thetically”, the exact inversion of hermeneutics. Judgements prescribing space
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are made, inscribed and aligned; they are supposedly inspired by our familiarity 
with space but, whatever the case, they set and delimit that space, enabling a 
regulated logical usage of the representations that will implement the knowledge 
of space. The synthetic character resides in the fact that these judgements predi
cate subjects of determinations that do not figure in their concept, in conformity to 
the Kantian definition, but we could take a step further in considering modem 
axiomatic experience, and conclude that axiomatisation is synthetic insofar as it 
establishes, prejudgementally, a world of objects in its coherence and universality. 
Whereas conceptual analysis limits itself to deploying problematically the wealth 
of possibilities of a locus of meaning, of a condensation of thought.

In any case, the mere consideration of analysis as the characteristic method of 
transcendental investigation and of the metaphysical exposition of the transcen
dental aesthetic as both belonging to the hermeneutical attitude suffices to show 
that each factor of the Kantian transcendental structure in fact receives its identity 
as a hermeneutical conquest: space, time, and the categories constrain knowledge 
a priori only as figures of themselves to which access is given in a dispossessive 
familiarity. These figures have the status and the composition of non-given givens, 
objects allowing analytic work in the case of conceptual elements, and, as for 
intuitive elements, permitting mathematical synthesis which is nonetheless herme
neutical.

Can this preliminary two-headed reflection afford insight into the project of 
expressing the essence of contemporary mathematical analysis?

IV The Identity of the Branch Analysis of Contemporary 
Mathematics

How is analysis to be identified today? There is of course J. Dieudonne’s Elements 
o f Analysis (1963-1982), which gives us a sketch of the complex tree of the sub
disciplines of analysis, claiming to expound them one after the other, volume after 
volume. General topology, theory of topological spaces, theory of analytical func
tions, functional analysis, algebraic topology, differential geometry, theory of dy
namical systems, differential topology: all these headings, of different implicit or 
explicit levels, coming together and crossing each other in various ways, compose 
the figure of analysis. At a glance, the unity of these procedures is in the depend
ence of the objects treated on the R  and the C of the Cantorian construction, 
together with the play of the topological element of these structures. Having said 
that, there are certain cases in which the disciplines of analysis confine with alge
bra, for various reasons: in the case of analytic geometry, it is because this branch 
makes use of constructions generally given as algebraic in a geometry itself known 
as algebraic; for the case of differential equations, the motive would be more stra
tegic, because the solution of equations is an algebraic heuristic and, consequent
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ly, despite the topological nature of its objects and situations, many aspects of the 
theory come from algebra.

The discussion undertaken here revolves naturally around the opposition be
tween “analysis” and “algebra”. But this is not the only possible discussion: an
other one is oriented towards the distinction between “analysis” and “geometry”. 
It seems self-evident to me that the theory of topological vectorial spaces should 
belong to analysis, but I would much less spontaneously call this theory “geomet
ric”. Dieudonne seems to classify in analysis everything in which topology plays a 
decisive role, thus evincing a particular conception of the branch. But in the dif
fuse sentiment of contemporary mathematicians, there is also a more restrictive 
idea of analysis, according to which it would be defined as the study of set-theoret
ical complexity—that is, above all, functional complexity—developed on the ba
sis of R  and C, indeed from a topological viewpoint, without ever attaining a 
geometric perspective on these entities. From this point of view, differential ge
ometry would contain numerous aspects outside the field of analysis strictly speak
ing.

As for the concept of “geometry”, it is in a problematic inter-definitional state 
with that of topology: not all study of topological structure is geometric—there is 
another diffuse sentiment according to which geometry begins only when the top
ological structures studied are sufficiently affinitive to classical Euclidean struc
tures. One possible criterion is the presence of a sheaf, that is, that readily 
operational entities be given above the localisations offered up by the topological 
space.

Lastly, the concept of “algebra” is difficult to distinguish from that of “arith
metic”: the classic “algebraic structures”—group, ring, field—have for their sim
plest examples the objects N, Z, and Q, which proceed immediately from N, the 
presumed theme of all mathematics from the constructive point of view. “Arith
metic” may be a word for the designation of the intuitive-constructive base that all 
mathematics ultimately refers to, and from this viewpoint the notion of the algo
rithm becomes the decisive notion of arithmetic. Or else arithmetic concerns an 
interest in the qualitative distribution of integers and for their related operational 
configurations, which generally ushers us into algebra. Arithmetic thus appears 
to be linked in two ways: on one side to discrete constructive mathematics, on the 
other to modem algebra. Research on Fermat’s theorem brilliantly underscores 
the second link. And I recall my teacher Claude Chevalley saying that algebra as 
a whole was a lemma for proving Fermat.

A few words are in order here in response to the characteristic aggravation 
with which mathematicians react to these sorts of considerations. They state that 
it is of no importance to reach an agreement on problems of classification and 
definition of the major “branch names”. One of these mathematicians once said to 
me: here I am considered a geometer, there a topologist, elsewhere an analyst, but
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as this has no incidence on my work it is unimportant. It may in fact be the case 
that these labels are devoid of operational value. It is notably certain that mathe
maticians may put any instrument to work from out of the laboratory of any sub
discipline, and do not in fact hesitate to do so in the context of Bourbakian 
inter-theoreticity. Is that tantamount to concluding that branch identities are no 
longer subject to questioning? I have serious doubts. The enlargement of the mean
ing that geometry has experienced since the nineteenth century has for instance 
clearly functioned as a conquest from which mathematicians have profited: none 
have scruples over introducing, each time they wish to, their procedures as “the 
introduction of geometric considerations”, referring to the new identity of geom
etry, to one or another aspect of what today is classed as geometry but which never 
would have “before”. Mathematicians themselves use branch classification in or
der to measure what is happening in their field, as an instrument of evaluation of 
research events. This can be done providing that the identities which stand behind 
branch names are important, that is “can be called into question”. Conversely, it 
may be held that one of the stakes of mathematical development is the increasing
ly in-depth understanding of branch identities. This is moreover one of the titles 
under which my work published in 1991 established mathematics as a thinking 
discipline, as “hermeneutics”, concerned with enigmas of various levels.

To return to mathematical analysis, we would also like to see what light histor
ical knowledge might shed on what has been understood as “analysis” throughout 
history. From this vantage, it does seem that the word “analysis” and its corre
sponding adjective “analytic” first meant something quite closely attached to what 
today is understood as “algebra”, unless these words designated literal calculus in 
general. Viete’s ars analytica is algebraic calculus, literal symbolism with its pro
cedures. When “analytic geometry” becomes the standard designation for coordi
nate geometry a la Descartes, the adjective once again denotes the symbolic level 
of numeric-literal calculuses, here opposed to that of spatial intuitions. This no
tion of analysis seems to me closely connected philosophically to the sememe 
decomposition. Literal calculus is based on the discrete character of the units of 
language, and the forms gathered within it are gathered on the basis of this pre
supposed analysis which offers the simple constituents. The numeric coding of 
geometry likewise appears as a reduction of the spatial-continuous synthetic na
ture of figures, to those perfectly individualised and mutually distinct determina
tions that numbers are. Even if R ” is, following modem discourse, an interpretation 
of the continuum, the critical vantage sees in this construction a set of ideally 
distinguishable points, which can be manipulated as independent particulars. This 
is an insult to the profound intuition of the solidarity of the continuum with itself, 
mling out any autonomization.

Thus would we naturally retain the idea that analysis is the theory of the local, 
a theory whose intention aims at nameable and separable identities in a place.
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This description would go to explain the large acceptation which assigns to anal
ysis everything essentially turning on topological structures, and also the limited 
acceptation, which only assigns to analysis that which deals with the study of 
numericity and its functional complications in the framework of a topological 
questioning. This description would also be coherent with the originary given of 
an analysis whose meaning is equivalent to that of algebra, and with the special
ization of the adjective “analytic” to the evocation of the coding of space, or more 
generally with the use of “analytic” to designate any numerico-formulary explica
tion.

And therefore contemporary mathematical analysis would have no relation
ship to the hermeneutical part of analysis, if I may use this expression: I am 
referring to the part I began to situate in my commentary on the Greek method of 
analysis, or of the activity of analysis identified by Kant as proper to philosophic 
procedure. There would be no relationship between the fact that analysis—con
sidered from the vantage of that branch of contemporary mathematics—accom
plishes and/or presupposes the hermeneutics of the continuum and the fact that a 
particular logical type of analysis as method—explication, regression, or other 
types—be affinitive to the hermeneutical spirit.

Unless an attempt was made to think the homology of everything that has been 
said to this point, necessarily at a more radical level. We will begin by stating that 
there is a relationship between the theme of the continuum and, for instance, the 
regressive nature of reasoning attesting the property of a limit, of which an exam
ple was given above. Why is this reasoning regressive in exactly the way it is? 
Because we are in a problematic of “control”: the continuum, here carried to the 
power of itself through the taking into account of a function, calls into play an 
excessively infinite profusion of information; thought then adapts itself to this 
excessive situation by concentrating on regions and by reflecting on how one 
aspect of the local information allows it to be controlled by another. To know what 
is in excess is to assign determinations to it, is to analyse it and to understand the 
analysing determinations themselves in their mutual relations. Regression responds 
to the metaphysical pragmatics of willing: an analysing determination of the con
tinuum is a willing, my knowledge of what is in excess is will, to such an extent 
that the systematic thought of these determinations is no longer the progressive 
thought of consequences—a thought that would be adequate to the idea that the 
determinations reflect what is, and that what is “has” consequences, to be taken 
up in turn in new determinations derived from the originals—but rather the re
gressive thought through which the excess becomes known as I acquire the under
standing of what I wanted in it, in terms of what I should have or could have 
desired implying the already desired or what is assumed desired.

At the very least such an image of the mathematics of the continuum makes 
sense, providing that it be corrected and relativised as is required: of course entire
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segments of the reasoning in what is normally called “analysis” today is of anoth
er type, taxonomic, algebraic, calculative, etc., of course excess is in fact involved 
in practically all mathematical procedure, at least in the figure of the so-called 
potential infinite of indefinite enumeration. Therefore the trope of analysis here 
can justifiably intervene. But is that a reason for denying that the branch of anal
ysis has a privilege with respect to logical procedures inspired by the idea of 
control? Is this not what J. Dieudonne suggests in formulating his famous adage 
“increase, decrease, approach” in the preface to his treatise on Infinitesimal cal
culus (1969, 9) (thus in the form of a “maxim for mathematical analysis”)?

But with this we have still to reach the hermeneutical element itself. Is there a 
profound link between thought that decomposes and regresses and the project of 
interpretation of what is the “stance of the question” presented as such by the 
tradition? We would like to succeed in thinking this technique as already interpre
tative in a minimal but radical sense of the term. Analysing what needs to be 
analysed, that is what is itself enveloped, strictly speaking I am not calculating or 
thematising. I am not calculating, for calculus presupposes the dis-implication of 
the individuals that it acts upon, and thus cannot be the operation accomplishing 
this dis-implication. Neither do I thematise, for thematisation presupposes the 
subject of enunciation, whereas the situation requiring analysis is not a situation 
wherein such a subject is available, and it is rather the result of the analytical act 
to have themes appearing: analysis operates on an envelopment but otherwise 
than on a predicate. Likewise, something like the procedure of logical regression 
eliminates the notion of calculus: on the one hand, the simple fact of being on the 
logical plane keeps us under the dependence of phrases as concerns truth, whereas 
calculus is originally and once and for all a manipulation of the etymological 
elements of calculus, that is “pebbles”, thus a treatment of objects (and that, in the 
modem context, phrastic connecting can be considered as calculus or algorithmic 
modalities as texts in logical theories does not seem in my view to change any
thing of importance in this difference, which is principled, and moreover these 
“transgressive” interpretations rely on it); on the other hand, calculus re-elabo- 
rates the objective material that it works upon in an essentially progressive fash
ion; in principle it is a question of reaching another arrangement and not to reach 
behind the arrangement facing the mathematician (although this intention is pos
sible, it is yet symptomatic of the type of relation to symbolic objects that we are 
here calling analysis). Logical regression does not mesh well either with the ap- 
ophantic declaration of the object’s determinations: this declaration is presup
posed by all logics, there would be no logical connections, thinkable or to be 
thought, if determinations had not already been assigned to objects, in order to 
generate phrases. Logical regression is moreover associated—at the onset (Kant 
A, 331; B, 387-388) of the transcendental dialectic—with the movement that 
Kant calls “prosyllogistic”, consisting in the search for an attribution of the deter-
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urinations that condition the one already given, the new attribution remaining 
suspended as for its truth, known only as the condition of the first attribution: this 
is as much as saying that regression denounces the apophantic act by linking it to 
a suspensive condition.

To decompose and to regress are however actual operations belonging to the 
field and to the traditional method of interpretation: as was set out above, to de
compose into a number of sememes is the most classic of acts in the explication of 
lexical contents—the interpretation of texts consists notably in this explication, 
which in truth is the fundamental operation therein. The interpretative tension 
results from the fact that on the one hand the analysis depends on the situation 
and the context, on the other that it is never complete and certain, for “in fact” 
meaning is not additive, but rather enveloped or affecting, it has its being in a 
restraint or a transition which is repugnant to the analytical hunt. Logical regres
sion is also an operation of interpretation: the envelopment of meaning, if it is 
thought at phrase level, is restored as the complete group of phrases implying the 
given phrase. The field of consequences of a phrase is readily considered the 
attestation of the opening of its meaning. But this development is in fact the incre
mental effectuation of meaning, as is well known despite the logical aporia in 
which deduction would be either tautology or loss of information. On the “textu
al” plane—unquestionably the pertinent plane for all questions of meaning—the 
list of axioms of ZFC, for example, does not mean the opened infinite totality of 
mathematical theorems. However, all elucidation of the logical preconditions of a 
logico-linguistic situation is always valid as the explication of its meaning. The 
theories of presupposition in linguistics have highlighted this point.

The conclusion may then be drawn that the modem unity of analysis may be 
understood in light of the congruence between the hermeneutical situation of anal
ysis—as a theory of the continuum it is linked to the ageless question “what is the 
continuum?”—and a certain discursive technique that could be called “analysis” 
which Greek methodological reflection and Kantian thought of a demarcation 
between mathematics and philosophy haye differently described and defined. “Anal
ysis” would essentially be the name of the relation to what is in general enveloped 
in itself, and this relation is necessarily, in the same stroke, one of decomposition 
and interpretative explication. The strange doubling produced in the case of math
ematical analysis is that the “stance of the question”, that which is enveloped in 
itself, is but the presentative concept of, as it were, envelopment as such (the 
continuum). Thus the analysis of the continuum is so to speak a double analysis: it 
is the analysis of the envelopment of the meaning of the enigma of the continuum, 
but also of the continuum itself as a presented coherence. This doubling also means 
that the analysis is part and parcel of an interpretation of the continuum and 
simultaneously, its representative display. In other words, the move of analysis
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explicates the continuum while at the same time symbolically repeating its pres
entation.

At this point of our reflection, we may return to the Greek geometric analysis 
that was characterised, at the beginning of this paper, as a procedure moving from 
the logical precomprehension of an object to its practical comprehension, its con
structive effectuation. Analysis in this sense is clearly the name of a hermeneuti
cal rhythm lodged in the totality of contemporary mathematics, which is throughout 
the anticipation of objects such that their structure is given through logical stipu
lations. This anticipation furnishes a relation to what I have called elsewhere 
“correlative objectivity”. But it is always assumed that within this objectivity there 
will be realisable, presentable objects, participating in what I have called, right
fully so, “constructive objectivity”. Present day mathematics never ceases, repeat
ing the way of Greek analysis, to determine, in the objectivity obtained on the 
correlative way, the constructive objectivity that may be recovered, or to think the 
excess of correlative objectivity over constructive objectivity, by any and all tech
nical means. This is the level at which mathematics as a whole becomes herme
neutical as analysis, and this level must be distinguished from the position and the 
task of analysis according to Dieudonne, which the preceding paragraph was an 
attempt to examine and comprehend.

University o f Lille III 
Department o f Philosophy

Notes

1 Cf. the note on page 1322 of Robin’s French edition of Plato's dialogues: Plato (OC).

2 I quote from Aristotle (WMK).

3 I quote from Kant (CS).
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SCIENCE WITHIN REASON:

IS THERE A CRISIS OF THE MODERN SCIENCES?*

I Introduction

In this paper I shall discuss and defend a position on the nature of scientific rea
son with a view to shedding light on the question of whether there are fundamen
tal crises in the modem sciences. I shall argue that, broadly speaking, it is possible 
to distinguish science within reason from science without reason. I claim that one 
source of the view that there is a crisis of the modem sciences stems from the 
historically recent possibility of practicing science without reason. The phenome
na I discuss can be found across the spectrum of the sciences, from mathematics to 
social science. I invite the reader to think about the argument in connection with 
his or her favorite science. I will not attempt to discuss details about specific 
sciences but I will make several remarks about how the argument should be un
derstood in connection with mathematics.

As I see it, my concern here is related to the analytic-synthetic distinction in 
the following way. According to a central tradition in philosophy, analytic truths 
are truths of (pure) reason. According to this same tradition, reason is distinct 
from intuition or observation. I would like to align this view with the idea that 
analytic truths are true by virtue of meaning alone (which is not, for example, to 
say that they are true by virtue of form alone). On the other hand, synthetic scien
tific truths involve reason but they are not truths of pure reason. They are instead 
to be viewed as truths with respect to which reason is conditioned by experience or 
intuition. I will also say that they are truths in which the “meaning” (Sinn) under 
which we think objects is conditioned by evidence. It is natural to require, in 
particular, that there be evidence for existence claims in order to say that it is 
“known” that those existence claims are true. One might hold, under this condi
tion, that knowledge of the truth of existence claims is synthetic. If we can keep 
the analytic-synthetic distinction at all, then perhaps it can be kept in this guise. I 
shall suggest below how this view can be developed, and I will link it to the 
broader issues with which I shall be concerned throughout the paper.
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II Rationality, Intentionality and Everyday Experience

I will not attempt to present a theory of reason in this paper. I only wish to note 
that the idea that human inquiry can be informed to a greater or lesser extent by 
reason has a long tradition in philosophy. In Aristotle's Posterior Analytics, for 
example, one finds the idea that mere observation does not suffice for scientific 
knowledge, for it gives us mere collections of “facts”, without any order, coher
ence, or purpose. Philosophers like Aristotle and Kant hold that what reason brings 
to the data of sense experience is unity, a kind of universality, and purpose. I will 
to some extent follow this classical line, but first I will focus on what I think is a 
key feature of human reason: intentionality. It is difficult to deny that human 
reason exhibits intentionality. I will explain this claim, and then draw some con
sequences from it.

Some basic structural features of the intentionality of human reason can be 
captured in figure 1.

We can say that a person is directed toward a particular domain of investiga
tion consisting of objects and/or states of affairs by virtue of the contents or “mean
ings” of her acts of reason. These acts of reason may be of different types, e.g., 
believing, knowing, remembering, etc. What they have in common is their “di- 
rectedness” by way of their content. The notion of content can also be thought of 
as the “meaning” associated with the act, in that we simply take it to be the mean
ing of the expression that is substituted for S in the diagram. Once a particular 
expression is substituted for S, a person will automatically be directed toward a 
particular domain of investigation in a more or less determinate way. Content 
plays an important role in the objective, non-arbitrary categorization and identifi
cation of objects, and in the description and explanation of change. It should be 
noted that the diagram picks out structural features of the intentionality of reason. 
The actual contents substituted for S may to some extent be bound to particular 
times, places or cultures.

The object or state of affairs toward which one is directed in an act of reason is 
placed in brackets in the diagram because it is essential to the notion of intention
ality that human subjects may be “directed” toward objects even if those objects 
fail to exist, or if they are not completely or properly understood. The logical 
counterpart to the possibility of nonexistence of the object is found in the failure of 
existential generalization in the context of verbs of propositional attitude.

Consider an example of everyday experience of the type that motivates the 
idea of “bracketing” the object. Suppose it is your intention to clean the attic of a 
house. To reach the attic, you must crawl through a small trap door in the ceiling. 
As you begin to do this, you find yourself face to face with a large, furry, danger
ous-looking spider. As a consequence, you back out of the trap door in order to 
consider your next move. After some time has elapsed, you again approach the
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act type act content or meaning 
---------------------'

Person P believes that 5

refers to
(is directed toward)

l
[object or state of affairs]

Figure 1

trap door, this time with a small net to snag the spider should it be necessary to do 
so. This time, however, you see that it was in reality not a spider that you saw, but 
a tangle of dark thread, shaped in a way that looks like a spider.

At the earlier stage of your experience, say tv you saw a spider and acted 
accordingly. At some later stage, tk, you saw that what you took to be a spider is 
actually a tangle of thread. At tx you saw the object under the content or meaning 
of “spider”, but at tk the meaning under which you see the object shifts to “tangle 
of dark thread”, and this shift is brought on by your further experience with the 
environment in which you are situated. You make a correction or adjustment of 
your belief in light of further experience.

What you take to be the object of your belief will be the thing that stabilizes in 
your experience, that is, the thing that remains invariant through your different 
experiences with it. It will be the thing to which you (and others) can return over 
and over again, and which remains the same through these different acts. What 
the object is taken to be, however, will always be a function of the sequences of 
acts carried out thus far. The future could bring further adjustments or even sur
prises. In the worst case, there just might not be an object. The “bracketing” in the 
diagram is meant to indicate this conditional nature of knowledge of the object.

Suppose that at some further stage of your experience, tn, you come to see that 
it was actually not a tangle of thread you were experiencing but a small, shredded 
piece of black cloth. It is possible that this could happen, but the phenomenon of 
persistent misperception is atypical. Our experience usually settles down into a 
stable state in various ways. We do not persistently misperceive objects. Or, to put 
it another way, consider the conditions under which we persistently misperceived 
objects. This is the kind of situation in which we might begin to raise questions 
about our sanity, especially if it should constantly turn out that there are no objects 
(i.e., that objects are hallucinated).1 What kinds of expectations could we have in
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circumstances like this? What could we hope to predict or control in our experi
ence? It is precisely in these situations that we begin to apply the notion of irra
tionality. This shows us how a form of irrationality (or the absence of reason) is 
associated with the absence of stabilized objects in our experience. Reason and a 
form of “objectivity” appear to be mutual conditions for one another. It appears 
that there can be unity on the side of the subject if and only if there is unity on the 
side of the object. To be more precise, we might say that reason and the possibility 
of objectivity mutually condition one another. The example suggests that objectiv
ity, at least as a regulative ideal (in a Kantian sense), is a condition for rationality.

The description in this simple example has the following consequences. First, 
it shows that we need to be fallibilists about knowledge, or at least about knowl
edge that depends on sensory input. The picture we have presented precludes 
certain “absolutist” or “foundationalist” claims about our knowledge of objects of 
experience. We might find, in further experience, that we were under illusions at 
earlier stages of our experience. Fallibilism, however, need not imply complete 
skepticism. It is common for our experience in many domains to settle into a fixed 
state which serves us well for practical purposes. In any case, we do not doubt 
everything we believe in situations like this, as is shown by actual experience.

Second, the example shows that there is a kind of continuity through the stag
es in our experience of objects. The different stages are not radically discontinu
ous with one another, as if there were no connections between the stages. Indeed, 
if this were so there would be no possibility of making corrections in the experi
ence we portrayed. A particular kind of continuity is, in other words, a condition 
for the possibility of identifying misperceptions and illusions.

This point is closely related to a third consequence we can draw from the 
example: there is a progressive character to the experience. It can be claimed that 
some progress has been made as the person proceeds through the stages of experi
ence envisioned in the example, in contradistinction to the claim that there is 
merely change from one stage to the next. “Mere change” suggests discontinuity 
or incommensurability between the stages, as if at the various stages we had dis
crete, independent, atomic units of information. It would be as if there were no 
memory (or history) from one stage to the next, as if nothing about a past stage 
could be contained in the present stage. The example shows, on the contrary, that 
there is a kind of cumulativity to the experience. At least some of the content that 
was present at the earlier stage must be present at the later stage if there is to be a 
correction in the experience.

I am not arguing that later stages in the temporal sequence always represent 
progress over earlier stages. The point is rather that there has to be an ongoing 
stability of the object and a development of further sequences of acts with respect 
to the particular domain. This is what makes future-oriented thinking possible, 
and helps to fix our expectations. It leads to the possibility of prediction and con
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trol that would otherwise not be present. The notions of “progress” and “correc
tion” here are not absolute. What is judged to be progress or correction is itself 
relative to what is given in the sequences up to a particular stage in time. In other 
words, the example shows that it is possible to avoid commitment to an absolutist 
notion of progress without redounding to the view that there is mere change from 
stage to stage.

These considerations have direct implications for issues about relativism. Let 
us say that, by definition, “evidence” is acquired in the sequences of acts in time 
that we pictured. “Strong” relativism may be defined as the view that there is no 
evidence that will help us to choose between rival (sets of) propositions. Note that 
in our example “There is a spider behind the trap door”, believed at tv and “There 
is a tangle of dark thread behind the trap door”, believed at tk, are rival proposi
tions. Now is it really true, in our example, that there is no evidence that will help 
us to choose between the propositions? This seems to be patently false. First, it 
seems that in the kind of case we are considering we do not typically “choose” 
what we want to believe. We are forced to some extent to change the content of our 
belief by conditions in the environment. This often happens automatically and 
without any deliberation of the type associated with choice. We cannot just as 
readily believe at tk that the object is a spider as we can that the object is a tangle 
of dark thread, as if this were like flipping a coin. It would be absurd to think that 
we could actually do this sort of thing in our experience. Our experience does not 
work this way, and it is not clear how it could work this way. We would not get on 
in the world and behave as we do were strong relativism true. The upshot is that 
by embedding our rival propositions in the kind of intentional contexts that make 
up our actual experience, we see that strong relativism is baseless. The example 
suggests that strong relativism is a philosopher’s abstraction that has nothing to 
do with actual experience.

Our position may, however, be compatible with forms of weak relativism. This 
follows from the fact that what we know at a given stage is “relative” to the se
quences we have carried out up to that stage, along with the fact that we typically 
do not know everything we could know in these sequences. The future could hold 
surprises, or we may have to make various adjustments and corrections. This kind 
of epistemic relativity holds at various levels for the individual perceiver, groups 
of perceivers, cultures, and for historical periods. Following Edmund Husserl, we 
could say that truth for us at a given stage is always “truth within its horizons” 
(Husserl 1929, section 105). It is compatible with this view, however, to distin
guish truth or objectivity within its horizons from truth or objectivity as it is. 
Indeed, the latter idea appears to operate as a regulative ideal in the kind of exam
ple we have considered. It is by virtue of possessing this ideal that we realize that 
our knowledge at a particular stage is imperfect and can be improved. We really 
do think we are coming to know more about the object. I have no objection to the
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claim that the notion of a perfect identity through difference (in the case of either 
the object or subject) is ultimately to be understood as a norm. Similarly, the idea 
of perfect truth can be understood as a norm. If the notion of intentionality is 
accepted then norms are part of the package. Thus, our weak epistemic relativism 
is qualified by a kind of objectivism.

As I said earlier, it appears that reason and the phenomenon of reference to 
“objects” require one another. On my view, we must think of the content or mean
ing of an act of reasoning as having a regulative function. It directs us toward a 
domain of objects or states of affairs which we can then proceed to investigate in 
sequences of acts in an effort to fill in our knowledge. Reason thus carries within 
itself at least an ideal of “objectivity” in this sense, and this ideal has a regulative 
function in our experience. In other words, if reason exhibits intentionality then it 
also exhibits referentiality. As our diagram indicates, we are directed toward or 
referred to objects in acts of reason. It is not trivial to note this fact about referen
tiality, for I will later contrast the referentiality of reason with what I will call 
“relational” views of scientific thinking.

I ll Scientific Rationality

Scientific rationality, it seems to me, is founded on and has its origins in the kind 
of everyday use of reason we considered in our example (Husserl 1936). The 
example provides a sensible description of how some elements of human experi
ence actually work. Scientific reason is just an extension and development of the 
use of reason that we see in everyday contexts. In this section I would like to 
briefly indicate some elements of this extension and development.

We can carry the model of the intentionality of reason over directly to the case 
of scientific reason. Of course scientific reasoning is more systematic, deliberate 
and reflective, and we may need to distinguish between direct and indirect evi
dence, and so on. Scientific theories are just sets of propositions that are believed, 
as in our diagram, except that they are often believed by groups of people. Groups 
of people come to see problems under the same contents or meanings and pursue 
their research accordingly. They are directed or referred to domains of investiga
tion in this way. There will just be different acts, contents and objects in different 
sciences. Scientists are in the business of finding regularities in these domains, of 
finding identities through difference. Groups of people could be under illusions 
about what they are doing, and are susceptible to misperception. They may need 
to make corrections as research proceeds, and so on. In other words, we are simply 
dealing here with group intentionality.

I am arguing that our experience in science is founded on everyday experi
ence, and that the various consequences we have noted above will therefore also 
apply in the case of scientific rationality. To deny this is to hold that scientific
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rationality and everyday rationality are disanalogous in the relevant respects, but 
I see no grounds for such a claim. It could not be the case that one exhibits inten
tionality and the other does not. Suppose both exhibit intentionality. Then it could 
not be the case that one exhibits continuity and the other does not, that one exhib
its cumulativity and the other does not, and so on. We should therefore be able to 
say that scientific reason exhibits fallibility, continuity, cumulativity, a particular 
form of progress, and a weak relativism tempered by a kind of regulative objectiv
ism. Much more could be said by way of defending and developing these claims, 
but it seems that we cannot give up the basic ideas involved in them without also 
rejecting what appears to be the sensible and innocuous picture presented in our 
example.

We can also note that it will be all the better to make corrections and to more 
closely approximate objectivity if as many voices as possible are heard. The per
ceptions of specific groups of people can be corrected on this basis. Corroboration 
is generally important in matters of knowledge, but it seems that in the pursuit of 
objectivity, rationality demands pluralism about who P in our schema could be. 
True identities will be those that stand out through multiplicities of persons, plac
es and times. They are multi-cultural. They transcend differences in gender. This 
view of reason and “objectivity” implies that we should maximize difference in 
order to obtain true identities. To put it another way, it is not reasonable to monop
olize reason. This is also not to say that it is always unreasonable to place some 
constraints on who or what P could be.

Perhaps there are some principles about which we do not have to be weak 
relativists. For example, the principle of noncontradiction may be a boundary 
condition on scientific rationality, in the sense that there is no S for which we can 
have S a  - i S at a given stage of our experience. We might be able to hold that this 
principle is necessary, relative to our condition on scientific rationality. We can of 
course have S at one stage and -i S at another stage. On the other hand, we can 
have S v —. S at a stage for a particular S. The idea that S v —i S holds for all 5 at 
a stage, however, seems to represent the regulative ideal of the decidability of all 
questions that permit of “yes” or “no” answers. We might take it to represent truth 
at the limit of our research.

Truth or objectivity, understood as a regulative ideal, is arguably what moti
vates the rationalistic optimism about problem solving that characterizes the sci
entific spirit. Consider for a moment the notion of a scientist who is pessimistic 
about solving any scientific problem. Perhaps no one has expressed this rational
istic optimism better than David Hilbert. As Hilbert puts it, mathematicians are 
convinced that every mathematical problem is solvable:

“In fact one of the principal attractions of tackling a mathematical problem is that we always
hear this cry within us: there is the problem, find the answer; you can find it just by thinking, for
there is no ‘ignorabimus’ in mathematics.”(Hilbert, 1926,200)
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Problems in some sciences certainly cannot be solved by thinking alone, but Hilbert 
has nonetheless captured something essential to the scientific spirit here.

What I would like to focus on at the moment is the fact that, as a founded 
structure, science depends upon a variety of additional developments. Everyday 
reasoning is, for example, typically informal. The content of our everyday acts in 
the lifeworld does not involve much by way of formal, structural or mathematical 
elements. We do not spring from the womb thinking in mathematical formulas. 
We learn these things later, if at all. We can and do separate the formal or structur
al elements from the content of our acts as we engage in higher cognitive tasks. It 
is exactly these formal, structural, mathematical and technical elements that are 
involved in many varieties of scientific thinking.

Some features of formal or mathematical thinking are especially striking. To 
take a simple example, consider the following possibility. Suppose I give you a 
particular rule for computing a number, along with some initial values. Here is the 
rule:

P, B\ A ) =P^ ) m )
1 P(A)

The values for P(A 15), 5(5) and 5(A) will be supplied and they will always fall 
between 1 and 0. It is your task to compute 5(5  I A). For example, let 5(A 15) = .33, 
5(5) = .75 and 5(A) = .25. You will simply plug these values into the formula, 
compute, and give me the output. It is clear that you can perform this task without 
knowing anything about what 5 ( 5 1 A) is, what the numbers represent, what the 
rule is, where it came from, what the purpose of this task is, and so on. I will call 
this “relational” thinking.2 This simple procedure might form only a small part of 
a very large procedure, consisting of many input values and many rules, in which 
one obtains some output at the end of the procedure.3 One could operate, or could 
imagine operating in a vast environment of this type.

There are many different kinds of examples of relational thinking and its use 
in the modem sciences. What is characteristic of relational thinking in science is 
that formulas or symbols are related to other formulas or symbols on the basis of 
sets of rules, and there is no need to reflect on or to understand the meaning of the 
formulas or symbols.4 There have been especially striking examples of relational 
thinking in the sciences since the rise of formalism and its development into the 
newer forms of mechanism that are part of computer science. The very idea of 
computation, which is so dominant in our age, is characterized in terms of formal 
manipulations of finite sign-configurations on the basis of finite sets of rules which 
take us from input to output. What makes it generally possible to do scientific 
work in this formal, relational way is the rise of formalization, mechanization,

IS THERE A CRISIS OF THE MODERN SCIENCES? 251

technization and a practical instrumentalism. These trends have been accompa
nied by a greater division of labor in and professionalization of the sciences.

The formal, mathematical and technical activities that make up what I am 
calling relational thinking are rigorous, precise, exact. Rigor and exactness are 
old and venerable goals of science, and with them we obtain a kind of clarity and 
distinctness we would otherwise not possess in our knowledge. In fact, it is not 
difficult to see how one might come to believe that only rigorous and exact techni
cal work could count as science, or could count as giving us genuine knowledge. 
If one begins to take this very seriously, then everything else that seems to be a 
part of science or scientific knowledge, more broadly construed, will come to be 
seen as just a prelude to the real thing. That is, it will be a goal of science to bring 
everything into this rigorous, exact, technical form if it is to count as genuine 
knowledge. What is informal, in any context, may then come to be viewed as 
unreliable. One can see this attitude, for example, in the work of Frege, Hilbert 
and Tarski. One might come to think that informal reasoning must always involve 
chance-like guesses or “intuition”. Here we have the seeds of a particular form of 
reductionism that may come to be coupled with eliminativism. It might be argued 
that whatever is not in this form at a particular stage cannot count as knowledge. 
Eliminativism goes even farther. Once a science is regimented in this form, why 
not shed the informal, fuzzy reasoning that led to it? For the hard-nosed scientist 
of this kind, the notion of something like “informal rigor” would be an oxymoron. 
It would follow, on this view, that to really know anything you must be a techni
cian. I will use the term “scientism” for the view that only the formal, exact, 
technical part of our relational thinking can count as genuine knowledge.5

IV The Analytic-Synthetic Distinction

In a relationalist climate it would be natural for analyticity to be thought of in 
terms of form (or formal logic) alone, as if we should understand reason itself in 
purely formal or relationalist terms. The idea, put bluntly, is that there are only 
symbols and there is no real content or meaning toward which we might be direct
ed. Meaning or content drops away. In particular, one might think this is true in 
mathematics. Kurt Godel has noted two different concepts of analyticity that are 
relevant to this point. Analyticity (of proposition), he says, can be defined in the 
“purely formal sense”:

“[...] the terms occurring [in an analytic proposition] can be defined (either explicitly or by rules 
for eliminating them from sentences containing them) in such a way that the axioms and theorems 
become special cases of the law of identity and disprovable propositions become negations of this 
law.” (G6del 1944,150)



252 RICHARD TIESZEN

In a second sense, a proposition may be called analytic if it

“ [...] holds ‘owing to the meaning of the concepts occurring in it’, where this meaning may 
perhaps be undefinable (i.e., irreducible to anything more fundamental).” (ibid., 151)

This second definition of analyticity appears to be much broader than the tra
ditional Kantian definition. Indeed, much of mathematics would appear to be 
analytic on this definition.6 It might be possible to explicate this wider notion in 
terms of our diagram of intentionality. We take meaning to be specified in terms of 
our notion of the content (or meaning) of our acts. Analytic truths will be truths in 
which we can proceed from content to content without mediation by experience of 
the objects the contents are about. Analytic reasoning is reasoning without intui
tion of these objects. This would, however, require reflection on or intuition of 
meaning:

► believes that T

1
Person P believes that 5

refers to
(is directed toward)

1
[object or state of affairs]

Figure 2

We are now directed toward meanings, not just meaningless formulas or sym
bols. This notion of analyticity requires that meaning itself be analyzable. It re
quires the notion of informal rigor. In attempting to clarify our understanding of 
meaning in acts of reflection we typically turn to the concepts of S in order to 
clarify them. We may then need, upon reflection, to further clarify the concepts 
used in that effort at clarification, and so on. This is arguably how some parts of 
our knowledge are developed. Godel, for example, thinks that we need to analyze 
the meaning of the general concept of set more deeply in order to solve open 
problems in set theory, like the continuum problem.

It could not be the case, on this view, that only logic is analytic and that all of 
mathematics is synthetic. Instead, what would now distinguish logic from mathe-
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matics is the fact that logic is content-(or topic-)neutral while mathematics is not. 
We would need to distinguish different meaning categories in mathematics, in 
addition to recognizing a form-content distinction.

As I am construing this broad notion of analyticity, it will sometimes be possi
ble to hold that content-to-content links are true or false without needing to have 
evidence for individual objects toward which we may directed by these contents. 
But it is exactly such an appeal to our “experience of objects” that is needed for 
synthetic truths. For synthetic truths, the meaning or intention under which we 
think of an object must be at least partially fulfilled. In other words, the meaning 
or intention needs to be conditioned by evidence for objects. I have argued else
where that we should understand the fulfillment of “mathematical” intentions in 
terms of the general notion of construction (as in constructive mathematics) (Tieszen 
1989, 1995). It is when we possess constructions that we can be said to have 
evidence for the existence of the objects our mathematical intentions are about. It 
follows from these remarks that what is analytic in mathematics will be what is 
believed to be true (owing to the meaning of the terms involved) but which cannot 
(at least at present) be understood as constructive. Some parts of mathematics 
will, accordingly, be analytic (but not content-neutral) and some parts will be 
synthetic. Impredicative set theory, for example, might be construed as analytic in 
this sense.

I am somewhat skeptical about the idea that the analytic-synthetic distinction 
will be important in future philosophical and mathematical work. On the other 
hand, the issue of what the distinction amounts to seems to involve complications 
that are not yet understood very well. The view I have suggested may be worth 
exploring. It is obviously quite far from a relationalist understanding of analytic
ity.

V Crisis?

If only the formal, rigorous and exact scientific work of the relationalist kind is 
taken to constitute genuine science or knowledge then we approach a crisis state 
in science. It follows from what we have said about science within reason that 
scientism is a form of science without reason.7 Why?

We are viewing scientific knowledge as a founded creation and in this founded 
creation we may have purely relational thinking. It is inherent in the formal, 
technical, structural or mathematical thinking we have called relational that we 
need not know what it is about. Formalism is often portrayed as a viewpoint ac
cording to which we are to abstract away from meaning or content. This also 
means that we can or even should forget about the origins of meaning in the 
lifeworld. In relation to our earlier model, if we abstract away from meaning and 
the informal deep background of the meanings in our experience, then the direct-
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edness of our acts drops away or shifts. As I said above, it does not need to be 
denied that we are, in a sense, “directed” in relational thinking. There is, none
theless, a significant shift, and we are certainly not directed in the same way. The 
“objects” toward which we are now directed are symbols or formulas. We are not 
directed toward the objects the formulas are about in a particular context. We are 
not directed toward the objects to which the formulas are being applied. We are in 
a different environment. There may still be a regulative function in this context 
but now the goal or purpose has shifted. For example, the goal may be to simply 
obtain the output of a procedure given the input, quite independently of what the 
procedure is about. All of one’s energies may then go to this end and it is possible 
to become submerged in this kind of work. There can be a complete displacement 
of concern. Consider, for example, how this has actually been used in various top- 
secret projects, such as the atom bomb project at Los Alamos. In this kind of 
situation there is a sufficient division of labor so that many people may work on a 
project while only a few actually know what it is about. Note that it is not the 
division of labor itself which makes this possible. Specialization does not by itself 
preclude the referential model. I am describing a particular alignment of special
ization and relationalism. There are also other differences. The work of specialists 
in the humanities, for example, is not likely to have significant consequences for 
nature or the environment and is therefore unlike the work of specialists in the 
natural sciences.

The extent to which a referential or relational model is adopted determines the 
extent to which various skills and abilities are valued. In a worldview dominated 
by scientism it is more likely to be held that a person does not really know any
thing unless this knowledge takes a technical form. The skills and knowledge of 
technicians will be more highly valued, e.g., the expert’s knack for application of 
technique, or the ability to devise or acquire familiarity with relational systems. 
Understanding and discovery of the type associated with the referential model 
will be valued less than formal elegance and pragmatic success. Once goals are 
understood in a relationist way, it would be natural to see the rise of a kind of 
pragmatic instrumentalism about how to obtain such goals.

In short, there can be a shift to a very different account of reason, meaning, 
directedness, objects, knowing, and the like.8 These concepts, at the level of rela
tionalism, may in fact be reducible to mechanism by way of something like the 
Turing test. It might even be argued that Turing has captured a relationalist no
tion in his well known analysis of computation.9 It is not clear at all, however, 
how we would have thereby captured the referential versions of these notions. On 
the relationalist view, we lose sight of (non-symbolic) objects or objectivity, and so 
we also lose the notion of evidence described above. The structure we pictured in 
our diagram changes considerably if we focus exclusively on the form or structure 
of S, in abstraction from content. What remains in place of 5 at a stage is a formu
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la which we can try to relate to other formulas on the basis of existing or discover
able sets of formal rules.

I maintain that the following claims look all the more plausible from the view
point of relationalism: strong relativism, the claim that there is no progress in 
science, and the claim that different scientific theories are discontinuous and in
commensurable. It is not difficult to see why. If objects drop out of our earlier 
diagram, even as regulative ideals, then we arrive at the position of strong relativ
ism. There are only distinct or rival propositions at different stages of experience 
and we can make no appeal to the notion of evidence to motivate (justify?) the 
adoption of one over the other. It would be natural to hold that there is no notion 
of evidence which could motivate the adoption of one proposition over another. 
On the relationalist model, it will not be claimed that we are constrained or forced 
in some ways by our experience of objects. Once objects are out of the picture, it is 
easy to think that there is mere change from one stage to the next, for then we are 
only entitled to say that there are different propositions or formulas which need 
not have any apparent relation to one another. Even if we keep the content of the 
acts at the different stages of our example, we can ask what spiders have to do 
with tangles of dark thread. These concepts appear to be discontinuous, and the 
networks of propositions of which they respectively form parts are arguably in
commensurable. Different propositions that appear at different stages might now 
look like (logically or semantically) independent and discrete units of informa
tion. On the purely relationalist picture, the propositions that appear at different 
stages of our experience will simply be different. There is difference without 
continuity. No connections between the formulas or even the meanings at the 
stages can be seen because it is not possible to recognize mediation through the 
experience of objects. On the referential model, there is difference with continuity.

I am not claiming that formal, mathematical and technical work is not impor
tant or not needed in science. Quite the contrary. Formal, mathematical and tech
nical work is a necessary condition for science. It should also be apparent from the 
comments above that I am not claiming that mathematics is without reason. One 
can hold that formalization is very important without being a formalist. Similarly, 
it can be held that mathematization and technization are important without re
verting to scientism. I do not think that mathematics is purely formal or relation
al. It does not exist only to serve the other sciences. It is also contentual. I would 
argue that the model of intentionality described above also applies to the (found
ed) science of mathematics. Thus, there are acts, contents and objects appropriate 
to mathematics. We are directed toward mathematical objects through the mean
ings of our mathematical acts. Mathematical objects are distinct from sensory 
objects, and there will clearly be some differences in the ways that we come to 
know about these kinds of objects. The meanings or contents have a regulative 
function in our mathematical experience. It is possible to become more reflective
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about these meanings, and more conscious and systematic about our understand
ing of them. Perhaps the motivation for reflection arises most clearly at the bound
aries of the science of mathematics, where there are difficult open problems. 
Mathematics receives its meaning and direction through its own distinctive con
tent, and not primarily through its applications in or its services to the other sci
ences. In order to know about the objects toward which we are directed, our acts 
have to be at least partially fulfilled. We can certainly say that science within 
reason involves relational thinking, but we do not need to hold that only this kind 
of thinking counts as knowledge or genuine science. It is a matter of balance.

If there have been excesses in the direction of scientism, then there have also 
been excesses in the direction of anti-scientism, to the extent of being anti-scien- 
tific. It has been suggested, for example, that this is the plight of Heidegger’s 
work, and the suggestion could perhaps be extended to much of the post-modern
ist theory that has followed in Heidegger’s wake.10 After all, what has happened to 
the notion of reason in this work? The answer to this question is closely linked to 
what has happened to the notion of intentionality. The notion of intentionality or 
directedness has disappeared or been radically reinterpreted. It is supposed to be a 
virtue of Heidegger’s position, for example, that the act-content-object model is 
undermined and replaced by appeals to practices and skills. There are no objects. 
(It is even a question whether there are any subjects.) Just as one can speak about 
propositions without objects on some of the views we have been considering, so 
one can speak about practices without objects. But if there are no objects, then at 
different stages we have only a motley of distinct or rival practices and we can 
make no appeal to the notion of evidence to motivate (justify?) the adoption of one 
practice over another. It would be natural to be of the opinion that there is no 
notion of evidence which could motivate the adoption of one practice over anoth
er. Once objects are out of the picture, it is easy to think that there is mere change 
between one stage and the next, for then we are only entitled to say that there are 
different practices which need not have any apparent relation to one another. These 
may appear to be discontinuous and incommensurable. Practices that appear at 
different stages of history or in different cultures will simply be different. There is 
difference without continuity. We can see no connections between the practices at 
the stages because, counter to the referential model, there is no mediation through 
the experience of objects. On the referential model, there is difference with conti
nuity. Some post-modernist authors arguably embrace just such a notion of differ
ence without continuity, or of difference without objectivity. In an interesting 
parallel with scientific relationalism, some post-modernist writers suggest that 
everything is symbolic, everything is a text. There are also other variations on this 
theme: everything is just a “language game”, or there are just narratives without 
objects.11
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Thus, I am arguing that strong relativistic claims about meaning, objectivity, 
progress, continuity and the like appear to be more plausible not only from the 
viewpoint of scientism, but from any viewpoint that rejects the notion of the inten
tionality of reason described in section II.

VI (Un-) Intentional Knots

In the account I have presented, scientific activity is taken to be founded on basic 
“lifeworld” activities of human beings. In the founded structure of modem science 
we create a viewpoint which we then turn upon various phenomena in the world. 
Suppose it is held that only the formal, rigorous, technical work that is part of 
relational thinking can count as genuine scientific knowledge. Suppose, in other 
words, that scientism is true. When we turn this viewpoint back around to our
selves it should come as no surprise that reason, meaning, and indeed conscious
ness itself disappear. We live in an age in which it is fashionable to talk about the 
disappearance of these things. We hear this talk everywhere. It is, for example, 
reflected in work in cognitive science, where the concepts of intelligence, thought, 
etc. are understood in a formal, mechanical, and computational way. There is 
nothing more to these phenomena. And to “know” anything about these phenom
ena one has to be a technician. Everything short of technical knowledge in this 
domain is relegated to “folk psychology”.12

I am claiming that in all of this we are interpreting ourselves through a (founded) 
viewpoint that we have created. This viewpoint is itself an interpretation. It is not 
some neutral, theory-free, value-free, “correct” viewpoint. It is itself a “content” 
or “intention” under which groups perceive the world. Some investigators may 
then try to fulfill this intention. They may, for example, try to fulfill the intention 
according to which we are machines, or even the intention according to which 
there are no intentions. But is it possible to fulfill the intention according to 
which there are no intentions? If the analysis above is correct, then we cannot 
pretend to eliminate the semantic notion of an interpretation by appealing to the 
sciences. There are also reasons for believing that it is not necessary to interpret 
ourselves exclusively in this way. Perhaps there is no point of view prior to or 
superior to that of natural science, as is sometimes claimed in efforts to naturalize 
epistemology, but if the argument of this paper is correct then it also does not 
follow that an uncritical natural science can occupy a privileged position.

In the situation of the modem sciences that we have described there is a partic
ular irony that borders on paradox: the extent to which we apply science without 
reason to ourselves is the extent to which we come to believe that reason is not 
intentional and, hence, that science is without reason.
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VII Conclusion

The main argument of this paper can be summarized as follows: the use of reason 
in everyday experience exhibits intentionality. Scientific rationality exhibits in- 
tentionality but it is founded on everyday reasoning and is more complex and 
systematic. Some scientific thinking is relational. Many concepts may come to be 
thought of in a relationalist way, including the concept of analyticity. Now sup
pose, as in scientism, that only relational thinking in science can count as genuine 
science or knowledge, on the grounds that only this kind of thinking is rigorous, 
reliable and exact. It follows from the claim that reason exhibits intentionality 
that relational scientific thinking by itself, as in scientism, is without reason. The 
fact that it is possible to practice science without reason in this sense is one source 
of the view that there is a crisis of the modem sciences. Science within reason 
must involve relational thinking, but it cannot be held that only this kind of think
ing counts as genuine knowledge or science.
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1 Since we are on the matter of spiders, consider also whether or to what extent you would take the activity 
of dreaming about spiders to be rational.

2 The points I wish to make about what I call “relational” thinking are similar to some points made by, 
among others, Husserl (1935-1936), Cassirer (1923-1929), and more recently, O ’Neill (1991).

3 Note to those for whom this rule is purely relational: this happens to be a very important rule. It is one of 
Bayes’ rules for computing conditional probabilities.

4 It does not need to be denied that we are “directed” in relational thinking. We can say that we are 
directed, but it is now toward the formulas involved and toward obtaining the output from the given 
input This, is not, however, the same thing as being directed toward the objects the formulas are about in 
a particular context (cf. section V).

5 I argue in unpublished work that scientism or relationalism is closely related to some viewpoints that 
Gddel criticizes in Godel (1961) and other papers. Godel can therefore be seen as making some similar 
points about science without reason. In particular, see his comments on the imbalance of “leftward” 
directions in philosophy and his objections to Hubert’s program and to Carnap’s “syntactical” program. 
In addition, Hao W&ng suggests that Gddel sympathizes with Husserl’s claim that we must consider the 
origins of science in everyday experience (Wang 1987,62,122 and 239).
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6 This idea has been explored to some extent, in relation to Quine and others, in Parsons (1995). It is worth 
noting that Bolzano also recognizes narrower and broader notions of analyticity (Bolzano W, sect. 148).

? An immediate coroUary is that scientific rationality, as described above, is not itself the source of crisis in 
the sciences. I note this consequence because there appear to be views on which it would be denied.

8 One fairly clear example of this can be found in Hilbert’s conception of metamathematics. The objects 
toward which we are supposed to be directed in metamathematics are finite sign configurations. What is 
taken to be meaningful, reliable, and knowable in mathematics is to be understood on this basis. HUbert 
then seems to construe properties like decidability in purely formal or mechanical terms, although some 
of his appeals to Kant’s views about reason obscure elements of his conception of metamathematics. On 
the basis of what we have said above, it is not surprising that Hilbert’s program has been interpreted as a 
form of instrumentalism.

9 See Turing (1936). I discuss some related ideas in section 5 of Tieszen (1994). Could there be a 
“referential” notion of computability? Such a notion would refer to what intentional systems do when 
they are computing and know what the computation is about.

10 It is on this kind of point that Husserl and Heidegger parted ways.

11 This view about narratives is arguably appropriate to literature and fiction, but it is not clear to me that 
it extends to other domains. See the section of Tieszen (1995) entitled “Against Fictionalism”.

12 Compare, for example, the work of Dennett (1991) and Searle (1992) on consciousness.
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MATHEMATICS AS AN ACTIVITY AND THE 

ANALYTIC-SYNTHETIC DISTINCTION

I Intensional and Extensional Theories

Frequently, in modem discussions in philosophy of sciences, science—that is the 
object of the discussion—is intended as a class of (scientific) theories and a (sci
entific) theory is conceived as a linguistic system, or even as a class of proposi
tions. Moreover, scientific theories (in this sense) are intended either as purely 
“intensional theories” or as purely “extensional theories”.

By “intensional theory” (in the previous sense of the term “theory”) we under
stand a theory that, as a set of postulates (or by means of a set of postulates), 
determines the intensions of its terms and in which (if you accept that there are 
extensions, in a proper sense) the extension of each term, that is its referential 
domain, is not only delimitated by its intension, but it is also constitued by it, as a 
sort of logical counterpart of it. The elements which belong to such an extension 
are not given independently of the theory, they are nothing but what the terms of 
the theory denote (if we accept that such terms are denotative terms). As Godel 
says, “the existence of a class” depends “on the content or meaning” of the prop
ositional functions (Godel 1944, 132). Thus, an intensional theory is not really 
open with respect to the growth of knowledge and to the changes of our under
standing of something that is not fully determined by the theory but exists outside 
of it.

In a proper sense it does not realize, as such, any form of knowledge or objec
tive understanding; it is a closed domain, which provides no more than synoptic 
tables or something like that. Even if a some people have conceived empirical 
theories in purely intensional terms, the privileged model of an intensional theory 
is provided by a mathematical axiomatic theory, intended as a purely formal sys
tem. A classical example is provided by the Hilbertian axiomatic reconstruction of 
Euclidean geometry. Here, if the terms “straight line”, “point” or “plane” are 
intended as denotative terms, they denote nothing but the arguments of the condi
tions expressed by the axioms. This idea was expressed by G. G. Granger by 
means of the notion of “formal content”: if the terms of an intensional theory 
denote something, they denote formal contents (Granger 1982).
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Of course a lot of people have denied that the terms of an axiomatic Hilbertian 
theory (or of a formal theory in general) were denotative terms. They simply are, 
it is claimed, symbolic characters in a syntactical game or expressions of concepts 
without objects, as in the conceptualist account of mathematics (for example: Tharp 
1989-1991). Even if in such cases the terms “intensional theory” could be mis
leading, we propose to maintain it, providing the term “intension” with a more 
general meaning than would be required in order to be able to speak of intensions 
as we have done up to now. We will come back to this point later. Let us pass now 
to the notion of “extensional theory”.

By an “extensional theory” (in the previous sense of the term “theory”) we 
understand a theory that speaks about something that is already given otherwise. 
The terms of such a theory have an intension as well as an extension, but neither 
the term “meaning” nor the terms “intension” and “extension” are understood in 
a way that would necessarily depend on the particular theory. Rather, the exten
sions are given by a sort of reality, intended as a system of things (acting upon the 
subject), and intensions are nothing but the means by which such things are intro
duced in the theory. Intensions seem to relate to extensions by grasping their 
“essential” characteristics in an unspecified manner.

The privileged model of an extensional theory is provided by a physical theory 
conceived as a realistic account of the external world. Nevertheless, a lot of peo
ple—the Platonists, as they are generally called—have advanced the idea of also 
interpreting mathematical theories as extensional theories. But in order to do so— 
without abandoning the idea that a mathematical theory is a formal theory—we 
have to accept something like an ideal reality that, in principle, is describable by 
means of a convenient set of definitions or axioms, expressing the “essential” 
characteristics of a domain of things (even if, purely formal things).

II Analytical and Synthetical Judgments

If we understand mathematics as a class of theories and these theories either as 
intensional theories or extensional theories, we are confronted with a number of 
difficulties when trying to make sense of the classical Kantian analytic-synthetic 
distinction. Let us consider this point in some detail.

By considering mathematics as a class of theories in the previous sense, many 
people have understood this distinction as primarily concerning the (logical) prop
erties of mathematical propositions or the (logical) nature of their justification. As 
a consequence of such an understanding, the hard core of the Kantian thesis has 
been located in the assertion of the syntheticity and apriority of mathematical 
judgments, as explained according to the criterion advanced by Kant in the Intro
duction to the first Critique, a subject-predicate judgment is analytical if and only 
if the predicate does not assign to the subject any properties other than those that
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it has to have in order to be just that subject, otherwise it is synthetic (Kant, A, 6; 
B, 10).

In order to apply such a criterion to the judgment “q is P ”, we have to under
stand the subject as something that is q and not simply as something that we call 
“q” : “g” is not a name here, but is already a way of specifying the nature of the 
subject itself. This is the reason why the examples that are generally presented to 
illustrate the Kantian criterion are not of the previous form, “x is F ”, but of the 
form “all G’s are F ”, or, better, in the usual Fregean translation, “for all x, if x  is 
G, then x  is F  ”. In this way, the subject-predicate judgment is interpreted as a way 
of connecting not really a subject to a predicate, but a predicate (that is G) to 
another predicate (that is F). Predicates play two different roles here. The first 
(that is G) specifies the domain to which a generic subject belongs (and in this 
way it specifies the subject, completely or partially) the second assigns to such a 
subject a certain property. It is only if a subject-predicate judgment is intended in 
such a way, that we can apply Kant’s criterion: such a judgment will be analytic if 
and only if F  expresses a sub-specification of the property expressed by G. The 
judgment “all congruent triangles are similar” is analytic—we could say—be
cause the predicate “to be congruent” is a sub-specification of the predicate “to be 
similar” (for a triangle). But, here another presupposition is required. The proper
ties expressed by our predicates have to realize a partial order with respect to a 
meta-relation of inclusion. And, in order to say that a certain judgment “is” ana
lytical or synthetical, we have to assume that the configuration of such a partially 
ordered space of properties is fixed.

From such a point of view, to be something means (or has to be intended as) to 
satisfy a certain property and to satisfy a certain property implies that a certain set 
of other properties is met or fulfilled. Thus, the problem of analyticity or synthe
ticity of a judgment is the problem of connection between different properties : a 
mathematical judgment, as “all Q’s are P ”, or “for all x, if x  is Q, then x  is P ” 
would be synthetic if and only if it was logically possible to satisfy the property Q, 
without fulfilling the property P. But a mathematical judgment has to be proved in 
a mathematical theory (except if it is an axiom or a definition). So, a mathemati
cal judgment would be synthetic only if it was possible to prove that to satisfy the 
property Q means to satisfy (among other) the property P, even if it is logically 
possible to meet the property Q, without meeting the property P.

The problem concerns, of course, the notion of “logically possible”. In the 
previous context this notion refers to the partially ordered space of properties to 
which the properties P and Q belong. Such a possibility takes place if and only if 
the property Q does not include the property P. But how is the configuration of 
such a space fixed?
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II. 1 M athematical Theories as Intensional Theories

If a mathematical theory is intended as an intensional theory, such a configuration 
can not be fixed outside or independently from the theory itself. Outside the theo
ry there is properly speaking nothing concerning the theory itself. Therefore, if a 
judgment is a theorem (an axiom or a proposition) of the theory (that is, if it is a 
proposition of the theory and, thus, a mathematical judgment), it cannot be but 
analytic.

This seems immediately obvious, but we prefer to insist a little bit more on this 
point. In our characterization of an intensional theory we have not really specified 
what kind of things intensions are and this could cause problems in order to un
derstand the point.

What then are intensions? With respect to our problem of deciding whether a 
judgment is analytic or synthetic, we need only answer this question up to rela
tions of difference and equality of intensions (and in fact we can only answer it 
so). Using an informal language of sets and in particular interpreting equality as 
mutual inclusion of sets (and the latter in turn as logical implication) we realize 
immediately that, whatever intensions might be, in an intensional theory all state
ments are analytic, because they just state relationships of inclusion between in
tensions (interpreted as sets here). Therefore, the analytic-synthetic distinction 
makes no sense with respect to a mathematical theory intended as an intensional 
theory.

Perhaps it makes sense as a correlative distinction with respect to the other 
distinction between a mathematical judgment and an empirical one: all mathe
matical judgments being analytic, it could be possible that all empirical judg
ments are synthetic, because empirical theories are not intensional theories, as the 
terms of the theory cannot be complete descriptions of their referents. Otherwise 
for such a theory to have referents would equal its being true and vice versa. Now, 
in conceiving of (mathematical or empirical) theories as intensional theories, one 
negates a fundamental insight of Kant’s Critique, namely that “no general de
scription of existence is possible, which is perhaps the most valuable proposition 
that the Critique contains” (Peirce CP, 1.35). Thus this view amounts to denying 
the essential Kantian idea, namely that synthetic a priori judgments are possible 
and they take place in mathematics (even if not only there). Therefore, even if we 
could make sense of the Kantian distinction, with respect to mathematics (al
though not “within” mathematics1) it would fail its essential aim.

II.2 M athematical Theories as Extensional Theories

It might appear that the situation changes essentially if we conceive mathematics 
as an extensional theory, but this is not really the case. For a long time it has
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generally been accepted that predicates bearing on empirical extensions could be 
connected analytically—providing logical truths, rather than genuine empirical 
judgments—as well as synthetically—providing genuine empirical judgment. 
But—as Quine has shown, in Two dogmas o f empiricism (Quine 1953, 20-37)— 
even if this distinction can be maintained, from the point of view of an extensional 
theory, it does not express anything but our decisions on the internal organization 
of our language.

The arguments and conclusions of Quine are well-known and it is not neces
sary to repeat them. We would only like to insist on one point that seems to be 
connected with our problem concerning mathematical extensional theories. If we 
accept the Kantian criterion of the Introduction to the first Critique, as Quine 
does, essentially, we are compelled to assert, as we have seen, that a (true) subject- 
predicate judgment—let us say “all Q’s are P ”—is synthetic if it is not necessary 
to be P, in order to be Q, even if, contingently, all Q’s are just P. Even though, it 
would seem to be a very natural situation from an extensional point of view, it is 
not.

Let us consider an example. We can aigue, it is not necessary to weigh less that 
200 pounds in order to be a swan, even if, contingently, all swans weigh less than 
200 pounds. But, how are we sure that it is not necessary to weigh less than 200 
pounds in order to be a swan? This is possible only if we have in our hands a 
precise and objective definition of what a swan is and if such a definition does not 
include that a swan weighs less than 200 pounds. Nevertheless, if we intend a 
swan as a “real external object”, that is how it is independently from all possible 
definitions that we could give, it is possible only if our definition grasps what is 
“essential” in a swan, without specifying all properties of a “real swan”, so that 
we can imagine genuine swans different from real ones, for example swans weigh
ing 300 pounds, or even 30.000 pounds. But how do we know what is “essential” 
in a swan? has some God given the required definition? Certainly, in a proper 
sense, we cannot know it, we can only decide it. Thus, it is clear that the the 
analytic-synthetic distinction makes sense for an extensional theory (according to 
the criterion of the Introduction to the first Critique) only if the predicates are 
introduced into the theory by means of a definition which determines their logical 
range, according to a certain decision. This shows that an extensional theory—as 
well as an intensional one—depends on the choice of a perspective. A judgment 
like “all swans weigh less than 200 (or even 30.000) pounds” is then either ana
lytic or synthetic, according not to the “objective extension” of the predicate “to be 
a swan”, but to the perspective that has been chosen in fixing the logical range of 
such a predicate.

In order to make this point clearer, let us assume, provisionally, that properties 
are nothing but (names of) classes of objects. This is exactly the content of what is 
called generally the “axiom of extensionality” (Godel 1944, 137):
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V0,P{[0 = P] <=> V*[0(*) «=> PM} (1)

Once this axiom is given, let us consider two predicates G and F, such that 
-.(G c  F). A s G is then distinct from F, according to (1) these predicates satisfy 
the condition:

3*{[G(*) a  - ,F ( x) M F ( x) a  - & ( * ) }  (2)

Let us consider now the domain of G and determine the range of the free variable 
x  relatively to it, such that:

WxG(x) (3)

As from (2) and (3) it follows

-,V;c[G(*)=>F(*)] (4)

we have,

—•{—(C7 £  F ] a Vx[G(x) => F(x)]} (5)

Thus, the judgment “all G’s are F ” cannot be synthetic, according to the criterion 
of the Introduction to the first Critique: the distinction between analytic and syn
thetic judgements like “all 0 ’s are F ” makes sense in an extensional theory, ac
cording to such a criterion, only if the space of the predicates occurring in it is 
partially ordered, independently from the partial order of the classes which con
stitute the extension of these predicates.

But, if so, how the partial order of the predicates is fixed? From an extensional 
point of view—different from an intensional one—we can try to answer in a number 
of ways, all of which do not provide however meaning for the Kantian distinction 
(according to the criterion of the Introduction to the first Critique).

First, we can imagine that it is an aim of our theory (or of a part of it, for 
example of the “meaning postulates”, as Carnap proposed (Carnap 1952)) to pro
vide the configuration of such a space. But if this is the case the distinction be
tween analytical and synthetical judgments is nothing but an expression of the 
organization of the theory itself. Second, we can imagine that such a configura
tion is fixed once and for all, as if it were the configuration of the mind of God. In 
such a case, the “real” distinction between analytical and synthetical judgments 
rests on foundations unknown to us and our distinction is nothing but a conjectur
al representation of it2. In the first, as well as in the second case, it seems rather
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arbitrary and open to points of view whether a statement is considered analytic or 
synthetic and the analytic-synthetic distinction does not lead to much.

But there is a third possibility: we can accept the Leibnizian idea according to 
which things are to be distinguished on basis of the sum of all their actual proper
ties, so that it is not possible to be a 0 , without having all the properties that a 0  
has. The configuration of the space of properties is then imposed by the real na
ture of things. All true judgments are analytical in this case.

Someone has imagined that, with respect to mathematical extensional theo
ries, we are necessarily in such a case. From such a point of view formal theories, 
like mathematical theories, are in fact considered as meta-linguistic theories deal
ing with linguistic extensions, for which the “sum” of their actual properties is 
finite, and to be a (mathematical object) 0  is exactly to have all these properties 
and only them. We can justify in such a way the neopositivistic thesis, according 
to which all mathematical judgments are analytic. Thus, the thesis of analyticity 
of mathematics can be defended by intending mathematical theories as intension
al ones as well as by conceiving them as extensional theories. Whatever the choice 
may be, by accepting such a thesis one denies the essential content of Kant’s 
thesis.

If we deny, in contrast, that mathematical extensional theories are meta-lin
guistic theories the situation for such theories is not really different from that for 
empirical extensional theories. Thus Quine’s argument can be applied mutatis 
mutandis.

We may suppose that to be a certain formal thing is to satisfy certain properties 
{0.} (that is, in a more convenient interpretation, certain conditions), expressed 
by certain definitions or axioms, in such a way that without any additional axiom 
it is not possible to prove that the fulfillment of these properties (or conditions) 
entails the satisfaction of certain other properties (or conditions) {P.}. But we can 
introduce some additional axiom (and passing, for example, from absolute geom
etry to Euclidean geometry or from finitary arithmetic concerning numbers {0,1, 
2,..., 100) to infinitary usual arithmetic, or from an algebra without associativity 
for a certain operation to an algebra with associativity for that operation) and then 
prove that to satisfy the properties (or conditions) {0.} entails the fulfillment of 
the properties (or conditions) {P.}. We can interpret such a case in different ways 
and if our reasoning capabilities are strong enough, we may arrive at a justifica
tion of the syntheticity of a certain mathematical judgment. We can even interpret 
in this way the thesis of Poincare according to which arithmetical infinitary judg
ments are synthetic (the additional axiom being the fifth axiom of Peano) or Cas
sirer’s claim, according to which all the usual arithmetical judgments, like 
n+m = v, are synthetic (the additional axioms being the associative law of addi
tion) (Poincare 1894 and Cassirer 1907). But it is clear that there is no possibility 
to show that a certain mathematical judgment is, in such a framework, definitely



268 MICHAEL OTTE AND MARCO PANZA

synthetic. In order to make such a claim, we should justify that the real ideal 
things, of which the theory is speaking, are completely described by the first axi
oms only. And, we certainly cannot do that.

I ll Cassirer and Poincare

But, of course, neither Poincare nor Cassirer presented their theses exactly in such 
terms. Rather it seems that, when they state that arithmetical judgments are syn
thetic (and a priori) they do not refer to the Kantian criterion of the Introduction 
to the first Critique. But it is very difficult to say what their criteria for the distinc
tion between the analytic and synthetic really are.

Cassirer (1907, 41) considers the proposition “7+5 = 12”, quoted by Kant in 
the Critique o f Pure Reason, to be synthetic, because its proof contains “a synthet
ic assumption”, namely “the theorem that a+(b+1) = (a+b)+1”. But, what Cas
sirer terms a synthetical assumption here is a special case of the associative law, 
which functions as a definition of the addition on the basis of the successor oper
ation of ordinal numbers in the normal axiomatic characterization. Thus, even if 
we accept that the proposition “7+5 = 12” could be intended as a subject-predicate 
judgment, it would be very difficult to justify that it is possible to intend the sub
ject of this proposition—that is the sum-number 7+5—without characterizing the 
operation of addition by means of the associative law or in a way that entails such 
a law. In case we characterize the operation of sum in terms of the cardinality of 
sets the situation is completely different. The associative law is in fact in such a 
case a consequence of our definition of addition (and not a part of it), and people 
could claim that such a consequence does not follow by a formal proof, but is to be 
observed by experience of concrete sets and their unions ; thus, it is nothing but a 
(quasi-empirical) generalization. If we accept that, we might conclude that the 
judgment expressing this law is synthetic, and the related proposition “7+5 = 12” 
as well. But the question is completely open to points of view. Thus, it is clear 
that, if the criterion of syntheticity of a judgment is that of the Introduction to the 
first Critique, Cassirer fails in asserting that “7+5 -  12” is definitely a synthetical 
judgment. This conclusion depends on our definition of addition and on our point 
of view with respect to the way in which the properties of the operations on sets 
are stated.

The same is true for Poincare. Poincare (like Holder 1924) called (infinitary) 
arithmetic synthetic (anda priori) because arithmetical propositions—being found
ed on the axiom of recursion—are just expressions of the free activity of the hu
man mind, they represent the structure of the subject itself. According to Poincare, 
recursion cannot be reduced to the principle of contradiction: it is “the affirmation 
of a property of the mind itself’ (Poincare 1894,12-13). The fifth axiom of Euclid 
in contrast is nothing but a “definition in disguise” (Poincar6 1891, 50), Poincare
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believes, and it has been chosen only for reasons of our convenience. Thus, ac
cording to Poincare arithmetical propositions are synthetic (and a priori) because 
they are founded on something we can intend as an a priori assumption to which 
the human subject is compelled by its very nature. Let us try to get rid of recursive
ness—Poincare says—and “let us construct a false arithmetic analogous to non- 
Euclidean geometry. We shall not able to do it” (ibid., 49).

Clearly, Poincare, as well as Cassirer, refer here to a different criterion for 
syntheticity than that of Kant’s Introduction to the first Critique. But what is this 
criterion? This is really not very clear. Perhaps, we have to see in this lack of 
clarity one of the reasons for the success of the neopositivistic attitude concerning 
mathematics.

IV Mathematics as an Activity

Thus, we have to conclude that, both from the point of view of an intensional 
theory and from the point of view of an extensional theory, a logical distinction 
between analytical and synthetical judgments, founded on the criterion of the In
troduction to the first Critique, makes no real sense. Do we have to conclude from 
this also, that the Kantian distinction as such, makes no sense logically ? We 
think not. We believe in fact: i) that the Kantian criterion of the Introduction to 
the first Critique is nothing but a bad illustration of a deeper idea; ii) that, in order 
to understand such an idea, we have to abandon the presupposition according to 
which mathematics (and science, in general) is to be understood as a class of 
theories (a theory in turn being a class of propositions); iii) that, by abandoning 
such a presupposition, we could gain a new perspective on the nature of logic, 
usually intended as an inquiry into the formal characters of our knowledge; iv) that, 
by assuming such a perspective, we can get rid of the dichotomy between inten
sional and extensional theories and conceive a scientific theory as something else.

The situation in fact changes radically if a theory is considered in the context 
of its genesis or application, or, in other words, if the notion of theory is trans
formed to incorporate activities that represent the epistemic subject-object rela
tion. Extensions and intensions enter into varying and flexible relations with each 
other and this means that we have to base our considerations on the evolutionary 
process of cognitive activity, rather than on the idea of a theory as a class of 
propostions. Bolzano, among others, had accused Kant of having confounded 
mathematics with its development. Kant was right, although his ideas, with re
spect to the question of “the objectivity of the subjective” were insufficient and 
ahistorical.

From our point of view, mathematics (like science in general) has to be under
stood as a human activity, namely the activity of producing mathematical (or gen
erally scientific) theories (in the previous sense). The aim of logic is not merely to
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study the internal structure of such theories, or even the formal nature of their 
propositions (either taken in isolation or jointly). Rather it implies the study of the 
modalities of human activity that produces them. Such an activity is a concrete 
and historical phenomenon. It is in terms of this phenomenon only that, we be
lieve, it becomes possible to explain all other phenomena or entities. Neverthe
less, logic has not to be confounded in our perspective with psychology. The latter 
treats the human activity producing our knowledge as a particular activity proper 
to each singular subject and tries, if it is possible, to isolate some constant features 
of it. The former treats of the general categories that may be used in describing 
such an activity and tries to understand the way by which it realizes intersubjec
tivity and founds the external world with respect to each subject.

Such a perspective is not to be confounded with a solipsistic point of view. 
Every realism, we believe in fact, has to be a constructive realism. Neither subject 
nor object exist in isolation and activity marks the essence of the subject-object 
relation, that is fundamental with respect to both relata. We do not suppose that 
only the individual subject exists, all the rest being pure appearance, but, to the 
contrary, we think that the notion of existence, or reality, is not a primitive notion, 
but has to be intended in terms of the modalities of the subject’s activity.

Now to describe or explain the activity itself—and this is the only way for 
explaining a lot of subjective evidence (for instance the phenomenon of intui
tion)—one may conceive it as a system of means-objects relations. No activity 
exists without means and without objects. And neither internal experiences nor 
objective constraints can be understood but in terms of means and contents of 
activity. External conditions for the subjective activity or for consciousness are 
just to be intended as contents of intentional acts. The form they take is thus the 
form of these acts and the objectivity of such a form—that is the fact that it can be 
assumed as the same in our communication or along our life—is nothing but the 
effect of our capacity of connecting evidences in classes of equivalence and of 
inducing intentional acts in similar subjects. Of course, such a capacity is, once 
again, an hypothesis we advance in order to explain our evidences, that is: it is 
part of the intentional acts directed to pose ourselves as a subject or the external 
subjects as such.

Now, in such a context, science is nothing but a specific way of producing 
objectivity and the problem of a philosophy of science is essentially the problem of 
explaining this objectivity in terms of the activity that produces it. A scientific 
theory is nothing but a way for expressing this objectivity. We can recognize in it 
an intensional as well as an extensional component. The former is connected with 
the fact that the objectivity is the result of an activity, that is an act of conscious
ness. The latter is connected with the fact that this activity is an intentional one: it 
is just that which produces an objectivity.
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But, what new sense can we give, from such a point of view, to the analytic- 
synthetic distinction, with respect to mathematics? We will try to answer to such a 
question in our following two papers.

Institute for Didactics of Mathematics,
University of Bielefeld

Centre F. Viete o f the History and Philosophy of Sciences,
University of Nantes

Notes

1 For Kant, all mathematical judgments seems to be synthetic, and therefore for him also such a distinction—  
if it is applied to judgments— takes sense with respect to mathematics, but not in mathematics.

2 If we were realists, we could argue that certain properties are necessarily connected to other properties 
being particular specifications of them. For example, the property of being red— we could say— is a 
particular specification of the property of having a color (of reflecting the light). Thus a judgment as “all 
reds are colored” should certainly be analytic. However, this argument has two main defects: not only 
does it not prove that objectively synthetic judgements exist, but it is false also. In fact, if we were realists 
concerning properties, we should make a distinction between real and ascribed properties, an ascribed 
property being a property compounded by real properties or a generalization of certain real properties. 
According to such a sense, to be colored is certainly an ascribed property, because a body does not simply 
reflect the light, but reflects it in a peculiar way. Thus the necessity of the connection between the real 
property of being red and the ascribed property of being colored is, once again, a question of definition of 
the second property.
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MATHEMATICAL ACTS OF REASONING 

AS SYNTHETIC A PRIORI*

I Introduction

My paper pursues two aims. First, I would like to argue that mathematical activity 
deals with pure objects, or even that mathematics is the human activity dealing 
with mathematical (that is pure) objects. In my view, this means that mathemati
cal activity essentially consists of synthetic acts of reasoning and, as mathematical 
objects are pure objects, these acts are also a priori. This thesis should not to be 
confused with the standard thesis generally ascribed to Kant, according to which 
mathematical judgments are synthetic a priori. Nevertheless, I think that my the
sis could be presented as a development of some of Kant’s views on mathematics: 
as such, it is not a Kantian thesis, but I believe it is a “quite natural” consequence 
of Kant’s views. Thus, my second aim is to trace a path leading from Kant’s 
premises to my own conclusions.

II Standard Accounts

According to section V of the Introduction to Kant’s Critique o f Pure Reason, 
“All mathematical judgments [Mathematische Urteiie*], without exception, are 
synthetic [synthetischY and “mathematical propositions [Satze], strictly so called, 
are always judgments a priori” (Kant B, 14). If we accept that every mathematical 
judgment is a (mathematical) proposition, we have to conclude that:

(Tj) Every mathematical judgment is synthetic and a priori.

Since Kant certainly agreed with the auxiliary premise, (Tt) is certainly a 
Kantian thesis, and it is advanced by Kant in the section V of the Introduction to 
the first Critique. Thus, it is very natural that (Tj) is presented as an important 
Kantian thesis concerning analysis and synthesis in mathematics. Generally, this 
thesis is explained by referring to the following passage contained in section IV of 
the same Introduction:
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“In all judgments in which the relation of a subject [Subjekt] to the predicate [Pradikat] is thought 
this relation is possible in two different ways. Either the predicate B belongs [gehort] to the 

subject A, as something which is (covertly) contained [enthalten] in this concept [Begriff] A\ or 
lies outside the concept A, although it does indeed stand in connection with it. In the one case I 
entitle the judgment analytic [analytisch], in the other synthetic.”(Kant A, 6-7; B, 10)

According to Kant, a judgment is not merely a “representation [Vorstellung] 
of a relation between two concepts” (Kant B, 140), but it is “the manner in which 
given modes of knowledge [Erkennntnis] are brought to the objective unity of 
apperception” (Kant B, 141). This is a very difficult definition and it is not my 
task to explain it here. However, it is clear that a judgment according to Kant, 
does not express any sort of possible association between two (or more) concepts: 
as long as it expresses a relation between a subject and a predicate, it expresses the 
appurtenance (Zugehoren) of what is individuated by means of a certain concept 
S—the concept of the subject—to the sphere (or to the domain) of another concept 
P—the concept-predicate. In other words: as long as it expresses a relation be
tween a subject and a predicate, a judgment says of a certain “representation” that 
if it is S, then it is P. Thus, we can reformulate the previous distinction in the 
following way:

(Dj) A judgment of the form < Vjc [S(jc) => P(jc)] >— where S and P are 
concepts and S(x) and P(x) mean that x  belongs respectively to the 
domains of S and P—is analytic if and only if P belongs to 5 , and it is 
synthetic if and only if P does not belong to S.

(D,) supposes that it possibly makes sense to say of two concepts a and p  that 
a belongs to p. Such a possibility depends on a compositional (classic) notion of 
concepts, according to which concepts—or at least certain sorts of concepts—can 
be treated as collections of other concepts. Definitely, this seems to be an idea of 
Kant. Nevertheless, I am far from certain whether (T() is the hard core of Kant’s 
philosophy of mathematics, and whether according to Kant, the essential episte
mological relevance of the opposition between analysis and synthesis is expressed 
by (Dj), at least when such a distinction is meant literally. However, before I will 
give my own interpretation of Kant’s views, I would like to present some standard 
reactions to (T() and (D(). This will help to make my point clear.

In order to use (Dj) for justifying (Tf), we have to state the following lemmas:

(Lt) If S and P are respectively the concept of the subject and the concept- 
predicate of a mathematical judgment of the form < Vjt[S(;c) => P(*)] > 
(and it makes sense to say that P does not belong to 5), then P does not 
belong to S.

MATHEMATICAL ACTS OF REASONING AS SYNTHETIC A PRIORI 275

(L2) Every mathematical judgment is of the form < Vx [£(*) => P(jc)] > (where 
S and P are two concepts such that it makes sense to say that P does not 
belong to S).

Therefore, it is very easy to refute (Tj) without denying that (D,) is a good and 
useful distinction: you can deny (L,), (L2) or both. However, it is also possible to 
deny (L,), (L2) or both, without rejecting (Tt): if you want to do that, you have to 
look for an argument based on a distinction between analytic and synthetic judg
ments different from (Dt). The history of discussions about Kant’s philosophy of 
mathematics contains a number of different examples for all these points of view.

It is very easy, for example, to refute (L2) by quoting appropriate counter
examples and then reject Kant’s philosophy of mathematics as a whole. This was 
done by Couturat (Couturat 1893, 84), for instance.

A more interesting position is Frege’s (1844, particularly §88). According to 
Frege, the distinction between analytic and synthetic judgments cannot refer to 
the logical relation of inclusion between the concept-predicate and the concept of 
the subject, since this relation does not apply to arithmetical judgments, where the 
subject is generally a singular object. Moreover, an arithmetical judgment should 
not to be taken as an isolated one, for it is a consequence of a deductive proof. 
Thus, it is analytic if and only if it is “deducible solely from purely logical laws” 
(Frege 1884, §90), and it is synthetic if its proof depends on an appeal to intuition.

Though Frege speaks, like Kant, of mathematical judgments, his position can 
easily be generalized as one referring to mathematical sentences, to mathematical 
systems, or even to mathematics as a whole. For that, we only have to replace (Dj) 
by a more general and explicit distinction:

(D2) A sentence is analytic if and only if it is part of an analytical system, 
otherwise it is synthetic; a system (of sentences) is analytic if and only 
if it is deductively closed with respect to purely logical rules and 
(eventually) purely logical axioms, otherwise it is synthetic.

Referring to (D2), many have argued that “mathematics is analytic”. (D2), how
ever, is a very problematic distinction, since it bears on the problematic notions of 
purely logical rules and axioms.

If we intend these notions in a strict sense, it follows from (D2) that only 
propositional and predicative calculus are analytic systems. Hence—since it is 
obvious that, due to the occurrence of proper axioms in its deduction, no mathe
matical theorem, as it is generally enunciated, can be intended as a theorem of 
propositional or predicative calculus—we can assert that a mathematical theory is 
an analytic system only if we are ready to acknowledge that a mathematical theo
rem is nothing but an implication, where the antecedent is just formed by a suita
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ble class of proper axioms. This was one of Russell’s ideas (Russell 1903a), for 
example.

However, even though it would be possible to intend any mathematical theory 
as a system of implications of this sort, someone could argue that this is not the 
point, since these implications have generally to be of the form < if A, then B >, 
where A and B are not yet implications of this sort. Thus, by asserting, according 
to such an argument, that a mathematical theory is an analytic system, we are just 
saying that its theorems form a system of logical consequences of the given axi
oms, which Kant himself would have accepted. Here is what he writes just after 
the passage I quoted at the beginning:

“[...] For as it was found that all mathematical inferences [Schliisse] proceed in accordance with 
the principle of contradiction (which the nature of all apodeictic [apodiktischen] certainty re
quires), it was supposed that the fundamental propositions of the science can be themselves be 
known to be true through that principle. This is an erroneous view. For though a synthetic propo
sition can indeed be discerned in accordance with the principle of contradiction, this can only be if 
another synthetic proposition is presupposed, and if it can then be apprehended as following from 
this other proposition; it can never be so discerned in and by itself.” (Kant B, 14)

Thus, to argue that a mathematical sentence or system (or even mathematics 
as a whole) is analytic is not enough—according to Kant—to show that mathe
matical rules of inferences are purely logical; if we want to deny (T,) on the base 
of (D2), we have to argue that mathematical axioms are purely logical too, even 
though they are proper axioms. There was a time when Russell and Whitehead 
dreamed to show that just this is the case: that every mathematical theory could be 
reduced to a system of logical consequences of axioms that we should take as 
logical, since they express nothing but general properties of sets (Whitehead and 
Russell 1910-1913 f .

However, what is a logical axiom in this sense is really a disputed question and 
it is certainly not in this manner we can hope to decide whether (T,) has to be 
accepted or not. If this is the problem, the question of analyticity or syntheticity of 
mathematics is simply a question of subjective views. According to Cassirer (Cas
sirer 1907), proper mathematical axioms and definitions are synthetic, for exam
ple, and every mathematical theory is then a synthetic system, even though it uses 
only logical rules of inference.

At first glance, we might believe that Poincare advanced a similar thesis with 
respect to arithmetic (Poincare 1894), but it seems to me that Poincare’s view is 
essentially different from Cassirer’s. Poincare is interested in the nature of “math
ematical reasoning”, rather than in the character of mathematical axioms. Thus, 
when he claims that the mathematical principle of induction is synthetic, he wants 
to say that mathematicians proceed by non-logical inferences in arithmetic, that 
is: they “proceed by construction” and “mathematical induction”.
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A similar point has been made by Hintikka (Hintikka 1973). According to 
him, Kant’s distinction applies to “modes of reasoning”, namely, the modes of 
reasoning “which are now treated in quantificational theory” (ibid., 182). These 
“modes of reasoning are synthetic if the inferences or arguments that occur in 
them are synthetic”, and an inference (or argument) is synthetic if it does not deal 
“with general concepts only”, but needs “the introduction of an intuition” (ibid., 
194). A part of Hintikka’s notion of reasoning in its relations to inferences or 
arguments in quantificational theory, this is exactly the thesis I will ascribe to 
Kant in the next paragraphs III and IV. However, according to Hintikka, this 
means that “for Kant the reason why mathematical arguments are synthetic is that 
they are constructive”, that is: they proceed by introducting “new individual math
ematical objects” (ibid., 206). In other words:

“Synthetic steps are those in which new individuals are introduced into the argument; analytic 
ones are those in which we merely discuss the individual which we have already introduced.”
(ibid., 210)

Moreover:

“In a suitable formulation, arguments of the former kind can be boiled down to existential instan
tiation.” (ibid., 210-211)

If the previous thesis is ascribed to Kant, I do not think this is a good explana
tion of it. I think that for Kant an “analytical argument” (to use Hintikka’s termi
nology) does not “discuss individuals” at all (at least, if the term “individual” 
means “object”), and a synthetic one does not ask for “existential instantiation” 
and does not deal properly with “mathematical objects”.

I ll A Provisional Reformulation of Kant’s Distinction

By shifting attention from judgments or sentences to inferences or even to reason
ing, Poincare and Hintikka move, as I believe, in the right direction. Moreover, 
when Hintikka states that, according to Kant, mathematics is a constructive affair, 
and syntheticity is concerned with intuition, he points to a crucial aspect of Kant’s 
philosophy of mathematics.

Nevertheless, in my opinion, for Kant the syntheticity of mathematics does not 
depend on the occurrence of constructive, or generally non-deductive, inferences. 
As a matter of fact, it depends on the role of intuition, but intuition has to be 
intended neither as a condition of construction (in the usual sense), nor as a sort of 
psychological capacity: the capacity of “seeing” some hidden relations, or to be 
convinced by some particular evidence or even to switch on a mental light in the 
darkness of doubt or ignorance. A fortiori, intuition has not to be taken as a (log
ical or psychological) condition of non-deductive or constructive inferences. Thus,
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even though I think that for Kant intuition is in a sense the source of syntheticity 
in mathematics, I do not think that we have to argue, to justify Kant’s views, that 
mathematical proofs or arguments are full of “intuitive” (that is non-deductive, or 
even “non-logical”, or “constructive” ) steps, as some say.

III. 1 J u d g m en ts  a nd  P ro po sitio n s

Let me begin with a remark on Jasche Logic (Kant, JL). Here, Kant does not 
distinguish between analytic and synthetic judgments, but only between analytic 
and synthetic propositions. According to him, every proposition is a judgment, 
but not every judgment is a proposition: a proposition is an assertoric [assertor- 
isch] judgment (ibid., § 30, note 3), that is a judgment “accompanied with the 
consciousness [BewusstseiriY' of “the reality3 [Wirklichkeit] of the judging” (ibid., 
§30). Such a definition is not so different from that of the first Critique—accord
ing to which an assertoric judgment is that in which “affirmation or negation is 
viewed as real [wirklich] (true [wahr])” (Kant A, 74; B, 100)—but the reference to 
the idea of consciousness makes my point clearer.

That between problematic [problematisch], assertoric and apodeictic judgment 
is, according to Kant, a distinction of judgments on the base of their modality, that 
is “the way in which something is maintained [behauptet] or denied [verneint] in 
the judgment” (Kant, JL, § 30, note 1). What is important here is the modality of 
maintaining or denial and not what it is maintained or denied: a problematic 
judgment maintains or denies something possibly (moglicherweise)', an assertoric 
judgment maintains or denies something really (wirklich)', an apodeictic judg
ment maintains or denies something necessarily (notwendigerweise). The distinc
tion does not concern the modal form of the judgment itself, but the modality of 
the act of formulating such a judgment. As Kant writes in the first Critique:

“The modality [Modalitdl] of judgments is a quite peculiar function. Its distinguishing charac
teristic is that it contributes nothing to the content [Inhalt] of the judgment [...], but concerns only
the value of the copula in the relation to thought [Denkeri] in general.” (Kant A, 74; B, 99-100)

But, what does it mean that something is maintained or denied possibly, really 
or necessarily?

If we try to understand such a distinction using the usual conception of modal
ity in terms of truth in a given collection of worlds, we are not able to do it without 
a criterion founded on the modal form of appropriate statements. It is possible to 
imagine different ways to construct sets of worlds and to associate any judgment 
with appropriate statements to be evaluated with regard to these worlds, in order 
to say if such a judgment is problematic, assertoric or apodeictic. In this way we 
can justify, for example, that a judgment as < It is possible that A > is not prob
lematic, since it maintains something: particularly, it maintains that A is possible.
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However, in that way we reduce any judgment to usual modal statements and we 
decide about its nature on the basis of the modal form of the associated statements.

I think that Kant’s distinction should not be understood this way. In my inter
pretation, this distinction is rather a question of justification.

A problematic judgment is not a judgment expressed by an appropriate state
ment that is true in the worlds belonging to a proper non-empty sub-set of a given 
set of appropriate worlds. It is a judgment, referring to only one world, that has 
been formulated without any kind of justification. As Kant does not admit any sort 
of guess, this means that the act of formulating this judgment cannot be an act of 
stating anything; it is simply an act of expressing a certain connection.

But such a connection, you might notice, has to be a possible one. Hence, we 
have to explain what a possible connection is. There are two ways for doing that. 
First, we could say that the logical form of this connection has to be a possible 
form of a judgment, that is: it has to respect certain logical (or simply syntactical) 
rules of formation. Second, we could say that it is the content of the connection 
that has to be possible. If so, we come back to modality, intended in the usual 
extensional sense, but now we are considering it, not in order to know whether a 
judgment is problematic or not, but to know whether a certain connection can be 
a judgment or not. Thus, we would say that the act of formulating a problematic 
judgment is the act of expressing an arbitrary connection we have ascertained to 
be possible.

As, according to Kant, the “expression through words” is a necessary condi
tion for the act of judging (Kant JL, § 30, note 3), the first solution leads us to 
conclude that problematic judgments are sentences (or are expressed by sentenc
es), while the second solution leads us to conclude that problematic judgments are 
non-contradictory sentences (or are expressed by non-contradictory sentences).

What is important to me is that according to both, the first and the second 
interpretation, the act of formulating a problematic judgment does not require any 
justification of the content of the judgment itself. This is not the case for assertoric 
and apodeictic judgments, since, according to Kant, the act of formulating an 
assertoric or apodeictic judgment is an act of stating something. The difference 
between these two sorts of acts lies in the nature of justification. If such a justifica
tion merely depends on the “laws of understanding [Verstand]” (Kant A, 76; B, 
101) the judgment is apodeictic, otherwise it is assertoric.

If I am right, Kant’s distinction is asymmetric, since it actually distinguishes 
between problematic and non-problematic judgments on the one hand, and be
tween non-problematic assertoric judgments and non-problematic apodeictic judg
ments on the other hand. As long as problematic judgments are sentences (or are 
expressed by sentences), non-problematic judgments—both assertoric and apo
deictic—are statements (or are expressed by statements).
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Now, if only propositions can be analytic or synthetic and propositions are 
assertoric judgments, it follows that Kant’s distinction between analytic and syn
thetic does not apply to sentences, but rather to statements. However, if we would 
like to stay close to Kant’s text, we should argue that the only statements that 
could really be called “analytic” or “synthetic” are assertoric statements. But if 
that is so, how could Kant have advanced the view that mathematical judgments 
(which in his views are apodeictic judgments) are synthetic? The difficulty would 
be a major one, if Kant had not explained once again his notion of proposition in 
the following terms:

“Before I have a proposition I must first judge [urteilen]-, and I judge about much that I cannot 
make out [ausmachen]*, which I must do, however, as soon as I determine a judgment as a propo
sition.” (Kant JL, §30, note 3)

According to such a characterization, a proposition is a judgment associated 
with an act of making out. Since in my interpretation this is true for any sort of 
non-problematic judgment, that is any sort of statements, we have to conclude 
that any sort of non-problematic judgment is a proposition. The point is plaintly 
this: Kant’s distinction between analytic and synthetic judgments lies exactly in 
the nature of such an act of “making out” and can then be applied to any sort of 
statement. Thus, I propose to force Kant’s text a little bit and to interpret Kant’s 
distinction between analytic and synthetic propositions as referring to any sort of 
statement.

III.2 A nalytic and Synthetic Propositions

According to paragraph 36 of the Jasche Logic, “propositions whose certainty 
rest on identity [Identitat] of concepts (of the predicate with the notion of the 
subject) are called analytic propositions”, while “propositions whose truth [Wahr- 
heit] is not grounded [griindet] on identity of concepts must be called synthetic” 
(ibid., § 36). Even though he speaks of identity, Kant is clearly referring to the 
identity of the concept-predicate P with a part of the concept of the subject S. The 
remark 1 about the same paragraph 36 is clear:

“An example of an analytic proposition is [...] [: ‘] To everything*, to which the concept of body 
(a + b) suits [zukommt], suits [Icommt]5 also extension (b) [ ’].

An example of a synthetic proposition is [...][:*] To everything*, to which the concept of body 
(a + b) suits, suits also attraction (c) (ibid., § 36, note 1)

These examples fit very well with (Dj), but here Kant does not seem to insist 
on the fact that the concepts-predicate b and c belong or do not belong to the 
concept of the subject (a+b). What is important here is rather that the act of 
“making out” the content of the sentence “every body is extended” rests on ascer
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taining the appurtenance of the concept b to the concept a+b, while the act of 
“making out” the content of the sentence “every body attracts” does not rest and 
can not rest on ascertaining any logic relation between concept a+b and concept 
c. The point I want to make is this: the content of analytical judgments “is made 
out” merely by analyzing concepts; to “make out” the content of a synthetic judg
ment, we in contrast have to go away from concepts and base ourselves on some
thing else. The following quotation, drawn from the Introduction to the first edition 
of the Critique o f Pure Reason, seems very clear to me:

“[...] through analytic judgments our knowledge is not in any way extended, and the concept 
which I already have is merely set forth and made intelligible to me; [...] in synthetic judgments I 
must have besides the concept of the subject something else (X), upon which the understanding 
may rely, if it is to know that a predicate, not contained in this concept, nevertheless belongs to it.” 
(Kant A, 7-8)

Even though Kant eliminated this passage in the second edition, the same 
point is clearly expressed in the sections IV and V of the Introduction6. The main 
question Kant faces in these sections, after having presented (D(), could be pre
sented like this: on what do we ground ourselves for “making out” the content of 
synthetic judgments, if it is not on analysis of concepts?

For a posteriori judgments the answer is very simple and clear: we ground 
ourselves on our experience of objects, particularly of the objects that fall under 
the concepts occurring in the judgments themselves. For a priori judgments, the 
question is much more difficult, since here we cannot refer to any sort of experi
ence.

“ [...] in a priori synthetic judgments— Kant writes— this help is entirely lacking. Upon what, 
then, am I to rely, when I seek to go beyond the concept A, and to know that another concept B is 
connected with it? Through what is the synthesis made possible? since71 do not here have the 
advantage of looking around in the field of experience [Erfahrung][...]. What is here the 
unknown -  X which gives support to the understanding when it believes that it can discover out
side the concept A a predicate B foreign to this concept, which it yet at the same time considers to 
be connected with it?” (ibid. A, 9; B, 12-13)

Even though this is one of the most fundamental questions in the first Critique 
(since it is equivalent to the famous one: “how are synthetic a priori judgments 
possible?”) Kant does not sketch a general answer in the Introduction. He prefers 
to consider mathematics, natural sciences and metaphysics separately (in section 
V), and even in these cases he does not give a direct answer to the question.

If we abstract from such an answer, we once again limit ourselves to subject- 
predicate judgments and we assume that, according to Kant, analytic and synthet
ic statements have to form two complementary classes we may provisionally 
formulate Kant’s distinction as follows:
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(D3) A statement of the form < Vjc [^(jc) =3 PC*)] >— where S and P are 
concepts and S(x) and P(x) mean respectively that x  belongs to the 
domains of S and P—is analytic if and only if the act of “making out” 
that every x  which is S is also P is grounded on nothing but the 
ascertainment of the logical relation ‘P  belongs to S’ between the 
concepts S and P; it is synthetic if and only if this act asks for moving 
away from the consideration of the logical relations between the concepts 
S andP.

If we consider judgments as statements and assume that the appurtenance of P 
to S is a sufficient (and obviously necessary) condition for the act of “making out” 
that every x  that is S is also P is grounded on the ascertainment of such a logical 
relation, then the first part of (D3) (the definition of analyticity) is equivalent to 
the first part of (D(). Moreover, the second part of (Dt) (the definition of synthetic- 
ity) is perfectly complementary to the first part: according to it, a judgment is 
synthetic if and only if it is not analytic. Thus, if we accept that the second part of 
(D3) is also perfectly complementary to the first part, we have to conclude that 
(Dj) and (D3) are absolutely equivalent under the previous conditions. Now, in the 
first Critique, Kant is most of all concerned with statements rather than with 
sentences, thus we can imagine that, for him, (D() really deals with statements, 
rather than with sentences. Moreover, he certainly accepts the appurtenance of S 
to P as a sufficient condition for the act of “making out” that every x  that is S is 
also P  is grounded on the ascertainment of such a logical relation. So, if I am 
right in asserting that (D3) is a Kantian distinction, and if we assume that, accord
ing to Kant, the second part of such a distinction is purely complementary to the 
first, we should conclude that in the Introduction to the first Critique, Kant ad
vanced (D^ as a simplified version of (D3). This is just my thesis.

However, (D3) is a provisional distinction, for at least two reasons. First, it 
does not specify what enables us to formulate synthetic statements; second, it is 
restricted to subject-predicate statements. Moreover, it is also not totally satisfac
tory, since it is grounded on the interpretation of S and P as concepts, while, 
strictly speaking, they are predicates.

The latter difficulty is obviously connected with my shifting from judgments 
to statements and can only be solved by presenting an appropriate theory of con
cepts. Such a theory is also necessary for generalizing (D3) to any sort of state
ments and making its second part explicit. Furthermore, these two latter tasks 
also need an appropriate theory of logical counter-parts of concepts. I doubt that 
two appropriate theories of this sort are really available in Kant’s philosophy. In 
the next paragraph, I will try to expound Kant’s theory of concept and its logical 
counter-part (that is intuition or object) as briefly as I can, and as I am able to 
understand it, in order to make Kant’s own distinction clearer—even though not
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satisfactory yet—and to understand Kant’s reasons for claiming that “mathemat
ical knowledge” is synthetic.

IV Concept, Object and Intuition: the Final Version of Kant’s 
Distinction

In the Critique o f Pure Reason, Kant is concerned with conditions of knowledge. 
For him, judgments are forms or moments of knowledge. Thus, if we intend asser- 
toric and apodeictic judgments as statements, we have to consider statements both 
as logical (or linguistic) forms and as cognitive acts: intended in the first way, a 
statement is the logical form of the same statement, intended in the second way. 
But forms can be classified and so, in the first sense, statements both are forms 
and have forms of a higher level. These forms of higher level can be expressed by 
logical formulas as < Vx[5(x) => P(x)] >, so that these formulas express forms of 
forms of cognitive acts. The elements occurring in these formulas then have to 
express elements of a cognitive act, that is elements of an act of knowing.

Now, for Kant, knowledge can be either a priori or a posteriori. The a poste
riori knowledge is nothing but experience and generally consists in appropriate 
representations and judgments connected to the occurrence of a sensation. In this 
sense, it is knowledge of objects. On the other side, a priori knowledge is inde
pendent from the occurrence of sensations, but it is neither knowledge of some
thing different than objects, nor is it a form of knowledge alternative to experience. 
Rather, it consists of representations and judgments that make a posteriori knowl
edge or experience possible. In this sense, it is a condition of a posteriori knowl
edge and it is justified as such. The possibility of a priori knowledge is thus the 
possibility of the conditions of possibility of a posteriori knowledge or experi
ence. Hence, as for Kant a posteriori knowledge is a fact, a priori knowledge is a 
fact too and the form and nature of the latter depends on the form and nature of 
the former. To understand the first (a priori knowledge), we then have to under
stand the second {a posteriori knowledge).

IV. 1 A P osteriori K n o w led g e

A posteriori knowledge is for Kant either “objective perception [objektive Perzep- 
tionT or judgment. An objective perception is for Kant a species of the genus of 
representation:

“The genus is representation in general (representatio). Subordinate to it stands representation 
with consciousness (perceptio). A perception which relates solely to the subject as the modifica
tion of its state is sensation [Empfindung] (sensatio), an objective perception is knowledge 
(cognitio).” (ibid. A, 320; B, 376)
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In other words: an objective perception is a perception intended as an act of 
perceiving something, rather than as the event of the subject’s modification, which 
is sensation. The difference between objective perception and sensation does not 
concern the nature or the direction of consciousness; in the former as well as in 
the latter, consciousness is directed toward what is perceived. Objective percep
tion and sensation are just two different (and complementary) aspects of percep
tion, that is the act in which a subject represents something to himself, as the 
cause of modification of its own internal status. Hence, there is no objective per
ception without sensation, and the reason for this is not merely that objective 
perception and sensation are necessarily connected facts. They are simply not 
different facts, but different aspects of the same fact, namely perception. Thus, 
there is also no perception without objective perception or sensation:

“Perception (Wahrnehmungf is empirical [empirische] consciousness, that is a consciousness
in which sensation is to be found.” (ibid. B, 207)

Kant’s distinction between sensation and objective perception can be expressed 
in the following terms: if we analyze perception without considering the specifici
ty of consciousness, only insisting on its presence, we speak about sensation; in 
contrast, if we analyze perception regarding the specific nature of consciousness 
occurring in it, we speak about objective perception. To analyze objective percep
tion is then the same as analyzing consciousness occurring in perception.

However, Kant’s aim is not that of analyzing a posteriori knowledge as such, 
but it is rather that of looking for its conditions. Concerning objective perception, 
Kant’s problem is the following: how is it possible for a subject to represent some
thing to himself as the cause of a certain sensation (the modification of his inter
nal status)?

According to Kant, the cause of a sensation, as the subject of such a sensation 
represents it to himself, is an object (Gegenstand, Object)9. If the term “represen
tation” means what is represented, rather than the act of representing it, an object 
is a conscious representation:

“Everything, every representation even, in so far as we are conscious of it, may be entitled ob
ject.” (ibid. A, 189; B, 234)

Even though elementary knowledge is always a representation of something, 
such a something is an object only as long as it is represented in an act of objective 
perception. Thus, we cannot intend objective perception as a representation of 
something that is given as an object before the representation itself. Obviously, a 
subject can represent something to himself that has been already given as an ob
ject, but this is not an act of objective perception. It is rather a judgment that 
makes the subject able to classify objects (which are already given as such), ac
cording to their particular characters. Properly speaking, such a representation

MATHEMATICAL ACTS OF REASONING AS SYNTHETIC A PRIORI 285

does not produce objects, but classes of objects, aspects of objects, functions of 
objects, etc. According to Kant, an object is properly a representation of some
thing that is not an object, and a posteriori knowledge just begins when an object 
is given in this proper sense. Hence, objective perception is representation of some
thing that cannot be known, but only thought as a something that is represented 
by a certain object (ibid. B, xxv)11.

The problem of the conditions of objective perception is then the problem of 
the possibility of the represention of something, which is not known as such, but 
only thought as the cause of a sensation, as a certain object. This way, we have 
arrived at the crucial point: such a representation is possible for Kant only if the 
object arises from a “subjective constitution [subjektive Beschaffenheit]” (ibid. A, 
44; B, 62), which is necessarily a priori. Thus, even though objective perception, 
as a perception of a certain object, is a sort of a posteriori knowledge, it is possible 
only as the result of an a priori act of subjective constitution of the object itself 
and, as such, it can be genetically analyzed in two different (and even opposite) 
aspects:

“This [Knowledge or objective perception] is eitherintuition [Anschauung] or concept (inluitus 
vel conceptus). The former relates immediately to the object and is singular10 [einzeln], the latter 
refers to it mediately by means of a feature which several things may have in common.” (ibid A,
320; B, 376-377)

As long as they occur in objective perception, intuition and concept are thus 
two different aspects of our representation of the cause of a sensation as an object 
for Kant, that is two aspects of subjective constitution of such an object. These 
aspects have not to be confounded with two complementary and alternative forms 
of subjective constitution of an object. The opposition between intuition as “singu
lar representation” and concept as “universal representation” (cf. also Kant JL, 
§1) is founded for Kant in another and deeper opposition: that between intuition 
as the aspect of objective perception for which the object is given as such, and 
concept as the aspect of objective perception for which the same object is thought 
as such (Kant A, 19; B, 33)11. And for Kant an object cannot be given as such if it 
is not thought, and it cannot be thought as such if it is not given. Thus, regarding 
objective perception, a singular representation is not a sort of representation dif
ferent from universal representation: singular and universal representation, i. e. 
intuition and concept, are two aspects of the same representation, that is percep
tion taken as knowledge. They are then two aspects of the same act, the act of 
subjective constitution of an object.

In their primitive and more fundamental sense, intuition and concept have 
thus to be intended, with respect to a posteriori knowledge, as two opposite cogni
tive functions we distinguish by analysis in only one cognitive act, the act of 
subjective constitution of objects. Since this act is nothing but objective percep
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tion, an object is by definition an empirical entity. However such an entity has not 
an external existence, but results from an act of representation that has been ana
lyzed as an act of constitution.

Let us continue. According to Kant, an object is given as such when the sub
ject connects his sensations (the modifications of his status) to a spatio-temporal 
unity, and it is thought as such when he recognizes such an entity as an example 
of a certain class of spatio-temporal unities. The former condition is certainly 
necessary for the latter to take place, but, according to Kant, the latter condition 
too is, a necessary condition for the former to take place, since spatio-temporal 
bounds of a certain unity do not depend on the unity itself, but have been imposed 
on it by the subjective constitution, according to a certain reason that could not be 
anywhere else but in the concept.

This remark leads us to the final step of Kant’s analysis of objective percep
tion: the act of subjective constitution of an object is possible only if we dispose of 
two connected faculties, or better of one faculty that can be analyzed into two 
different aspects. According to one of its aspects, this faculty enables us to connect 
our sensations to certain positions in an order—the spatio-temporal order—that 
is already given (and can be analyzed in two different aspects, the internal order, 
or sense—which is time—and the external order or sense—which is space). Ac
cording to the other of its aspects, this faculty enables us to recognize these posi
tions as particular representations of certain forms that are already given too.

Here a first important shift occurs: these two different aspects are generally 
taken as opposite faculties (of pure reason) and the first is confounded with intu
ition itself, the second one being the faculty of understanding. As a faculty, intui
tion is not opposed by Kant to concept anymore, it is rather opposed to a 
faculty—namely understanding—that is taken as the faculty of producing and 
even composing concepts. Thus, while intuition becomes a faculty, the place of 
concept is taken by a plurality of concepts intended as a sort of entities produced 
and manipulated by the subject.

If I am correct, Kant’s analysis of conditions of objective perception could be 
summarized as follows: the act of representing as an object which is thought as 
the cause of our sensation is an act of subjective constitution. In such a constitu
tion, two faculties concur: intuition and understanding. Intuition connects our 
sensations to positions in spatio-temporal order, that is an order that is already 
given as such; understanding recognizes these positions as particular representa
tions of certain forms that also are already given. These faculties are necessarily 
connected, since forms are already given as possibilities of positioning in spatio- 
temporal order, and intuition realizes such a connection under the guidance of the 
capacity of recognizing positions in spatio-temporal order as particular represen
tations of these forms.
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These forms are not objects, since the subject does not represent them to him
self as the cause of his sensations; they are thought as concepts, but they are just 
given as forms in “pure intuition”, or “pure forms”. Furthermore, the objects thus 
constituted are not examples of the concepts of these forms. Instead, these con
cepts are necessarily a priori and universal, while objects are empirical entities 
connected to particular sensations. The connection between objects and the con
cepts of pure forms is governed by schematism. I will not discuss this question 
here. What interests me is rather that the objects which are constituted in objec
tive perception (intended as an act of constitution) are not instances of the con
cepts of the pure forms which occur in such an act. Properly speaking, there is no 
object that is an instantiation of these concepts; they are just concepts of pure 
forms. Thus intuition and understanding, as long as they are intended as faculties 
which concur in the act of a priori constitution of objects, are both certainly a 
priori faculties. But they are not properly pure, since they apply to particular 
sensations. However, such an application is possible only if the subject disposes of 
pure forms. In other words: the subjective constitution of an object depends not 
only on two a priori faculties, but also on the disposability of a priori entities as 
pure forms. The first task then of a priori knowledge is to provide these entities.

Once objects have been constituted, they are given as particular spatio-tempo
ral unities and they are thought as particular representations of concepts of pure 
forms, as examples of empirical and individual concepts. Still, this is not the final 
step of our a posteriori knowledge. It is only the final step of the act of exhibiting 
these objects as such, namely objective perception. To know these objects in their 
respective relations, we have to be able to pass to judgments. Nevertheless, not 
every judgment is an act of a posteriori knowledge, since what is essential in a 
posteriori knowledge is not the logical form of judgment, but the occurrence of an 
experience. When it is not merely an act of objective perception, an act of a poste
riori knowledge is necessarily a judgment only according to its form, or, if you 
prefer: the logical form of judgment is only a formal or external—even though 
necessary—condition of experience. We cannot have experience of anything else 
but objects; moreover a simple succession of acts of objective perception is not an 
experience yet, it is nothing but a “rhapsody of perceptions” (ibid. A, 156; B, 
195), that is a rhapsody of different and isolated acts of elementary experience. In 
his genuine sense, experience asks for a connection between these acts, and judg
ment is just a logical form of this connection. Still, the occurrence of a connection 
of this form is only a necessary condition for knowledge, since in order to have 
knowledge, such a connection must not only be a judgment; it must also be an 
objective judgment.

But what makes a judgment “objective”? Certainly, a judgment is not objective 
when it connects objects, since, according to Kant, a judgment always connects
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concepts. Rather, we should say that a judgment is objective if it connects con
cepts according to the respective objects. However, in face of such an answer, we 
could insist: what does it mean exactly, in any particular case, that a judgment 
connects concepts according to the respective objects? This is a very difficult prob
lem, but in a sense, this is not our problem now. At the present stage of the anal
ysis, what is important is this: whatever such a condition would be, it is certainly 
impossible to satisfy it, if the concepts we are connecting were all concepts of 
particular objects. Thus, in order to make a posteriori judgments possible, a first 
condition has to be satisfied: the subject has to dispose of non-elementary empir
ical concepts, that is of empirical concepts different from distinct concepts of 
individual and particular objects. These concepts are concepts of forms of partic
ular objects. Hence, when it is not merely an act of objective perception, an act of 
a posteriori knowledge is just a judgment connecting these concepts to each other, 
or to concepts of particular objects. It is only by the mediation of these concepts 
that a judgment can (indirectly) connect particular acts of objective perception. As 
these concepts have to be empirical, they cannot come from any other source than 
objective perception itself. But since they are non-elementary, they cannot result 
from a simple succession of acts of objective perception. They have to be produced 
by a different sort of connection of objective perceptions. Still, this is not the end 
of the story, since once these non-elementary concepts have been produced, in 
order to have a judgment, they have to be connected to one another, or to elemen
tary concepts. And this is certainly not possible if they are produced in different 
and isolated acts.

Furthermore, in order to be an act of knowledge, a judgment must not merely 
be problematic; it not only must connect concepts, but it must state the content of 
such a connection. Thus, the possibility of non-elementary a posteriori knowl
edge depends on the possibility of producing non-problematic a posteriori judg
ments.

IV.2 A Priori Knowledge

The analysis of a posteriori knowledge has led us to distinguish three tasks for a 
priori knowledge: *) to provide pure forms and to permit both it) the production of 
non-elementary concepts and iii) the connection of non-elementary or elementary 
concepts in a judgment that is not merely problematic.

Let us begin with the second task. For Kant, the production of non-elementary 
concepts is the result of a synthesis of understanding. It is an act of understanding, 
but it is not as such an a priori act, since it operates on empirical concepts given as 
forms of real (and not only possible) experience. However, this act would be im
possible without the unity of internal sense that makes the different acts of objec
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tive perception different elements of only one unity of knowledge, and such a 
unity is for Kant assured by “pure [reine] intuition”. Here, intuition is no longer a 
faculty occurring in the act of constitution of objects or an aspect of objective 
perception, it becomes a guarantee of the possibility of the synthesis of under
standing. Thus, the passage from sensible intuition to pure intuition produces a 
new important shift in Kant’s conception of intuition.

Nevertheless unity of internal sense is only a formal condition for the synthe
sis of understanding applied to elementary empirical concepts. It guarantees the 
possibility of such a synthesis, but it does not guarantee that something like a 
genuine concept is produced. In other words: it does not guarantee that the result 
of the synthesis of understanding is, as such, a component of an act of knowledge. 
Even though the results of such a synthesis could certainly not be concepts of 
objects, they have to be able to refer to objects as concepts of objects do, that is, 
they have to be exemplified by aspects, functions, relations etc., or, in general, 
forms of possible objects. These results have to be “really possible concepts”, they 
have to “agree with the formal conditions of an experience in general” (ibid. A, 
220; B, 267). Of course, this could not mean that any result of a synthesis of 
understanding applied to elementary empirical concepts had to be exemplified in 
such an indirect way by an actual object. The problem then is this: what is the 
result of a synthesis of understanding applied to elementary empirical concepts?

The first part of the answer is trivial: the result has at least to be a “logically 
possible concept”. Whatever the synthesis of the understanding is, it must respect 
the condition of logical possibility, that is the principle of non-contradiction. How
ever, this is not a sufficient condition, yet. Another condition is needed, but it is 
not so easy to formulate. As I have just said, for Kant any concept has also to be 
indirectly exemplified by something that we could represent as a possible object. 
But clearly this is not a criterion, since the subject does not dispose of possible 
objects as such, and then he cannot classify logically possible concepts by compar
ing them to possible objects. Thus, if a demarcation is possible between logically 
possible concepts that are really possible, and logically possible concepts that are 
not really possible, its criterion can not be based on appealing to a comparison to 
possible objects. In other words: possible objects should be, by definition, nothing 
but the objects of really possible concepts, and not vice versa. If we want to distin
guish between logically possible concepts that are also really possible and logical
ly possible concepts that are not really possible, we have to refer directly to the 
synthesis of intuition as such. Now, according to Kant, such a discrimination does 
not depend on a criterion, rather it depends on a faculty. Such a faculty is again 
pure intuition. In this case, pure intuition is not directly applied to objective per
ceptions as a condition of unity, it directly applies to the concepts of empirical 
objects, as a condition of compatibility. For producing new empirical concepts, 
understanding realises a synthesis by starting from elementary empirical con
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cepts, that are concepts of objects which manifest concepts of pure forms in partic
ular; the result of such a synthesis is a really possible concept if it is produced in a 
way that is compatible with the conditions of compositions of concepts of particu
lar objects and pure forms.

Let us consider now the third task of a priori knowledge: that of making non
problematic a posteriori judgments possible. Let us imagine that a subject has 
non-elementary empirical concepts at his disposal. In order to connect them to 
another, or with elementary empirical concepts, in a problematic judgment, he 
has to be able to consider his own concepts together, as part of a unity of con
sciousness. Such a unity is assured by pure intuition that is now applied to ele
mentary or non-elementary concepts as a condition of unity. Still, this is only the 
beginning of the story. To obtain a posteriori knowledge, the problematic judg
ment has to be justified and transformed into an assertoric judgment (since it is 
clear that no a posteriori judgment can be apodeictic). To make it, we have to 
come back to the objects themselves—the objects that directly or indirectly exem
plify the concepts occurring in the judgment—and to consider the distinct acts of 
objective perception corresponding to them as only one experience. Thus, pure 
intuition has to occur once again as a guarantee of such a unity. In this new role, 
pure intuition does not work simply as a deaf guarantee for the act of synthesis; 
according to Kant, it is also the base of a class of synthetic a priori judgments that 
express the conditions of a posteriori knowledge discursively. These judgments 
are the dynamic principle of pure understanding, “analogies of experience”, and 
“postulates of empirical thought in general” which are rules “according to which 
a unity of experience may arise from perception” {ibid. A, 180; B, 222).

Even though we could go on by analyzing the justifications (or deductions) 
and the function of these synthetic a priori judgments (which are obviously apo
deictic judgments), I stop here, since I am not directly concerned with this sort of 
judgments. It is sufficient to have stated that they are grounded on pure intuition 
as a guarantee of the formal possibility of non-elementary experience, that is the 
possibility of the necessary form of a posteriori judgments.

However, the possibility of the form of a posteriori judgments is not yet the 
possibility of these judgments as such. For this possibility to be insured, we still 
have to guarantee that these forms can be filled up by connections that express 
something as a “possible experience” {ibid. A, 160; B, 199). This is guaranteed by 
the fact that objects are necessarily “extensive magnitudes” characterized by “in
tensive magnitudes”. This is the content of the principles of “axioms of intuition” 
and “anticipations of perception”. Such a fact is expressed by these judgments— 
that are synthetic a priori judgments and are, as such, produced by pure under
standing—but it depends on the nature of intuition—as it occurs in the subjective 
constitution of objects—and it is present to the subject thanks to pure intuition.
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Thus both axioms of intuition and anticipations of perception are justified, ac
cording to Kant, by a sort of application of pure intuition to intuition itself, or at 
least to the form of intuition. This is a new essential function of pure intuition.

Still, this is not the end of the story, since, up to now, we have only justified the 
possibility of the realization of a necessary form of experience, and not the possi
bility of assigning a real content to such a form. Now, in order to realize the latter 
possibility, we need both pure forms and real judgments connecting the concepts 
of these forms. Thus, we have arrived at the first task of a priori knowledge.

Let us begin with the first point. The act of subjective constitution of objects, 
as it was just described, asks for pure forms, but it does not give any guarantee that 
they are possible. Again, such a guarantee is provided by pure intuition that seems 
to guarantee both the availability of elementary pure forms (as straight lines and 
circles) and the possibility of composing them in order to produce other forms (as 
triangles or squares). On the first point, Kant is not really explicit. He seems to 
reason as if these forms were given as such to pure intuition. In contrast, he does 
not leave any doubt as to the second point (cf. for example, ibid. A, 220-226; B, 
267-274). The synthesis of understanding produces new concepts of pure forms 
that have to be not only logically possible, but really possible too: they have to be 
forms that can be manifested in particular by possible objects. The problem is thus 
analogous to the one we just discussed with respect to non-elementary concepts: 
how can really possible concepts of pure forms be distinguished from really im
possible ones? Of course, such a distinction cannot be made a posteriori and has 
to rely on an a priori capacity of the subject. Thus, the guarantee of this capacity 
is once again pure intuition as a guarantee of the possibility of certain sorts of 
objects. This is, I believe, responsible for Kant’s monolithic conception of mathe
matics, and particularly of geometry12.

Moreover, even if we accept that really possible concepts of pure forms are 
given (and distinguished by really impossible ones), we do not have any guarantee 
of the possibility of judgments connecting them. These judgments do not provide, 
as such, a condition of possibility of a posteriori knowledge in general, but they 
make possible particular experiences and contribute, in this way, to our knowl
edge. According to their forms, these judgments are submitted to the conditions of 
possibility of any sort of judgment. Nevertheless, the question here is not that of 
the unity of different acts of subjective constitution of objects, it rather refers to the 
subject’s own consciousness. The judgment has to connect concepts of pure forms 
here, concepts that occur in the act of subjective constitution of objects as some
thing that is already given. Thus, the unity that has to be guaranteed is the unity 
both of the field of giveness of elementary pure forms—that is also a condition of 
possibility of their composition—and of the different acts of their composition. 
Thus, if such a unity is guaranteed by pure intuition as well, a new shift occurs.
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But the question is not only that of the formal possibility of judgments con
necting concepts of pure forms. These judgments provide a condition of possibil
ity for experience only if they are not merely problematic. Thus, the main question 
is that of their justification.

Of course, if these judgments connect non elementary concepts of pure forms, 
they can be logical consequences of the way in which the concepts that occur in 
them have been produced. They are then analytic judgments. However, according 
to Kant, this is not the only way by which a judgment connecting concepts of pure 
forms can be justified.

Even though these judgments speak about pure forms, it is possible to justify 
them by considering objects (as physical figures or collections of physical objects) 
which are constructed—according to a fixed procedure (as the constructive proce
dure given in the Euclidean postulates13)—in order to be particular representa
tions of these forms. Since such objects are only considered for the forms they 
represent, the conclusions we draw from considering them necessarily apply to 
these forms. As pure intuition makes the subject certain of the real possibility of 
the concepts of pure forms, it simultaneously makes him certain of the possibility 
of constructing appropriate empirical objects for this task. But, how can the sub
ject be certain that the objects he effectively constructs have the form he wants 
them to have, that they are particular representations of pure forms? Moreover: 
how can the subject be sure that, in considering them, he refers only to the prop
erties that make them particular representations of pure forms? For Kant, the 
guarantee of all that is again pure intuition14. Thus, a new shift occurs: intuition 
now becomes a guarantee of the correspondence of certain objects and procedures 
to the concepts of pure forms.

If we accept that pure intuition provides the previous guarantees, we have to 
conclude that it enables a subject to justify judgments about pure concepts by 
leaving these concepts, but without referring to anything as pure objects. These 
judgments are then synthetic, but since they concern the concepts of pure forms 
and use objects only as they are constructed according to the concepts of these 
forms, they are a priori and apodeictic too. Finally, since the pure forms are noth
ing but possibilities of positioning in spatio-temporal order, they are part of the 
pure science of space and time, namely mathematics. Hence, they are mathemat
ical judgments15.

IV.3 Kant’s D istinction

If I am not mistaken, Kant’s distinction between analytic and synthetic judgments 
refers only to non-problematic judgments, that is to statements, it concerns judg
ments as forms of knowledge, and it is, as such, independent of the particular

MATHEMATICAL ACTS OF REASONING AS SYNTHETIC A PRIORI 293

logical form of these judgments. Thus it can finally be formulated in the following 
way:

(D3)* As long as an act of knowledge consists in the act of “making out” a 
statement of the form < A(P, Q , ..., S) >— where the concepts P ,Q , ...» 
S occur—it is analytic if and only if at least one of these concepts is 
non-elementary and the act itself is founded on nothing but the 
ascertainment of the logical relations occurring between the concepts 
P ,Q , .... 5, according to the way in which the non-elementary concepts 
which take place among them has been produced by a synthesis of 
understanding; it is synthetic, if and only if it asks for an appeal either 
to the experience of some objects—according to the way in which these 
objects fall under the concepts P, Q ,.., S—or to some guarantee provided 
by pure intuition.

V Kant’s Ontologism

According to Kant, an act of knowledge, consisting in an act of “making out” a 
statement, can only be grounded on: i) the ascertainment of the logical relations 
that take place between certain concepts, according to the way in which the non- 
elementary ones are produced by a synthesis of understanding, if) the experience 
of some objects, iii) an appeal to some guarantee provided by pure intuition. Hence, 
every act of knowledge of this sort is either analytic or synthetic, according to

However, this is no complementarity between analytic and synthetic statements 
yet. For the domains of analytic and synthetic statements to be complementary, it 
is also necessary that no statement is analytic and synthetic at the same time. 
Certainly (Dj)* only satisfies such a condition if we accept that no concept can be 
considered as an object. This is definitely Kant’s idea, since for Kant, concepts 
and objects are essentially different entities or forms of representation. For him, 
the distinction between objects and concepts is not a logical one; it does not con
cern logical roles, but the intrinsic characters of these entities: a concept could 
never be intended as the cause of a certain sensation, as the subject represents it to 
himself. However, it seems that Kant always wants to maintain something as a 
correlation between concepts and objects: even though understanding is able to 
realize any sort of synthesis of concepts already given, we cannot say that the 
result of this synthesis is a genuine concept if we cannot say that it refers in same 
way to one or more objects.

In order to satisfy both conditions, Kant should provide a non-relational char
acterization of two sorts of entities (concepts and objects) that he wants to intend 
as essentially correlative. This is the root of many difficulties in Kant’s philoso
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phy, I think. The first condition seems to be satisfied if we understand the object as 
a sort of specification, of a “reality” that is already given in confused terms, real
ized by means of concepts. Such a reality—which we have to take as absolute 
first—provides the object with its intrinsic and irreducible nature (contrary to the 
mental or, if you like, discursive nature of the concept), without denying its correl
ative character with respect to the concept. Thus it seems that the second condi
tion also can be satisfied regarding the dependence of the object on the concept. 
But, what about the dependence of the concept on the object? To guarantee it, we 
have to assume that a concept is one only if it provides a characterization of an 
object—intended, as I just said, as something that participates in the primitive 
reality. If this is not the case, we do not really have a concept, but only an arbitrary 
synthesis of understanding: understanding—by means of imagination16—puts to
gether different concepts without really producing a new concept. But this solu
tion is very weak if we do not think that the primitive reality can act, as such, on 
imagination, while the latter produces its synthesis. Now, even though we could 
find the means for expressing such a condition, without denying the apriority of 
the formal conditions of knowledge, we again have the problem of distinguishing 
guided imagination, which produces real concepts, from completely arbitrary im
agination, which produces nothing but an empty synthesis of concepts. Certainly, 
we cannot do it by referring to primitive reality itself, since it is inaccessible. Thus 
the problem arises: how can we do it?

Still, if an object is nothing but the cause of a certain sensation, and knowl
edge is always concerned with objects (even though it is not necessarily an expe
rience with certain objects), as Kant believes, then knowledge is always concerned 
with the subject’s representation of the causes of his sensations: either knowledge 
is directly such a representation or a judgment connecting in some direct or indi
rect way different representations of this sort, or it is something like an expression 
of the conditions of possibility of these representations or connections. But, if a 
knowledge of the latter sort is not directly about objects, about what is it directly? 
To give but one example: about what is, in Kant’s views, a judgment concerning 
triangles as such? In a sense, it is about the objects that are particular manifesta
tions of triangles, but certainly it is not directly about them. The correct answer is 
certainly not that such a judgment is about pure forms, since then the question 
arises: what is a pure form, if it is neither an object nor a concept? and, if it is a 
concept, of which object is it the concept?

I am not able to find any satisfactory (that is not merely metaphoric) answer to 
these questions in Kant’s philosophy.

The difficulty even grows if we consider it given the background of the leading 
principle of Kant’s theory of knowledge, which is not only the (Platonic) idea that 
there is no knowledge without justification, but the stronger precept, according to 
which any theory of knowledge is a theory of justification, as a guarantee of the
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validity of the knowledge itself. On this background, the previous questions be
come really essential: what is a possible justification (or what is the form of a 
possible justification) of a priori knowledge? Such a question is so fundamental in 
Kant’s framework that it cannot be evaded. Nevertheless Kant’s answer is really 
ad hoc: a possible justification of such a sort of knowledge consists in an appeal to 
pure intuition. The problem of this answer is not simply that it is not really an 
answer to the question—being rather an answer to another question, namely: where 
could a possible justification of a priori knowledge be found?—but that it is either 
circular or metaphoric. In Kant’s philosophy, pure intuition is nothing but the 
guarantee of the possibility of a priori knowledge (Frege 1884, § 12)—or even the 
genus under which any guarantee of this sort falls down.

Now, it seems to me that such a difficulty does not depend on a limit in Kant’s 
elaboration of transcendental philosophy of knowledge. Rather, I think that it 
depends on the premises of this philosophy themselves: i) the idea that knowledge 
is always concerned with the subject’s representations of the cause of his own 
sensations; ii) the conception of a theory of knowledge as a theory of justification, 
as a guarantee of validity of the knowledge itself.

I suspect that no satisfactory theory of knowledge is possible on grounds of 
these premises. Moreover, I think that Kant inherited these premises from the 
ontological tradition of empiricism. According to the first, knowledge is some
thing like a human interpretation and connection of a number of original facts 
that are sensations, while, according to the second, a theory of knowledge is some
thing like a general scheme of reduction of any act we want to intend as an act of 
knowledge either to these facts as such, or to the original conditions of possibility 
of their interpretation or connection.

VI Analytic and Synthetic Acts of Reasoning

In contrast to the above, I think that from a philosophical point of view a certain 
act is an act of knowledge if and only if it has a certain logical form, and a theory 
of knowledge is nothing but a theory of this form as such. Briefly speaking, I think 
that an act of knowledge is either an act of exhibition of an object or an act of 
attribution of properties or relations to objects. However, I think that not every act 
of attributing properties or relations to objects is an act of knowledge. In order to 
be an act of knowledge, such an act has to satisfy two conditions: first, the objects 
to which properties are attributed must be already exhibited as such (and be present 
as such to the subject that attributes properties or relations to them); second, such 
an attribution has to be a consequence of an analysis of the objects themselves. 
Generally, the act of attributing properties or relations to objects by grounding on 
an analysis either of the objects themselves or of the concepts of these objects, 
property or relation is, in my views, an act of reasoning, and an act of reasoning is
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an act of knowledge if and only if this attribution depends on (is locally justified 
by) the analysis of the objects themselves. An act of reasoning of this sort is syn
thetic17, while an act of reasoning is analytic when the attribution solely depends 
on the analysis of the concepts of these objects, properties or relations . A non- 
elementary act of knowledge is then a synthetic act of reasoning.

As long as we accept the idea that any act of attribution of properties or rela
tions to objects is expressed (or could be expressed) by a statement, such a distinc
tion can be formulated as follows:

(D4) An act of reasoning expressed by the statement A(P, Q,..., S, a, f t,..., d) 
—where the (monadic or polyadic) predicates P ,Q ,...,S  and the names 
of objects a, b , ..., d occur—is analytic if and only if it is grounded on 
nothing but the analysis of the concepts of these predicates or objects; it 
is synthetic, if and only if it is grounded on the analysis of at least one 
of the objects that fall under these concepts.

Since for me an act of reasoning is an act of attributing properties or relations 
to objects, by analyzing either these objects themselves or the concepts of these 
objects, properties or relations, any act of reasoning is then either analytic or 
synthetic, and cannot be both. However, this is not merely a question of definining 
the term “act of reasoning”. I think that a subject can only analyze objects or 
concepts. Thus an act of attributing properties or relations to objects is either an 
act of reasoning, or it is not grounded on an act of analysis, or it is finally ground
ed on the analysis of other objects or concepts. And it seems to me that, if we are 
speaking about science, we are interested only in the first sort of acts of attributing 
properties or relations to objects.

Moreover, even though the terms “reasoning” or, a fortiori, “act of reasoning” 
are not, as such, Kantian ones, and must not be confused with the term “infer
ence” used by Kant as referring to logical forms of acts of reasoning in my sense 
(Kant JL, part I, ch. 3)18, it seems to me that what is interesting in Kant’s distinc
tion between analytic and synthetic judgments or statements is that such a distinc
tion does not deal with statements merely intended as linguistic objects, but with 
the acts of formulating judgments. In this sense, my distinction between analytic 
and synthetic acts of reasoning fits perfectly with the spirit of Kant’s own distinc
tion.

However, it essentially differs from this distinction for a number of other rea
sons, the main ones of which are concerned with the notion of object. Since for 
Kant an object is nothing but the cause of a sensation, as the subject represents it 
to himself, Kant cannot generally intend a judgment as an act of attributing prop
erties to objects. Moreover, he cannot accept the idea that a synthetic judgment is 
an act of attributing properties to an object by grounding on the analysis of the
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object itself, since, if he accepted this criterion, he would deny the possibility of 
any sort of synthetic a priori judgment.

It is clear that, according to (D4), an act of reasoning can be both synthetic and 
a priori only if we accept the idea that there are pure objects. In the following 
parts of my paper, I will try to justify this possibility by basing myself on a radical
ly non-Kantian notion of object, in order to defend the following thesis:

(T2) What makes an act of reasoning a mathematical one is that it is grounded 
on the analysis of mathematical objects; thus mathematical acts of 
reasoning are synthetic in the sense of (D4). Moreover, as mathematical 
objects are pure objects, mathematical acts of reasoning are not only 
synthetic, but they are also a priori.

VI. 1 Objects

According to Kant, an object enters the subject’s horizon when it is properly con
stituted by the subject himself. Hence, there is no object for Kant which has not 
entered the horizon of a subject. Furthermore, an object can enter the horizon of a 
subject only if a sensation occurs. The act of constitution of an object is then an act 
of interpretation of a fact that necessarily has to be intended as preceding the 
appearance of such an object within the subject’s horizon. However, this fact can
not be described, in Kant’s framework, without referring to such an appearance, 
and it is even thought only as its source. Thus, in order to say what an object is, 
Kant has to refer to something that he can think and represent to himself only as 
the original source of the object itself.

In my opinion, such a situation is unsatisfactory. If we want to avoid such a 
difficulty (without returning to the idea that objects subsist as such, independent 
of any act of the subject), we have to give up the idea that an object is the result of 
an act of interpretation of a fact. Elsewhere, I defined an object as the meaning of 
the argument of a predication, intended as an intentional act (Panza 1995ft, 116). 
I believe of course that this is a good definition, but it is in a sense a posteriori 
with respect to the advent of the object itself in the horizon of the subject. If we 
imagine that the object is already there, we can use such a definition for character
izing it. Here, I would like to advance a genetic definition: an object is the inten
tional content of an act of exhibition; an object is exactly what a subject is exhibiting 
when he wants to exhibit something, he does it, and he recognizes his act just as 
the act of exhibiting this something. An act of predication (intended as an inten
tional act) is either addressed to an object that has already been exhibited, or it is 
part of the act of the exhibition itself. An object that has already been exhibited is 
not continuously present to the consciousness of the subject. Rather, I would say
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that an object has already been exhibited when the subject is able to represent it to 
his consciousness—to evoke it—by using any conventional symbol that is gener
ally intended as the name of the object itself. If this is the case, the object is also 
able to attribute any property to it, without coming back to the act of exhibition as 
such. Therefore I say that the object is already present in the subject’s horizon.

If we accept such a point of view, the particular nature of an object depends on 
the particular nature of the act of exhibition itself. Moreover, only logical differ
ences are important here. We cannot distinguish empirical from pure objects by 
saying that the act of exhibiting the first ones is connected in some way with the 
occurrence of a sensation. If we do that, we fall back on the previous difficulty. If 
we want to avoid it, and also avoid any heritage of classical ontological empiri
cism, we have to use the notion of empirical object to explain what a sensation is, 
and not vice versa.

Perhaps we could do that, by referring to the ostensive character of certain acts 
of exhibition, but then we have to know what an ostensive act is, before knowing 
what an empirical object—and a fortiori a sensation—is, and I am not sure that 
this is really possible. Thus, I prefer to pursue a different strategy. In order to 
present it, I have to introduce the notion of concept.

VI.2 C o ncepts

First of all, we could intend a concept as the subjective function that enables the 
subject to identify an object as such, to exhibit it to himself. This characterization 
does not apply to any sort of concept: the concepts to which it applies are concepts 
of objects, rather than concepts of properties or relations. From a logical point of 
view, we could say that a subject possesses such a capacity if and only if he dispos
es of a criterion of identity and he is able to apply it both to the contents of differ
ent acts of exhibition and to the objects evoked by a certain name (or in another 
way). Hence, we could say that a subject possesses a concept of an object if and 
only if he disposes of such a criterion and he is able to apply it.

A concept of a (monadic) property is the subjective function that makes the 
subject able to assign an object that has already been exhibited to a certain class of 
objects. From a logical point of view, we say that a subject possesses such a capac
ity—and then the corresponding concept—if and only if he disposes of a criterion 
for that, and is able to apply it to any sort of objects, by concluding either that they 
have or do not have to be assigned to that class, or that their modalities of exhibi
tion do not enable him to decide if they have or do not have to be assigned to that 
class. If a subject possesses such a capacity, he possesses the concept.

Finally, a concept of a relation is the subjective function that makes the subject 
able to assign a certain class of objects that have been already exhibited and as
signed to such a class, to a certain class of classes of objects. In this case too, a
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subject possesses such a capacity—and the corresponding concept—if he disposes 
of a criterion for that, and is able to apply it in order to obtain one of the three 
issues I have just indicated for concepts of properties.

Let us first consider concepts of objects. According to the previous character
izations, a subject cannot exhibit an object to himself, without possessing the 
concept of this object, since a subject realizes an act of exhibiting something to 
himself only if he recognizes one of his acts as an act of exhibiting something to 
himself and he is able to do it, only if he is able to distinguish his act of exhibition 
from any other act. Moreover, as no object can be exhibited to any subject if this 
subject does not ultimately exhibit it to himself, we can conclude that no object 
can be exhibited to any subject if this subject does not possess the concept of this 
object. Analogously, a subject cannot possess a concept of a certain object without 
exhibiting such an object to himself, since he cannot possess a criterion of identity 
if he does not represent such a criterion to himself, and he cannot represent it to 
himself without representing to himself the content of an act of exhibition that 
satisfies this criterion itself. The object of this concept then is present in the hori
zon of the subject himself, that is: it has been exhibited to him. Thus, the impor
tant difference is not between empty and full concepts, but between objects that 
are preceded by their concepts and objects that precede their concepts. In my view, 
the objects of the first kind are pure, while those of the second kind are empirical. 
In the first case—the case of pure objects—the act of exhibition consists in the 
presentation of the concept itself, the effort of formulating the corresponding cri
terion. In the second case—the case of empirical objects—the corresponding cri
terion acts before having been formulated; its formulation is only a post festum 
description of a capacity we have already applied. Of course, we can try to trans
mit to someone—a child, for example—the concept of Venus by showing a certain 
star to him and ask him to recognize Venus. But the child really exhibits Venus to 
himself only when he changes his concepts: Venus is not a star such and such; it is 
exactly the star the child has finally exhibited to himself. Starting from this mo
ment, the name “Venus” has a new meaning for him, it does not evoke a star such 
and such (what is, according to me, a pure object), it evokes just the star that he 
has exhibited to himself at such an occasion.

Consider the concepts of properties or relations. Even though these concepts 
are not concepts of objects, but ask for a previous exhibition of certain objects, we 
can put them together in order to produce concepts of objects (which are certainly 
pure). Moreover, according to the previous definition, any concept of a property or 
a relation corresponds to the class of objects or classes that are formed by using 
the corresponding criteria. These classes are certainly objects, but their concepts 
are not the concepts of the property or the relation to which they correspond, 
according to the previous definition. The concepts of these objects are just the 
concepts of these classes taken as objects. Thus, it is perfectly possible to possess
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the concept of a property or a relation without exhibiting the corresponding class
es as such, which are generally open classes and could even be empty.

Let us now come back to the concepts of objects. According to my definitions, 
concepts of object and objects are two logical categories correlated to one another: 
just as much as an object could be intended as the correlate of a concept of an 
object, a concept of an object could be intended as the correlate of an object. Now, 
if we intend objects and concepts of objects in such a way, we must also intend an 
act of exhibiting an object as a public act, when it consists in a certain subject’s 
effort to transmit the possession of a concept of a certain object to other subjects. 
Thus, an object has been exhibited publicly when the capacity of identifying it has 
been transmitted to a number of subjects. Hence, according to the previous defini
tion, an object that has publicly been exhibited cannot be an empirical object.

Of course, not only the possession of concepts of objects can be transmitted in 
such a way; the same is true for concepts of properties and concepts of relations. 
However an effort to transmit these concepts is not a public act of exhibition of the 
classes (of objects or classes) corresponding to these concepts.

To transmit a concept we use language. Thus, when we study public phenom
ena, like science, we can intend a concept, by extension, as a linguistic character
ization of an object, a property or a relation (that is the aspect of an object or a 
class of objects that make this object or class the members of a certain class). From 
my point of view, such a characterization has not to be intended as the discursive 
transposition of the properties of the object, or the conditions of the property or 
the relation—which is close to the Leibnitzian notion of complete concept. As a 
matter of fact, complete concept is only an abstract notion, grounded on ontolog
ical presuppositions, and it cannot be used as such in a theory of human knowl
edge. A linguistic characterization of an object, a property or a relation rather has 
to be intended as a way to fix these entities in our discourse, and in this sense it is 
only a sort of “concrete” representation of the concept (as a subjective function), 
an “exposition” or “explication” of it. This representation cannot in general be a 
complete characterization of the object, the property or the relation, but it is only 
a means for transmitting certain capacities in a community of subjects.

As a representation, such a characterization is not a representation of an ob
ject, a property or a relation, it is just a representation of their concepts. But, if 
these concepts are linguistically represented, they are ipso facto exhibited and 
thus, they are objects, even though they are certainly not the objects of themselves 
or the classes corresponding to themselves. So, when it has been presented as 
such, any concept is an object, even it is certainly a pure object.
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VI.3 A nalysis of Concepts, A nalysis of Objects

I am now able to explain what I mean when speaking of an act of reasoning 
grounded on the analysis of the concepts of the objects to which such an act is 
attributing properties or relations, that is an analytic act of reasoning. This is an 
act of reasoning where such an attribution is a consequence—according to certain 
rules of inference—of nothing but the concepts of the objects, the properties or the 
relations, intended as linguistic characterizations of them.

The acts of reasoning expressed respectively by the statement < P(a) > and 
<R(b, c) > are for example analytic if and only if these statements are conse
quences of nothing but the concepts of the property P and of the object a and of the 
relation R and of the objects b and c, respectively.

The situation is a bit more complicated for an act of reasoning expressed by a 
statement like < Vjc[5(jc) => P(x)] >19. In order to consider such a statement as an 
expression of an act of reasoning, we have to intend it as the attribution of the 
property P to some objects. I have said that it is possible to possess the concept of 
the property S without having exhibited the class of the objects which are S. Thus, 
either this statement—as long as it is intended as an expression of an act of rea
soning—attributes the property P to all the objects which have been already ex
hibited and are 5, or the concept S in it is taken as a concept of an object rather 
than a property, or finally it attributes properties to potential objects, that is the 
objects which could be elements of the class connected to the concept S. In the 
first case, such a statement is only an abbreviation of a conjunction of statements 
of the form < P{a) >, and the corresponding act of reasoning is analytic if and 
only if all the acts of reasoning corresponding to these statements are analytic. In 
the second case the statement < Vjc[S(x) => P(x)] > is not universal and is rather 
equivalent to only one statement of the form < P{a) > and the corresponding act of 
reasoning is analytic under the conditions of analyticity of the act of reasoning 
corresponding to such a statement. Finally in the third case, the act of reasoning 
corresponding to the statement < Vjc[S(jc) => P(jc)] > is analytic if the attribution 
of the property P to all the objects, which could be elements of the class connected 
to the concept S, is a consequence of nothing but the concepts of the properties S 
and P.

Still, a statement like < 3x [P(x)] > expresses an act of reasoning in my view, 
only if it is a logical consequence of a statement of the form < P(a) >, and such an 
act is analytic if and only if the act of reasoning expressed by this statement is 
analytic.

Here the term “consequence” has to be conceived in its general sense: the 
analyticity of an act of reasoning depends on the rules of inference that character
ize what a consequence of a certain linguistic characterization is. What is impor
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tant obviously is that these rules do not depend on the exhibition of the objects 
connected to the considered concepts.

An act of reasoning is grounded on an analysis of the objects to which it at
tributes properties or relations, and it is then synthetic, if such an attribution de
pends on the exhibition of these objects as such (that is: if it cannot be realized if 
such an exhibition is not realized). As any exhibition of an object asks for the 
possession of its concept, a subject which does not possess the concept of certain 
objects can certainly not realize a synthetic act of reasoning by attributing proper
ties or relations to these objects themselves. However, even though such a condi
tion is necessary, it is not sufficient.

Thus, the acts of reasoning expressed, respectively, by the statements < P(a) > 
and < R(b, c) > are synthetic if and only if the attribution of the property P and the 
relation R respectively to the object a and the objects b and c depends on the 
exhibition of these objects.

An act of reasoning expressed by a statement like < Vx[S(*) /*(*)] > could
then be synthetic only if such a statement is intended in one of the first two ways 
I just mentioned. In the first case it is synthetic if and only if one of the conjuncts 
of the statement of which it is an abbreviation is synthetic. In the second case it is 
synthetic if and only if the equivalent statement of the form < P(a) > is synthetic.

Finally, an act of reasoning expressed by a statement like < 3x [PC*)] > is 
synthetic if and only if such a statement is a logical consequence of a statement of 
the form < P(a) >, which expresses a synthetic act of reasoning.

In order to apply the previous definitions to particular acts of reasoning, we 
have to understand both what an act of exhibition of an object occurring in these 
acts could be, and how an attribution of properties or relations to such an object 
could depend on the exhibition of this object itself. As my sole aim is to justify 
thesis (T2), I may limit myself to the case of mathematical objects. Therefore, I 
have to explain what a mathematical object is; why it is pure; and how is it possi
ble to formulate a (synthetic) act of reasoning about it, by grounding on its exhibi
tion. This is now my task.

VII Naive Formalism and Conceptualism

There is a first and very radical objection to (T2) that we can formulate without 
having any idea of what a mathematical object could be. One could argue that the 
object-concept dichotomy does not provide suitable categories for speaking about 
a formal system, as modem mathematics ultimately is: in a formal system there 
are no concepts at all and if there are objects, they are only symbols (that is terms 
of a net of rules). Thus, even though (T2) is possibly right with respect to pre
modem mathematics, it is certainly wrong for modem mathematics.
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I think there is a deep misunderstanding in such an objection. Such a misun
derstanding has been denounced a number of times and it is not necessary here to 
insist on it. In my opinion, it consists in confusing (modem) mathematics as such 
with a certain collection of axiomatic systems intended as systems of sentences 
deduced by means of a number of explicit rules of inference starting from a number 
of axioms, which are in their turn simply intended as the starting point of deduc
tion. I believe this is just a confusion. Even if we accepted the idea that without 
axiomatic systems intended in this sense, there is no mathematics (which compels 
us to conclude that a great part of what has historically been and is nowadays 
indented as mathematics, is not mathematics), we should add that an axiomatic 
system, intended in such a way, is only a tool for mathematicians. Not only such a 
tool has to be constructed, and its construction has to be intended as an important 
part of the work of mathematicians (that is mathematics as an activity), but even 
when a mathematician disposes of it, he looks for deductions in it only in order to 
produce proofs of theorems. And theorems as such are not part of this system.

What is then a theorem? Let us take a very simple example. Even though we 
can exhibit a deductive path that starts from Peano’s axioms and usual definitions 
of Peano’s arithmetic and arrives at the sentence < 7 + 5 = 12 >, still the theorem 
a mathematician wants to prove by exhibiting such a path does not consist in such 
a sentence. It is rather expressed by the statement < the number ‘12’ is the result 
of addition of the number ‘7’ and the number ‘5’ >: the symbols “7”, “5” and “ 12” 
are not simply symbols introduced by the usual definitions; for a mathematician 
they are names of numbers.

Nevertheless, even if I was right on this point, (T2) could still be wrong. The 
statement < the number ‘12’ is the result of addition of the number ‘7 ’ and the 
number ‘5 ’ > could be interpreted as a statement of the form 
< V*[{7+5 }(*) => 12(x)] > or < V*Vy[({7+5 >(*)Al2(y) =* =(*, y)], attributing the 
property ‘(to be) 12’ to potential objects which could be elements of the class 
connected to the concept ‘7+5’ or the relation of equality to the potential objects 
which could be elements of the classes connected to the concepts ‘7+5’ and ‘12’, 
respectively. If this has been a correct analysis, and we intended such a statement 
as the expression of an act of reasoning in my sense, we should conclude, accord
ing to my definitions, that such an act is analytic. Thus one could accept all my 
definitions, agree with me that a mathematical statement is the expression of an 
act of reasoning and still aigue that (T2) is wrong.

A suitable framework for such a position is implicit in those philosophical 
conceptions with regard to mathematics that are generally arranged under the 
term “conceptualism”. According to such a point of view, a mathematical theory 
is nothing but a relational structure of concepts.

A new version of conceptualism has recently been proposed by L. Tharp (Tharp 
1989-1991). Tharp wants to avoid all problems of the referential view of mathe
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matics from the very beginning, by putting forward the idea that mathematical 
assertions should be regarded as expressing relations among concepts instead of 
among objects. Tharp explains the claims of his conceptualist position by a com
parison to fiction. As an illustration of the role of fiction in his argument, Tharp 
presents a very short story.

“The only people in our story are Gertrude and Hamlet. Gertrude is a queen. Hamlet is a prince, 
and Gertrude is Hamlet’s mother. [...] Given these two stipulations which constitute our story, 
various consequences follow from the meanings of the concepts ‘prince’, ‘queen’ and ‘mother’, 
and are evidently true-in-the-story: for example no princes are queens; Gertrude and Hamlet are 
distinct; Hamlet is not Gertrude’s mother. None of these conclusions follow logically from the 
given story, however. Also, the first conclusion doesn’t even use our stipulations. Although the 
stipulations are largely arbitrary, once they are fixed, the consequences of those stipulations are 
thereby fixed.” (ibid, part 1 ,168-169)

Now, according to the conceptualist point of view, the previous conclusions 
can be intended as expressing relations between concepts. These concepts do not 
subsume objects or relations between objects under them and thus it is not possi
ble to go away from them in order to get out any conclusion. So, the questions to 
which we can found an answer in the story are previously delimited. We cannot 
ask for instance, what color Hamlet’s eyes have or what his mother Gertrude 
weighs: Hamlet and Gertrude are not objects to which we have access.

This is Tharp’s position. But, if we want to refute (T2), after having accepted 
all my definitions, we are not compelled to accept this position. We could deny 
that there is something like a concept without objects and aigue that any concept, 
even if it is taken as a concept of a property or a relation, corresponds to actual or 
potential objects. We should simply state that all the concepts that occur in math
ematical acts of reasoning are concepts of properties or relations that do not corre
spond to objects that have already been exhibited, but only to potential objects that 
will never be exhibited in mathematics. I am not sure whereas this position is 
tenable, but since we can always retreat to Tharp’s more solid position, there is no 
need for me to criticize it as such.

In order to make my point clear, I will consider an example different from the 
“discursive” example of Tharp. I am taking it from an excellent forthcoming pa
per by R. Casati (Casati fc) where the author tries to “capture some of the intui
tions regarding absolute rest and motion”, as they work in Newton’s conception of 
space, by presenting an axiomatic system founded on two axioms:

(Aj) If x and y are at absolute rest, then x is at rest relatively to y 
(Vx, y[(R(x) a  R(y)) => R(x, y)]).

(A2) If x  is at absolute rest and y  moves, then x  moves relatively to y 
(Vx, y[(R(x) a  - n  R(y)) => ft(x, y)]).

MATHEMATICAL ACTS OF REASONING AS SYNTHETIC A PRIORI 305

From these two very simple axioms and using usual rules of first order predi
cate calculus, Casati draws a number of “theorems” that describe Newton’s point 
of view.

Here, the variables x andy stand for bodies, but clearly this is not essential for 
the success of the deduction. In fact x and y could simply stand for any sort of 
potential objects that are or not R and are or are not between them in the relation 
R. Moreover, the deduction is also independent of the particular interpretation 
which Casati advances for the predicates R and R. This interpretation is only 
responsible for the fact that Casati’s axiomatic system captures or does not cap
ture the Newtonian conceptions. Really, (A,) and (A2) work simply as Carnap’s 
meaning postulates, fixing non-logical relations between certain predicates (Car
nap 1952).

Of course my point is not concerned with the analyticity or syntheticity of (A,) 
and (A2), since I am interested in the analyticity or syntheticity of acts of reason
ing and, if they are intended as meaning postulates, these statements do not ex
press acts of reasoning. They are merely stipulations. Moreover, if these stipulations 
are intended as explicit expressions of the relations that take place between the 
concepts of the property R and the relation R  the acts of reasoning expressed by 
the theorems deduced from (A() and (A2) are clearly analytic. If these stipulations 
are not intended in such a way, they have to be taken as arbitrary stipulations and 
so the theorems deduced from them are consequences of the new Casatian con
cepts of the property R and the relation f t  Once again the acts of reasoning ex
pressed by these theorems are then analytic.

My point should be clear now: if a mathematical theory is expressed by an 
axiomatic system like the previous one, no mathematical theorem can ever ex
press a synthetic act of reasoning and thus (T2) is certainly wrong. Hence, in order 
to justify (T2), I have to argue that a mathematical theory is not expressed by a 
system of axioms like the previous one. This is my thesis: in my view, a mathe
matical theory deals with actual pure objects and not only with concepts of prop
erties or relations.

VIII Madame Bovary as a Pure Object

According to my definitions, the notion of pure object is not problematic as such. 
We can exhibit a number of pure objects, such as Madame Bovary, the first mover, 
the concept of analyticity, the property ‘(to be) red’, or the number ‘3’. Each of 
them corresponds to a particular way of exhibition, which characterizes its specif
ic nature and which is different in each case. Of course I am not concerned here 
with these ways as such. My question is a different one: is it possible to ground 
ourself on a pure object as such (rather than on its concept) for realizing an act of 
reasoning?
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Let us first consider the example of a pure object, which is certainly not a 
mathematical object, like Madame Bovary. As the corresponding concept (intend
ed as a discursive characterization of such an object) let me take everything Flau
bert says about Madame Bovary in his novel. Are we able to derive from it, and 
from our background knowledge, some other knowledge about Madame Bovary? 
There are good reasons for answering “yes”, as well as “no”. I do not intend, here, 
to discuss these reasons. For my task, it is sufficient to remark that, even if we 
answer “yes”—by asserting, for example, according to Tharp, that in our back
ground knowledge the concepts occurring in the complex concept of Madame 
Bovaiy are connected to other concepts that do not occur directly in it (in such a 
way that we can surely conclude, for example, that Madame Bovary was not able 
to write with “Word 5” on a Macintosh PowerBook 145)—we have to maintain 
that there is no way for grounding our act of reasoning on Madame Bovary as an 
object. We can derive new knowledge only by considering the concept of Madame 
Bovary. As an object, Madame Bovary is a purely semantic entity: not only is it 
the correlate of its concept, but there is no way for having access to it that is not a 
way for having access to its concept.

You might think that this is the situation with every pure object: the act of 
exhibiting a pure object really consists in presenting its concept, and you might 
think that this makes it impossible to have a way of having access to it that is not 
a way for having access to its concept.

Let us consider this point. According to my definition, a pure object is a se
mantic entity. In a sense, such an object is only logically different from the corre
sponding concept: it is only an entity that has a different logical role than the 
concept. As the act of exhibiting it consists in presenting the concept, and as this 
presentation is nothing but a linguistic performance, a pure object could be in
tended as the reference of a linguistic term. The act of exhibition of the concept 
itself fixes such a reference, and a number of linguistic (and pragmatic) conven
tions makes a community of subjects able to recognize it as the meaning of the 
same term in different linguistic contexts. Thus, we have finally to conceive a 
pure object as the reference of this term, when it is used in certain contexts that a 
community of subjects is able to recognize.

Marco Santambrogio recently clarified the idea of a non-Fregean (that is non
distributive) notion of reference, and attached a very powerful theory of abstract 
objects to it (Santambrogio 1992). According to him, we can intend the reference 
of “certain parts of discourse” as “their contribution to the truth or falseness of the 
statements in which they appear” (ibid., 144). In this sense, the reference of the 
terms “Madame Bovary” or “triangle” in the statements < Madame Bovary killed 
herself by ingesting arsenic > or < the sum of the internal angles of a triangle is 
7i > is that which makes these statements true.
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Santambrogio’s idea enable us to formulate the problem in a new way: what 
makes the statements < Madame Bovary killed herself by ingesting arsenic > or 
< the sum of the internal angles of a the triangle is n > true? Certainly this is a 
pure object, but: how does this object make these two different statements true? 
My thesis is that the answer is different in the two cases.

When claiming, in the first case, that the statement < Madame Bovary killed 
herself by ingesting arsenic > is made true because of the object ‘Madame Bovary’ 
rather than because of its concept, we are saying merely that this statement is 
literally true only if it refers to the object ‘Madame Bovary’, rather than to its 
concept: it is really not the concept of Madame Bovary that killed itself in this or 
in another way; concepts do not kill themselves. However, it is true that Madame 
Bovary killed herself by ingesting arsenic only because this is said in the presen
tation of the concept of Madame Bovary and we know it only because we have 
read this presentation. In other words: here the object ‘Madame Bovary’, even 
though it is evoked by its proper name, works ultimately as an object that satisfies 
the property ‘(to be) Madame Bovary’, when such a property occurs in a meaning 
postulate like this:

(A3) Vjc[Madame-Bovary(;c) => killed-herself-by-ingesting-arsenic(jc)]

Thus, there is no way to realize a synthetic act of reasoning about Madame 
Bovary.

IX Euclidean Geometry

IX. 1 K ant, O nce A gain

Let us now consider the case of the triangle. Here is what Kant says about the 
proof of the Euclidean theorem on the internal angles of a triangle:

“Suppose a philosopher be given the concept of a triangle and he be left to find out, in his own 
way, what relation the sum of its angles bears to a right angle. He has nothing but the concept of a 
figure enclosed by three straight lines, and possessing three angles. However long he meditates on 
this concept, he will never produce anything new. He can analyze and clarify the concept of a 
straight line or of an angle or of the number three, but he can never arrive at any properties not 
already lied on30 these concepts. Now let the geometrician take up these questions. He at once 
begins by constructing a triangle. Since he knows that the sum of two right angles is exactly equal 
to the sum of all the adjacent angles which can be constructed from a single point on a straight line, 
he prolongs one side of his triangle and obtains two adjacent angles, which together are equal to 
two right angles. He then divides the external angle by drawing a line parallel to the opposite side 
of the triangle, and observes that he has thus obtained an external adjacent angle which is equal to 
the internal angle— and so on. In this fashion, through a chain of inferences guided throughout by 
intuition, he arrives at a fully evident and universally valid solution of the problem.” (Kant A, 
716-717; B, 744-745)
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If we read such a passage in the light of the previous non-Kantian notion of 
object, it seems to suggest that the Euclidean proof does not deal with the concept 
of triangle, but with the triangle as an object. Two reactions are quite natural in 
face of such a thesis. The first is typically philosophical and consists in asking, in 
a skeptic voice: “what is it, the triangle as an object?” The second consists in 
recognizing that classical procedures in elementary geometry, as that described by 
Kant, seem to be concerned with something essentially different from the logical 
rules of inference we use in performing analytic acts of reasoning started by meaning 
postulates.

Kant’s idea seems to be made clear in the following parts of the first section of 
chapter one of the Transcendental Doctrine o f Method (from which I have taken 
the previous quotation), where the notions of definition, axiom and proof are dis
cussed (ibid. A, 727-738; B, 755-766)). According to Kant, definitions are possi
ble only in mathematics:

“To d e f in e , as the word itself indicates, really only means to present the detailedly complete 
[a u sfu h r lich en ], concept of a thing [D in g ] originally [u rsp riin g lich ]21 within its limits [G re n z e n ].”
( ib id . A, 727; B, 755)

The definition is then made precise in a footnote:

“Detailed completeness22 means clarity [ K la r h e i t ]  and sufficiency of characteristics 
[Z u ld n g lic h k e it  d e r  M e r k m a le ]; by limits is meant the precision [P rd z is io n ]  shown in there not 
being more of these characteristics than belong to the detailed complete concept; by o r ig in a l  is 
meant that this determination of these limits is not derived from anything else, and therefore does 
not require any proof [B e w e is ]  ( ib id .)

Now, all this is possible only if the concept is “arbitrarily thought [willkurlich 
gedacht]” (ibid. A, 729; B, 757)23, but the presentation of a concept that is “arbi
trarily thought” is the definition of a “true object”, only if such a concept “con
tains an arbitrary synthesis that admits of a priori construction [welche a priori 
konstruiert werden kann]” (ibid. A, 729; B, 758), and this is possible only in 
mathematics.

Here Kant seems to come very close to the idea that mathematics deals with 
pure objects. This is what he writes next:

“[...] mathematics is the only science that has definitions. For the object which it thinks it exhibits 
[s te l l t ]  a  p r io r i  in intuition, and this object certainly cannot contain either more or less than the 
concept, since it is through the definition that the concept of the object is given— and given origi
nally, that is, without its being necessary to derive the definition from any other source.” ( i b i d  A, 
729-730; B, 757-758)

This passage seems to be quite unambiguous: if the object that “mathematics 
thinks” and “exhibits in intuition” was the particular empirical figure we trace on 
a sheet of paper or a blackboard when we repeat the Euclidean proof, Kant should
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certainly not say about it that it “cannot contain either more or less than the con
cept”.

Nevertheless, after this passage, Kant insists generically on the “construction 
of the concept”, rather than on the presence of a pure (mathematical) object. He 
distinguishes philosophy from mathematics by saying that the former is only able 
to “expose” or “explain” given concepts—by performing their definitions, analyt
ically—while the latter “constructs” concepts “originally framed”—and performs 
their definitions synthetically (ibid. A, 730; B, 758).

Of course, what Kant means by “exposition” is not a kind of description of 
something that is already given as such, and what he means by “construction” is 
not the act of providing it originally. If it was so, it would be very easy to reply that 
philosophy constructs its concepts too (where could it take them from, otherwise?) 
and even advances by constructing further and furher concepts, while mathemat
ics accepts its definitions and merely deduces theorems from them. However, Kant’s 
point is not to deny it. The “exposition of concepts” in Kant’s sense is perfectly 
compatible with their construction in the previous sense, just like their “construc
tion” in Kant’s sense is compatible with their exposition in the previous sense. 
What is important for Kant is that no philosophical construction (in the previous 
non-Kantian sense) can produce anything but concepts: it is, and it cannot be 
anything but an exposition of concepts (even though these concepts are new). 
What is exhibited in such a construction is nothing but concepts, and thus such a 
construction is nothing but an “exposition of concepts”. Mathematical definitions 
in contrast exhibit objects, and not merely concepts. Thus, for Kant, the construc
tion of concept is just the access to the object, as in the seventeenth century the 
construction of equations was just the exhibition of the mathematical object ex
pressed by its roots (Bos 1984). This point seems to be made clearly by Kant, not 
only in the previous passage, but also in his discussion of axioms and proofs in 
mathematics:

“Mathematics [...] can have axioms, since by means of the construction [K o n s tru k tio n ] of con
cepts in the intuition of the object it can combine the predicates of the object both a  p r io r i  and 
immediately [...] .” ( ib id . A, 732; B, 760)

“ [...] mathematics can consider the universal in  c o n c r e to  [d a s  A llg e m e in e  in  c o n c re to ]  (in the 
singular24 intuition) and yet at the same time through pure a  p r io r i  representation [...] [it realizes] 
d e m o n s tr a t io n s  [D e m o n s tr a t io n e n ], which, as the term itself indicates, proceed in and through 
the intuition of the object.” ( ib id . A, 734-735; B, 762-763)

However, there is no way, in Kant’s framework, for making the idea of an 
object that could be just the object of a mathematical concept (as the concept of 
triangle) clear and acceptable. This object should be pure, and there is no room for 
pure objects in Kant’s framework. Thus, Kant alternates passages like the the 
previous one and others much more ambiguous, such as this one:
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“Mathematics alone, therefore, contains demonstrations, since it derives its knowledge not from 
concepts but from the construction of them, that is, from intuition, which can be given a priori in 
accordance with the concepts.” (ibid. A, 734; B, 762)

Therefore, the only interpretation of the remarks contained in the first section 
of chapter one of the Transcendental Doctrine o f Method which seems to be con
sistent with Kant’s philosophy, is the one I have already given in the previous 
paragraph III.2.: intuition is pure, but objects are not. Pure intuition assures us 
that usual empirical objects which are manifest in particular pure forms are con- 
structible and that we are able to operate on them in such a way that all the conclu
sions we draw from such an operation are also true for pure forms. Thus the 
triangle that the mathematician constructs is a particular empirical figure, but the 
conclusions he draws by operating on it, as in the Euclidean proof, are about the 
triangle as pure form, which is not really an object.

The distinction between pure forms and objects is quite impossible to clarify. 
However, the problem is not solved simply by eliminating such a distinction. Even 
though we consider pure forms as genuine objects, the situation does not change 
essentially: if the Euclidean proof deals with a particular empirical object—as in 
the previous reconstruction of Kant’s argument—it can be a proof of a geometri
cal theorem only if it stays constantly under the control of the concept. But if this 
is so, the guarantee of the theorem comes just from the concept, and thus such a 
theorem expresses an analytical act of reasoning, in my sense.

IX.2 E uclid’s Proof of The Theorem on Internal A ngles of a Triangle

My point should now be clear: in my view, the Euclidean proof uses an empirical 
figure, but does not deal essentially with it. Such a figure is nothing but a partic
ular notation (an icon, as Peirce says (Peirce 1885, 163)25) for the real object of 
such a proof, that is just the triangle. Like any object, the triangle is particular, but 
it can be represented by an infinite class of empirical figures. Even though these 
figures work in any reformulation of the Euclidean proof as a very particular 
notation, which expresses directly some properties of the triangle itself, this proof 
runs by applying a number of constructive procedures chosen in a certain domain 
of permitted procedures to such a notation.

To understand this point, let us reconstruct the Euclidean proof from the very 
beginning.

Euclid imagines we know what a (finite) straight line is and takes straight 
lines as elementary objects. He represents them by empirical lines that have two 
essential properties: they are continuous lines (property of continuity) and they 
are open lines that separate a region of the surface on which they are traced into 
two parts we can distinguish (property of separation). These properties are not 
expounded or defined by Euclid: they are simply two manifest properties of em
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pirical lines we use as notations of straight lines. But they are also the only two 
properties of these lines that occur as such in the proof of any theorem of Euclid’s 
geometry.

In order to assure such a starting point of his geometry, Euclid certainly has to 
make an appeal to a certain capacity of his readers: this capacity could be de
scribed in my terms as possessing a certain concept. This concept has a very 
particular nature: it is the concept of a pure object—that is just a straight line— 
rather than the concept of a property, but it can be used for introducing an open 
domain of pure objects. These objects are not—as it is the case with every concept 
of a property—different objects corresponding to different concepts; they are dif
ferent objects corresponding to the same concept, which is the concept of an ob
ject. Simply, these objects are introduced and considered, one after the other, in 
different positions: a straight line differs from another only by its position. But 
position is a relative property and it is not possible to characterize the positions of 
two different straight lines, if we do not intend them as different straight lines 
beforehand.

Thus, two straight lines are not the objects of two different concepts we ar
range in the same class, according to a concept of a property. They are two differ
ent objects corresponding to the same concept of an object. But, as these objects 
are treated in geometry exactly in the same way, they also can be intended as two 
different manifestations of the same object, too. They merely differ according to 
an original subjective capacity of differentiation, the capacity which enables us to 
distinguish different positions in spatio-temporal order. If we generally consider 
the modalities according to which we can operate on it, we have to speak about a 
straight line as only one object; if we pass to another level and we consider differ
ent applications of certain procedures consistent which these modalities, we have 
to speak about straight lines as different objects.

If I am right, a straight line is an object exhibited according to a quite complex 
strategy, appealing to different subjective capacities. However, such an exhibition 
is not completed since the operative procedures according to which we can oper
ate on a straight line (or on straight lines) are not fixed. This is the task of the 
Euclidean postulates. These postulates are certainly not simple sentences working 
as starting points of a deductive game. They are constructive clauses (cf. the paper 
of Maenpaa in the present volume, who particularly insists on this point) that 
teach how to compose straight lines, in order to construct non-elementary objects 
starting from these. First, these objects are constructed, and then they are ana
lyzed just like the objects which are constructed as they are, starting by straight 
lines.

Now, imagine that three straight lines are given. This means that three empir
ical lines are traced on a certain surface. If the third of these lines is long enough, 
relatively to the others, by applying the theorems 1.2 of the Elements, we can
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construct the triangle that has these straight lines as its sides, and trace a corre
sponding figure on the same surface. Then, by applying the theorem 1.27, we can 
construct a straight line parallel to one of the sides of the triangle, passing through 
the opposite vertex. Furthermore, by applying the second postulate, we can pro
long all the sides. If we trace on our surface the lines corresponding to these 
constructions, we have a new figure. According to the property of separation for 
empirical straight lines, we can now recognize three angles on the same straight 
line. By applying the theorem 1.29 to the angles formed by a transversal on two 
parallel straight lines, we can finally prove the theorem.

It is clear that the triangle and the angles we have considered here are the 
triangle and the angles that have been constructed, according to the previous pro
cedure, starting with the three given straight lines. Thus, they are, like straight 
lines, pure objects.

As an object, the triangle is exhibited in Euclidean geometry when their mo
dalities of construction starting with straight lines are given, according to the 
possibilities admitted by the postulates and the properties of continuity and sepa
ration of empirical lines. Such an exhibition is in a sense a presentation of a 
complex concept—that is not the naive and original concept of triangle, as a typ
ical form of empirical objects, but a “mathematical” translation of it. But once this 
concept has been exhibited in such a way, it does not operate as such in the Eucli
dean proof; it does not control anything. The proof is properly the result of an 
analysis of the triangle as an object, that is an account of the properties of it, 
according to: its particular way of construction; the constructive clauses expressed 
by the postulates; the properties of continuity and separation of empirical lines; 
the subjective capacity of multiplication of pure objects in space and time.

X Arithmetical Proofs

If my analysis of the Euclidean proof of the theorem on the internal angles of a 
triangle is correct, such a theorem expresses, in the Euclidean framework, a syn
thetic act of reasoning, according to (D4). The specification “in the Euclidean 
framework” is essential, since the same theorem could be stated as a consequence 
of a suitable class of meaning postulates. In this case, it would express an analyt
ical act of reasoning. Thus, in order to justify (T2) I now have to aigue that the 
Euclidean framework is a typical framework of mathematical acts of reasoning.

The first step in the argument should obviously consist in stating that the 
situation of the previous theorem is common to every theorem of Euclidean geom
etry. Since I cannot present a general account of Euclidean geometry here, I am 
compelled to take for granted that this is the case. I will simply try to argue that 
the situation I have just described is not typical—with respect to its structural
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characters—of such a mathematical theory, but it is general for mathematics as 
such, that is for classical, as well as for modem mathematics.

With the term “structural characters”, I refer of course to the relations between 
concepts and objects, independent of their particular nature. My point is this: 
what you make when you conduct a geometrical proof, as the one we have just 
considered, is not to compare at every step the empirical figure in front of you— 
the notations of geometrical objects you are dealing with—to your concepts of 
these objects; simply, you apply with respect to certain figures—which you know 
to be good notations for these objects—certain standard procedures, you know as 
being permitted in the context of your theory. Thus, if the concepts of the geomet
rical objects occur, they occur not in the proof as such, but in an original stage, 
when the question is that of fixing notations (and identity criteria for them) and 
legitimate procedures. But if you know that the notations you are using are good 
notations, and the procedures are accepted, the concept does not occur as such.

Thus, if I am right, the structure of the a Euclidean proof could be described as 
follows. First, we have a certain number of original and naive concepts of proper
ties, the concepts of spatial forms of extended objects. We associate such concepts 
with certain empirical figures we learn to reproduce according to certain relations 
of equivalence. Then, we introduce a number of procedures to transform our fig
ures, and we fix certain rules that allow us to draw certain conclusions from cer
tain figures (by considering the path we have pursued to attain them). Finally we 
apply these procedures and rules to our figures and we draw our theorems.

Of course, this is not, as such, the structure of every mathematical proof. There 
is something here that is typical of classical geometry—that is geometry in its 
original and proper sense. I obviously refer to the empirical figures or notations, 
which are not merely conventional or uninvolved symbols, but occur as such in 
the proof itself as bearers of certain properties—the properties of continuity and 
separation—that are also essential properties of the mathematical objects. Even 
though such a circumstance seems to entail a more natural development of math
ematical acts of reasoning, it obscures its essential character. Empirical figures 
are essential tools of a geometrical proof, since a geometrical object is essentially 
a pure object represented by them (certainly it is quite possible to translate a geo
metrical proof into a purely linguistic deduction, but the result of this translation 
is not really a geometrical theory, but only a representation of it), but they are not 
essential tools of a mathematical proof as such.

X.l < 7 + 5 = 12 >

However, the essential occurrence of empirical figures or notations within a math
ematical proof, as bearers of certain properties of mathematical objects is not, as 
such, proper only to classical geometry. Let us consider another example drawn
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from classical or constructive arithmetic, which once again is a Kantian example. 
Here is what Kant writes in section V of the introduction to the second edition of 
the Critique o f Pure Reason.

“We might, indeed, at first suppose that the proposition 7+5 -  12 is a merely analytic proposi
tion, and follows by the principle of contradiction from the concept of a sum of 7 and 5. But if we 
look more closely we find that the concept of the sum of 7 and 5 contains nothing save the union 
of the two numbers into one, and in this no thought is being taken as to what that single number 
may be which combines both. The concept of 12 is by no means already thought in merely think
ing the union of 7 and 5, and I may analyze my concept of such a possible sum as long as I please, 
still I shall never find the 12 in it. We have to go outside these concepts, and call in the aid of the 
intuition which corresponds to one of them, our five fingers, for instance, or, as Segner does in his 
Arithmetic, five points, adding to the concept of 7, unit by unit, the five given in intuition. For 
starting with the number 7, and for the concept of 5 calling in the aid of the fingers of my hand as 
intuition, I now add one by one to the number 7 the units which I previously took together to form 
the number 5, and with the aid of that figure [the hand] see the number 12 come into being. That 
5 should be added to 7 ,1 have indeed already thought in the concept of a sum -  7+5, but not that 
thus sum is equivalent to the number 12. Arithmetical propositions are therefore always synthetic.
This is still more evident if we take larger numbers. For it is then obvious that, however we might 
turn and twist our concepts, we could never, by the mere analysis of them, and without the aid of 
intuition, discover what is the sum.” (Kant B, 15)

If we analyze the proof described by Kant, as we have done in the case of the 
Euclidean proof of the theorem on the sum of internal angles of a triangle, we find 
the following structure. First we have an original and naive concept of number, as 
a property of any collection of distinct objects: two collections have the same 
number, if and only if, we can alternatively eliminate or mark their objects one 
after the other, and finish our work at the same time (or stage). By using this 
concept, we arrange all the collections of objects we are considering into different 
classes in such a way that all collections which belong to the same class have the 
same number. Then, we associate each class of collections we have just formed 
with a collection of conventional symbols that has the same number as all the 
collections which belong to such a class. Finally, we fix some procedures for oper
ating on the collections of symbols that have been formed by respecting this con
dition: all we could do with these collections of symbols, according to these 
procedures, has to be repeatable when any collection of symbols has been replaced 
by any other collection with the same number. In other words: we determine these 
procedures so that they are completely independent of the choice of symbols. Par
ticularly: i) we order our collections of symbols in such a way that we can 
move from each of them to the following one by adding only one symbol, we 
associate to any collection a conventional name and we order all the names, ac
cording to the order of the respective collections; ii) we define an operation of 
composition of two collections of symbols, so that the result of such a composition 
is exactly the collection of symbols that is formed by putting together the two 
collections we are composing, and we extend such an operation to the names of
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our collections. In this way the names ‘7’ and ‘5’ are associated with two collec
tions of symbols, the composition of which gives just the collection of symbols 
associated to the name ‘12’.

We can decide that these names are the names of the collections of symbols 
themselves, of the classes of collections with which these collections of symbols 
are associated, or of the forms of these collections. This is not important. What is 
important is that in this way we have proven the statement < 7 + 5 -  12 >, by 
operating—as in the case of a geometrical Euclidean proof—on suitable empiri
cal figures, or notations (the collections of symbols), according to certain proce
dures. The numbers, intended as objects, are just the objects that are represented 
by these notations. They are exhibited when the modalities of construction of the 
corresponding collections are given and the procedures for operating on these 
collections are fixed. Once again, such an exhibition is, in a sense, a presentation 
of the concepts of numbers, but these concepts do not occur as such in the proof of 
our theorem. This proof has the same structure as every proof in Euclidean classi
cal geometry: according to (D^, the theorem <7 + 5 « 1 2 >  expresses a synthetic 
act of reasoning.

X.2 Peano’s A rithmetic

If I am right, I have given two arguments for the claim that the two classical 
Kantian examples of mathematical synthetic a priori judgments express, in their 
natural mathematical framework, synthetic acts of reasoning. However, these are 
not arguments in favor of (T2) yet. The objection one could advance is very tradi
tional: even though the previous arguments are correct, they prove nothing but the 
syntheticity of acts of reasoning proper to classical mathematics, that is Euclidean 
classical geometry and elementary constructive arithmetic; but these theories are 
essentially pre-modem mathematical theories and their structural characteristics— 
particularly the ones I have considered in the previous arguments—are not struc
tural characteristics of modem mathematical theories. Obviously, I think this is 
wrong. I now have to justify my view.

I have spoken about the mathematical concepts of triangle and of different 
numbers, but a doubt could arise. We can provide many different characteriza
tions both of the triangle and of number 3. We can say, for example, that a triangle 
is a region of the plane confined by three non-parallel straight lines, or that it is 
the region of space that is common to three angles placed in such a manner that 
every side of one of them is also a side of one (and only one) of the two others. In 
analogy, we may say that the number 3 is the first odd prime number (if 1 is not 
prime or not odd), or the only divisor of 9 other than 1 and 9 itself, or that it is the 
result of the addition of 2 to 1. All of these definitions characterize the triangle 
and the number 3 as the only objects that satisfy certain conditions, that is: as the
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only members of the classes associated to certain concepts of properties. But, how 
can we say that these classes contain the same objects?

Let us imagine that a new novelist writes a modem version of Madame Bova
ry, where Madame Bovary does not kill herself by ingesting arsenic, but by eating 
poisonous mushrooms. It seems very natural to me to think that we are faced with 
a new concept of Madame Bovary, and consequently that the new novelist has 
exhibited a new object, which bears the same name as Flaubert’s personage, but is 
not the same person. Yet, this is clearly not the case with mathematical objects. 
Even though they are exhibited by means of presenting different concepts, they 
are not different objects. But, how is this possible if a mathematical object is a 
pure object?

The answer is not simply that the different concepts of properties we might use 
for characterizing a mathematical object are equivalent, since this is exactly what 
we have to explain: how can they be equivalent? It is neither that we dispose of a 
suitable class of meaning postulates, since these postulates do not take part, as 
such, in a mathematical theory, and are, at most, a way of expressing the equiva
lence of different concepts, rather than to guarantee this equivalence.

The different concepts of properties to be used for characterizing a mathemat
ical object are equivalent because their corresponding classes contain only one 
object that is always the same. And this object is not the object of these concepts, 
since these concepts are just concepts of properties, rather than concepts of ob
jects. This object corresponds to another concept: the triangle is the geometrical 
object that is constructed in a certain way starting with straight lines, according to 
Euclidean constructive clauses; the number 3 is the number represented by the 
collection of symbols that is constructed in a certain way, starting with only one 
symbol. Thus, the other concepts I have just presented are equivalent because we 
can prove in Euclidean classical geometry and in elementary constructive arith
metic that the classes corresponding to these concepts are just composed by the 
triangle and the number three.

This simple remark clarifies what the essentially structural character of a math
ematical theory is: it is just the disposability of a suitable class of concepts of 
objects that works essentially as such, rather than as concepts of properties. The 
examples of classical Euclidean geometry and elementary constructive arithmetic 
show two different modalities for satisfying such a condition. These modalities 
have an important aspect in common: they are constructive ways grounded on an 
original cognitive capacity, that is the capacity to fix the elementary objects of 
constructions—straight line and unity—and to multiply them in space and time. 
But other, non-constructive modalities are possible.

Using Salanskis’ terminology (Salanskis 1995), I oppose these constructive 
modalities to “correlative” ways. According to a constructive modality, a mathe
matical object is exhibited when the way for constructing it is exhibited and the
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procedures for operating on it are fixed. According to a correlative modality, a 
domain—generally a set—of mathematical objects is exhibited when the condi
tions that such a class has to satisfy as such are expounded and the criterion for 
distinguishing—if necessary—the different objects of such a domain have been 
given. For example, this is the case of Peano’s arithmetic.

Let us also consider such an example. In Peano’s arithmetic we assume that 
we know what a class is and—by means of Peano’s axioms—we fix the conditions 
that a class has to respect in order to be a progression. These conditions refer to 
the members of the class itself, so that we have to assume too that we can consider 
these members separately, as different objects, even though we characterize all of 
them simply as members of a certain class. Thus, we make an appeal, once again, 
to our original capacity to multiply a certain object—the member of a certain 
class—in space and time.

The first axiom tells us that it has to be possible to take one element of the 
class, to nominate it—let us say by the name ‘a ’—and to evoke it, and only it, by 
means of this name, in any circumstance. Thus a class is a progression only if it 
has at least a member. The second axiom tell us that any member x  of the class is 
associated with another (and only an other) one xr by means of a certain monadic 
operator r , that need not to be characterized ulteriorely, even though we have to 
assume that, for every member jc of the class, we can individuate the member xr 
associated to it by r . As this axiom does not specify that xr and x  are distinct 
objects, every singleton could satisfy the first two Peano’s axioms. The third axi
om tells us that the member a of the class is associated to no other member by the 
operator T. Thus our class could not be a singleton, but it could be, for example, a 
couple {a, a r >, if (ar)r is a r itself. The fourth axiom tells us that the member of 
the class which is associated by T with a certain member x  cannot be associated 
with another member y of the class, distinct from x. Hence, the class must be 
infinite and must be almost a starting point with respect to T. But it is possible 
that it was composed by different T-chains (one of which starts with a) independ
ent of each other. Finally the fifth axiom tells us that this cannot be the case, since 
any property of a  (for example the property of participating in the T-chain starting 
with a)—that, if it is a property of a member x  of the class, then is also a property 
of xr—is a property of every member of the class.

Once these axioms are given, we can assume that a class N is a progression, 
that is: i) we use the concept of property ‘(to be) a progression’, or ‘to respect the 
Peano’s axioms for exhibiting an open class of classes (the class of progressions), 
by assuming that classes are, as such, already given objects; ii) we assume that 
such a class is not empty (for example, by asserting that we are able to exhibit a 
progression, as we have just done for the domain of numbers in elementary con
structive arithmetic); iii) we assume we are able to choose a member of this class, 
to give a name to it and and to evoke it, and only it, by means of this name, in any
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circumstance. If N is a progression, we can pick out one of its member, which is a. 
We take this member and we rename it “zero” (“0”) then we rename the element

of N “one” (“1”), and so on.
Up to now, we have used a concept of property and applied it to the class of 

classes in order to pick out the progressions. Then we have assumed that we can 
take one and only one progression, that is just N. The concept of N is thus a 
concept of an object, since, in order to be N, a class has not only to be a progres
sion, but also has to be the progression we have chosen. It is not important that we 
are able to distinguish N from any other progression (certainly, we are not able do 
to it). What is important is that we take the concept of N as a concept of object: the 
progression we have chosen as the progression of natural numbers. Once we have 
done it, the concepts of the different members of N work also as concepts of ob
jects (rather than as concepts of properties), because the concept of the member a 
of a progression is used as a concept of an object (rather than a concept of a 
property). Thus, we are in front of an infinite set of objects, which are just Peano’s 
numbers.

To prove the theorem < 7 + 5 = 12 >, we now have to introduce the operation 
of sum to the members of the progression N. For that we state that for every three 
members x, y and z of N: /) +(*, 0) =df x; ii) +(*, 1) «df;cr; Hi) +[*, +(y, z)] 
- df +[+(*, y), z)]; iv) +(*, y) - df +(y, x)\ where “v -  p” means: “v and p are two 
notations or names for the same member of N”. Once we have done this, we can 
prove the theorem in the classical Leibnitzian way. However, if I am right, the 
conducting of such a proof, is an argument for the syntheticity of the act of reason
ing expressed by this theorem, rather than from its analyticity. If the mathemati
cal concepts of the numbers 5,7 and 12 are certainly responsible for the exhibition 
of these objects, they do not work as such in the proof; rather this proof deals with 
their objects.

XI Concepts of Objects, Concepts of Properties: the Essential Character 
of Mathematics

The previous three examples should clarify the essential character of mathemati
cal acts of reasoning, which turns them into synthetic acts of reasoning, according 
to (D^. Mathematical objects are not only pure, but they are also exhibited by a 
very complex act of presenting their concepts. These concepts are generally con
structed with the aim of providing a suitable translation of other concepts. Such a 
translation is successful when we are able to imagine a deductive structure apply
ing to the names or notations of different objects we have introduced, first by 
multiplying a pure object in space and time, and second by individualizing some 
of the distinct objects we have created in such a way by a simple act of nomina
tion. Because of the deductive structure and the particular nature of the act of
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multiplication, all the objects arising from this sort of act are submitted to the 
same procedures and correspond to the same concept. Thus, such a concept is in a 
sense the concept of only one object, let us say a. It is only by a new act of individ
ualization that we can change our level of analysis and pass to consider distinct 
o’s, each of them now being characterized in a particular and suitable way, and 
submitted as such to the fixed procedures. As the concepts of these objects are not 
only presentations of the distinctive character of such objects, but integrate both, 
the act of multiplication in space and time and the act of fixing the possible proce
dures that can be applied to the objects themselves, they give, in a sense, an auton
omous life to their objects, by enabling us to consider them as such. It is just this 
act of consideration of mathematical objects as such that is typical of mathemati
cal acts of reasoning and makes them synthetic acts of reasoning.

Thus, a mathematical act of reasoning is only possible according to an inten
tional act which consists in treating a concept that fixes a certain character as a 
concept of an object, rather than as a concept of a property. Usually, the distinction 
between a concept of an object and a concept of a property is conceived as the 
logic correlate of a metaphysical difference between individual substances and 
their attributes. In contrast, I think that such a difference lies merely in the inten
tional use of concepts. If our concept of chair is such that to be a chair (or better 
the chair) means to be a particular object and not to enjoy a particular property 
referred to a certain class of specified objects, then we have to accept the idea that 
the chair (and not this or that chair) is an object, a pure object, of course.

Some argue that an object of this sort—like the triangle, or the natural number— 
is a universal object. However, I cannot understand what a universal object could 
be, since for me an object is essentially an individual entity. Nevertheless, this 
does not mean that for me an object is a certain determined substance, but merely 
that its exhibition (or evocation) exhausts certain exigencies of individuation that 
a subject could advance: it is possible to treat the pseudo-properties ‘(to be) a ' as 
a “final characterization” with respect to a certain domain of other properties. 
Thus a concept of an object is nothing but a final characterization, working with 
respect to certain exigencies of individuation26.

As the exigencies of individuation could be very different from one another, 
the same characterization could work in different context either as a concept of an 
object (that is a final characterization), or as a concept of a property. This is true 
for any sort of pure objects. The chair, as an object, is nothing but a particular kind 
of drawing-room suite: here, the concept of a drawing-room suite is a concept of a 
property, while the concept of the chair is a concept of an object; likewise the 
triangle, as an object, is nothing but a particular geometrical figure, a particular 
polygon: here the concept of triangle is a concept of an object, while the concept of 
polygon is a concept of a property. However, the same characterization that pro
vides the concept of the chair can be taken to express a property, and, in such a



320 MARCO PANZA

sense, it can be specified: we could have, for example, the Louis XIV chair, or the 
Louis XIV chair conserved in Versailles, and so on. Analogously for triangles: we 
could have the isosceles triangle, the isosceles triangle associated with a certain 
construction, and so on.

Thus, in order to have a domain of objects, we need not individuate a particu
lar substance or a particular content of thought that is intrinsically individual. We 
simply have to fix the final stage of an exigency of individuation. This is exactly 
what we do when we expound a mathematical theory as a theory of a certain 
domain of objects. Hence, that a certain concept is a concept of an object a does 
not mean that we cannot imagine, and even exhibit a number of different a ’s. If 
we do that, we are simply changing our exigencies of individuation, and we are 
passing to a theory of a strictly different domain of objects.

Since the different exigencies of individuation can often be hierarchically or
dered, it is then possible to organize the respective theories, with originally strict
ly different domains of objects, such that they form only one general theory, the 
objectual domains of which is hierarchically structured. This is the case with clas
sical Euclidean geometry. Thus, certain concepts of mathematical objects of such 
a general theory can be specified ulteriorly, when a new exigency of individuation 
is advanced. However, as these concepts are just concepts of objects, they charac
terize individual entities on which it is possible to operate according to fixed 
procedures. I think that it is just this essential character of a mathematical theory 
that makes it possible, in mathematics, to operate—as Kant said—on the univer
sal in concreto.

Moreover, this is also the condition of possibility of analysis as a mathematical 
method.

Imagine that a mathematical problem asks for the individuation of one or 
more a ’s which satisfy certain conditions. If these conditions characterize one or 
more a ’s which are still unknown (they do not provide a presentation of the con
cepts of these objects, but only a presentation of the concept of a property or a 
relation that they have to satisfy), we can use a suitable notation for expressing 
these objects and operate on it with respect both to the fixed procedures that apply 
on the object a and to the conditions which the objects we are looking for have to 
satisfy.

A very simple case is the following. We are looking for two complex numbers 
the sum and the product of which are cp and \\r, respectively (where “<p” and ‘V ’ are 
names or notations of two objects given as such, two natural numbers). Thus we 
can express these two numbers by the symbols “ j c ”  and “y” and operate on them as 
if they were common complex numbers. Here, “ j c ”  and “ y ”  are the names of two 
potential objects that satisfy two different, even though reciprocal, properties: for 
x, the property ‘to produce cp and \y, respectively, when it is added and multiplied 
to y’ and, for y, the property ‘to produce cp and \|r, respectively, when it is added
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and multiplied to j c ’ .  Thus the concepts of j c  and y work as concepts of properties 
here. However, as the objects that satisfy these properties are certainly complex 
numbers, we can treat j c  and y as names of specified complex numbers, operate on 
them according to the algebraic procedures and solve the problem by exhibiting 
two couples of complex numbers, let us say, c, and c2 and dl and d2 (which are the 
objects of suitable concepts of objects) which satisfy the condition of the problem.

In my terminology (Panza fc), j c  and y are “conditional objects”, while c,, c2, 
dl and d2 are “proper objects”. This terminology allows us to reformulate the 
classical Pappus’ distinction between analysis and synthesis (as mathematical meth
ods or procedures) in the following terms: analysis consists in operating on condi
tional objects as if they were proper objects, in order to determinate the proper 
objects that satisfy a given condition; synthesis is just the act of exhibiting or 
determinating these objects.

XII Concluding Remarks

If I am right, my notion of mathematical objects as pure objects not only provides 
a reformulation of the Kantian distinction between analytic and synthetic judg
ments, as a distinction between analytic and synthetic acts of reasoning, accord
ing to which mathematical acts of reasoning are just synthetic, but it also provides 
a reformulation of Pappus’s distinction between analysis and synthesis and makes 
these two classical distinctions not so extraneous to each other, as it has been 
usually argued: while both “analysis” and “analytic” refer to our activity on con
cepts, “synthesis” and “synthetic” refers to our activity on objects. In such a way, 
the connections between the general question of analysis and synthesis in mathe
matical knowledge and the classical controversy on Platonism (Panza and Salan- 
skis 1995) also become clear.

It seems to me that such a result is important from a historical point of view, as 
well. Even though my starting point is essentially a non-Kantian one, my inter
pretation of Kant’s distinction fits very well with some crucial aspects of Kant’s 
interpretation of mathematics.

Firstly, the distinction between “analytic” and “synthetic” bears, in my view, 
neither on the logical internal form of statements nor on their relations to other 
statements, nor does it apply to statements as such. Rather, it refers to the logical 
nature of the act that a statement expresses. It seems to me that, despite the crite
rion presented by Kant in his Introduction to the second edition of the Critique o f 
Pure Reason, this is also the case with Kant’s distinction itself.

Secondly, in my understanding, an act of reasoning is synthetic because it is 
grounded on the analysis of the objects to which it is attributing properties or 
relations, rather than on their concepts. Even though the Kantian thesis asserting 
the syntheticity of mathematical judgments has frequently been defended by refer
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ring to a mentalist conception of intuition—a sort of intellectual light that should 
originate mathematical principles, axioms or proofs—it seems to me that for Kant 
a judgment (or better a statement) is synthetic if intuition occurs in its justifica
tion, as a modality or even a guarantee of the actual or possible presentation of an 
object. According to Kant, work on concepts is, in fact, a mark of analyticity, 
rather than syntheticity. It is only by going away from our concepts, and further 
away from our mental contents, that we can formulate a synthetic judgment.

Thirdly, my argument for the syntheticity of mathematical acts of reasoning 
links such a thesis to Kant’s thesis, according to which “mathematics can consid
er the universal in concrete”. Both this thesis and the other one, which asserts the 
syntheticity of mathematical knowledge, or judgments, are parts of the hard core 
of Kant’s philosophy of mathematics. Nevertheless, Kant’s interpreters frequently 
fail in showing the link between them. If the second of these theses is reformulat
ed in the manner I have suggested, this link becomes evident.

Still, these three remarks do not eliminate the major differences between my 
conceptions and those of Kant. I think that these differences are reducible to a 
fundamental one that I would like to expound, as clearly as possible, at the end of 
my paper. According to Kant, the distinction between empirical and pure con
cepts is a primitive one, and it is not ulteriorly explicable. Nevertheless, Kant 
seems to reason as if empirical intuition could be “prolonged” in the pure one, by 
providing a guarantee of a priori knowledge as a sort of “potentially empirical” or 
“pre-empirical” knowledge. In such a way, pure intuition has a task to fulfill: it 
has to found the possibility of a posteriori knowledge, by guaranteeing the empir
ical content of a priori knowledge. Particularly, mathematical knowledge is for 
Kant about the general forms of (empirical) objects, such forms being just the 
forms that these objects have as such, the forms in which they present themselves 
to the empirical intuition. A subject, according to him, has intuition of objects 
only as contents that fill up general pure forms, and the possibility of prolonging 
empirical intuition in the pure one is nothing but a way to come back to the 
transcendental origins of empirical intuition itself. Thus, pure intuition often has 
to work as a criterion of constructibility of mathematical concepts, or of the real 
possibility of them (Kant A, 220-221; B, 267-268, for example), and it can realize 
its task only by imposing on these concepts the limits characterizing our empirical 
intuition. In such a way, mathematics has to respect, as such, certain conditions, 
or it has to be kept within certain limits, which cannot merely be the limits of 
thought, and cannot be found other than in the characters of subjective evidence27.

Such a war-machine is founded on a deep and essential confusion. If objects 
are filling up general pure forms, it is not possible to refer to them, or their form, 
in order to distinguish constructible from not constructible concepts. I do not 
know if this confusion (which is nothing but a circularity) can be avoided when 
we want to realize the double program of Kant: to found the possibility of a poste
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riori knowledge on the availability of mathematical knowledge and to found math
ematical knowledge as such on the conditions of the possibility of a posteriori 
knowledge. I do not know it and I am not interested in it. In my view a philosophy 
of knowledge has to found nothing: neither the possibility of empirical knowl
edge, nor mathematics as such. It only has to provide the hermeneutic tools for 
understanding knowledge as it is, as it has been historically realized by individu
als. When I speak about subject, I do not refer, as Kant does, to a transcendental, 
universal or typical subject. I refer to individual subjects, just like us, I look for a 
characterization of our cognitive acts, I try to distinguish them among the totality 
of our acts according to a formal criterion, and finally I aim to describe and under
stand what sorts of subjective abilities are employed in our cognitive activity.

Thus the task of a philosophy of mathematics is, for me, that of providing 
valuable categories for characterizing and understanding mathematics, as a typi
cal human activity, and not that of founding its legitimacy on an irrefutable guar
antee—even though to understand a mathematical theory is also to come back to 
its origins and to make clear (and eventually discuss) its reasons. Here, I have 
suggested that mathematics is both the activity of constituting pure objects on 
which synthetic acts of reasoning are possible and to realize these acts. Even 
though it is not only a formal deductive game, it is both the activity of construct
ing pure objects, according to a certain aim—so that a (quasi-) formal game could 
be applied to them, for discovering their properties or relations—and the activity 
of applying this game and realizing this task.
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Notes

* I thank Andreas Etges, Agnese Grieco, Claudio La Rocca, Jean Petitot, Jean-Michel Salanskis, and 
specially Michael Otte for their linguistic and philosophical suggestions and commentaries on a number 
of previous versions of my paper.

1 In order to avoid any possible misunderstanding due to the English translation, I add the German original 
term in brackets after the first occurrence of every English term translating a Kantian key term. If no 
particular reference is made when the expression is used again, it always refers to the same original 
German term. A glossary is given at the end of the paper. If not stated otherwise, English translations of 
Kant’s statements are quoted from (CS) and (LY).

2 For a recent version of the logicist program, cf. Wright (1983).

3 For reasons of uniformity with the text of the first Critique, I here change the Young’s translation and 
translate “WirklichJceit” with “reality” instead of “actuality”.

4 Young translates here “to decide” for “ausmachen”, but this seems to be a misleading translation, since 
a decision is a choice between different possibilities that are already given as such, which is strange to the 
meaning of the German term “ausmachen”.
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5 Once again I changed Young’s translation, translating “kommen” and “zukommen” with “to suit”— 
instead of with “to belong” as Young does—in order to avoid any possible confusion between the relation 
of object and concept—which is the case here—and the relation between two concepts, which Kant 
indicates with the verb “gehoren", above translated with “to belong”.

6 Here is an other excerpt both from the first and the second edition, that is not less clear (cf.ibid. A, 154- 
155; B, 193-194):

“In the analytic judgment we keep to the given concept, and seek to extract something from it.
[...] But in synthetic judgments I have to advance beyond the given concept, viewing as in relation 
with the concept something altogether different from what was thought in it. This relation is con
sequently never a relation either of identity or of contradiction; and from the judgment, taken in 
and by itself, the truth or falsity of the relation can never be discovered.”

7 I changed the order of propositions of Smith’s translation, in order to stay closer to the original.

^ Following Smith’s translation, I translate both the German “Perzeption” (which very rarely appears in 
Kant’s texts) and “Wahrnehmung” with “perception”, by considering these terms equivalent in meaning.

9 According to Eisler’s classical Kant Lexicon [cf. Eisler [1930], p. 391], there is no appreciable difference 
between Kant’s use of the terms “Gegenstand” and “Objekt' in the first Critique, even if these terms, 
taking together, cover a laige spectrum of different meanings. Here I consider only one of these meanings 
(actually covered in the first Critique by both German terms), namely the one according to which an 
object is that of which elementary knowledge is just knowledge. What is important to me is not that the 
same terms could or could not have other meaning in Kant’s works (certainly they do), but that for Kant 
there is no room for something like a pure object (either Gegenstand or Objekt), intended as that of 
which a priori knowledge could just be knowledge.

i prefer the term “singular” to Smith’s term “single”.

11 The passage, at the very beginning of the Aesthetics, is so well known that it is not necessary to quote it 
here.

12 Cf on this point Panza (1995a), where I have tried to justify such a thesis.

13 For Kant’s interpretation of postulates as clauses for constructing objects, cf. Kant [JL], § 32 and 38:

“[...] practicalpropositions [...] are those that state the action whereby, as its necessary condi
tion, an object becomes possible.”

“A postulate is a practical, immediately certain proposition, or a principle that determines a 
possible action, in the case of which it is presupposed that the way of executing it is immediately 
certain.”

14 A. Ferrarin (1995,137) writes:

“[According to Kant] the synthesis [...] involves the necessity to go beyond the concept and show 
its pure a priori determination of spatio-temporal intuition: the guidance for the construction of the 
object. And a synthetic judgment is not a formal, discursive relation between the subject and its 
predicate, but the activity of exhibiting in intuition the real belonging of a property of its object.”

I completely agree with that.

1 5 Notice that, if I am correct, a mathematical judgment is for Kant a judgment about (the concepts of) pure 
forms, but it is justified by means of procedures referred to empirical entities. Thus, truth, or even necessity, 
of mathematical judgments must as such be independent of their justification or proof. Of course, we can 
insist on the possibility of imagining the objects occurring in such a justification, but this does not change 
the situation, since imagination has just to be imagination of objects.
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16 On the role of imagination and its relations with understanding in Kant’s theory of knowledge cf. Palumbo 
(1984).

17 it might appear paradoxical that a synthetical act of reasoning depends on an analysis, but I believe it is 
not. Cf. on this point the concluding chapter of the present book (particularly § VI).

18 In my view a reasoning is a specific and particular event that cannot be repeated as such, even if it can 
take a general form that logic can study (that is the “inference” in Kant’s sense).

^A nalogous considerations could be advanced for universal statements of a conditional form where 
relational predicates occur.

20Here Kant uses the verb “ l ie g e n ” which I translate literally as “to lie on”— instead of “to contain”, as 
Smith does— in order to mark the difference with the verb “e n th a lte n ”, just translated “to contain”.

21 Smith simply translates “au sfU h rlich en” as “complete”. Instead I follow the suggestion of Giorgio Colli 
who in his Italian translation [Einaudi, Torino, 1957] just translates it as “d e tta g l ia ta m e n te  c o m p le to ” . 
Moreover, he translates “u r sp r iin g lic h ” as an adjective referring to “concept”, while it works in the 
German text as an adverb referring to “G r e n z e n ” . This is the reason for a second change of Smith's 
translation.

22c f . the previous note (21).

23 Smith translates “arbitrarily invented”.

24Cf. the previous footnote (10).

25 Not any notation is for Peirce an icon:
“I call a sign— he writes (1886,163)— which stands for something merely because it resembles 

it, an icon. Icons are so completely substituted for their objects as hardly to be distinguished from 
them. Such are the diagrams of geometry.”

In my (1985a), I called this sort of notations “transparent” and I considered their role in classical Euclidean 
geometry (cf. ib id . , § 5, pp. 78-84); I will come back later to some of the arguments I have presented 
there. In the paragraph X, I will argue that this sort of notation essentially occurs also in classical or 
constructive arithmetic. Moreover, Peirce ( ib id ., 165) believes that icons play an essential role in algebraic 
(or formal) deduction too. I will not discuss this last point here, even though I think that Peirce’s argument 
is far from being completely wrong. On the role of diagrammatic thinking, as founded on iconic notations, 
in mathematics, according to Peirce, cf. the paper by M. Otte in the present volume.

26 a  similar idea has been advanced by M. Otte, in his discussion of the Locke-Berkeley-Kant controversy 
on the “general triangle” (Otte 1994b, 276-284 and 1995, 102). It is evident that a pure object is 
indeterminate with respect to a very large range of properties. This is the case both with the triangle and 
with Madame Bovary. To the question “how tall is Madame Bovary?”, we have no answer. The reason 
is not that we do not know how tall Madame Bovary is. The reason is that, for every property like “to be 
x  tall” Madame Bovary does not have such a property without having its negation. Simply, Madame 
Bovary is a woman, but she does not have a tallness, even if this does not mean that Madame Bovary is 
a “universal woman”. On the consequences of such a character of a pure, and particularly a mathematical 
object, cf. my (1995b), § 6 ., pp. 122-128.

2? It seems to me that such a question is connected with the one advanced by Parrini, by referring to Herbart, 
concerning the conditions of possibility of “determinate knowledge” (1990,60-62).
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Analytic: analytisch.
Apodeictic: apodiktisch. 
Assertoric: assertorisch.
Belong (to): gehoren. 
CXaxity.Klarheit.
Concept: Begriff.
Consciousness: Bewufitsein. 
Construct (to): konstruieren. 
Contain (to): enthalten.
Content: Inhalt.
Construction: Konstruktion. 
Demonstration: Demonstration. 
Denied: verneint.
Detailedly complete: ausfUhrlich. 
Empirical: empirisch.
Exhibit (to): vorstellen. 
Experience: Erfahrung. 
Grounded: grundet.
Identity: Identitat.
Inferences: Schliisse.

Glossary

Intuition: Anschauung.
Judge (to): urteilen. 
Judgments: Urteile. 
Knowledge: Erkennntnis. 
Limit: Grenze.
Maintained: behauptet.
Make out (to): ausmachen. 
Mathematical: mathematisch. 
Modality: Modalitdt.
Object: Gegenstand or Objekt. 
Objective perception: objektive 

Perzeption.
Original: urspriinglich. 
Perception: Perzeption or 

Wahrnehmung.
Precision: Prdzision.
Predicate: Prddikat. 
Problematic: problematisch. 
Propositions: Sdtze.
Pure: rein.

Real: wirklich.
Reality: Wirklichkeit. 
Representation: Vorstellung. 
Sensation; Empfindung.
Singular: einzeln.
Subject: Subjekt.
Subjective constitution: subjektive 

Beschaffenheit.
Sufficiency of characteristics: 

Zulanglichkeit der Merkmale. 
Suit (to): kommen, zukommen 
Synthetic: synthetisch.
Thing: Ding.
Thought: Denken.
True: wahr.
Truth: Wahrheit.
Understanding: Verstand. 
Universal in concreto: Allgemeines 

in concreto.

MICHAEL OTTE

ANALYSIS AND SYNTHESIS IN MATHEMATICS 

FROM THE PERSPECTIVE 

OF CHARLES S. PEIRCE’S PHILOSOPHY*

I Introduction

This paper is particularly concerned with Peirce's conception of mathematics. 
Taking into account that there exists a great deal of scholarly insight into his 
philosophy of science, one is surprised to notice how indefinite, uneven and var
ied opinions are regarding Peirce’s conception of mathematics. Peirce has de
clared mathematics to be paradigmatic for philosophy (CP, 7.80) which leads us 
to investigate the relationship of Peirce’s epistemology to classical German phi
losophy, to the conceptions of Leibniz, Hegel and above all of Kant. Kantian thought 
is not only crucial for Peirce’s early period but is indispensable to any understand
ing of Peirce’s philosophy and his conception of mathematics. It is true that cer
tain beliefs, common to Kant and Peirce take on a different importance and meaning 
when passing from one to the other. Intuition, for instance, was an important term 
for both. Peirce called “intuition” “the one sole method of valuable thought” (ibid., 
1.383). Another common idea refers to the linkage between generality and conti
nuity. Continuity, writes Peirce, for instance, is “nothing but a higher type of that 
which we know as generality. It is relational generality” (ibid., 6.190; with re
spect to Kant cf., for instance, B 206). As, however, the architecture of Kant’s 
Kritik rests exclusively on the idea of the a priori, and as Peirce, on the other 
hand, does not share Kantian aprioricism, these, as well as various other ideas, 
change in meaning and acquire new roles. For instance, time is such, says Kant, 
“that every part of it has similar parts,—a proposition very different from merely 
saying that Time is infinitely divisible, though Kant himself did not perceive the 
distinction” (ibid., 8.114). However, because of his aprioricism, Kant had no need 
for that distinction. For Peirce, on the contrary, it was of crucial importance. Con
tinuity, or similarity of parts, making time (as well as space) an individual whole, 
was absolutely essential, because continuity in this manner serves to introduce a 
new type of metaphysics, the universe being conceived of as a system of interrelat
ed systems rather than as a set of isolated things.
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“Nominalism— or at least, modem Nominalisms— is precisely the doctrine that the Universe is a 
heap of sand whose grains have nothing to do with one another, and to recognize concatenation is 
to recognize that there is something that is not Individual and has another mode of Real Being than 
that of an Individual Existent.” (Ms 641)

The a priori is nothing but that which is universally valid and “whatever is 
universally true is involved in the conditions of experience” (CP, 2.690). In con
trast to his predecessors, Kant considered these general conditions to be subjective 
rather than objective. “It was the essence of his philosophy to regard [...] the 
reality as the normal product of mental action, and not as the incognizable cause 
of it” (ibid., 8.15). Peirce now claims that his new philosophy of synechism (syn- 
echism is a regulative principle of logic based on the idea of continuity) allows 
these general conditions or the a priori to be understood as being both subjective 
and objective by relating them to an evolutionary process which is at the same 
time constrained and yet not absolutely determined. The resulting relativity of the 
distinction between the subjective and the objective gives the principle of continu
ity its prominent place in methodology, because in order to reconcile relativity and 
objectivity of knowledge, one has to accept that the distinction between the asser
tion that A = B and its negation cannot be absolute, since “absolute discontinuity 
cannot be proved to be real” (ibid., 8, 278). “When Synechism has united the two 
worlds of the subjective and the objective; the belief in the relativity of the subjec
tive and the objective gains new life” (ibid., 6.590).

Kathleen Hull (Hull 1994) claims that Peirce closely follows Kant in his un
derstanding of mathematics and of mathematical reasoning. It therefore seems 
justified to approach the matter historically and to begin with Kant, with a consid
eration of Kant’s conception of mathematics. As is well-known, Kant characteriz
es mathematics in terms of the analytic-synthetic distinction, claiming that 
mathematical propositions, or the judgments represented by them, are synthetic a 
priori. As Peirce abandoned aprioricism, his specific answer to the continuum 
problem and his conception of an evolutionary realism derived from that answer, 
made his views essentially different from Kant’s, rendering the analytic-synthetic 
distinction somewhat relative, because the distinction between the subjective and 
the objective became a relative one (with respect to the connection between these 
two distinctions see part V of this paper, and, ex negativo, also Grice and Straw- 
son 1971). Thus, I agree with Kathleen Hull, this being my first premise, that 
“mathematics, not logic, is the cornerstone of Peirce’s architectonic” (Hull 1994, 
273). And this is so exactly because of the importance of generality as based on 
the idea of continuity to which the law of contradiction cannot be applied, and 
Peirce, as well as Hilbert, therefore had to look for a different logic of reasoning.

My second premise then is that we should take Peirce’s views with respect to 
mathematics and to science in general as being based on one and the same philo
sophical conception. This implies for instance that mathematical axioms and nat
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ural laws are to be classified as ontologically of the same nature, they both employ 
free variables and are generals in the sense of Peirce’s philosophical realism as 
based on the reality of the continuum. Knowledge of any sort is formal and to take 
on meaning it has to be applied. As it cannot be itself a theory of its own applica
tion, we enter into an infinite regress of meta-levels. Aprioricism (any kind of 
foundationalism, in fact), on the one side and philosophies of practice (like prag
matism) on the other side meet the challenge of infinite regress differently. With 
respect to Peirce, one notices that ideas like evolution and continuity become im
portant as substitutes for the idea of foundationalism. In evolution the infinite 
regress is interrupted as certain possibilities are in fact realized and others not and 
the continuum represents all that is possible.

This brings me to the third premise of my argument. We should take seriously 
Peirce’s approach to the question of philosophical realism when trying to under
stand his views regarding mathematics. In contrast to this requirement, investiga
tions of Peirce’s realist approach to mathematics sometimes start by asking “can 
one be a realist without being a platonist” (Engel-Tiercelin 1993), while for Peirce 
realism and platonism really had nothing in common. In exploring the connec
tions between “Peirce and logicism”, Susan Haack places everything into aFregean 
framework from the very beginning by asking whether Peirce would ascribe to 
two theses she presents characterizing logicism in the sense of Frege. Then the 
impression is conveyed that Peirce was not really consistent in his views, as he 
seems to accept one of the theses but not the other. He held, it is claimed, that 
mathematics is reducible to logic and yet staunchly denied another logicist thesis, 
that the epistemic foundations of mathematics lie in logic, whereas “Frege took it 
for granted that both theses stand or fall together” (Haack 1993, 36). At this point 
I do not want to discuss the content of these claims (see however Houser 1993), 
but would rather oppose the justification of the approach as such. Peirce starts by 
observing how mathematicians really practice their business and how they ac
complish their results, rather than, like Frege, with an idea of how they should 
perform their activities.

Finally in his excellent and influential book on the development of Peirce’s 
philosophy, M. G. Murphey claims that “the creative or dynamic agent” in this 
development is Peirce’s logic (Murphey 1961, 3), as well as that in spirit “Peirce 
has more in common with the logicist school than with intuitionism” (ibid., 288). 
It is correct that Peirce did not accept that “mathematics limits itself to the range 
of objects it can construct” (ibid.). But taking into account the Kantian roots of his 
philosophy, it is equally correct to say, that he would never believe that the con
struction and the presentation of mathematical objects could be completely sepa
rated. Just this particular problem, how to conceive of the link between the 
development and substantiation of mathematical knowledge, might already sug
gest that a framework different from the traditional philosophies of mathematics,
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formalism, platonism, intuitionism or logicism has to be found in order to under
stand what Peirce had in mind.

II Analysis and Synthesis from Leibniz to Kant

With respect to the analytic-synthetic distinction Kant states:

“In all judgments wherein the relation of the subject to the predicate is thought this relation is 
possible in two different ways. Either the predicate B belongs to the subject A, as something which 
is contained (covertly) in this concept A; or B lies completely outside of the concept A, although it 
stands in connection with it. In the first instance, I term the judgment analytical, in the second 
synthetical.” (B, 10)

Synthesis is the opposite of analysis. Now, during the age of classical rational
ism the term “analysis” is used in two applications:

1. Empirical theories are analytical, as far as they claim to speak about the 
essence of reality as such, as far as they seek to find out what is the core of a thing. 
This is because analysis proceeds from a given unknown which it seeks to inves
tigate. Substances or essences are real and are the real subjects of predication. 
Kant’s reformulation of the analyticity of judgments stays in line with this as long 
as one assumes that conceptualization captures the essence of some real being or 
some existing substance. But how is this to be guaranteed? By the structure of the 
epistemic subject, says Kant. “It was the essence of his philosophy to regard the 
real object as determined by the mind” (Peirce CP, 8.15).

2. Logical theories are analytical, as far as they deal with the way something 
which has been said can be said in another way as well, and this is how the law of 
contradiction, that is the claim that something cannot be simultaneously named p 
and non-p, obtains its significance. It becomes the basis for the analyticity of 
formal theories. Algebra, and mediated by it also geometry, are called “analytic” 
as soon as the unknown variable “x” is introduced into their activities. Equations, 
taken as S « P expressions, represent not only a method but rather a way of secur
ing true knowledge.

To classical ontologism all true propositions had been analytically true. Clas
sical thought had as its ultimate goal, which was in general only to be accom
plished by God because it required an infinite analysis, the determination of 
individual substances. This view is an outgrowth of the static world view of the 
classical age but also a result of its optimism that the world is knowable. And the 
existence of God is a basis of this optimism. In this manner the law of contradic
tion used formally serves to give proofs of existence. This later became a funda
mental idea of Cantorian pure mathematics. Kant does not accept that a 
non-contradictory is also real (Kant B, 629).
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Leibniz has created our modem concept of mathematical proof by understand
ing that a proof is valid by virtue of its form, not by virtue of its content. This does 
not imply, however, contrary to a claim made by Russell (Russell 1903b, 178) that 
Leibniz’s philosophy rests solely on his logic, because Leibniz assumed a one-one 
correspondence between concepts and objects. Symbols represent thoughts and 
collections of thoughts determine or represent objects. As in his view all things in 
this world are constituted by the concepts corresponding to them in God’s mind, 
proof amounts to an infinite analysis of the respective concept, and all cognition 
becomes analytical cognition. “Leibniz making proof a matter of ontology not 
methodology, asserts that all true propositions have an a priori proof, although in 
general human beings cannot make those proofs”, because of the infinity of the 
analysis required. (Hacking 1984,221). Thus it is due to our limitations that some 
truths appear to be contingent and not necessary.

Everybody knows analytically that Hamlet’s mother cannot have been a man, 
but nobody can know a priori and analytically what was the color of her eyes. 
Leibniz would consider this due to the fact that we, the human beings, unlike 
God, do not have the complete concept of “Hamlet’s mother” at our disposal. We 
do not know all the details of her existence, nor the complete story of her life. In 
mathematics we do, because mathematical concepts are simpler, and thus mathe
matical truth is based on proof and mathematics is analytical (Hacking 1984). In 
mathematics the intensions of concepts are just definitions and mathematical con
cepts can be analyzed. It is therefore easy to see whether a proposition is analytic 
or synthetic, because we stay completely inside a language system as soon as we 
reason in mathematics. This does not apply to Kant’s views.

The law of contradiction may, according to the above distinction, be interpret
ed in various ways. Let us consider the example “gold is a yellow metal”. Accord
ing to Kant the law of contradiction comes in because, according to the usual 
definition of terms, it would be a self-contradiction to say: “gold is not a yellow 
metal or bodies are not extended”. Kant believed that to any substance some pred
icates inherently and essentially belong while others depend on experience, but 
the distinctions he draws in some cases of empirical concepts are rather arbitrary.

Now Kant takes great pains to distinguish analytic and synthetic propositions, 
because his view of the analytic-synthetic distinction depends on the invalidation 
of the ontological proof of God’s existence and represents his own Copemican 
step. Classical thought rested in the idea of God. The proof of the existence of God 
warrants Leibniz’ foundation of truth on proof as well as the Cartesian cogito 
ergo sum, this final truth which constitutes the foundations of the entire structure 
of Cartesian rationality. Accordingly a schism was caused in the heritage of the 
classical age, hence also in the foundations of modem science, by the invalidation 
of the proofs of God’s existence, for God guaranteed a strict correspondence be
tween clear and distinct thought on the one hand and external reality on the other.
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Kant claims that “God exists”, can never be analytic, as Leibniz believes, be
cause “being is not a real predicate; that is, it is not a concept of something which 
could be added to the concept of a thing” (Kant B, 626). Thus the proposition 
“God exists” is not real knowledge. Kant realized “that no general description of 
existence is possible, which is perhaps the most valuable proposition that the 
Critic contains” (Peirce CP, 1.35). Kant changes orientation from substances and 
essential properties to concepts and objects, or functions and arguments as we 
have already seen when observing his definition of analytic and synthetic. God 
exists means that the extension of the concept God is not empty. God exists and 
God, on such a presupposition signify the extension and the intension of one and 
the same concept, or the factuality and the possibility of the being of God respec
tively (ibid., 4.583). Extension and intension of concepts appear to be relatively 
independent of one another and the transition from the possible to the factual 
cannot be accomplished by means of logic or language and pure thinking. All 
judgments are conditional. The proposition that a triangle necessarily has three 
angles does not say “that three angles are absolutely necessary, but that, under the 
condition that there is a triangle, three angles will necessarily be found in it” 
(Kant B, 622). Kant, contrary to Cantor or Leibniz, did not consider consistency 
sufficient for existence even in mathematics.

And Kant shared with Leibniz the foundational concern expressed by apriori- 
cism. Kant’s transcendental subject, which takes the role of Leibniz’s God, at first 
sight, shares the problematic nature of the latter, such that not much seems to be 
gained by this kind of reorientation. On the one hand all knowledge is based on 
the structure of the transcendental subject. But on the other hand, the transcen
dental subject is not directly accessible to the individual subject because the prop
osition “I think”, which according to Kant is the supreme foundation of all 
knowledge (ibid., 132), in itself does not express any knowledge. The proposition 
“I think” does not imply my existence, although it contains the proposition “I 
exist”. Thus the transcendental subject is in a sense declared to be a thing in itself, 
“a kind of otherworldly entity” (Lektorsky 1980, 84-86). It guarantees however 
the constitution of the subject and object of knowledge by means of the process of 
Synthesis.

“A mind, in which all the manifold should also be given by self-consciousness 
would be intuitive; our mind can only think, and must look for its intuition to 
sense” (Kant B, 135). Thus the transcendental subject could become known only 
after having been externalized by constructive activity, and mathematics plays a 
special role in this process, as by means of mathematical reasoning we become 
aware of the forms of all intuition, which mathematics presents as original intui
tions themselves. Mathematics therefore presents the general conditions of all 
knowledge in concreto (see, for instance Panza's paper, in this volume).
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“The constructivist project, rooted in Descartes’ geometry and exfoliated in Kant’s critical enter
prise, took its bearings from the desire to master and possess nature, where nature was understood 
as the locus of apparently ineliminable or intractable otherness. Mind could aspire to master its 
other [...] by externalizing itself in a construction carrying the clear marks of its inward and delib
erate origin.” (Lachterman 1989,23)

However, the idea of the human self producing itself, as well as knowledge as 
part of it, represents an essential step, because after taking it, the growth and the 
justification of knowledge become interrelated and intertwined. To understand 
the reality of knowledge one has to understand the reality of understanding. And 
in order to accomplish this one has to find a point where understanding is con
struction, conceived of as a unity of process and result. This can already be guessed 
from the very special role mathematics seems to play in Kantian epistemology. 
Mathematics gives the best example of knowledge as active creation. “Approxi
mation to the ideal of a thoroughly free divine or archetypical intellect yields at 
one and the same time the basic sense of our active existence and the limits or 
mitigations to which this active existence is inevitably subject” (ibid., 11). Kant, 
in fact, warns philosophers against trying to imitate mathematical procedures and 
methods, because in philosophy this unfolding identity of concept and object does 
not exist.

This warning is based on a very problematic distinction within the area of 
synthetic judgments a priori, classifying them into intuitive ones and discursive 
ones. The latter refer primarily to the ordering function of general concepts whereas 
the former are related to the structure of perception. The judgments of pure math
ematics belong to the class of intuitive judgments. Kant himself describes the 
intended distinction as follows:

“A n apriori conception contains either a pure intuition, and in this case it can be constructed; or 
it contains nothing but the synthesis of possible intuitions which are not given a priori. In this 
latter case the concept may help us to form synthetical a priori judgments, but only discursively by 
means of concepts and never intuitively, by means of the construction of concepts.” (Kant B, 749)

And he generally classifies axioms as intuitive principles, adding that philosophy 
does not possess any axioms and “has no right to impose her a priori principles 
upon thought, until it has established their authority and validity by a thorough 
deduction” (ibid., 762; we should take into account at this point that deduction 
means legitimation rather than logical or mathematical deduction). Thus Kant 
introduces a separation between intuitive and discursive knowledge, which seems 
to exclude mathematics from conceptual thinking. Mathematics “does not only 
construct magnitudes, as in geometry; it also constructs magnitude as such, as in 
algebra” (ibid., 745). Synthetic a priori knowledge in the sense of Kant is most 
importantly characterized by its constructivity.
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Kant believes that mathematics rests on concepts that are given by definitions 
and that mathematical cognition originates from the construction of the concepts.

“To construct a concept, however, means: to present the intuition corresponding to it a priori 
[...]. Thus, I construct a triangle by the presentation of the object corresponding to this concept 
either by mere imagination in pure intuition, or after the latter also on paper, in empirical intuition, 
in both cases completely a priori (ibid., 741-742)

This distinction depends on the fact that in the world of phenomena “there are two 
elements—the form of intuition (space and time) [...] and the matter or content, 
that which is presented in space and time, [...]” (ibid., 751). We are able to con
struct mathematical concepts a priori “in as much as we are ourselves the creators 
of the objects of the concepts in space and time” (ibid., 752). Mathematical con
cepts were constituted by definitions (ibid., 756) and had to be reified or applied 
in intuition according to space and time as the forms of pure intuition. In as much 
as mathematical reasoning operates on these reifications it is synthetical, other
wise analytical. But no mathematical truth can be acquired by analytical reason
ing only, because we have to apply a concept to gain knowledge. We cannot cogitate 
a straight line without drawing it, Kant says, (ibid., 154). The line drawn is em
pirical and is therefore no mathematical object, but it is the construction of a 
mathematical concept. To know means to observe one’s own constructive activity 
and its results.

Kant held a much narrower view with respect to the subject matter of mathe
matics than say Leibniz, as his contemporaries already noticed. Why is “the form 
of mathematical knowledge the cause that it is limited exclusively to quantities” 
(ibid., 743)? Because the construction refers to either geometrical or algebraic 
algorithms or functions taken in intension, construction of the pair {x,f(x)}. Thus 
a judgment is to be presented by a pair or a relation {x,f(x)}. It is sometimes said 
that Kant gained his vision of mathematical cognition from the problems of ana
lytical geometry. And his concepts indeed depend on functions insofar as Kant 
defines functions as the “unity of the act of arranging various representations 
(Vorstellungen) under one common representation” (ibid., 93). The pair or rela
tion {x,f(x)} represents a reified function or a judgment. All judgments are func
tions. Kant took the idea of function from algebraic analysis in the sense of Euler 
and Lagrange, identifying function with algorithm or formula (Cassirer 1910).

A completed or reified function may be understood as a representation of a 
representation of an object. This Kant also calls “mediate knowledge of an ob
ject”. Lachterman claims that Kant took his understanding of the technique of 
construction from algebra and not from geometry. “Kant’s phrase ‘construction of 
a concept’ is derived from the expression ‘construction of an algebraic equation’”. 
This latter expression refers to “the interpretation of the terms of the equation in 
ways that lead to the actual exhibition of a particular geometric formation satisfy-
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ing the general equation” (Lachterman 1989, 11). The construction was meant to 
yield line segments that corresponded to the roots of the equation together with its 
application in a particular case. This technique does nothing but exhibit the algo
rithm by which we arrive at the roots of the equation. The technique gradually 
disappears around the middle of the eighteenth century. But between the publica
tion of Descartes’ Geometry and about 1770 it was considered crucial within alge
bra and analytic geometry and was developed by first-ranking mathematicians 
(Bos 1984).

Euclidean geometry itself is thoroughly algorithmic. Euclid had founded a 
geometry that allowed constructions by straight lines and circles. “Descartes had 
extended this geometry by allowing in principle all algebraic curves as means of 
construction” (Bos 1984, 360). Newton wanted algebra to be more subservient to 
geometry and wished “to work out a truly geometrical approach to the construc
tion of problems and equations. Geometrical simplicity, namely the simplicity of 
tracing, should be the criterion, not algebraic simplicity” (ibid., 362-363). In 1835- 
1844 a similar motivation led Grassmann, to introduce the direct methods of vec
tor algebra into the geometrical sciences in order to mathematize projective 
geometry. The point of reference of the construction should be immanent rather 
then external, was the demand. Grassmann, like Leibniz or Poncelet, wanted to 
operate on geometrical entities rather than on functions (coordinates) in order to 
realize a synthesis brought about by the intrinsic properties of space itself. The 
following statement from Peirce’s Cambridge Conference of March 1898 sounds 
very much like Grassmann indeed:

“That which already had been called the Elements of geometry long before the day of Euclid is a 
collection of convenient propositions concerning relations between the lengths of line, the area of 
surfaces, the volumes of solids and the measures of angles. It concerns itself only incidentally with 
the intrinsic properties of space.” (Peirce CCL, 242-243)

But it is projective geometry or topology (geometrical topic as Peirce called it) 
“what the philosopher must study who seeks to learn anything about continuity 
from geometry” (ibid., 246). And continuity is essential to understand synthesis 
as soon as Aprioricism has been abandoned, as has already been mentioned in the 
introduction above.

The Greeks, Peirce believes, were acquainted with projective geometry and 
had already perceived “that it was more fundamental,—more intimately concerned 
with the intrinsic nature of space,—than metric is” (ibid., 244). Principles of 
continuity are indispensable when reasoning about infinity, as in calculus or the 
theory of irrationals, for instance. By means of the notion of similarity or self
similarity Greek diagrams demonstrate the irrationality of the measure of the ra
tio of the side to the diagonal of certain regular polygons, like, for example, the 
regular pentagon. One may in fact consider these diagrams in different ways.
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Concentrating on the exhibition of self-similarity one might obtain as a result, on 
the basis of the visual representation, insight into the recursive structure of the 
Euclidean algorithm for determining a common unit or the greatest common divi
sor. The true application of the notion of similarity requires us to disregard scales, 
that means accepting geometric space as a continuum and as an individual whole, 
in the sense of Peirce. The invariance under geometric similarity then directly 
demonstrates that the algorithm does not lead to the desired goal, the algorithm 
itself having been transformed into an object of thought. Side and diagonal are 
thus incommensurable, i.e. a/5 is an irrational number. Note that I have not pro
posed to replace the geometrical quantities involved by their numerical measures 
with respect to a certain unit and therefore I have not obtained the result by an 
indirect method, based on the law of contradiction, but have “seen” it directly 
because of the recursive structure of the algorithm.

It is by geometric construction that we notice the concept of say V5 not being 
empty, but such a root is not a number, says Kant, “but only the rule of approxi
mating it” (letter by Kant to Rehberg, quoted after Parsons 1983, 111). But the 
law of approximating it or the rule can replace the series of values in that approx
imation, it is the intensional side of this concept of a/5 . Besides Kant, such a view 
was also held by intuitionists like Kronecker. Kronecker argued that if you have a 
rule which effectively determines every term of an infinite sequence, then the law 
itself can replace the sequence. It is obvious that one can only represent the class 
of computable numbers (in the sense of Church or Turing) in this manner, and 
therefore the idea of infinity involved here means the countable infinite only.

To the challenge, put forward by Rehberg, that the application of arithmetical 
truth to sensible items may well be subject to the conditions of time, but not arith
metic as such, Kant replies by letter:

“As soon as instead ofo, the number of which it is the sign -\f5 is given, in order not merely to
designate its root as in algebra, but to find it, as in arithmetic, the condition of all generation of
numbers, namely time, is unavoidably presupposed.” (ibid, 117)

Again we might conclude from this that the procedure or rather its concept, the 
concept of a particular algorithm is to be exhibited in space or time as the forms of 
pure intuition. Once again we may observe that it is mathematical constructivity, 
that means the exhibition of the sense of mathematical concepts which Kant had 
in mind, when terming mathematics synthetic a priori knowledge. Existence is 
made equal to exhibition in space and time. We construct problems which did not 
exist prior to our definition of them. And by constructing them and presenting 
their properties, we construct the construction itself, exhibiting it in the forms of 
pure intuition.
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III Kant and Forster

Peirce agrees with Kant in that it is the idea of the (epistemic) subject on which 
any conception of knowing is founded. Peirce’s concern, however, is not with the 
unity of ideas (Vorstellungen) in a self-consciousness, but rather with the socially 
effective unity represented by signs, like works of art or of science. “Conscious
ness is used to denote the I think, the unity of thought; but the unity of thought is 
nothing but the unity of symbolization”, Peirce says (CP 7.585).

Kant assumes that all our knowledge extending cognitions are synthetical. For 
him, however, this synthesis does not lie in the matter of experience as such, but 
springs from the function of cognizant consciousness itself which this way be
comes aware of itself. The synthetic unity of consciousness, according to Kant, is 
“an objective condition of all knowledge. [...] For in the absence of this synthesis, 
the manifold would not be united in one consciousness” (Kant B, 138). Peirce 
now stresses that this very unity is based on the reality of the continuum. The 
continuum being that on which the unity of symbolization is based. This unity is 
not just an ex post fact. Representations or interpretations are not arbitrary or just 
contingent.

“Thus, the question of nominalism and realism has taken this shape: Are any continua real? Now 
Kant, like the faithful nominalist [...], says: ‘no’. The continuity of Time and Space are merely 
subjective. There is nothing of the sort in the real thing in itself.” (Peirce Ms, 439 and NEM, IV,
343)

That Kant had given epistemology too much of a “subjectivist” turn emerges 
therefore, first of all, in his conception of the (epistemic) subject, which he con
ceives primarily in terms of activity, or according to Peircean terminology, as 
Secondness.

“Secondness is that in each of two absolutely severed and remote subjects, which pairs it with the 
other not for my mind nor for, or by, any mediating subject or circumstance whatsoever, but in 
those two subjects alone. [...] But this pairedness [...] is not mediated or brought about; and conse
quently it is not of a comprehensible nature, but is absolutely blind. [...] In their essence the two 
subjects are not paired.” (Peirce CCL, 147-148)

Kant had learnt from Hume that relations are “external”, that they represent noth
ing of the essence of the relata, that they are arbitrary. What in the nature of Paul 
should cause his being taller than Peter? All subjects are isolated like Leibnizian 
monads. Continuity we find, according to Kant, only in the realm of phenomena 
as they are synthezised by activity.

Peirce, in contrast, repeatedly emphasized (for instance in his various criti
cisms of William James, who held views of the continuum similar to Kant’s) that 
action is not the ultimate aim and end of humans (CP, 2.151; 2.763; 5.3; 5.429; 
8.115; 8.212). The highest kind of synthesis according to Peirce is represented by
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Thirdness. Thirdness replaces Kant’s so-called “highest point”, that is, synthetic 
unity of consciousness. Thirdness is what makes representation real. Under the 
perspective of Thirdness the human subject is to be characterized primarily by its 
capacity to grow, or to learn and evolve.

Hegel had already put forward a similar criticism of Kantian dualism (cf. He
gel, “Glaube und Wissen”, W, I, 1-154). But Hegel neglected the importance of 
Secondness altogether. Hegel regards the Third as the only true one Category. For 
in the Hegelian system the other two are only introduced in order to be aufge- 
hoben” (Peirce CP, 5.79). Hegel,

“seeing that the B e g r if f  'xn a sense implies Secondness and Firstness, failed to see that neverthe
less they are elements of the phenomenon not to be au fgeh oberu  but as real and able to stand their 
ground as the B e g r i f f  itself. The third element of the phenomenon is that we perceive it to be 
intelligible, that is, to be subject to law, or capable of being represented by a general sign or 
Symbol.” ( i b i d ,  8.268)

Peirce’s own position is reflected very clearly in some passages taken from a 
manuscript written in 1890 under the title A Guess at the Riddle:

“The highest kind of synthesis is what the mind is compelled to make neither by the inward 
attractions of the feelings or representations themselves, nor by a transcendental force of necessity, 
but in the interest of intelligibility, that is, in the interest of the synthesizing ‘I think’ itself; and this 
it does by introducing an idea not contained in the data, which gives connections which they would 
not otherwise have had. [...] Kant gives the erroneous view that ideas are presented separated and 
then thought together by the mind. This is his doctrine that a mental synthesis precedes every 
analysis. What really happens is that something is presented which in itself has no parts, but which 
nevertheless is analyzed by the mind, that is to say, its having parts consists in this, that the mind 
afterward recognizes those parts in it. Those partial ideas are really not in the first idea, in itself, 
though they are separated out from it. It is a case of destructive distillation. When, having thus 
separated them, we think over them, we are carried in spite of ourselves from one thought to 
another, and therein lies the first real synthesis. An earlier synthesis than that is a fiction.” ( ib id .,
1.383-384; this resembles closely Marx’s characterization of the dialectical method)

The problematic nature of Kant’s conception of the subject, and of his entire 
epistemology, is nicely reflected in a controversy between Kant and Forster, which 
took place in 1785. As a boy joining his father, Georg Forster (1754-1794), Alex
ander von Humboldt’s teacher, accompanied James Cook on the latter’s second 
sailing around the world. This voyage took almost three years, and Forster be
came famous in Europe, still a young man, for his report of it. In an article entitled 
“Noch etwas fiber die Menschenrassen [Some Additional Remarks on Human 
Races]”, in which he opposed Kant’s considerations concerning “Die Bestim- 
mung des Begriffs einer Menschenrasse und mutmablicher Anfang der Menschen- 
geschichte [Determining the Concept of a Human Race and presumptive Beginnings 
of Human History]”, Forster wrote:
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“A laige part of the merit Linn6 earned in botany was incontestably in the precise definitions. [...] 
After certain assumptions which he abstracted from his own experience, he designed his structure 
and fitted the creatures of Nature into it. As long as our insight remains limited, however, we 
would seem far from an infallibility of principles. Will categorizations which are based on limited 
experience, while possibly useful within these limits, not appear one-sided and half-true once the 
horizon is expanded, the point of view displaced? [...] Perhaps our present scheme of the sciences 
will become obsolete and deficient half a century from now, just like the previous ones. Even 
speculative philosophy would seem to be prone to this fate. Who does not immediately think of the 
C rit iq u e  o f  P u re  R e a s o n  in this context? Even if the theorem that one can only find in experience 
what one needs if one knows beforehand what to look for, were undisputedly correct [as Kant had 
written in the B e r lin e r  M o n a ts s c h r if t  of November 1785 (Kant SA, VII, 107)], a certain care 
would nevertheless be in order when applying this theorem, to avoid the most common of illu
sions, namely that in looking for what one needs, one presumes to have found the same even in 
places where it is really not present.” (Forster W, 1,5-6)

Forster’s point here is that there can be no transcendental and absolute in
sight. Otherwise, the new and unexpected would be nothing but a passive case of 
application of the preestablished categorical frame and the established prejudices. 
The new would be reduced to things already well familiar, and new insights could 
never emerge.

In content, the polemic between Forster and Kant is about determining the 
concept of Human Race and about the question whether Europeans and Africans 
belong to different genera, or whether they should not better be considered, be
cause of a presumptive common origin, as species of one and the same genus. 
Both authors depart from their own concept of Nature. For Forster, who traveled 
the world already as a boy, Nature is the whole, is reality as a continuum, in which 
all differences and connections can be found.

Forster always points out the systemic character of reality and of Nature in 
particular.

“A Negro”— Forster says for instance, is properly speaking— “a true Negro only in his own 
fatherland. Any creature of Nature is what it should be only in the locality for which it has been 
created; a truth which is seen confirmed every day in menageries and botanical gardens. A Negro 
bom in Europe is like a greenhouse plant, a modified creature, in all properties subject to change 
more or less unlike that which would have become of him in his own fatherland.” ( ib id ., 13)

Forster was very familiar with the principle of continuity as it was used by eight
eenth-century French authors, like Buffon or Robinet for instance, to emphasize 
the “Great Chain of Being” (Lovejoy 1936). On the other hand, Forster says, all 
our categorizations are necessarily arbitrary, a situation which already results from 
the fact that we are only able to think within fixed differences while the distances 
between the various genera in Nature fill an entire continuum.

“The order of Nature does not follow our categorizations, and as soon as one tries to impose them 
on it, one falls into inconsistencies. Each and every system is meant only to be a guideline for 
memory by giving sections as Nature itself seems to make them.” (Forster W, 22)
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Hence, and in contrast to Kantian epistemology, any constructive synthesis is pre
ceded or accompanied by analysis.

What can be said in view of this situation with regard to the question whether 
“Negro” is a genus or a species of humankind?

Forster, on the basis of his own systemic reasoning, assumes that Nature, like 
any continuum, forms a complete whole in every locality of the earth and in every 
climatic zone and that man represents no exception.

“If every region produced the creatures which were appropriate to it, and moreover in precisely 
those relations which were indispensable for their safety and upkeep: how is it that the fragile 
human being should be an exception here? Rather, Nature has given its own character, as Herr 
Kant himself professes, its special organization, an original relationship to a climate and suitabil
ity to the latter to each and every stock and race. Indisputably, this precise relationship between the 
land and its inhabitants can be most easily and briefly explained by the local emergence of the 
latter.” (ibid., 28)

Kant, in contrast, had claimed that all human races stemmed from only one and 
the same root.

Forster hesitates to answer the question “whether there are several original 
races” with certainty, but considers this hypothesis no less plausible than the Kan
tian one. And to Kant’s teleological or functionalist reasoning that in case of 
bigger differences human beings need to wage war on one another and that it is 
thus not in the interest of Nature to create such differentiation, Forster objects as 
follows:

“In a world where nothing is superfluous, where everything is linked by the finest nuances, 
where the concept of perfection finally consists in the aggregate and in the harmonic cooperation 
of all individual parts, the idea of a second genus of humans would be for the supreme mind a 
forceful means to develop ideas and feelings which are worthy of an earthly creature endowed 
with reason, thus interweaving this creature himself much more firmly with the plan of the whole.”

And he observes that one need only look at the slave trade to see how idealistic 
and abstract Kant’s considerations are. Slavery has not been prevented at all by 
the belief that all human beings are of one kind only.

Kant published a reply to Forster’s objections, “Uber den Gebrauch teleolo- 
gischer Prinzipien in der Philosophic” (Kant SA, VIII, 157-184). In his retort 
Kant wishes to do more than just maintain his position on the necessity of a priori 
principles: “It is indubitably certain that by mere empirical stumbling about with
out a guiding principle defining that which is sought after, nothing useful would 
ever be found” (ibid., 161). Kant accordingly begins with a quite different concept 
of Nature:

“If, by Nature, we understand the embodiment of everything which exists determined by laws 
[...] research into Nature can pursue two paths, either the merely theoretical or the teleological 
one, while using, however, [...] only such purposes which can become known to us by experience
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[...] for its intention. [...] Rightfully, reason calls first for theory in eveiy study of Nature, and only 
later for teleology.” (ibid., 159)

Nature is no more than order and uniformity of appearances. We prescribe a pri
ori rules to which all possible experiential reality must conform.

For Kant it seems indisputable that “where theoretical sources of knowledge 
do not suffice, we may make use of the teleological principles, but with such 
limitations of its use that theoretical-speculative research will always be assured 
precedence in order to try its best effort on the question at hand” (ibid., 164). 
From the necessity of this principle, Kant now derives an essential distinction 
between natural history and a mere description of Nature. Natural history, accord
ing to Kant, is exclusively concerned with “pursuing back, only as far as analogy 
permits, the connection between certain present features of natural things and 
their causes in former times according to the laws of cause and effect which we do 
not invent but derive from forces of Nature as they present themselves to us” 
(ibid., 162). It is evident here that Kant is not concerned with the objects, but with 
the laws, and further with getting “to know more precisely the limits of these laws 
lying in reason itself, together with the principles according to which they could 
best be extended” (ibid., 165).

Kant’s intention is to determine

“how the greatest variety in genesis can be reconciled by reason with the strictest unity of origin 
[...]. And one sees clearly here that one must be guided by a certain principle to even observe, that 
is to pay attention to what could give indication of the origin not only of similarity of appearance, 
because we are concerned here with a task of natural history, not of the description of nature.” 
(ibid., 164)

Kant then introduces such a principle which is intended to demonstrate a 
difference of origin, that is “the impossibility of obtaining fertile descendants by 
mixing two genetically different species of humanity” (ibid., 164-165).

According to this concept, Kant writes, “all men on the wide Earth belong to 
one and the same genus of nature, because they can consistently sire fertile chil
dren with one another, no matter how large the differences in their appearances 
encountered” (Kant SA, II, 430). Kant says that to assume a variety of “local 
creations” is an opinion “which multiplies the number of causes without necessi
ty” (ibid., 431). “It is the appropriateness in an organization which is the general 
reason from which we conclude that there is a design originally placed in the 
nature of a creature” (Kant SA, VII, 103).

Against this criterion, Forster again raises systemic objections by arguing that 
things in Nature are quite different from those in an experimental situation brought 
about arbitrarily. Artificial experiments, like breeding experiments “conducted 
with animals under the constraints of captivity” must not be quoted as genuine 
scientific explanations of cause. But he does not see this as an absolute counter
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argument to Kant concerning the hypothesis on the origin of Man, or a counter
argument only insofar as he qualifies Kant’s criterion as totally arbitrary, as a 
matter of mere definition. This resembles Hegel’s charge that Kantian reason 
furnishes only postulates and not knowledge of reality (cf. Hegel, “Glauben und 
Wissen”, cit.).

For Kant reasoning is founded on certain teleological principles. Thus, he 
says:

“In view of the varieties [i.e. of species], nature seems to prevent a fusion, because it runs counter 
to its purpose, namely manifolds of characters, while it at least permits this (fusion) in case of 
different races [...] because this makes the creature adapted to several climates while not making it 
suitable for any of them to the same degree found in the original adaptation to it.” (ibid., VIII, 
166-167)

That the latter also leads to disadvantages is proved, for Kant, by “the inferior 
quality” of (American) Indians who exist both in the northern and in the tropical 
climates. Kant argues against Forster who assumes that every region created its 
own human race by saying that:

“If one does not want to add a second to the special creation of the Negro already suggested by 
Herr Forster, namely that of the American (Indian), no other answer remains but that America is 
too cold or too new to ever produce the degeneration of the Negroes or of the yellow Indians, or to 
have produced them in the short period it has been inhabited.” (ibid., 176)

Kant thus assumes that men are, on the one had, of one common origin and 
that on the other hand, a cause lying in themselves, “and not merely in the cli
mate”, must have led to the differences between them. For Kant, as is well known, 
the transcendental principles of the use of reason must serve as a basis to derive 
everything else in a way coordinated with observation. Laws are verified ex post, 
since “by mere empirical stumbling around without guiding principles as to what 
should be sought”, nothing useful will be ever found, “for to have experience 
methodically means solely to observe” (ibid., 161). For Forster, conversely, the 
principles themselves must also result from observation, even if this cannot be 
imagined to come by itself and without activity from the cognizant subject.

The excessive mixture of speculations and principles ranging from phlogiston 
theory to medicine which he draws upon to explain differences in skin color and 
the like is very remarkable in Kant’s argumentation. His contributions are entirely 
unreadable, while Forster’s are still informative today. For instance, Kant takes 
external features like skin color for mere body paint “which is added to the skin by 
the sun and which will be taken away again by colder air” (ibid., 105). Everything 
which cannot be brought in agreement with any kind of experience is mere spec
ulation. In any case, Kant gives the element of the epistemic subject’s activity 
priority over the material element and this is how the principle of synthetic unity 
of apperception really works. The contrast between Kant and Forster seems essen

ANALYSIS AND SYNTHESIS FROM THE PERSPECTIVE OF PEIRCE 343

tially to correspond to the two poles in the system-subsystem paradox. This is 
sometimes presented as follows: “Any given system can be adequately described 
provided it is regarded as an element of a larger system. The problem of present
ing a given system as an element of a larger system can only be solved if this 
system is described as a system” (Blaubeig, Sadovsky and Yudin 1977, 270). It 
seems obvious that the system paradoxes enforce an evolutionary perspective for 
their resolution. Kant starts from the necessity of characterizing his own subsys
tem, Man, as a system before all else, because the (epistemic) subject guarantees 
the possibility of knowledge, whereas Forster characterizes Man primarily as a 
subsystem of a more comprehensive system, namely Nature.

One cannot err in assuming that Kantian reasoning is rather more determined 
by the inner regularities and forces of the mind, that is by mental motive forces, 
and less by intuition and experience. It seems to be a reasoning based, as Peirce 
said, on the relation of similarity, for “of the two generally recognized principles 
of association, contiguity and similarity, the former is a connection due to a power 
without, the latter a connection due to a power within” (Peirce CP, 6.105). Now 
Peirce has pointed out that it is exactly analytical reasoning which “depends upon 
associations of sim ilarity, synthetical reasoning upon associations of 
contiguity"(ibid., 6.595).

IV Some Issues where Peirce and Kant differ

Peirce writes:

“Kant divided propositions into Analytic, or Explicatory, and Synthetic, or Ampliative. He de
fined an analytic proposition as one whose predicate was implied in its subject. This was an objec
tionable definition due to Kant’s total ignorance of the logic of relatives. The distinction is gener
ally condemned by modem writers; and what they have in mind (almost always most confusedly) 
is just. The only fault that Kant’s distinction has is that it is ambiguous, owing to his ignorance of 
the logic of relatives and consequendy of the real nature of mathematical proof. He had his choice 
of making either one of two distinctions. Let definitions everywhere be substituted for definite in 
the proposition. Then it was open to him to say that if the proposition could be reduced to an 
identical one by merely attaching aggregates to its subjects and components to its predicate it was 
an analytic proposition; but otherwise was synthetic. Or he might have said that if the proposition 
could be proved to be true by logical necessity without further hypothesis it was an analytic one; 
but otherwise, was synthetic. These two statements Kant would have supposed to be equivalent.
But they are not so.” (NEMIV, 58)

The difference Peirce has in mind, I believe is this: Any subject-predicate expres
sion can be transformed by means of a hypostatic abstraction into a logically and 
empirically equivalent relational statement (CP, 1.551; with respect to the funda
mentally important notion of hypostatic abstraction see also: ibid., 4.234, 4.235, 
4.463, 4.549, 5.447, 5.534 and NEM IV, 49). Now if the original statement has 
not just been a logical truth it exhibits its hypothetical character, because the
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reality of hypostatic abstractions and of relations in general remains a hypotheti
cal one. We have to construct hypostatic abstractions to make possible what Peirce 
calls theorematic reasoning.

Since Kant's abstract definition is ambiguous, Peirce continues:

“We naturally look to his examples, in order to determine what he means. Now turning to 
Rosenkranz and Schubert's edition of his works, Vol. II [the Kritik, Kant B, 14] p. 702 we read, 
Mathematische Urtheile sind insgesammt synthetisch. That certainly indicates the former of the 
two meanings, which in my opinion gives, too, the more important division. The statement, how
ever, is unusually extravagant, to come from Kant. Thus, the ‘Urtheile’ of Euclid's Elements must 
be regarded as mathematical; and no less than 132 of them are definitions, which are certainly 
analytical. Kant maintains, too, that 7+5 - 1 2  is a synthetical judgment, which he could not have 
done if he had been acquainted with the logic of relatives. For if we write G for “next greater than,” 
the definition of 7 is 7 -  G 6 and that o f l 2 i s l 2 - G l l .  Now it is part of the definition of plus, that 
Gx+y -G(x+y). That is, thatG6+5 - G 11 is implied in 6+5 -1 1 . But the definition of 6 is 6 -G 5 , 
and that of 11 is 11 -G 1 0 ; sothatG 5+5 -G 1 0  is implied in 5+5 -  10, and so on down to 0+5 -  
5. But further it is a part of the definition of plus that Jt+Gy -  G(x+y) and the definition of 5 is 5 -  
G4, so that 0+G4 -  G4 is implied in 0+4 -  4, and so on down to0+0 -  0. But this last is part of the 
definition of plus. There is, in short, no theorematic reasoning required to prove from the defini
tions that 7+5 -  12. It is not even necessary to take account of the general definition of an integer 
number. But Kant was quite unaware that there was such a thing as theorematic reasoning, be
cause he had not studied the logic of relatives. Consequently, not being able to account for the 
richness of mathematics and the mysterious or occult character of its principal theorems by corollarial 
reasoning, he was led to believe that all mathematical propositions are synthetic.” (NEMIV, 58)

Now theorematic reasoning, according to Peirce, essentially depends on hypo
static abstraction. I am able to prove, he writes, “that the most practically impor
tant results of mathematics could not in any way be attained without this operation 
of abstraction” (ibid., 49). We depend on hypostatic abstractions to make relations 
visible that would otherwise remain hidden.

Kant says that we do not have axioms in arithmetic, because statements like 
“7+5 -  12” have nothing general to themselves (Kant B, 206). Number symbols 
seem to be proper names of concepts that have to be applied to gain objectivity. 
This implies the syntheticity of the statement. But Kant wants it to be a priori 
also. The whole matter, as presented above, therefore rests on a sharp distinction 
between intuitive and discursive conceptions and procedures.

Peirce ascribes to Kant the merit of having given for the first time in history 
the distinction between the intuitive and discursive processes of the mind its prop
er weight. If mathematics is not merely tautological it must contain an intuitive 
element. But the line between intuition and logic being drawn too firmly, the 
greatest merit of Kant’s doctrine turns itself at the same time into its greatest fault 
(Peirce CP, 1.35). Kant misses the importance of relations, and “wholly fails to 
see that even the simplest syllogistic conclusion can only be drawn by observing 
the relation of the terms in the premises and conclusion” (Peirce W, 5, 258). This 
is done by means of appropriately constructed diagrams. Peirce believes that math
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ematics proceeds by diagrammatic reasoning and that a diagram is characterized 
by the fact that one is able to find out more than was necessary to construct it. 
Mathematical reasoning is diagrammatic. But diagrams may nowadays contain 
highly complex conceptual structures. Recall for example the exact sequence de
fining the notion of a group extension, or the diagrams of homological algebra in 
general. In any case they do not contain names of definite objects. They are icons 
and deal with generals only, with hypostatic abstractions, and any individual, 
“whatever is determinate in every respect must be banished from the logic of 
mathematics” (Peirce NEM IV, XIII). An icon, like a free variable, does not “pro
fess to represent anything; for if it did, that would be a manner of signifying its 
object, not consisting in merely resembling it” (Peirce CP, 8.119).

According to Kant, a theorem like “7+5 = 12” is not purely analytical, because

“the conception of a sum of 7 and 5 contains nothing but the uniting of the two numbers into one, 
whereby it cannot at all be cogitated what this single number is which embraces both. The concep
tion of twelve is by no means already obtained by merely cogitating the union of 7 and 5; [...] One 
must go beyond these concepts, and have recourse to an intuition [...].” (Kant B, 15-16)

An intuition of what, the reader might ask. And he might think, what is clear
ly needed is an intuition or a concept of the relations and algorithms involved, the 
relation of recurrence, for instance (such were already the views of Bolzano in 
1810 and later again Poincare). Kant continues by saying: “[...] an intuition, which 
corresponds to one of the two—our five fingers, for example, [...] and so by de
grees add the units contained in the five given in the intuition to the conception of 
seven” (ibid., B 16). Thus it is obvious that the syntheticity derives from my fac
ulty of coping with the algorithm and that this in turn relies on the fact that it is 
applied onto particular cases. Kant’s distinction between purely conceptual argu
ment or deduction on one side and the application of concepts on intuitions (con
cepts according to Kant can only be applied on Vorstellungen of things rather than 
things themselves (ibid. B, 94)) remains artificial, because even in formal deduc
tion a meta-cognitive element is always present. To state that in Peircean termi
nology: deduction involves Thirdness and is not confined to Firstness and 
Secondness.

This results in the first point of difference. Peirce even says that the entire 
Kantian philosophy must fall to the ground, as his logical system of distinctions of 
propositions is artificial, resting on mere accidents of language. As soon as one 
formulates the concept of arithmetical sum, for instance, in terms of the cardinal
ity of sets, the concept is obtained as a law, and the arithmetical theorems in 
question thus become synthetical. As soon as the whole numbers, however, are 
constructed completely from the concept of ordinal numbers, introducing the con
cept of sum axiomatically and recursively on the basis of the successor operation 
of the ordinal numbers, the arithmetical theorems become analytical (Otte 1992,
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part IV). This situation leaves us with the choice of either negating the analytic- 
synthetic distinction any objective meaning or claiming that the operations of 
mathematical deduction and of concrete observation are not as distinct as it might 
appear. Peirce takes, as has been shown above, the second route. What is missing 
in Kant, he says, is the logic of relatives as it is developed from an analysis of 
diagrams, and as it is involved even in a perceptual judgment.

Now the logic of relatives shows

“that observation and ingenuity are involved in the reasoning process. For it leads us to perceive 
that purely deductive reasonings involve discovery as truly as does the experimentation of the 
chemist; only the discovery here is of the secrets of the mind within, instead of those of Nature’s 
mind. Now the distinction between the Inward and the Outward, great and decisive as it is, is, after 
all, only a matter of degree.” (Peirce NEM, IV, 355)

Thus the analytic-synthetic distinction also is only a matter of degree (see also 
part V of this paper).

The usefulness of mathematics is due to the fact that mathematical relations 
are to be interpreted and applied in an indeterminate multitude of constellations. 
They relate possibilities not facts. Kant already had seen that things necessarily 
remain isolated. Thus laws or axioms do relate generals rather than things. They 
are conditional counterfactuals. Sets of possibilities is what physicists speak about: 
the configuration space of a system is the set of its possible instantaneous states. 
Natural laws and mathematical axioms or propositions thus establish relations 
between possibilities, which means between free variables or continua. “A true 
general is a whatever-should-be which will impart its generality to the following 
would be”, as Peirce says (Ms, 641). Peirce thus assumes that a characteristic of 
mathematical thought is, “that it can have no success where it cannot generalize”. 
Mathematicians strive for the greatest possible generality, often “exchanging a 
smaller problem that involves exceptions for a larger one free from them” (Peirce 
CP, 6.236). But generalization in respect to its widest possible scope is continuity 
or refers to the continuum, because “the continuum is all that is possible” (Peirce 
CCL, 160). In contrast to Kant Peirce believes that continuity is real and that 
possibility is not just our present possibility. The idea of possibility is not con
strained by the idea of a (transcendental) subject. The human subject is a poten
tially unlimited being and growth or evolution marks its essence, rather than activity 
(see part III).

Thus we may understand his second point of disagreement with Kant, which 
is to be seen in the characterization of continuity. We know about the importance 
of the principle of continuity from the history of mathematics. To Peirce’s realism 
it is however essential to conceive of the continuum, not as a collective entity, but 
as strictly general. Peirce uses the idea of continuity to introduce the reality of 
generality. But the reality of a general is the reality of the possible. Thus continu
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ity is possibility. The possible is however not determined and fixed in every re
spect. Therefore Peirce refuses the continuum being constructed and built up from 
particulars, as in Cantorian set theory or arithmetized analysis after the fashion of 
Cauchy. Possibility is essential to Peirce because to really conceive of epistemolo
gy in evolutionary terms, the indeterminate or less determinate and possible must 
to a certain degree govern evolution. Only the past is factual, whereas thought is 
directed also to the future and therefore to the possible, rather than factual. Other
wise one could not understand how new objects, new laws and new knowledge in 
general can arise.

With Peirce’s abandonment of aprioricism the relation between generality and 
continuity becomes prominent. Free variables such as in axiomatic statements or 
statements like “a triangle has ...” do not imply a definite ontological commit
ment. A free variable or a “general triangle” does not represent a general that is 
predicative. It refers to a mere possibility. Therefore the term “general” is used by 
Peirce to designate a regularity or a law open to an indefinite number of instanti
ations, which means to something beyond all definite cardinality and this some
thing therefore represents a continuum. Were it a set of distinct individuals and 
not a continuum, then Cantor’s powerset axiom would show that it cannot be 
beyond all multitude. Is there any sense, asks Peirce, “in saying that something 
that is not a multitude of distinct individuals is more than every multitude of 
distinct individuals”. Yes, he answers, there is in the following way.

“That which is possible is in so far general, and as general, it ceases to be individual. Hence, 
remembering that the word ‘potential’ means indeterminate yet capable of determination in any 
special case, there may be a potential aggregate of all possibilities that are consistent with certain 
general conditions; and this may be such that given any collection of distinct individuals whatso
ever, out of that potential aggregate there may be actualized a more multitudinous collection than 
the given collection.” (Peirce CCL, 247)

The particular is at the same time general, and the concept of the general must 
be related to continuity, because a general relationship is a relationship that is 
stable under small perturbances. Such a variation does not concern a set of facts 
but a set of possibilities or hypotheses such that a general is a relation between 
possibilities, which are dependent on continuity and which have no isolated indi
vidual existence. The continuum thereby gains an ontological status independent 
of synthesizing activity and this certainly implies that any mathematical reason
ing contains an analytical element, because of the fact that the continuum is not, 
as Kant believed, subordinate or secondary to a preceding mental synthesis. This 
idea thus involves that of a continuum. This new idea of general was expressed by 
Poncelet and by Peirce in nearly the same words.

We know that an algebraic or a complex analytic function /, such that/(x) -  g (x) 
holds for as small a variation of the argument as you please, is identical with g. 
Poncelet, on the basis of such observations, and taking into account that analytical
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geometry consists in coordinating continua, understood that the principle of con
tinuity is at the heart of operating with equations like x  -  5; and that it is the secret 
of algebraic generality. We can accept* = 5 and operate with it although a variable 
* and a particular value of that variable are of different logical type. The particu
lar, an ellipse for instance, represents in a certain sense, which cannot universally 
be specified, the general, the conic; as long as it represents certain essential prop
erties pertinent to that purpose, which are stable under continuous variation. Pon- 
celet aimed at a method that was based on the interaction of general and particular, 
concept and representation. As in geometry, one can always only represent the 
general by a particular, the genus by a species, or the category by a prototype, as 
with the idea of “general triangle”, for instance, or like a conic section by a partic
ular exemplar, like a circle or an ellipse, one has to employ the principle of conti
nuity to state in full generality relationships that have been verified for a particular 
diagram. Poncelet himself described the procedure as follows:

“Let us consider some geometrical diagram, its actual position being arbitrary and in a way 
indeterminate with respect to all the possible positions it could assume without violating the con
ditions which are supposed to hold between its different parts. Suppose now that we discover a 
property of this figure, whether it be metrical or descriptive, by means of ordinary explicit reason
ing— that is, by methods alone regarded as rigorous in certain cases. Is it not clear that if, observ
ing the given conditions, we gradually alter the original diagram by imposing a continuous but 
arbitrary motion on some of its parts, the discovered properties of the original diagram will still 
hold throughout the successive stages of the system, always provided that we note certain altera
tions, such as that certain quantities vanish, etc.— alterations, however, which can easily be recog
nized a priori and by reliable rules?” (Poncelet AAG, II, 531)

Thus the permanence of relationships rather than the empirical and isolated 
existence or non-existence of the relata validates the argument. The general is of 
the character of a relationship or connection, like an idea that spreads among 
minds. Peirce makes this comparison between natural laws and the effect of words. 
“It is proper to say that a general principle that is operative in the real world is of 
the essential nature of a representation and of a symbol because its modus operan- 
di is the same as that by which words produce physical effects” (Peirce CP, 5.105).

Third, the belief that mathematics represents absolute and apodictic true knowl
edge, may be questioned on grounds of two types of arguments, doubting that 
there is indubitable knowledge at all or questioning that mathematics represents 
factual knowledge. Peirce voices both kinds of disbelief. We have already dealt 
with one of them above in the first point of divergence. With respect to the second 
Peirce writes:

“Kant regarded mathematical propositions as synthetical judgments a  priori-, wherein there is 
this much truth, that they are not, for the most part, what he called analytical judgments; that is, the 
predicate is not, in the sense he intended, contained in the definition of the subject. But if the 
propositions of arithmetic for example are true cognitions, or even forms of cognitions, this cir
cumstance is quite aside from their mathematical truth.” (ibid., 4.232)
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Mathematics is not at all concerned with meanings (ibid., 5.567), but rather, as 
Peirce writes, with the substance of hypotheses. “Mathematics is purely hypothet
ical: it produces nothing but conditional propositions” (ibid., 4.240). And what is 
more important: mathematics cannot be applied to reality by first identifying premis
es in every detail. Observable details do not at all guarantee any real connection 
and “synthetic inference is founded upon a classification of facts, not according to 
their characters, but according to the manner of obtaining them” (ibid., 2.692).

This, however, implies that all knowledge is fallible and subject to possible 
revision. We have seen how Peirce’s conception of the subject matter of mathe
matics is connected with his conception of the continuum and that this conception 
in turn implied to treat the problem of the evolution of knowledge in mathematics 
and in the natural sciences on a par. It also follows that theories become realities 
sui generis in relation to concrete reality. This means, that they cannot simultane
ously be theories of their own application. Interpretation is a meta-operation that 
leads to a new representation. But theories being also signs (besides being entities 
in their own right) take part in a continuum of signs. This continuum, again, is 
not just a collection of particulars, because it incorporates all the meta-meta ...- 
levels of interpretation.

How then does Peirce the Pragmatist conceive of the interaction of general and 
particular? This is what Doctor Z, a character in one of Peirce’ dialogues, asked 
the Pragmatist:

“You say that no collection of individuals could ever be adequate to the extension of a concept in 
general, [...]. But really I do not quite see how you propose to reconcile that to the proposition that 
the meaning extends no further than to future embodiments of it.” (ibid., 5.526)

The Pragmatist in answering this question illustrates his views “by the considera
tion of the continuity of space”. I shall, he says,

“adopt the Leibnizian conception of space in place of the Newtonian. In that Leibnizian view, 
Space is merely a possibility [...] of no matter what affections of bodies (determining their relative 
positions), together with the impossibility of those affections being actualized otherwise than un
der certain limitations, expressed in the postulates of topical, graphical and metrical geometry. No 
collection of points [...] could fill a line so that there would be room for no more points, and in that 
respect the line is truly general, [...1 and yet it is so to say nothing but the way in which actual 
bodies conduct themselves.” (ibid., 5.530)

Fourth, Peirce, as opposed to Kant, does not see the problem in the question: 
“How are synthetical judgments a priori possible ?”, but rather in the more gener
al question: “How are any synthetical judgments at all possible? How is it that a 
man can observe one fact and straightway pronounce judgment concerning anoth
er different fact not involved in the first?” (ibid., 2.690). An answer is given 
which reminds us of the principle of continuity, which is fundamental to Peirce’s 
philosophy. The answer is this: “whatever is universally true is involved in the
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conditions of experience” {ibid., 2.691); and further: “experiences whose condi
tions are the same will have the same general character” {ibid., 2.692). The prin
ciple of continuity referring to generals cannot be based on a concept of uniformity 
of Nature (Mill).

“Mill never made up his mind in what sense he took the phrase uniformity of Nature when he 
spoke of it as the basis of induction. In some passages [...] Mill holds that it is not the knowledge 
of the uniformity, but the uniformity itself that supports induction, and furthermore that it is no 
special uniformity but a general uniformity in nature. Mill’s mind was certainly acute and vigor
ous, but it was not mathematically accurate; and it is by that trait that I am forced to explain his not 
seeing that this general uniformity could not be so defined as not on the one hand to appear mani
festly false or on the other hand to render no support to induction, or both. He says it means that 
under similar circumstances similar events will occur. But this is vague. Does he mean that objects 
alike in all respects but one are alike in that one? But plainly no two different real objects are alike 
in all respects but one. Does he mean that objects sufficiently alike in other respects are alike in 
any given respect? But that would be but another way of saying that no two different objects are 
alike in all respects but one. It is obviously true; but it has no bearing on induction, where we deal 
with objects which we well know are, like all existing things, alike in numberless respects and 
unlike in numberless other respects.” (ibid., 1.92)

The principle of continuity applies here because “whatever is universally true is 
involved in the conditions of experience” {ibid., 2.691), that is, belongs to the 
general aspects of that particular event in question, to its law like character. The 
principle of continuity, according to Peirce is a methodological principle regulat
ing the interaction between general and particular and it is the only such funda
mental principle, lending support also to induction.

If we understand Kant in the sense that synthetical judgments a priori just 
signify conditions of experience (see the introduction), then the difference be
tween Kant and Peirce amounts essentially to the question of the nature and onto
logical status of generals (or continua) or laws.

“While uniformity is a character which might be realized, in all its fullness, in a short series of 
past events, law, on the other hand, is essentially a character of an indefinite future; and while 
uniformity involves a regularity exact and exceptionless, law only requires an approach to uni
formity in a decided majority of cases. [...] The law should be a truth expressible as a conditional 
proposition whose antecedent and consequent express experiences in a future tense, and further, 
that, as long as the law retains the character of a law, there should be possible occasions in an 
indefinite future when events of the kind described in the antecedent may come to pass. Such, then, 
ought to be our conception of law, whether it has been so or not.” ( ibid.,8.192)

For Peirce, the reality of the “general” becomes clear from the way we deal 
with natural laws: natural laws are general because they permit predictions, and 
not only because they are stated with regard “to many things”, as the traditional 
definitions of the general say. In other words: the Aristotelian concept of the gen
eral as something predicative is replaced here by another concept of the general, a 
cognition or a situation being designated as “general” which permits predictions 
to a certain degree. If these predictions, however, are not to be held to be acciden

ANALYSIS AND SYNTHESIS FROM THE PERSPECTIVE OF PEIRCE 351

tally true, the general must be assumed to be an active connection in reality, be it 
in nature or in history (see for example ibid., 5.103). If the possibility of predic
tions with regard to future events is given (a stone raised will fall down), this 
possibility must find a basis in the reality of the connection between things sug
gested here. And if relations (the laws of falling bodies) and relata (the series of 
falling stones) thus have the same ontological status, then there exists a genuine, 
that is in Peirce’s sense an inexhaustible continuum between these two entities— 
between the general law and the particular case—both whose existence is as
sumed here.

Let us come back once more to the analogy between mathematical axioms and 
natural laws to illustrate how Peirce’s ideas about continuity are linked to his 
philosophical realism. To explain a statement like 2+2 -  4 {ibid., 4.91), or7+5 -  12 
if you like, one first argues, as in discourse on ordinary knowledge, that this prop
osition expresses a simple matter of fact, to be easily verified by means of a calcu
lation (which however is in itself independent of such verification as it seems 
present in intuition). After a while one goes on, completely as in the case of sci
ence, to try and give an explanation of this fact. This endeavor implies a change of 
perspective, a jump to a level of different logical or categorical type. The law gives 
a unified account of what is otherwise a mere series (Armstrong 1983). In this 
endeavor one uses the general and abstract to explain the particular and concrete, 
or seemingly concrete, in exactly the same manner in which Newton’s laws are 
used to explain simple mechanical phenomena, or Ohm’s law is used to explain 
the facts of electricity. The general, as used in scientific explanations of such kind, 
in our case for instance the associative law of algebra, is less sure from a concrete 
empirical point of view and less positive than the individual facts to be founded on 
it. The less certain is used to explain the more certain, because what could be 
more certain because the effects of a law can never be certain. Such a strategy 
makes sense if it is employed exploratively and predictively, even though the pre
dictions made can never be absolutely sure.

Nominalism, denying the existence of universals outside the mind, has no use 
for the idea that laws are relations between universals and therefore cannot ex
plain the power of prediction inherent in them. Nominalism, or empiricism, per
haps, would speak of an inductive establishment of regularities, in which theoretical 
concepts and scientific laws lose their independent meaning. The great difference 
between induction and what is involved here is “that the former infers the exist
ence of phenomena such as we have observed in cases which are similar, while 
hypothesis supposes something of a different kind from what we have directly 
observed, and frequently something which it would be impossible for us to ob
serve directly” (Peirce W, III, 335-336).

The nominalists would say that a natural law is a mere representation, “the 
word mere meaning that to be represented and really to be are two very different
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things” (Peirce CP, 5.96). Now natural laws, as was said earlier, have some im
portance to us because of their predictive power. Exactly because of their prognos
tic function they cannot just be established by empirical verification. The nominalist 
would say they are free creations of the human mind, making their effectualness a 
miracle or a matter of pure chance “in order to escape the conclusion that general 
principles are really operative in nature” (ibid., 5.101). It makes no difference 
that the laws of nature do produce their effects with a certain probability only. On 
the contrary probability judgments exhibit much more clearly the general charac
ter of synthetic reasoning (ibid., 2.692 and Ms, 107).

For Peirce, the general is thus necessarily of a hypothetical character, as it is 
seen from the very outset in its potential for development. And this holds in the 
same vein for the natural laws which in Peirce’s view are subject to evolution in 
the same way as the physical phenomena determined by them. On this basis, the 
paradigmatic role of mathematics can be seen in the very fact that for Peirce it 
always had to do with hypotheses alone, so that the mode “in which mathemati
cians generalize” (CP, 6.26) can be used to study the process of increasing gener
alization within a “true” continuum of applications. Again this continuum, not 
being collective, just forms a space of possibilities.

The process of applying a theorem is thus a generalization. Firstly, because 
collective experience accumulates and is embodied within the system of symbolic 
means and every application of that means fosters this process, being at the same 
time dependent on it. Therefore generalization takes place, because the embodi
ment of experience in the construction of signs suggests new analogies, and gen
eralized hypotheses. Generalization thus is both a social process and an 
object-related one. Two continua, one linking the sign with its object, and the 
other established by the successive series of interpretants, appear as if fused into 
one, because interpretants depend on the relation between sign and signified ob
ject.

The idea of sign brings us to the fifth divergence between Kant and Peirce. 
Kant’s refutation of the ontological proof of God’s existence, which formed the 
basis of Leibnizianism, confines us in philosophy to a construction of concepts, 
without providing the certainty that these concepts are not empty. Hence, the ques
tion arises as to how these concepts can be applied to objects. Kant’s answer con
sists in pointing out the role of intuition. In mathematics these objects are only 
variables, such that mathematical reasoning becomes hypothetical. Peirce intro
duces the following changes: on the one hand, he eliminates the difference be
tween concept and representation (Vorstellung) by means of the notion of “sign”. 
On the other hand, he has a quite different idea of what reasoning or inferring is. 
Peirce always stressed that the insufficiencies of Kant’s epistemology were due to 
the latter’s insufficient logic, to a mere subject-predicate logic, and that this logic, 
in order to remedy the defect, must be extended to a logic of relations. It is in this
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very aspect, that diagrammatic reasoning becomes indispensable. Diagrammatic 
thinking is essentially established by the principle of continuity (ibid., 5.162) and 
it shows that deduction and induction or analysis and synthesis are not so thor
oughly unlike as might be thought (ibid., 5.579).

A sixth aspect is also closely linked with the role of signs and means of repre
sentation, namely that mathematics is essentially a kind of social cognition. Math
ematical cognition is the art of bridging gaps by inventing analogies and 
generalizations. Pure mathematics is the child of an explosive growth of mathe
matical activity that occurred around 1800 and that, in its sources, may be sum
marily characterized by stating that for the first time in the history of mathematics 
a great number of connections between apparently very different results and prob
lems was discovered (Scharlau 1979, 277). A complementary presupposition is 
hidden here, namely that plurality and difference played a fundamental epistemo
logical role. The world was seen as ruled by difference rather than by similarity or 
equality. In view of the fact that equality and difference are the fundamental sub
ject matter of mathematics, it seems plausible to claim that

“the chief characteristic of mathematical propositions is the wide variety of equivalent formula
tions that they possess. [...] In mathematics the number of ways of expressing what is in some sense 
the same fact while apparently not talking about the same objects is especially striking.” (Putnam 
1975, 45)

It seems obvious then that mathematics cannot be analytic, as otherwise there 
should be a universal mechanism that decides for any A whether one should be 
allowed to call it B thus deciding whether A could also be called B. It seems not 
surprising at all that Quine in “Two Dogmas” (1953) was not able to define syn
onymy in logical terms.

V The Analytic-Synthetic Distinction according to Peirce is only 
relative

Kant’s definition of analytic judgments expresses a whole or partial identity be
tween concepts serving as subject and predicate. The predicate essentially belongs 
to the subject and the subject is presented in its essential properties or relations. 
What is new about this situation in Kantian philosophy is only the fact that the 
essence of an object is not given but is constructed. Knowledge, says Kant,

“consists in the determinate relation of given representations (Vorstellungen) to an object: and 
an object is that in the concept o f which the manifold of a given intuition is united. Now, all 
unification of representations demand unity of consciousness in the synthesis of them. Conse
quently it is the unity of consciousness that alone constitutes the relation of representations to an 
object, and therefore their objective validity, [...] and upon it therefore rests the very possibility of 
the understanding.” (Kant B, 137)



354 MICHAEL OTTE

Accordingly knowledge and understanding depend on consciousness and the (epis- 
temic) subject becomes the pivotal and crucial point of epistemology. Peirce sub
stitutes the subject’s consciousness for the sign. In a sign, like in a work of art for 
instance, the synthesis of representations is realized in a way similar to the way 
the very essence of Monet’s garden at Givemy has been realized in his paintings.

“The work of the poet or novelist is not so utterly different from that of the scientific man. The 
artist introduces a fiction; but it is not an arbitrary one; it exhibits affinities to which the mind 
accords a certain approval in pronouncing them beautiful, which if it is not exactly the same as 
saying that the synthesis is true, is something of the same general kind. The geometer draws a 
diagram, which if not exactly a fiction, is at least a creation, and by means of observation of that 
diagram he is able to synthesize and show relations between elements which before seemed to 
have no necessary connection. The realities compel us to put some things into very close relation 
and others less so, in a highly complicated, and in a sense itself unintelligible manner; but it is the 
genius of the mind, that takes up all these hints of sense, adds immensely to them, makes them 
precise, and shows them in intelligible form in the intuitions of space and time.” (Peirce CP, 1.383)

The objectivity of a piece of art or of a theory which “compels us to put some 
things into very close relation and others less so” is due to the fact that works of 
art or theories, besides being signs, became recognized as realities sui generis. 
They are, in Peirce’s words, distinct quales or qualia.

“In so far as qualia can be said to have anything in common, that which belongs to one and all is 
unity; and the various synthetical unities which Kant attributes to the different operations of the 
mind, as well as the unity of logical consistency, or specific unity, and also the unity of the indi
vidual object, all these unities originate, not in the operations of the intellect, but in the quale- 
consciousness upon which the intellect operates.” (ibid., 6.225)

By his “semiotic transformation” of critical philosophy, Peirce was able to 
take into account that looking from different perspectives on one and the same 
thing and viewing different objects from one and the same point of view become 
indistinguishable approaches, as in the fusion of analytical geometry and linear 
algebra. The semiotic theory attempts to explain cognitive growth as a process in 
which the stages are indifferently members of a social community or sequential 
states of a single person. Knowledge and cognition are relative only in that they 
have to grow and to be generalized. That is their essential nature. Man is a sign 
himself and the processes of objective and of communicative generalization be
come unified into one process. Peirce semiotic theory now relies essentially on the 
logic of continuity and on the reality of the continuum. I cannot extensively deal 
with this thesis here but take it into account only as far as it concerns my topic.

With respect to this “semiotic transformation” of critical philosophy the refor
mulation of the definition of analytical judgments—in the sense of Kant as given 
by Quine in his “Two Dogmas of Empiricism”—seems justified. Quine writes:

“Kant conceived of an analytic statement as one that attributes to its subject no more than is 
already conceptually contained in the subject. This formulation has two shortcomings: it limits

ANALYSIS AND SYNTHESIS FROM THE PERSPECTIVE OF PEIRCE 355

itself to statements of subject-predicate form, and it appeals to a notion of containment which is 
left at a metaphorical level. But Kant’s intent, evident more from the use he makes of the notion of 
analyticity than from his definition of it, can be restated thus: a statement is analytic when it is true 
by virtue of meanings and independently of fact.” (Quine 1953,20-21)

Meanings are generals, they are instances of Thirdness, and that implies that 
an investigation into meaning relations is a meta-knowledge activity. Any mental 
activity, in fact, involves the idea of context and this means meta-cognitive ele
ments. For instance, the form which a simple distinction commonly takes is “All 
things of sort S are either A or B ”. A simple distinction thus already involves 
generality (hinted at by the term: “ ... of sort 5”). Every cognitive activity involves 
a meta-cognitive element. To give but one more example: human rote learning is 
an example of a very rudimentary form of cognitive activity. But normally it is 
accompanied by a second-order phenomenon which we may call “learning to rote 
learn”. For any given subject, there is an improvement in rote learning with suc
cessive sessions asymptotically approaching a degree of skill which varies from 
subject to subject. Meta-cognitive activity making that one has thought about any 
subject itself a subject of thought creates what Peirce has termed “hypostatic ab
stractions”.

“In order to get an inkling— though a very slight one— of the importance of this operation in 
mathematics, it will suffice to remember that a collection is an hypostatic abstraction, or ens 
rationis, that multitude is the hypostatic abstraction derived from a predicate of a collection, and 
that a cardinal number is an abstraction attached to a multitude.” (Peirce CP, 5.534)

Now hypostatic abstractions like the essence of “Two” or like “Blue-ness” are 
indeterminate in many respects and to varying degrees, they are continua and they 
are real. Thus they represent Thirdness.

The analytic-synthetic distinction must therefore be liberated from questions 
about objectivity and objective truth. It is a methodological question. One has, 
with respect to the purpose at hand, to choose the appropriate level of generality. 
And taking into account the identity between generality and continuity any inves
tigation into meaning relations should be governed by the principle of continuity 
rather than the principle of identity of indiscemibles. One would ask then how 
meanings become connected, that is become species of one kind or type, rather 
than whether different meanings refer to the same thing or are identical. Now

“the meanings of words ordinarily depend upon our tendencies to weld together qualities and our 
aptitudes to see resemblance, or, to use the received phrase, upon associations by similarity; while 
experience is bound together, and only recognizable, by forces acting upon us, or, to use an even 
worse chosen technical term, by means of associations by contiguity.” (ibid., 3.419)
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And

“analytical reasoning depends upon associations of similarity, synthetical reasoning upon asso
ciations of contiguity. The logic of relatives, which justifies these assertions, shows accordingly 
that deductive reasoning is really quite different from what it was supposed by Kant to be; and this 
explains how it is that he and others have taken various mathematical propositions to be syntheti
cal which in their ideal sense, as propositions of pure mathematics, are in truth only analytical.” 
( ib id .,  6.595)

This error with respect to the character of deduction in pure mathematics is 
due to the sharp discrimination Kant has drawn between deductive inference and 
observation or between discursive and intuitive knowledge. Kant

“saw far more clearly than any predecessor had done the whole philosophical import o f this 
distinction. This was what emancipated him from Leibnizianism, and at the same time turned him 
against sensationalism. [...] But he drew too hard a line between the operations of observation and 
of ratiocination.” ( ib id ., 1.35)

Kant shared with Leibniz a foundationalist attitude with respect to knowledge. 
He, however, conceived of the foundations differently from the God’s eyes per
spective of Leibnizianism. This different orientation made him emphasize the 
distinction between discursive and intuitive knowledge, because only God’s mind 
is intuitive, whereas ours is necessarily discursive (Kant B, 135). Peirce does not 
accept Kantian foundationalism and the sharp separation between the subjective 
and the objective in Kantian thought and this makes the analytic-synthetic dis
tinction a relative one too.

“The truth is our ideas about the distinction between analytical and synthetical judgments is 
much modified by the logic of relatives [...]. Deduction, or analytical reasoning, is [...] a reasoning 
in which the conclusion follows (necessarily, or probably) from the state of things expressed in the 
premises, in contradistinction to scientific or synthetical reasoning, which is a reasoning in which 
the conclusion follows probably and approximately from the premises, owing to the conditions 
under which the latter have been observed [...]. The two classes o f reasoning present, besides, 
some other contrasts [...] some significant resemblances. Deduction is really a matter of perception 
and of experimentation, just as induction and hypothetical inference are; only, the perception and 
experimentation are concerned with imaginary objects instead of with real ones.” (Peirce CP, 
6.595)

Mathematics, being based on experimentation with diagrams, has deduction as its 
main method of reasoning (Peirce knows of two other methods, namely induction 
and abduction) and Thirdness as its main category.

Another explanation of the connection between the analytic-synthetic distinc
tion and the subject-object relation can be furnished via a discussion about the 
character of relations and in particular via the question whether relations are 
internal or external (Peirce uses the attributes “relation of reason” vs. “real rela
tion” and he parallels analytic knowledge with the former (ibid., 1.365)). The 
attempts by Russell and Moore to understand relations and to see the implications
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of the distinction between internal and external relations led to the establishment 
of analytic philosophy around the turn of the century (Moore 1922, 276-309).

Kant believed that relations are “external” and real knowledge must therefore 
be synthetical. All objects (substances) are isolated like Leibnizian monads. Con
tinuity we find only in the realm of phenomena as they are synthesized by activity. 
Kant accordingly based synthesis and continuity on activity. But contrary to Hume 
he believed in the objective character of the synthesis and the resulting knowledge 
because the subject’s activity is framed by conditions that are a priori. Therefrom 
comes his project of understanding how synthetic knowledge a priori is possible.

An analytic proposition implies S = P and this means S< P  and S > P. S < P, in 
words: the predicate is to be applied to the subject; whereas S > P means the 
predicate inherently belongs to the subject. This last expression is normally used 
when explaining what analyticity of judgments means. S < P and S > P, however, 
are equivalent, as we have just seen from the rephrasing (a more formal statement 
of this equivalence can be found in Peirce (Peirce CCL, 131 ff.). We see from this 
that if all relations are internal all propositions are analytical. The externality of 
relations by contrast, leads to synthetic propositions. Instead of using a priori 
intuition to secure the objectivity of synthetic knowledge Peirce uses a theory of 
the continuum. Objectivity of knowledge namely is an ontological question, ac
cording to Peirce. It is the question of the reality and generality (which is the 
same) of relations, and the latter question depends on continuity (as we have seen 
when discussing Poncelet's views). On these grounds, the analytic-synthetic dis
tinction becomes relative. We have, in fact, shown that analysis and synthesis are 
complementary elements in every mental activity (even in formal deduction).

Quine in “Two Dogmas of Empiricism” claims (1953, 37) that Peirce adhered 
to the verification theory of meaning and held a limit theory of truth. This, howev
er, is a too narrow interpretation of the pragmatic maxim and of Peirce’s frequent 
endorsement that the truth of any proposition is a function of whether or not its 
being accepted by the epistemic community in the idealized long run. In a contro
versy with William James and the latter’s views on pragmatism, Peirce denied the 
existence of absolute individuals and stressed the importance of the general, which 
is a continuum that is not collective. The continuum of space, we recall, served 
Peirce as an illustration of such a potential aggregate that contains only general 
conditions “which permit the determination of individuals”. The pragmatic max
im in a narrow sense implies a God’s eye perspective, as Peirce had explained in 
a review of Royce’s philosophy because the thing which God imagines, and the 
opinion to which investigation would ultimately lead, in point of fact, coincide. 
(Peirce CP, 8.41). Thus to hold a verification theory of meaning would amount to 
falling back on Leibnizianism, which certainly was not on Peirce’s mind.

Quine, in “Two Dogmas of Empiricism”, linked the analytic-synthetic dis
tinction to the classical view of scientific knowledge, namely to the belief that
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each meaningful statement is equivalent to some logical construct upon state
ments that express direct matters of fact. Quine, in fact, defines this type of reduc- 
tionism more narrowly, but we want here to stick to the classical Aristotelian 
scheme of a science. Such a science is a system of sentences which satisfies the 
following postulates: there is a finite number of terms and a finite number of 
sentences such that the meaning of the terms and the truth of the sentences are so 
obvious as to require no further explanation and proof. The meaning of any other 
term as well as the truth of any other sentence is definable or logical inferable 
starting from the original collections of terms and sentences, which are given by 
means of intuition and experience.

Kant adhered to this Aristotelian model of rationality, but radicalized it by 
amplifying the part of the rational mind as a standard, since he learned from 
Hume that all knowledge presupposes a synthetic constructive element. His views 
are best illustrated by quoting his characterization of the term “Nature” (Kant A, 
125-128). The unity of apperception is the basis of any order and uniformity of 
Nature (cf. part III of this paper).

Holism in the sense of Kuhn or Feyerabend followed the Kantian route a little 
further still. On this account theory as a whole or the paradigm becomes the standard 
which determines fact and rationality. But this standard becomes thoroughly rel
ative. Kant sacrificed truth for objectivity. Now even objectivity is to be under
stood relative to the theory in question. Kuhn or Feyerabend believe that theory as 
a whole determines the intensions of its terms and that intensions determine ex
tensions. The theory or the paradigm becomes a way of seeing the world, which is 
completely incommensurable with other ways. It is clear then that the analytic- 
synthetic distinction loses all objective meaning because of the thoroughgoing 
relativism involved. Where do the scientific revolutions and the new rationality 
standards come from? To answer questions like this we would have to engage in 
an understanding of the objectivity of the subjective outside aprioricism. The task 
then is to see how in the evolution of knowledge social and objective factors inter
act. Quine finally believes that the theoretical system as a whole must be squared 
with experience but is as such hopelessly underdetermined by experiential fact. 
Quine’s solution of the dilemma of relativism is that “in practice we end the re
gress of background languages, in discussions on reference, by acquiescing in our 
mother tongue and taking its words at face value” (Quine 1968, 201). This means 
we understand scientific objectivity as resting on common sense. But this is, says 
Chomsky, “no help at all, since every question he had raised can be raised about 
the mother tongue and the face value of its words” (Chomsky 1976, 186). Com
mon sense convictions themselves have to be taken as variables and have to be 
related to scientific expertise and inquiry. It is the relationship between science 
and commonsense knowledge which determines our cultural evolution.

ANALYSIS AND SYNTHESIS FROM THE PERSPECTIVE OF PEIRCE 359

Nevertheless it is common sense where our most stable convictions are bor
rowed from, even in science. Meaning essentially depends on the fact that all 
humans ultimately live in a common world, irrespective of the fact that pluralism 
and diversity are very essential to human life. Peirce always stresses that purposes 
of “a general description” are intended in the pragmatic maxim, and that

“upon innumerable questions, we have already reached the final opinion. How do we know that?
Do we fancy ourselves infallible? Not at all; but throwing off as probably erroneous a thousandth 
or even a hundredth of all the beliefs established beyond present doubt, there must remain a vast 
multitude in which the final opinion has been reached. Every directory, guide-book, dictionary, 
history, and work of science is crammed with such facts. In the history of science, it has sometimes 
occurred that a really wise man has said concerning one question or another that there was reason 
to believe it never would be answered. The proportion of these which have in point of fact been 
conclusively settled very soon after the prediction has been surprisingly large. Our experience in 
this direction warrants us in saying with the highest degree of empirical confidence that questions 
that are either practical or could conceivably become so are susceptible of receiving final solutions 
provided the existence of the human race be indefinitely prolonged and the particular question 
excite sufficient interest.” (Peirce CP, 8.43)

VI Pure and Applied Mathematics: Some Examples of Non-Kantian 
Applications of Mathematics

What concerns us here is the complementarity of means and problems, or of methods 
and objects, which became prominent. This complementarity becomes essentially 
Thirdness, if one takes into account that activity has to enter as a third into the 
relation. The fundamental ideas of science or mathematics are of a methodologi
cal character, rather then of an objective one. Objects and relations become means 
and means become objects of scientific activity. Means and objects are fully differ
entiable by their respective moments on individual cognitive activity, but they 
play a completely symmetric part in the development of cognition. This comple
mentarity (difference and unity) of objects and means accounts for the emergence 
and dynamism of pure mathematics in the nineteenth century. It follows from this 
that there are no absolute foundations nor universal justification processes for 
mathematics. Looking from different perspectives on one and the same thing and 
viewing different objects from one and the same point of view become methodo
logically indistinguishable approaches, as in the fusion of analytical geometry 
and linear algebra. This equivalence or complementarity is represented in the 
idea of sign, when taken in the sense of Peirce. Linear algebra or synthetic projec
tive geometry were meant by its inventors as new and more fundamental approaches 
to geometry, in comparison to the ones espoused by Euclid or Descartes. Still they 
did not lead as was hoped to the final determination of mathematics. They were in 
fact first steps towards what later on became called a de-ontologization of mathe
matics.
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Mathematical ontology nowadays can only be conceived of as Peirce’s inex
haustible continuum of real possibilities of relations. And which of these possibil
ities become actualized in a certain context and at a certain point in time depends 
on our goals and means of knowing. The future determines the past, which is the 
universe of the factual. The world contains only signs and the continuum of pos
sibilities ahead in the future. A theory of meaning based on concepts abstracted 
from substances does not permit us to distinguish between analytical or syntheti
cal judgments of cognition. The continuum’s meaning serves only as a philosoph
ical hypothesis which enables us to tie meanings to whether a practice of cognition 
has been verified and to justify generalizations by their ability to predict. The 
foundation of mathematics cannot be separated from its application. This is the 
conclusion we draw from what has been said above.

The dialectic of means and objects may briefly be summarized as follows:
A) As in any other cognitive activity, object and means of cognition are linked in 
mathematical activity as well. Mathematics cannot proceed in an exclusive orien
tation towards universal, formal methods. This would in the last instance amount 
to mathematical activity itself being suited to mechanization and formalization. 
Mathematics, too, forms specific concepts intended to serve in the grasping of 
mathematical facts.
B) Object and means are not only linked, but also stand in opposition to one 

another. Objects or facts are resistant to cognition. They represent Secondness, as 
Peirce says. And problems do not produce the means to their solutions out of 
themselves. Modem mathematics even obtains its own dynamics in no small part 
from applying theorems and methods which at first glance have nothing to do 
with the problems at hand.

In this, we understand by “object” any problem or any kind of resistance of 
reality against the subject’s activity, and by “means” anything which seems appro
priate to achieve mediation between the subject and the object of cognition. In this 
sense not only sign systems but also theories—knowledge of any kind and also 
intuitions in the Kantian sense—are means of the subject’s activity.

This double problematic of means and objects as outlined under (A) and (B) 
also determines the relationship between analysis and synthesis and the quite con
troversial evaluations of the latter.

With regard to (A), for instance, the advantage of synthesis is presented as 
concreteness and genuine objectivity in mathematics (AS), whereas under (B) 
synthesis is presented as a method too much dependent on the particulars of the 
situation under consideration that proceeds timidly, conservatively and tentative
ly, and by chance and error. Synthesis is a method which becomes mired in the 
particular and is unable to attain genuine generalization (BS).

Under (A), conversely, the restricted character of logic or of algebraic analysis 
is salient.
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“The objects considered which are mere compositions or compounds of elements do not contain 
more or less than the elements themselves; as a result, the goal pursued will always be determined 
by the means applied [...]. The problem is from the very outset cast into the mold of algebraic 
composition.” (Boutroux 1920,193-194)

In these words Boutroux criticizes Cartesian algebraic science. The means them
selves, dominating thought too much, become the only objects considered. Or, to 
put it differently, knowledge becomes abstract and formal (AA). From perspective 
(B), on the other hand, algebraic generalization appears as an opportunity for 
symbolic generality which detaches itself from links too close to referential mean
ings, and in which true generalization is attained by introducing hypostatic ab
stractions, whereas in synthetic mathematics the general is always only presented 
by a particular (BA).

For purposes of illustration, let us consider two examples of mathematical 
application. The first concerns the so-called “theory of cellular automatons” and 
the possibilities of using them to describe the developmental dynamics of process
es. In an application developed by Bielefeld mathematicians, the matter at hand 
was to investigate heterogeneous-catalytic reactions on metal surfaces. These are 
chemical reactions occurring in many processes of detoxification of exhaust fumes, 
and in particular in exhaust catalyzers for car engines. Complicated oscillation 
patterns were formed in these reactions, and it was possible to simulate these by 
cellular automatons. These simulations, however, were not hit upon by analyses 
of the chemical processes at hand, but rather by observing that a certain function 
of number theory shows a quite similar oscillatory behavior. And this function in 
turn was easily represented by a cellular automaton. Only afterwards did it be
come possible to give a chemically plausible interpretation for this behavior (Jahnke 
1992). These relations of similarity led to a computer simulation of the relevant 
processes, and this in turn led to deeper study and interpretation. Mathematics 
and computer simulation just furnished a reservoir of forms.

A second, similar example comes from research into the brain and into cogni
tion. First, by investigating the brain, the computer was used to try and find out 
what thinking really is. This mechanistic or reductionist approach, however, did 
not bring theory close to the “essence” of cognitions. Later, computers were vari
ously used in trying to identify certain brain activities within an electrical thun
derstorm which can be measured on the scalp. The results obtained were then 
used to build apparatuses which transform certain brain activities into material 
processes such as controlling an airplane. For this, it is necessary that the individ
ual whose brain is the source of the signals learns to repeatedly produce certain 
impulses at will, just as I do involuntarily when I raise my right arm. How a 
certain effect can be produced must be found out by every individual for himself. 
There is, so to say, no clear-cut material basis for that. “In principle, it doesn’t 
matter what signal is measured as long as one is able to influence it somehow with
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one’s brain”, as A. Junka, one of the pioneers in the analysis of biosignals, de
scribes his own working philosophy (Focus, No. 28 July 1994, 104 ff.). Together 
with some friends, he set up a company which developed a so-called biolink sys
tem. Three forehead electrodes do not only record electric currents in the brain, 
but also signals from facial muscles. A calculating method is used which analyzes 
the signals in real time in ten different frequency ranges. According to the strength 
of the signal received, the computer can be made to carry out certain actions. 
“This must not be seen too analytically, the main thing is that it feels good” (ibid.), 
Junka points out to those who want to decide and find out for themselves how they 
want to coordinate their own will and their brain activity. Particularly for wheel
chair patients with severed spinal cords opportunities hitherto unheard of are pro
vided.

The researchers do not approach the matter analytically, but rather play around 
with various types of brain control devices. What matters therefore is not the 
question what thinking really is, here and at this point in time, but rather how 
thinking can influence reality. The computer thus is a machine which establishes 
relations between the brain and some other entity and confers a certain reality on 
them. Similarly, the diagram in mathematics is a machine which permits us to 
confer reality to certain relations. The process is always the same. From a contin
uum of real possibilities, some of these are being actualized by means of distinc
tions. In this sense, Peirce guessed

“that the laws of nature are ideas or resolutions in the mind of some vast consciousness, who, 
whether supreme or subordinate, is a Deity relative to us. I do not approve of mixing Religion and 
Philosophy; but as a purely philosophical hypothesis, that has the advantage of being supported by 
analogy.” (Peirce CP, 5.107)
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MARCO PANZA

CLASSICAL SOURCES
FOR THE CONCEPTS OF ANALYSIS AND SYNTHESIS*

In the introduction to the present book, different meanings of the terms “analy
sis”, “synthesis” and their cognates, variously related to mathematics are taken 
into account. It appears to me that the papers composing the present volume, 
exhibit a great variety of meanings of these terms as they occurred in the history of 
philosophy of mathematics. In such a situation, it is quite natural to wonder if, 
when speaking of analysis and synthesis in mathematics, we are really speaking 
of a unitary and well-defined question, or if the title of the present book merely 
refers to a number of different and unconnected questions. At first glance, one 
might believe that this is the case; that what is common to the different meanings 
of “analysis” and “synthesis” consists just in the fact that people happen to use 
these same words. But if a term is used to refer to different meanings, it is plausi
ble that there is a reason for that. Even though these meanings are really different, 
it is nevertheless possible, for example, that they are linked by a causal chain 
which is so long that the ends of it have actually nothing to do with beginnings. If 
this were the case, our book would finally be concerned with a succession of se
mantic shifts or stretches rather than with a historical and philosophical question. 
I do not believe that this is so. The different topics discussed in the various contri
butions are, I believe, intrinsically connected to each other; besides, I argue that 
all of them are parts of only one question, and that this question can be addressed 
both as a historical and as a philosophical one.

I should like to provide two distinct aiguments: the first is based on my under
standing of the relations between history and philosophy of mathematics, the sec
ond one is concerned with my understanding of the different meanings of “analysis” 
and “synthesis” and their cognates. The main objective of the present essay is to 
state and unfold the second of these arguments. Thus I will consider the first one 
only very briefly.

Mathematics is a human activity (here, ch. 11), as is philosophy. Mathematics 
is concerned with the creation and study of mathematical objects (here, ch. 12, 
par. IV), while philosophy creates and studies philosophical objects. A philosoph
ical object is nothing but a concept. It is a general category we use in our explana
tion of certain phenomena, for example, the phenomenon of knowledge. Thus, 
philosophy takes part in any explanatory activity. Thus, as long as mathematics is
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an explanatory activity, it contains philosophy as a part of it. But, as long as it is a 
human activity, mathematics is also a phenomenon that we would possibly want 
to explain. Such an explanation is exactly the goal of a different sort of activity 
which is generally either called “history” (or “historiography”) or “philosophy” of 
mathematics. The use of one or the other of these two distinct names depends on 
the particular aspect of explanation on which we want to insist. By using the first 
name, we insist on a local explanation, that is the explanation of a fragment of 
mathematics, as it has been performed (and according to the results it has pro
duced). By using the second name, we insist on the search for and discussion of 
the general categories we use in such an explanation. This does not mean, of 
course, that I intend history (or historiography) of mathematics as a particular 
application of philosophy of mathematics. As an activity, mathematics is a single 
and individual phenomenon and it seems to me that it is not possible to intend it 
as a succession of repetitions of certain patterns or models. Thus, philosophy of 
mathematics is not the activity of describing patterns or models of mathematics. 
By speaking of general categories, I do not refer to general patterns for mathemat
ical activity, but to general concepts we use in order to speak about such an activ
ity and to explain it.

From such a point of view, the question of analysis and synthesis in mathemat
ics is the question of legitimacy, nature and use of the general categories of anal
ysis and synthesis for the explanation of (certain fragments of) mathematics, and 
it is really a unitary question if the terms “analysis” and “synthesis” refer, or could 
refer, to two general concepts used to speak of mathematics and explain it. It is a 
matter of fact that these terms have been used both to explain and do mathematics. 
A number of papers of our book aim to understand and discuss some of these uses. 
If their conclusions were intended as an evidence for a radical difference between 
these uses, it would not be possible to assert that they are parts of an answer (or 
even different partial answers) to only one historical and philosophical question. 
We would be justified in speaking about the philosophical and historical question 
of analysis and synthesis in mathematics only if we accepted to specify a particu
lar meaning in which we use the terms “analysis” and “synthesis”. This is not my 
wish, since I do not think that the conclusions of the previous papers are evidence 
for a radical difference between the admitted uses of these terms. I think, quite to 
the contrary, that the different concepts of analysis and synthesis discussed in the 
previous essays are intended as different elements of two classes of equivalence 
which constitute as such two general concepts; that is, they are different forms of 
exposition of these concepts. The aim of the present essay is to expound some 
important aspects of these concepts by discussing some classical source.
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I Philology and Literature

Both the terms “analysis” and “synthesis” stem from the Greek. As they are com
posed of more primitive terms, they could, in a sense, be understood as sorts of 
descriptions. Thus, at a first glance, we can consider their etymology as a source 
of suggestions.

The Greek term for “analysis” is “avdAAXJiq” that is composed by the prefix 
“ava” and the substantive “A,uoiq”. The prefix “ava” was generally used in Greek 
to indicate the idea of motion upwards, and could accordingly be translated by 
expressions like: “upwards”, “above”, “towards”, or even “near” or “close to”. 
However, in composed words it is also used sometimes in the sense of “back” or 
“backwards”. The substantive “A,t3aiq” is used in different senses too, like “solu
tion” or “conclusion”, but—as it is derived in turn from the verb “Aaxd”, that 
means “to free”, “to liberate”, “to loose”, “to unknot”, “to dissolve”, or even “to 
break” or “to destroy”—it is also used to indicate the ideas of liberation, loosen
ing, dissolution or even destruction. Thus, tentative transitions of “dvaXuaiq” 
could be: “back from solution”—or, as it was common for Latin translations of 
Greek texts, “resolution [resolutio]”—or “back from conclusion”, but also “to
ward the solution”, “close to the conclusion” or again “what brings to the solution 
(or dissolution or even destruction)”, “what makes it possible to unknot some
thing”, etc.

The situation is simpler for the term “synthesis”, that is the English version of 
“cruvOecriq” or (more seldom) “£,uvdsoiq”. This is composed by the prefix “ouv” 
(or “£uv”)—which means “with” or “together”—and the verb —which
means “to put”, “to lay (down)”, “to set” or even “to state”. Thus a synthesis could 
be etymologically intended as the act of putting (something) together or the act of 
stating (something) with an accord.

These swift etymological considerations suggest a starting point for our search: 
etymologically, the Greek terms for “analysis” and “synthesis” do not oppose each 
other in a direct way. Whatever semantic opposition there is, it is that between the 
verb “A/uco”, which vehicles an idea of separation and the prefix “cruv” which 
transports an idea of composition. However, though the term “oyvOeoiq” directly 
refers to the action of composing, the term “dvdA.uoiq” refers to the action of 
separating only in a more indirect way, by means of the prefix “avd” and accord
ing to the complex idea of “A/uoiq”.

This is confirmed by the occurrence of the terms “dvdA.uoiq”, “ovvdeoiq” and 
their cognates in the Greek corpus, where they are not generally used to express 
two opposite ideas. Even though the first one is often used to express an idea close 
to that of separation, such an idea is generally more complex, and it is not in 
direct contrast to an idea of composition as transported by the term “ouvffeoiq”.1 
In the Odyssey, Penelope, waiting for Ulysses to return, “analysed [dA.A.UEOKEv]”
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her web during the night, but she did not synthesize it during the day; she “weaved 
[ucpaivecncev]” it (Odyssey, P, 104-105 and x, 149-150). In the tragedy by So
phocles, the chorus snubs Electra because of her inability to “analyze” herself 
from her males (Electra, 142), but Electra never synthesizes herself with them. 
Again, for the author of On the Universe (which was during a long time ascribed 
to Aristotle), some winds can be formed by “analysis” of clouds’ thickness (On the 
Universe, 394Z>, 17), but no cloud is formed by synthesis. In these three examples, 
“analysis” and its cognates carry respectively the ideas of unraveling, liberation 
and dissolution, three ideas expressing separation that are not opposed to compo
sitions by “synthesis”. A similar exercise is possible starting from the term “syn
thesis”. According to Pindar {The Pythian Odes, IV, 168) the agreement between 
Pelias and Jason, after which the latter leaves for Colchis to seek the Golden 
Reece, is just a “synthesis”. You can find the same idea of synthesis, as an agree
ment in Plutarch {Live o f Sulla, 35, 10), who uses the verb “to synthesize [cruv- 
Tif)Ti|ii]” to indicate the act of bargaining over a marriage (namely the marriage of 
Sulla and Valeria at the end of Sulla’s life). Following Isocrates (X. Helen, 11), a 
“synthesis” is then the act of drafting an oration—five centuries later, it will be for 
Plutarch {Moralia, 747d) the act of composing a poem—, while for Aeschylus 
{Prometheus Bound, 460) it was, in the same vein but more fundamentally, the 
science of writing, that is the art of arranging letters in order to form a word. In 
such a sense, it is one of the gifts from Prometheus to human beings, which make 
them able to reason and think. Six centuries later, Plutarch associates the idea of 
synthesis to a different art, namely the art of counting or even to the science of 
numbers. In his treatise The Obsolescence o f Oracles, he generalizes an old def
inition of (natural) numbers as “synthesis of unities”, already quoted by Aristotle 
in Metaphysics as a customary one (1039a 12), and uses the term “cruvdeaiq” to 
refer both to the composition of (natural) numbers by smaller numbers {Moralia, 
429b, cf. also 744b) and to their addition (416b). Cognates of the verb “auvriftr|- 
pi” were besides used in the Elements (for example in the definitions VII, 13-14) 
in a similar sense, to indicate composition of numbers or magnitudes. In these five 
examples, “synthesis” means something close to composition, but it does not ap
peal to any sort of analysis, before it, or after it.

Of course these examples have not to be taken too seriously, in particular when 
two common verbs like “avaA,ixo” and “owriffripi” are involved. They confirm 
however that the opposition between analysis and synthesis was not as natural in 
Greek culture as it is for us. Moreover as long as, in all of these previous exam
ples, analysis and synthesis are particular sorts of separation and composition, 
they seem to operate on certain objects to change their relational status or obtain 
other sort of objects of the same logical nature. Neither synthesis, nor analysis 
entails a passage from the particular to the universal, or from the universal to the 
particular, or from objects to concepts or vice versa.
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II Plato

The same seems to be true of the idea of synthesis as it occurs in Plato’s dialogues. 
In the Cratylus (431c), Plato comes back to the idea of Aeschylus and generalizes 
it with respect to the structure of language, by saying a proposition is a “synthe
sis” of verbs and nouns (cf. also Sophist, 263d and Plutarch, Moralia, 1011c, 
which just assigns such a definition to Plato). In the Republic, he speaks of “syn
thesis” as referring to the combination of parts in a certain system. You have not 
to believe—he argues (611 b)—that soul consists of distinct parts, since it is diffi
cult that a being is immortal if is composed (ouvOetov) from a number of parts, 
except when the “synthesis” is perfect. Elsewhere, in the same treatise (533b), he 
speaks about “synthesis” of manufactures (ownOepeva) as one of the concerns 
of Texvai. And in the Phaedo (92c - 93a) he treats harmony (agpovia) as some
thing produced by an act of synthesis. In these examples, synthesis is something 
like the process of composing or arranging objects into a structure or system, and 
it is not, as such, opposed to any sort of analysis. Moreover, in contrast to the term 
“synthesis”, the term “analysis” is not part of Plato’s lexicon.

This does not prevent Plato from contrasting the ideas of composition and 
separation in the core of his philosophy, namely in his presentation of dialectics. 
In the Phaedrus (265c - 266c) he calls “dialecticians” those, who are able to 
operate with “division” and “gathering” (&icuqeok;  icai cruvaytoyf|). By the sec
ond of these conducts, scattered ideas are grouped together, while, by the first, one 
idea is presented according to its natural joints. Plato’s choice to use the term 
“cruvaycoyn” rather than “cnjvffeoiq” to indicate the first of these operations could 
be understood as a symptom of his will to distinguish between two different sorts 
of compositions: the assemblage of distinct objects in order to form a certain sys
tem (we could call “oruvdeoiq”) and the subsuming of distinct ideas under one of 
a higher type (we could call “ouvaytoyrj”). As, for Plato, ideas are contrasted to 
appearances in terms of an opposition between real objects and fictitious ones, 
this distinction does neither correspond to the distinction between composition of 
objects and composition of concepts nor does it refer to subsumption of objects 
under concepts. As long as Plato does not dispose of concepts, both synthesis and 
cruvaycoyfj operate on objects (“ideas”), but while the result of synthesis is a new 
object, which operates as such in a certain realm, the result of oiMxyayyfj is the 
acknowledgment of a certain relation linking different ideas, which produces, as 
Plato says, “clearness and consistency” of discourse {ibid. 265d). According to 
such a conduct, we can say, for example, as Plato says, what is love, but we do not 
necessarily recognize the different sorts of loves, that is the different ideas which 
are submitted to the idea of love (but which do not compose it). This is the concern 
of biaiQeoiq, which operates on an idea that has been made clear by ouvaycoyn 
and which recognizes its different species.
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III Aristotle

III. 1 Synthesis

When Aristotle in Politics (1294a, 30 - 12946, 1) speaks jointly of hiatgeon; and 
oi3vdeai<;, he seems not to understand them very differently from Plato’s. The 
6icuQ£Oi<; is the distinctive character of certain forms (namely democracy and 
oligarchy as forms of government), while auvffeou; is just the composition of 
these forms by resulting in a new form (of government). Similarly in the Meta
physics, where Aristotle contrasts owdeaiq with Siaigeoig (1027b, 19; and 10676, 
26), by respectively referring to the composition and separation of subject and 
predicate, or (10426, 12-18) observing that differences (biacpogai) between sub
jects may depend on the manner in which they are “synthesized”. Aristotle in 
these arguments associates the notion of synthesis with an idea of separation, but 
he does not express the latter by the term “analysis”, using respectively the Pla
tonic term “Skxiqeok;” and the term “6ia<poQri”. Here, a synthesis is a way to 
produce objects (either subjects or forms), which can be distinguished (or separat
ed) from one another in terms of the particular character of synthesis itself. Else
where, in Metaphysics, the term “synthesis” is used to indicate a particular mode 
of composition—which Aristotle explicitly distinguishes both from mixture (pl^iq; 
1043a, 13; and 1092a, 26) and from communion (cruvoixila; 10456,12)—or com
position in general (11136, 22; and 11146, 37).

III.2 A nalysis: Analytics Prior and Posterior

Thus, taken as such, the idea of synthesis seem not to suffer very deep modifica
tions, when passing from Plato to Aristotle: both authors use it to express the 
composition of objects in order to form new objects. What is new in Aristotle is 
rather the conception of objects upon which a synthesis may operate. Like Plato, 
Aristotle believes that knowledge entails, as a necessary condition of it, a funda
mental duality. But he substitutes for Plato’s duality of real objects (that is ideas) 
and fictitious objects (that is appearances) the duality of matter and form, or sub
ject and predicate, and finally, object and concept (here, ch. 12, § IV. 1 and IV.2). 
Thus Aristotelian objects are objects of certain concepts, subjects of certain pred
icates, or pieces of matter with a certain form.

Therefore, in contrast to Plato, a proposition like “Socrates is mortal”, for 
Aristotle, does not mean to say that the idea of Socrates is subsumed, in the hier
archy of ideas, under the idea of mortality, but is to say that the predicate ‘(to be) 
mortal’ applies to the subject ‘Socrates’, or that the object ‘Socrates’ belongs to 
the extension of the concept ‘mortal’. “Socrates” is here the name of an object 
(which functions as the subject of a predication). However, according to Aristotle,
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an object is not merely a piece of matter, rather it is a substance; it is a piece of 
matter with a certain form. And it is this form, which makes this substance just 
what it is. Thus, the term “Socrates”, properly speaking, refers to this form, that is 
to a predicate or, even to a concept (here, ch. 11, § II). The question thus is the 
following: to what piece of matter does the form ‘Socrates’ apply? In different 
terms: what is the subject of the predicate ‘(to be) Socrates’ or the object which 
belongs to the concept ‘(that which is) Socrates’. In answering that this object 
(subject or piece of matter) is just Socrates, we accept to use a concept (a form or 
a predicate) to indicate a piece of matter, a subject or an object. No knowledge 
would be possible if we were not able to do it. But no knowledge would be possible 
yet, if all forms, predicates or concepts were treated as pieces of matter, subjects or 
objects. Thus knowledge asks for a distinction between forms, predicate or con
cepts, which indicate pieces of matter, subjects or objects, and forms, predicate or 
concepts which do not. Of course, such a distinction is relative to specific acts of 
knowledge, since we can utter both the sentence “Socrates is mortal” and the 
other “this man is Socrates”. Therefore, new and essentially non-Platonic prob
lems arise at the core of the Aristotelian theory of knowledge: is it possible—in a 
certain epistemological context—to treat a certain form, predicate or concept as a 
piece of matter, a subject or an object, or is this impossible? Under which condi
tions is Such a thing possible? What piece of matter, subject or object, is the con
tent of this form, predicate or concept, when it is treated in such a way? In other 
and simpler terms: is a certain concept able to indicate an object, or a plurality of 
objects, or it is not?

This is not the same question as asking if one or more objects fall under a 
certain concept, since the latter may be possible, even though the concept is not 
able to indicate any objects as such. Take the example of the concept ‘(to be) red’. 
Its extension is certainly not empty in the context of our empirical knowledge. 
Nevertheless, it fails to indicate any empirical object as such. Nor is it the ques
tion whether a certain predicate is essential to a certain subject, or not, since it is 
possible that we agree in considering a certain predicate as essential to a certain 
subject (for example the predicate ‘(to be) human’ for Socrates), even if we main
tain that it does not indicate an objects as such.

Even though he seems to accept the intensional distinction between predicates 
which can indicate a subject and predicates which are essential for a certain sub
ject, Aristotle seems to believe that no predicate can be essential for a certain 
subject, if it is not able to indicate an object. By essential predicates of a certain 
subject P Aristotle means {Posterior Analytics 13a 34 - 736 3) both the predicates 
which belong to the essence of this subject (as the predicate ‘(to be a) man’ be
longs to the essence of Socrates). And the predicates such that if they are taken as 
indicating a subject, let us say Q, then the predicate which indicates the subject P
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belongs to the essence of this subject 0 . Thus a predicate 0  is an essential predi
cate for a subject P if and only if either the predication “P is 0 ” or the predication 
“0  is P” are essential predications, that is: they assign to their respective subjects 
a predicate which belongs to the essence of them2. On the base of such a defini
tion, Aristotle aigues3 in chapters I, 19 - 1, 22 of Posterior Analytics in favor of 
the following thesis:

If “P is 0 ” is an essential predication, and {/*.}, {0 } and {S } are three
series of predicates respectively occurring in the series of predications:
(a) {“P, is P”, “P2 is P ,”, “P3is P2”, ...}
(b) r e  is £ ”, “e, is 0 2”, “02is 0 / \  ...>
(c) CP  is S,”, “5, is s2”, .... is ”, 0 ” >
then:
(/) if the predications of the series (a) and (b) are all essential, then the 

series {P }, and {0 } are finite;
(«) if the predications of the series (c) are all essential, then the series (S } 

is finite;
(Hi) if the negations of the predications of the series (a), (b) and (c) are all 

essential, then the series {P.}, {0 } and {S } are finite.

As, according to him, a proof can only contain essential predications, this means 
both that no proof goes on ad infinitum, and that there is no proof of everything 
(ibid., 82a, 6-8). In the chapters I, 20 - 1, 21, he argues that if (i) is true, then (it) 
and (iii) are also true. Finally in the chapter I, 22 he argues that (i) is true.

At the beginning of this chapter, Aristotle states that no subject can be defined 
and known, if its essential predicates are infinite in number (82b, 37 - 83a, l)4 
and that no predicate can be an essential predicate of a certain subject, if it is not 
able to indicate a subject, namely either the same subject to which it applies or a 
certain species of it (ibid, 83a, 24-25). According to the literal reading of the 
second of these theses, it is not possible that a predication “P is 0 ” is essential, if 
the predicate 0  does not indicate a subject that is just P (since, if 0  is a species of 
P, it is certainly not essential). However Aristotle seems to think that this predica
tion could also be essential if the predicate Q indicates a subject of which the 
subject P is just a species. In any case, Aristotle is aiguing that if there is no white 
which is just white, without besides being also something else (ibid, 83a, 30-32), 
then the predicate ‘(to be) white’ cannot be essential of any subject. This means, 
according to Aristotle, that Platonic ideas have to be rejected, or, at least, that they 
can not occur in a proof (ibid, 83a, 32-33).

After this, Aristotle advances three different aiguments in favor of (i), the 
third of which (ibid., 84a 17-28) is called “analytic” (ibid., 84a 8), and contrasted 
to the other two, which are said to be “logical [Xoyixoc;]” or—as someone trans
late, according to Gerard of Cremona— “dialectic”.
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Let us look how such an argument runs. If the downward series of predicates 
P. is infinite, there will be for every (natural) number j  a predicate P ., such that 
“P . , is P ” is an essential predication, thus, reascending the series, we should 
conclude that for every (natural) number j  there is a predicate P. such that UP. is 
P” is an essential predication. But this is impossible, because it is not possible that 
infinitely many things belong to only one thing. Thus the conclusion is proved for 
the first series. The same argument works for the second series too, because if this 
series were infinite, there would be for every (natural) number j  a predicate 0  , 
such that “P is 0  ” is an essential predication, what makes definition impossible.

It is not important here whether this argument is correct or not5. What is im
portant for us is that Aristotle calls this argument “analytic”. What does he mean 
by that? Which character of this argument does he want to underline by choosing 
such a qualification? If we consider two further passages of the Posterior Analyt
ics, where the term “analysis” occurs with a clearer meaning, two distinct an
swers are possible6. The first answer appeals to a passage of chapter I, 32 (88b, 
15-20), where Aristotle aigues that, from the obvious premise that every (right) 
conclusion can be proved starting from all principles, it does not follow that the 
principles are the same for every science. And, as a counter-example, he mentions 
the cases of mathematics and analysis. Clearly, the term “analysis” here refers to 
the science of syllogisms or, generally, the science of proof, in harmony with the 
title itself of Aristotle’s treatises on this topic (cf. also Metaphysics, 1005b, 4). If 
we accept such a notion of analysis, we may assert that Aristotle’s argument is 
analytic, because it proceeds by (implicit) syllogisms. The second answer appeals 
to a passage of chapter I, 12 (78a 6-8). There Aristotle says that if it were impos
sible to derive truth from falsehood, “analysis” would be easy, because it would 
there be necessarily convertibility (dvteoTQecpe). Here, the term “analysis” seems 
to refer to deduction of knowns from unknowns, or (accepted or acceptable) premises 
from conclusions we are trying to prove (cf. Barnes 1975, p. 147). If we assume 
this is the meaning of the term “analysis”, we can assert that Aristotle’s argument 
is analytic, because it assumes that conclusions are true and deduces something 
that is known to be false (or accepted as false) that is: it is a reductio ad absurdum.

Taken separately, these two answers might be convincing. However, when com
pared with each other, the problem arises of how to understand their compatibili
ty. Why is the science of proof called “analysis”, if analysis is, in a different sense, 
regressive deduction? We can find an answer to such a question in the first lecture 
(Proemium) of Saint Thomas’s commentary on the Posterior Analytics. Thomas’s 
aigument is the following. At the beginning of the Metaphysics, Aristotle says 
that man lives thanks to art and reason. Art is a certain order of reason, according 
to which human acts attain certain ends. Reason not only directs the acts of infe
rior parts of man, but it is an act too. Thus, there is an art of reason which enables 
us to order the acts of reason without mistake. This art is logic, that is thus both
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rational (as every art) and is about reason. Therefore, logic is divided into differ
ent parts, according to the differences of the acts of reason. There are three kinds 
of acts of reason. The first one is understanding of the indivisible and simple; this 
is the matter of Aristotle’s Categories. The second is the act of composition or 
division, which produces respectively affirmative and negative judgments; this is 
the matter of Aristotle’s De interpretatione. The third finally is “concerned with 
what is proper to reason [secundum id quod est proprium rationis]” and it is just 
the act of inference (as Thomas says: it is “discurrere ab uno in aliud, ut per id 
quod est notum deveniat in cognitionem ignotr). Such an act in turn can be 
performed according to three different modalities, since reason can act with or 
without necessity (or certainty), and if it acts without necessity, it may attain truth 
or falsehood. The part of logic which treats the first kind of these modalities of 
reason is called “iudicativa” and it produces judgments which have certainty of 
science. Now, such a certainty is only possible if these judgments are “resolved” 
into the first principles (they are brought back to the certainty of the first act of 
reason, that is the understanding of indivisible and simple). Because of that, this 
part of logic is called “analysis” and is the matter of Aristotle’s Analytics.

Generally kept back by this splendid argument is the fact that, according to 
Aristotle, analysis is concerned with certainty and demonstration (rather than 
with probability and discovery—which is, according to Thomas, the matter of 
Aristotle’s Topics —or false arguments—which is the matter of Aristotle’s Soph- 
istici elenchf). This is certainly the case: according to Aristotle, analysis is con
cerned with certainty and demonstration. But, if Thomas is right, as I believe he 
is, it is not because analysis is demonstrative, but because demonstration is neces
sarily analytic, that is: it guarantees the truth of the conclusions by reducing them 
to first principles. This does not mean that a proof of T is necessarily a deduction 
of (some) first principles from T, since Aristotle knows perfectly well that truth 
can be deduced from falsehood. The point is different and may be stated as fol
lows. If a proposition T is given and has to be proven (or refuted), the only thing 
we can do is just look for first principles from which T can be deduced. Thus, if we 
consider a proof from the point of view of its conclusions, rather than of its prin
ciples, it is necessarily preceded by a regressive conduct that reduces these conclu
sions to their principles. By calling “analysis” the science of proof, Aristotle seems 
to insist on this aspect of proof (Ross 1949, 400), that is really the most important 
one, if we are concerned—as Aristotle was—with the truth of conclusions and the 
conditions of such a truth. Of course, if the regressive conduct consists in deduc
ing the negation of one first principle from T, it is ipso facto (at least from classical,or 
Aristotelian point of view) a proof of T . This is exactly the case with the 
previous argument, but it does not represent the general case.

Thus, when Aristotle states that his previous argument is analytic, he is refer
ring to analysis as a regressive conduct, which brings us from certain statements
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to the principles making them true (or provable)8. A similar idea is evoked in a 
short passage of the Metaphysics (1063b, 15-19), where Aristotle argues that con
trary statements cannot both be true. The reason of that, he says, is evident “by 
analyzing the definitions of contraries into [its] principle [eat’ a,Qxi\v xoix; Xoyotx; 
avaXuoixa roix; xtov evavrtcov]”. Here, analysis is a regressive conduct, which 
brings us from a definition to the principle that explains it, assigns to it a certain 
meaning.

This seems to be quite clear, but it is not yet the end of the story, since in the 
Prior Analytics Aristotle often uses (cf., as only an example, 51a 18-19) the term 
“analysis” with in a strictly different meaning (Hintikka and Remes 1974, 31). 
According to this meaning, analysis is reduction, or more precisely, breaking up 
of a certain figure of syllogism into another figure (cf. Smith 1983, 161), which 
enables us to know whether the syllogisms of the former figure are valid or invalid. 
Thus, the science of proof is concerned with regressive reduction in a twofold 
way. First, because proof asks for regressive reductions of conclusions to first 
principles, and second because a necessary condition for the correctness of a cer
tain proof is its reducibility to the accepted figures of syllogism. It is just because 
the act of this double regressive reduction is an analysis, that proof is concerned 
with analysis: it is not analysis that is demonstrative for Aristotle—as Timmer
mans (1995) says, for example—but proof that is necessarily analytic.

Once again, this is not the end of the story. Before leaving the Analytics, let us 
briefly come back to the previous analytic argument. What Aristotle asserts by 
such an aigument9 is that no proof is possible about a certain subject, indicated by 
a predicate P, if the regressive series of predicates P. which specify P, does not 
terminate in a predicate Pn = A which can not be ulteriorly specified. Aristotle 
speaks of proof, but he seems to refer to knowledge in general. In our terms, he is 
thus asserting that no knowledge is possible if there are no concepts which are, as 
such, concepts of objects, rather than concepts of properties or relations; in differ
ent and more Aristotelian terms: no knowledge is possible if there are no forms 
which are intrinsically substances.

III.3 A nalysis: N icomachean E thics

Let us keep this result in mind, and consider now the famous aigument of the 
chapters III, 3 - III, 5 of Aristotle’s Nicomachean Ethics (1111a, 21 - 1113a, 12; 
cf. here, ch. 9, par. II). Here Aristotle is discussing the difference between a volun
tary act (eicotiaiov) and a choice (atgoaigeoiq). While a voluntary act is the act of 
which the moving principle is in the agent itself (111a 22-23), a choice is certain
ly a voluntary act, but it is not any kind of voluntary act. First of all, choice is 
neither appetite nor anger, nor wish (Po\3A,r|0i<;). Moreover, it is neither opinion 
(6o£a) in general, nor a particular kind of opinion. There are different reasons for
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that. Two of them are: first, opinion may concern any kind of object, while choice 
can only be exercised on things which are in our own power; second, opinion is 
either true or false, whereas choice is either good or bad. Thus opinion, as such, is 
different from choice, even though the former either precedes or accompanies the 
latter. Namely (1112a, 15) choice is a voluntary act which has been the object of 
deliberation (rtgoPePouXeupEVOv10), the voluntary act which follows (and de
pend on) an act of deliberation (PouXedok;). By referring to the act of the PouA/rj", 
Aristotle seems to assert that choice is an act resulting from a plural, or even 
public or political consideration, aiming at determination of a certain action, that 
is the choice itself.

Now, according to the previous characterization of a voluntary act, the agent 
of such a deliberation can be nothing else but the subject, who operates the choice 
himself. But what is the object of such a deliberation, about what is it? This is the 
topic of chapter 5. Implicitly, the answer has already been given, since Aristotle 
has said above that choice can only be exercised on things that are in our own 
power. However, he tries now to make such an answer explicit, by extending it to 
any sort of deliberation, and by saying what sorts of things these things are, or are 
not. First of all, according to Aristotle, eternal (that is necessary12) things—like 
those which mathematics treats—are not objects of deliberation. The same is true 
for that which changes if it changes always in the same way—like the subject of 
natural motions—or without any regularity—like rain—or still according to 
chance—like finding a treasure. This is quite clear, since no human (or political) 
subject—that is the agent of a deliberation—can intervene on these things. Ac
cording to Aristotle, the range of deliberation is however even narrower, since 
each subject only deliberates on things which he is able to modify. For example, 
Aristotle says, no Lacedaemonian deliberates on the Scythian government. Thus, 
if we are referring to deliberation, human power has to be intended as practical 
and political power, that is power fixed by accidental constraints and even social 
conventions. Moreover, deliberation does not concern ends, but only means, which 
are necessary to reach already fixed ends. Namely, the objects of deliberation are 
just two. First, if the same end can be reached by a number of distinct means, 
deliberation establishes, which of them entails the easier and better realization of 
this end. Second, if the end can be reached only in one way, it establishes the 
chain of means which produces this way, by descending from it, up to the actual 
situation of the subject.

Aristotle continues (1112b 20-21) “who is deliberating seems to research and 
analyze the way described as [it happens with] a (geometrical) figure [6 [...] Pou- 
Xcuopevoq eoike £t)teiv icai avaA/UEiv rov eiqtkievov tqojcov gxjjceq bidyQap- 
pa]”. Here our translation is literal, but we could interpret the previous passage in 
this way: “who is deliberating seems to research in the way described like he were 
analyzing [a] (geometrical) figure”. Thus Aristotle seems to intend that what has

CLASSICAL SOURCES... 377

been described is just the path of analysis. Deliberation is thus a sort of analysis, 
or better, analysis is the form of deliberation; it is a form of thinking, namely the 
form or thinking which deliberation satisfies. But how can this form be character
ized in general; what is proper to it, rather than to the particular nature of deliber
ation? It seems that Aristotle would like to answer such a question, since he 
immediately remarks (1112Z?, 21-23) that, though every deliberation is a research, 
not every research is a deliberation—“as [it is the case of] mathematical ones 
[olov at paOqpaTiKCu]”—and asserts (1112b, 23-24) that what is last in the anal
ysis is the first “in generation [ev xt \ y ev eo ei]” . The meaning of Aristotle’s com
parison is not completely clear. Different translations understand it in quite different 
ways. It seems to me, however, that Aristotle is comparing respectively delibera
tion with the path that brings us from the definition of a certain figure to the 
elements from which the construction (or generation) of this figure starts (and, 
implicitly, choice of the construction itself), and he is asserting that both deliber
ation and this path are examples of analysis. However, comparison is not identifi
cation, since the path that goes from the definition of a certain figure to the elements 
from which the construction of this figure begins is a mathematical research and 
mathematical researches are not deliberations (even though every deliberation is 
a research).

If this is correct, Aristotle thinks that, as long as it is a regressive reduction, 
analysis can be both the reduction of the definition of a geometrical figure to the 
elements starting from which the (geometrical) construction of this figure is pos
sible (which I shall call a “geometrical reduction”), and the reduction of a certain 
end to the actually available means, from which a chain of means, bringing us to 
such an end, could start. In the first case, analysis brings us from a certain condi
tion (that is not still an actual object, but only a character that a certain object 
should be eventually satisfy) to the actual objects starting from which another 
actual object satisfying the given condition will certainly (and always) be pro
duced. In the second case, analysis brings us from the determination of a certain 
end (that has not been actually reached), to the means that possibly may produce 
such an end. While in this second sense analysis is deliberation, in the first sense 
it is not.

As we have just seen, a deliberation, according to Aristotle, is never about 
eternal (that is necessary) things and therefore, it is not accompanied by the guar
antee that the end will be reached by following the chain of means that it is actu
ally indicating. Here, Aristotle seems very close to a Platonic conception, since he 
seems to argue that deliberation is just a matter of opinion and not of knowledge. 
According to such a point of view, analysis does necessarily accompany the de
monstrative necessity of mathematics. Thus, while the agent of the first sort of 
analysis is nothing but the mathematician, who actually knows that a certain con
struction is possible and that it certainly produces an object satisfying certain
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conditions, the agent of the second sort of analysis is the PouXfj, or generally the 
political community that has to evaluate the risks and chances of a certain choice. 
I do not say that, as long as analysis is a regressive reduction, it is not necessarily 
a regressive deduction; still, neither do I say that analysis is necessarily neither a 
regressive deduction nor a regressive reduction preparing a possible deduction. 
What I am saying is, that analysis is not necessarily neither a regressive deduc
tion, nor a regressive reduction preparing a successful enterprise (and thus, a 
fortiori, a demonstrative performance, as a geometrical construction is).

This is only one aspect of the question, however, since there is a further impor
tant, and, as I believe, deeper aspect both of deliberation (in Aristotle’s sense) and 
of geometrical reduction, according to which they appear logically similar, de
spite the radical difference between practical reason (to which deliberation seems 
to belong) and purely speculative reason (to which geometrical construction seems 
to belong, instead). A deliberation starts with the fixation of an end and is con
cerned with considering suitable means to reach this end. Now, to fix an end 
means to present both the concept of a state of things and to state the will to 
realize it. Thus, in the case of deliberation, analysis terminates with the determi
nation of a possible action that has to be performed in order to produce a certain 
state of things. Similarly, a geometrical reduction does not start by merely stating 
a definition, but only when the aim is stated to exhibit an actual object satisfying 
such a definition. In the case of geometrical construction, the conclusion of anal
ysis is therefore also the determination of a possible action which has to be per
formed, the difference being that in the first case, the action produces, or should 
produce, a new state of things, while in the second case, the action permits one to 
exhibit a geometrical object. In the first, as in the second case, however, the result 
of such an action is just something which falls under the concept presented in the 
first stage; it is the object of this concept. Thus in both the cases, analysis is 
reduction of a certain concept, which is given as such (independently from the 
corresponding object), to the conditions of actual realization of the corresponding 
object, that is the conditions that make this realization actually possible (for the 
agent of the analysis himself).

IV Aristotelian Forms of Analysis

Following Aristotle in his arguments of Analytics and Nicomachean Ethics, we 
have thus encountered four examples of what he calls “analysis”: the regressive 
conduct connected to a proof of a given statement T (that is its reduction to accept
ed principles or their negation) or to an explication of a certain definition—which 
we could call “reduction to principles”—, the reduction of a certain figure of 
syllogism to a different figure—which we could call “syllogistic reduction”—,
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the geometrical reduction, and the deliberation. What do these four examples 
have in common?

A first answer is already implicitly contained in what I have said: they are all 
examples of regressive reduction13. Differently from the first two, the third and 
the fourth examples, however, are not examples of regressive reduction, because 
in them something is reduced to something different which is already given or 
known as being true or false. These are examples of regressive reduction, because 
they reduce a concept to certain conditions that can be satisfied in the actual 
situation of the subject. This observation suggests a possible generalization of the 
idea of regressive reduction: a reduction is regressive when: i) it is finite; i7) it is 
such that its last stage is a conclusive stage, a stage that could not support any 
further reduction (as long as analysis is always research, as Aristotle says, it is 
finished only when its last stage does not ask for any other research of the same 
kind); iii) the reason for it is that such a stage is the stage of the actual knowledge, 
disposability or possibility of the subject. Such a generalization enables us to say 
that every analysis is, according to Aristotle, a regressive reduction.

Another common aspect of the four previous examples is that they refer to 
analysis as a form of inferential thinking, rather than merely as a form of a system 
of sentences or statements. Even though Aristotle directly presents the third argu
ment of chapter 1,22 of the Posterior Analytics as “analytic”, it seems quite obvi
ous that he means that the conduct of reasoning that follows such an aigument is 
analytic. This is quite evident in the case of deliberation. Thus, we might say that, 
for Aristotle, analysis is a form of inferential thinking, that is a system, or even a 
chain, of (intentionally) connected acts which brings us from a certain stage to 
another, essentially different one. These are acts of representation and assertion of 
certain contents. Moreover, the representation of these contents may be meant as 
a certain sentence in an available language. If this is the case, their assertion is a 
statement in this language. By using—as I have already done above, at a number 
of occasions—the same term to indicate both the form and the substance of which 
this form is just the form, we might then say that an analysis is a system of acts of 
thinking, expressed by a system of statements.

For Aristotle, an analysis, following the two previous remarks, is a system of 
acts of thinking realizing a regressive reduction. This means that, in order to be 
an analysis, a system of acts of thinking has to carry one from a certain stage to an 
essentially different, stage. We could call the first stage, the “initial stage of anal
ysis”, and the second the “final stage of analysis”. Our previous characterization 
of the notion of regressive reduction specifies the nature of the final stage. As long 
as the notion of reduction is taken for granted however, this characterization spec
ifies neither the nature of the initial stage nor the relations between the initial and 
the final stage.



380 MARCO PANZA

What seems clear from the previous examples, is that the initial stage has to 
include the stating of a certain aim, and the final stage has not only to be a conclu
sive stage, according to the previous conditions (i) and («), but has also to be 
conclusive with respect to the possibility of realization of such an aim. However 
the four examples differ on this point. While in deliberation and geometrical re
duction a concept is given in the initial stage, in reduction to principles and syllo
gistic reduction, that which is given in the initial stage is an object. Thus, we have 
to conclude that, according to Aristotle, there are two kinds of analysis: those 
which start with an object (we might call them “analysis of objects”) and those 
which start with a concept (and might be called “analysis of concepts”).

Moreover, in the reduction to principles the aim is just to prove the given 
statement (or the classification of the given definition), in syllogistic reduction is 
the validation of the given inference, in deliberation it is the realization of the end 
characterized by the given concept, and finally in the geometrical reduction it is 
the exhibition of one or more objects, which satisfy the given concept. It is then 
clear that the aim is neither the same for all types of analysis, neither is it the same 
respectively for all the types of analysis of objects, nor for all the types of analysis 
of concepts.

Still, while in deliberation, in geometrical reduction, and in reduction to prin
ciples, as well—when this does not consist in deducing the negation of one prin
ciple starting from the given statement—analysis does not realize the aim, but 
merely indicates the conditions of its realization, in syllogistic reduction, and in 
reduction to principles—when this consists in deducing the negation of one prin
ciple starting from the given statement—analysis does realize the aim (or at least 
it provides all the material allowing us to say that the aim has been realized). The 
latter cases both are examples of analysis of objects. In them the givens are objects 
that have actually been exhibited to the subject. However these objects are so 
given that the subject ignores something about them, namely he ignores whether 
these objects enjoy or do not enjoy certain properties. The aim just specifies which 
properties they have and further states the will to know whether these objects 
satisfy these properties or not. Thus, by saying that in these cases an object is 
given, we are stressing that what is given will be considered as an object in the act 
of thinking (or, if you prefer, in the statement) that finally states that the aim has 
been reached. It seems, according to the previous examples, that, when this is the 
case, analysis can realize the aim alone. Now, in the case of analysis of concepts as 
well, the givens might be intended, in a sense, as objects, since every concept can 
be treated as an object and a subject just treats it in this way when taking it as 
being given. Nevertheless these concepts will not occur as objects in the act of 
thinking (or, if you prefer, in the statement) that states that the aim has been 
reached finally; they just occur in it as concepts. This remark should render the 
previous distinction between analysis of concepts and analysis of objects. Besides,
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it should also justify the following general conclusion: no analysis of concept can 
produce as such the realization of the aim occurring in its initial stage. Thus, we 
can refine our previous distinctions by distinguishing three different genera of 
analysis: analysis of concepts; analysis of objects which does not realize alone the 
aim occurring in its initial stage (or “non conclusive analysis of objects”); and 
analysis of objects which does realize alone the aim occurring in its initial stage 
(or “conclusive analysis of objects”).

Consider first the previous examples of analysis of concepts, that is delibera
tion and geometrical reduction. It is obvious that the conditions of realizing the 
aim are not the same in the two cases. The following are two obvious necessary 
conditions. In the case of geometrical construction, the subject has to operate on 
the given object which analysis has indicated and realize the construction accord
ing to the accepted clauses. If we assume that these clauses are just the Euclidean 
axioms, such a construction may be intended as a synthesis, in the usual meaning 
of this term (cf. the next paragraph V.4): it is a construction of a new object 
starting from given objects. Thus, we could say that in this case, the aim occurring 
in the initial stage of analysis is not realized as long as no synthesis follows the 
analysis. In the case of deliberation the subject has to act, he must pass from 
deliberation to choice. In this case no one of the previous senses of the term “syn
thesis” seems to entitle us to say that the aim occurring in the initial stage of 
analysis is not realized as long as no synthesis follows the analysis. Are these two 
necessary conditions also sufficient? At first glance, we might say that this is not 
the case, since neither synthesis nor choice produces the realization of the aim, if 
the analysis has not indicated the correct starting point for them. Such an answer 
is certainly correct, but it also trivial. And triviality cannot simply be avoided by 
considering nothing but the case of correct analysis, since we have no general 
means to distinguish a priori between correct analysis and false analysis. The 
situation is quite different in the two cases. This is clear if we consider examples 
of geometrical construction taken from Euclid’s geometry: while for deliberation 
we certainly do not dispose of these means, for geometrical reduction we possibly 
dispose of them. This remark elucidates the essential difference between deliber
ation and “mathematical analysis” stated by Aristotle. Besides, it makes this dis
tinction independent of the Platonic attitude inherent in the argument of 
Nicomachean Ethics. From an intensional point of view, the correct distinction 
thus is the one between analysis of concepts regulated by a criterion of correctness 
(relatively to the aim) which operates a priori from the actual application of its 
indications (or “regulated analysis of concepts”) and analysis of concepts which is 
not regulated by a criterion of this sort (or “non regulated analysis of concepts”). 
The only example of a regulated analysis of concepts Aristotle presents is an ex
ample where the aim is reached if and only if a synthesis follows the analysis.
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Consider now the previous example of a non-conclusive analysis of objects. It 
is a reduction to principles which does not consist in deducing the negation of one 
principle starting from the given statement. In this example a necessary condition 
for the aim to be realized is that a deduction of the given statement from first 
principles is conducted. In this case analysis has two distinct tasks: to indicate 
which first principles have to be taken as starting points of this deduction, and to 
suggest the path of this deduction. Clearly, to do it is not to conduct the proof of 
the given statement. This proof demands that deduction is conducted. If analysis 
is nothing but a regressive deduction, the indication of the first principles which 
have to be taken as the starting points of the proof is obvious. In this case, the only 
criterion for the correctness of the analysis (relatively to the aim) is convertibility 
of deduction. Now, this criterion is a priori, in the previous sense, only if it oper
ates on the analysis itself. Hence, it is a priori only if it states that analysis has to 
contain only inferences by equivalence. This is in general a too restrictive criteri
on, however, since T might be deductible from certain first principles, even if it is 
not equivalent to them. Nevertheless, no other a priori criterion for the correct
ness of the analysis seems to be available in this case. As long as it is a non- 
conclusive analysis (of objects), a reduction to principles is thus either regulated 
or not regulated; if it is regulated it fails, in general, to exhibit all the sufficient 
conditions of deduction of the given statement.

In the first as well in the second case, the realization of the aim demands that 
the analysis is followed by a deduction, which, according to the previous senses of 
this term, is not a synthesis. There is an aspect of non-conclusive reduction of 
principles (as it is intended by Aristotle) however, which makes it similar to geo
metrical construction and even suggests a generalization of the idea of synthesis 
which includes such a deduction. To understand this point let us come back to the 
very last remark of the previous paragraph III.2, where I have aigued that for 
Aristotle no proof is possible about something that is P if there is no predicate P 
-  A, intrinsically indicating a subject. This means that the first principles of any 
proof are just statements which refer to an object just given as such, rather than to 
an object which merely satisfies a certain concept of property (ch. 12, par. VI.2). 
This is to say that no proof is possible if an object is not exhibited as such. As one 
of the tasks of non-conclusive reduction to principles is to indicate the first princi
ples from which the proof can start, this means that, in this case, one of the tasks 
of analysis is just to indicate some objects which are given as such, serving as the 
starting points of the proof (these objects are clearly not first principles, they are 
rather that about which first principles speak, since no first principle is an object 
given as such, being rather an object satisfying the concept ‘to be known as true’). 
This is also true of geometrical construction: one of its tasks is to indicate a given 
object given as such, serving as the starting point of construction. Thus, as long as 
they follow an analysis, both, proof and geometrical construction, start from ob
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jects which have to be given as such, rather than as objects which satisfy certain 
concepts of property.

Even though there is no evidence to ascribe such a generalization to Aristotle, 
we might call “synthesis” any conduct of thinking that follows a non-conclusive 
analysis, realizing the aim occurring in the initial stage of this analysis, and starts 
from an object that is given as such (rather than as the object which satisfies a 
certain concept of property). This meaning of the term “synthesis” has become 
common during the modem age, but it seems to us that there is no room for it in 
the Greek culture of the classical age. While the notion of analysis, because of 
Aristotle, grows into gnoseological complexity which enables it to describe a fun
damental conduct of knowledge, the notion of synthesis does not seem to suffer a 
similar evolution and always refers, in the Greek culture of the classical age, to 
the composition of given objects in order to obtain new objects, or, more in gener
al, to the construction of new objects, starting from given objects. Moreover, when, 
probably in the first half of the fourth-century of the Christian era, Pappus explic- 
itely contrasts synthesis with analysis, describing them as successive stages of a 
geometrical method, he does not take into account the notion of analysis in all its 
Aristotelian complexity. Rather, it seems that the generalization of the notion of 
synthesis will only occur later, when the Pappusian opposition of it to analysis 
will be considered in the framework of the general Aristotelian conception of the 
latter.

V Analysis and Synthesis According to Pappus

V.l Pappus’s Definition

At the beginning of the 7th book of Mathematical Collection (VII, 1-2), when 
Pappus expounds the method of analysis and synthesis, he seems to advance a 
rational reconstruction of an important fragment of Greek mathematics (here, ch. 
6, par. I). He does not say merely that the “domain [or treasury] of analysis [avaXuo- 
pevoq; literally: being analyzed]”14 is a certain matter (namely a matter prepared 
for those who, after having got usual elements, wish to gain “in the (geometrical) 
figures [ev ypappaiq]” the power of solving the problems which are proposed to 
them—and the only matter useful for that). His proposition is more complex: “'O 
KdA.oupevo<; avaXuopevoq, my son Hermodorus, Kata cn3XX.T|\|xv i6ia tiq ecrriv 
uX,ti ...”. The problem is with the expressions “KaXoupevoq [being called]” and 
“Kara 0 ”uX.XTyi|xv [according to the comprehension]”. Hintikka and Remes, fol
lowing Heath, translate the first expression by “so-called” and substitute for the 
second the adverbial form “in short” (“The so-called Treasury of Analysis, my 
dear Hermodorus is, in short,...”; Heath’s translation is: “The so-called avaXuo- 
pevoq (‘Treasury of Analysis’) is, to put it shortly, ...”). Jones also agrees with
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Heath about the first expression, but renders the second in the verbal impersonal 
form “taken as a whole” (“That which is called the Domain of Analysis, my son 
Hermodorus, is, taken as a whole,...”)- The same idea of using a verbal form to 
translate “k<xt& ai3AAr|T|>iv” was already used by Hultsch (Pappus CH, 635). 
Hultsch used however a personal form for that and even the first person singular 
“ut paucis comprehendam”15. This is also the solution advanced by Ver Eecke who 
translates the whole expression “6 icaXoupevoq avaA/uopevog” by “le champ de 
l’analyse” and renders “icaT& auA.A,rn|uv” as an auto-reference: “Le champ de 
l’analyse, tel que je le confois, mon fils Hermodore, est...”.16

From a philological point of view, Ver Eecke’s solution is probably too ex
treme. Nevertheless it at least suggests that Pappus is here interpreting the work 
of Greek mathematicans of the classical age (here, ch. 6, 170, note 2), rather than 
expounding a method largely and explicitly employed in Greek geometry. Ac
cording to such an interpretation (that is also that of Hultsch) we could even guess 
that, even if they applied conducts of thinking or arguments that could be intend
ed as examples of analysis and synthesis in Pappusian sense, these mathemacians 
did not conceptualize them as Pappus does.

Pappus’ exposition of the method of analysis and synthesis is well known 
(here ch. 8, par. II), and I may limit myself to some remarks (cf. also here, ch. 12, 
320-321). As we have just seen, the domain of analysis is presented first as con
cerned with non-elementary geometrical problems. According to Pappus, this matter 
was treated by Euclid, Apollonius and Aristaeus the Elder, by using the method of 
analysis and synthesis. This method then is applied to the realization of a certain 
aim; and this is perfectly consistent with the Aristotelian conception of analysis. 
Pappus’ description of the first stage of this method, that is just analysis, is also 
consistent with Aristotle’s views17: analysis is presented as a way, or a path (66og 
ecpoboq), which leads from the assumption of what is sought, as if it were admit
ted, to something that is already admitted, that is a first principle. It is thus an 
inverted (dvdotaAiv) way and, namely, it is an inverted solution or conclusion 
(avcbtaAiv A/uai<̂ . The final stage of analysis for Pappus is the initial stage of 
synthesis. The latter follows after the former and just considers what is given as 
given. It is also a way, and it is namely the inverted way of analysis. Since Pappus 
says: “in the synthesis, on the other hand, by inverting the way [e£ ujtoerrQoepfjg], 
that which has been grasped last in analysis [to ev xrj avaA/uaei KcrraXricpdev 
txjTcrrov] is supposed [to be] already gotten and [its] consequences [&r6peva] 
and prolegomena [rtgoriyoupeva] [are] ordered according to their nature [Kara 
(puoiv rd^avteq] and [are] linked with one another to arrive, at the end [elg reXoq], 
at the construction of what is sought [tfjg tou ^ritoupevou KaTacnceufjcj”. The 
Greek term for “construction” is thus a cognate of the verb “KaTacncem^co”, which 
has really a more general sense and also means “to organize”, “to set out”, or “to
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prepare”, and we could generally intend—coupling it with the term “TeX,oq”—as 
referring to the realization of the aim.

Thus Pappus uses the term “synthesis” to refer generally to the argument, 
which follows a non-conclusive analysis and leads from the final stage of it onto 
the realization of the aim. Hence, the woolliness of his text has an obvious justifi
cation: he is trying to provide a general description of different sorts of processes. 
However, Pappus’s generality goes not as far as Aristotle’s. According to him, 
there are two types of analysis. One of them enables us to research that which is 
true (^t|TT|Tik6v taA/ndouq) and is called “theoretical [Oecoqtitikov]”, while the 
other is able to get what was proposed (jtOQicmicdv too jcgoTctdevroq) and is 
called “problematical [jtqo pA.rj paxiKov] ”. In the first one—Pappus says—what is 
sought is supposed to be true, while in the second what is proposed is supposed to 
be known. Starting from these suppositions, the theoretical analysis brings us to 
something which is admitted as being true or false, while the problematical anal
ysis brings us to something that is admitted as being possible (realizable or given) 
or impossible. Even though Pappus’s language is very general (and also quite 
ambiguous and inaccurate), it seems clear that he is only concerned with geome
try and believes that as long as it provides a geometrical argument, analysis is 
either a regression to principles or a geometrical reduction. Moreover, he seems to 
restrict his description to convertible analysis, since he aigues that both, truth and 
falsehood, or possibility and impossibility, occurring respectively in the final stage 
of theoretical or problematical analysis, entail respectively truth and falsehood, or 
possibility and impossibility of the thing that is sought or proposed. The proof and 
the construction then are nothing but the reversal of analysis. If this is the case, 
synthesis only needs to exhibit proof or construction, since analysis is able to 
conclude, both whether the given sentence is true or false and whether the pro
posed definition can be satisfied or not, and to indicate the whole conduct of proof 
and construction. Such a strong (logical) restriction however does not appears to 
be consistent with Pappus’s mathematical practice, nor even with the (historical 
and mathematical) extension he ascribes to the method of analysis and synthe
sis18. Nevertheless, Pappus’s presentation makes his attitude manifest. Even though 
in a sense Pappus is generalizing the classical notion of synthesis as simple com
position, he is, in a different sense, restricting it. Not only does he make of synthe
sis nothing but the prolongation of analysis, but he also considers both, analysis 
and synthesis, as quite codified procedures belonging to a technical domain.

V.2 Heron and/or a S ch ouu m  to Euclid’s E lements

Pappus’s presentation of the method of analysis and synthesis is probably not the 
very first one, even though it is certainly the most extensive and explicit. We can 
refer to two pieces of evidence to support this thesis. The first one is al-Nayrizi’s
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Arabic account of certain passages from Heron’s commentary on book II of the 
Elements (al-Nayriz'i ECC, 89) and the second one is an interpolation introduced 
at different places in the beginning of the 13th book of Euclid’s Elements (Euclid 
OO, IV, 364-381). Because of the similarity between these two expositions, Heib
erg (Heiberg 1903, 58) ascribed the second one also to Heron, who lived in Alex
andria during the Christian era: during the first century, according to Neugebauer 
(1938), or during the third-century, a little earlier than Pappus (Heath 1921, II, 
298-306). Knorr (1986, 355) guesses that it is successive to Pappus and merely 
depends on Heron’s (and Pappus’s) exposition, instead.

According to Gerard’s translation from the Arabic19, Heron describes analysis 
(dissolutio) as a way to answer a question: “first we set that which is in the order 
of thing sought [primo ponamus illud in ordinem rei quesite]” (al-Nayriz'i ECC, 
89, 14-15), then we “reduce [it] <to that> of which the proof has already preceded 
[reducemus <ad illam>, cuius probatio iam precessit]” (ibid., 89, 15-16). The 
synthesis (<compositio) is then nothing but a composition: “we begin from a thing 
known, then we compose until the thing sought is come upon [incipiamus a re 
nota, deinde componemus, donee res quesita inveniantur]" (ibid., 89, 18-19).

Heron20 seems, like Pappus, to include in his general presentation both prob
lematic and theoretical analysis (that is geometrical reduction and reduction to 
principles). But he presents, differently from Pappus, synthesis as a simple proc
ess of composition of objects, which is only consistent with the first sort of analy
sis. This does not prevent him from exemplifying the method by proving theorems 
with it, namely by applying it to the demonstration of the first thirteen theorems of 
book II of the Elements (ibid, 89-110).

The application of the method of analysis and synthesis to the proof of theo
rems is however much more clear in the interpolation to book XIII of the Ele
ments. Here a proof, different from Euclid’s one, is provided for each one of the 
propositions XIII, 1 - XIII, 5. These proofs consist of two distinct parts, the first 
of them being called “analysis” and the second “synthesis”. Moreover, a general 
definition is advanced. According to this definition, “analysis, on the one hand, is 
the assumption of that which is sought as [if it were] admitted up [to arrive], by 
means of [its] consequences, to something [which is] admitted [as] true [avaA,txn<; 
pev ouv ecm too £r|Toupevov &<; opoAoyoupevov &ia tcdv &koA.ou&cqv 
em ti &A.r|f)eq opoA-oyoupevov]” (Euclid OO, IV, 364, 18-20); while “synthesis 
[is], on the other hand, the assumption of that which is admitted up [to arrive], by 
means of [its] consequences, to something [which is] admitted [as] true [ot)v- 
deoiq be Xqijxq tov opoA.oyoupevov 6ia tgjv aicoA,oudcov em ti aA.qOe<; opo- 
Aoyoupevov]” (ibid. 366, 1-2) or, in the Theonine version, “the assumption of 
that which is admitted and then, the attainment (or the ending [?]), by means of 
[its] consequences of what is sought [A,f)\|)i<; to n  6poA,oyovpevov 6ia t©v 
aicoXoudcov em xf|v ton £r|Toupevoi> KaTaA.q£iv qroi iccn:aA.r|\|xv]” (ibid. n. 2).
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Consider as an example the alternative proof of proposition XIII, 1 (ibid, IV, 
366-369): if a segment AB (fig. 1) is cut in C (according to the construction ex
posed in the proposition II, 11), in such a way that AC is the mean proportional 
between AB and CB, and the segment DA is equal to the half of it, then the square 
constructed on AC + DA is five times the square constructed on DA:

[(AB : AC = A C : CB) a  (AB -  IDA)] => Sq.(AC + DA) = 5[Sq.(DA)]

In modem terms, if we put AB = K  and AC = x, the antecedent provides the equa

tion: x2+ K x -K 2 -  0, from which we have: f x + — 1 =5| — 1 , that was to be 
,  V 2)  U J

proved.
The scholiast takes both AB and AC (< AB) as given on the same straight line, 

in such a way that AB : AC = A C : CB and constructs on the same straight line, 
but on the opposite side than AB, a segment DA, so that AB = 2DA. Then he
assumes that

Sq.(CD) = 5Sq.(DA) (a. 1)

and proceeds according to the following deduction:

Sq.(CD) = Sq.(DA + AC) (a. 2)

Sq .(CD) = Sq.(DA ) + Sq.(AC) + 2Rect.(DA, AC) (a. 3)

Sq.(AQ + 2Rect.(DA, AC) = Sq.(CD) -  Sq.(DA) (a.4)

Sq.(AQ + 2Rect.(DA, AO = 4Sq(DA) (a.5)

according to (a.l) and (a.4),

2Rect.(£)A, AC) = Rect.(A£, AC) (a.6)

Sq.(AQ = Rect.(AB, CB) (a.l)

according to the proportion AB : AC  = AC: CB,

Rect.(A£, AC) + Rect.(A£, CB) * 4Sq.(DA) (a.8)
according to (a.5), (a.6) and (a.7),

AC + C B=  AB (a. 9)

Rect.(A£, AO + Rect.(AB, CB) = Sq.(AB) (a. 10)

Sq.(AB) -  4Sq.(DA) (a .ll)

according to (a.8) and (a. 10).
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As (a. 11) follows from the hypothesis AB =* 2D A, without appealing to (a.l), it 
is true and then (a.l) entails something that is true. Thus, as analysis finishes
with it, synthesis has to begin with it:

Sq.(AR) = 4Sq.(£>A) (s.l)

Sq.(AR) = Rect.(AS, AC) + Rect.(AR, CB) (5.2)

4Sq.(DA) =* 2Rect.(£>A, AC) + Sq.(AC) (5.3)

according to (5.1), (s .2), (a.6) and (a.l) which do not depend on (a.l),

5Sq.(AD) = Sq.(CD) (s. 4)

according to (5.3) and the figure 1 that is a part of the figure constructed by Euclid 
in his proof of the same XIII, 1.

[C*]

[A*]

D A  C B

Figure 1

Clearly, the above analysis is, according to our previous terminology, an ex
ample of a non-conclusive and non-regulated21 analysis of objects, namely, it is a 
non-conclusive and non-regulated reduction to principles. In its final stage, it 
indicates the starting point of the proof, by expressing an obvious property of an 
object given as such, namely the segment DB, constructed starting from AB for 
addition of DA, equal to a half of AB itself. Thus, taken as such, it does not include 
any logical novelty with respect to Aristotelian conceptions. The same is true for 
the proof (that is the synthesis), if it is taken as such, since it does not differ, 
according to its logical aspect, from common Euclidean proofs. The difference

CLASSICAL SOURCES... 389

between this proof and that proposed by Euclid for the same proposition XIII, 1 
does not concern its logical character. Rather, scholiast’s proof (its synthesis) is 
significantly simpler and wilier than Euclid’s. This is clearly possible because of 
the indication of the analysis that suggests a good (but as such not obvious) start
ing point for it22. What the scholiast does in his interpolation thus is to apply, in a 
wily way, an Aristotelian indication, in order to obtain a not obvious suggestion to 
improve Euclid’s proof. What is essentially new, with respect to Aristotelian con
ceptions and Euclid’s mathematical practice, is both the explicit presentation of 
the analysis as a premise of a proof, namely as an argument suggesting the start
ing point of this proof; and the consequent interpretation of the proof as the sec
ond stage of a single and general method to produce (mathematical) aiguments, 
including a heuristic as well a demonstrative aspect. Both the first and the second 
novelty are underlined by the use of the term “synthesis” to refer to the second 
stage of this method, which is nothing but what Aristotle and Euclid have called 
“proof’.

V.3 Evidences for the application of Pappus* method in the classical 
age: Apollonius, Archimedes and Aristotle once again

In the 7th book of the Collection, Pappus argues that the method of analysis and 
synthesis, as he describes it, was actually working in Greek mathematics of the 
classical age, and namely in a large corpus of texts that, as a whole forms the 
“KaA.OTJ|i£VO<; avaXu6pevo<;”: Euclid’s Data, Porisms and Surface-Loci, Apollo
nius’s Conics, Plane Loci, Cutting-off o f a Ratio, Cutting-off o f an Area, Deter
minate Section, Contacts and Vergings, Aristaeus’s Solid Loci and finally 
Eratosthenes’ On Means. The aim of the 7th book of the Collection is to exhibit 
some results or lemmas (XqppaTa) which should be useful to get the main results 
contained in them.

Unfortunately, among the treatises that Pappus mentions as part of the domain 
of analysis, only Euclid’s Data has reached us in an integral Greek version. Be
sides, we dispose of the Greek text of the first four books of Apollonius’s Conics, 
and of Arabic versions both of the books V-VII of the same treatise (the book VIII 
being lost) and of Apollonius’ Cutting-off o f a Ratio. All the other treatises are 
lost (except for few fragments).

Euclid’s Data is concerned with the problem of determining that which can be 
given (constructed) if certain geometrical objects are taken as given (in magni
tude, species, or position) and, according to Pappus’s terminology, all its argu
ments seem to be typically synthetic23.

Even though it exposes the theory of the conics “in a synthetic mode” (Knorr, 
1986, 293), Apollonius’s Conics in contrast presents many examples of conclu
sive reduction to principles and we can even find in this treatise some aiguments
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like the following, which aims to prove that if from a point D (fig. 2), external to 
a conic section we draw both a tangent DB and a chord DEC of this conic section, 
and from the point B we draw an other straight line BZ that cut DEC in a point Z 
in such a way that Z C : EZ = D C : DE> then this straight line cuts the conic sec
tion in a point A such that the straight line DA is the second tangent to it, passing 
from D (prop. IV, 1). In order to proof this proposition—that clearly teaches as to 
draw the second tangent to a conic section when a tangent has been already drawn— 
Apollonius assumes that the tangent DA is already drawn and the straight line BA 
cuts the chord DEC in a point H, different from the point Z, which satisfies the 
previous proportion. Then, appealing to proposition III, 37—which is just the 
reciprocal of the proposition that he is proving—he concludes that this is absurd. 
Hence, he derives that the straight line BA cuts DEC in a point Z which satisfies 
the previous proportion and here terminates his proof.

Figure 2

The logical schema of the argument is the following:

[Tg(DB) a  Tg(ZM)] => (BA cuts DEC in Z) (1)

according to III, 37,

Tg (DB) (2)
Tg (DA) a —>(BA cuts DEC in 2) (3)

by assumption,
- ( 1 ) (4)

by modus tollens,
- 0 ) (5)

by reductio ad absurdum.
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It is clear that (5) is not equivalent to Tg(ZM) and it thus does not accomplish 
the proof. To prove the proposition, we still have to appeal, both to the existence 
and uniqueness of a second tangent and of the fourth proportional. Thus the argu
ment (l)-(4) is not a conclusive analysis. But, according to the Aristotelian con
ceptions, this is no more a non-conclusive reduction to principles, except if we 
take it as a suggestion of starting the proof from the contemporary (hypothetical) 
negation of both the conjuncts of (3). In such a case we face to a non-conclusive 
reduction to principles, preparing a conclusive reduction to principles. This ex
ample could be taken as a symptom of a liberal use of regressive reduction as a 
heuristic tool in Greek geometry, but not yet as a symptom of the general applica
tion of Pappus’s method to the proof of theorems.

Figure 3

A number of cases of analysis and synthesis occur, in contrast, in book II 
(propositions II, 49-51: Apollonius GE, I, 274-305), applied to the solution of 
problems24, i. e. to the construction of geometrical objects satisfying certain con
ditions. Let us consider, as a simple example, the first part of proposition II, 49, 
where the problem is to draw a tangent to a parabola in a certain point. Apollon
ius’s argument runs as follows. Let AB (fig. 3) be the parabola and let the point A 
be given on it. Let us also assume that the tangent is traced, and let it be AE, the 
point E lying on the straight line prolonging the diameter of the parabola. From 
the point A let us draw the perpendicular AD to the diameter. As both the point A 
and the (diameter of the) parabola are given, the segment AD is also given in 
position. Beside, according to proposition I, 35 of the Conics themselves, EB is 
equal to BD. Thus as BD is given, EB is also given and, as B is given, the point E 
is given too. Thus the tangent is given in position. This is the first part of the 
aigument. The second one is introduced by the phrases: “it will be synthesized in
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this way [Z/uvredijoeTai 6f| oirtcog]” (ibid, 274, 21)25, and it consists of course in 
the presention of the obvious construction of the tangent. Let the perpendicular 
AD to the diameter DB be drawn and the point E taken on the straight line 
prolonging such a diameter in a way such that EB -  BD. The straight line EA 
passing through the given points E and A will be the tangent sought.

Even though arguments of this sort are rather exceptional in the Conics, they 
are common in Apollonius’ Cutting-off o f a Ratio, as it is presented to us in the 
Latin translation from Arabic by E. Halley (Apollonius SRH).

Consider as an example the first problem of such a treatise (ibid., 1-3). Two 
parallel straight lines AB and CD (fig. 4) are given in position and three points E, 
Z e t T  are given as well, the first on AB, the second on CD and the third not on 
these straight lines, being rather inside the angle DZH (where H is any point on 
the straigt line EZ after Z itself). Apollonius is searching for the position of a 
straight line passing from T and cutting AB and CD respectively in two points 
determining together with points E and Z two segments which are between them 
in a given ratio. He imagines first that this straight line cuts AB between E and B 
and CD between Z and D and calls K  and L the points where it does it. He assumes 
these points as given and draws the right TLK. Then he draws the straight line ET 
which is obviously given, as both the points E and T are given. The point M  of 
intersection of this straight line with CD is given too. Thus also the ratio 
Rat.(£T, MT) is given. But (for the VI, 2 of the Elements) this ratio is clearly 
equal to the ratio Rat.(Etf, ML) and then this latter ratio is given. Thus, as the 
ratio Rat^Etf, ZL) is given, the ratio Rat.(ZL, ML) is given for composition and 
therefore the ratio Rat. (ZM, ML) is also given for substraction. Now, as ZM is 
given, this means that ML is given and thus the point L and the searched straight 
line TLK are given too.

After this argument is been presented, Apollonius’s treatise continues with a 
new paragraph which is opened by the phrase: “Componetur autem Problema hoc 
modo” (ibid., 2), and presents an actually construction of the straight line TLK, 
starting from two segments N  and XO that are between them in the same ratio 
than the two segments that are determined respectivelly on AB and CD by the line 
sought.
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E K

Even though Apollonius does not say so explicitly, the two previous construc
tions are then preceded by an analysis, and they are thus synthesis in Pappus’s 
sense. Both in the first and in the second case, analysis is clearly problematical, 
or, if you prefer, it is just a geometrical reduction. If we consider Halley’s transla
tion from the Arabic as faithful to Apollonius’s treatise, we thus have to conclude 
that Apollonius not only proceeded as in the Pappus’s method in a short fragment 
of his Conics, but he also composed a genuine analytical treatise (in Pappus’s 
sense). This justifies the belief that other treatises of the same Apollonius actually 
proceed in the same style.

Still, we can find other, similar evidences apart from Pappus’ analytical cor
pus, in the book II of Archimedes’s treatise On the Sphere and Cylinder 
(Archimedes OO, 1,168-229; cf. Knorr 1986,170-174), for example. This is com
posed of nine propositions: three theorems (2,8 and 9) and six problems (1 and 3- 
7). The solution of all the problems runs in two stages: the first is a classical 
geometrical reduction (or, in Pappus’s terms, problematic analysis), while the 
second is a geometrical construction, explicitly presented by Archimedes himself 
as a synthesis26.
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A

Figure 5

Let us consider as a very simple example problem 3 {ibid, 184-187): to cut a 
sphere by a plane into two segments, in such a way that the ratio between these 
segments is equal to a given ratio. Archimedes assumes that the plane sought cuts 
the great circle ADBE (fig. 5) of the given sphere in the points D and E, being 
peipendicular in C to the diameter AB of this circle, and he draws the chords AD 
and DB. Then he remarks that the surfaces of the segments ADE and ABE are 
respectively equal to the surfaces of the circles of radius AD and DB (for the 
propositions 1,42 and I, 43 of the same treatise), which are between them as Sq.(A£>) 
and Sq.(DB), i. e.—because of the Pythagorean theorem—as AC  and CB. Hence 
he concludes that, as the ratio between the surfaces of the segments ADE and ABE 
is given, the ratio between AC  and CB is also given and thus the plane sought is 
given too. The synthesis is then obvious: it is a question of dividing the diameter 
AB by a point C such that the ratio between AC and CB is equal to the given 
ratio—which is made by a simple application of the proposition VI, 10 of the 
Elements—and of proving that this point satisfies the conditions of the original 
problem.

The evidence for Archimedes’ application of the method of analysis and syn
thesis becomes even stronger, if we observe that when, in the course of the solu
tion of problem 4, he assumes that a certain problem is solved—namely the problem 
of dividing a given segment so that one of its parts is to another given segment as 
a given surface is to the square constructed on the other part of it—, he announces 
that it will both be analyzed and synthesized at the and of the treatise: “ejti rekei 
avakirdTjaetm te icai cruvtedfjaeTai” {ibid, I, 192, 5-6; cf. Dijksterhuis [1956,
195]). Neither the analysis nor the synthesis are actually given by Archimedes in
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his treatise, but they are reconstructed by Eutocius in his commentary, and attrib
uted by him to Archimedes himself (Archimedes OO, III, 132-149). Besides, Eu
tocius also attributes in his commentary three other explicit applications of Pappus’s 
method to mathematicians of the classical age: two to Menaechmus {ibid. Ill, 78- 
85) and one to Diodes (ibid., Ill, 160-177)27. In all these cases Eutocius introduc
es the second stage of the solution by the same formula, that we can also find in 
Apollonius’s and Archimedes’ treatises: “ZuvTEfffjoETai 6f| ovrax ;” (ibid., Ill, 
136, 14; 80, 4; 82, 18; and 168, 26 respectively).

An extrinsic, but relevant argument to accept previous examples as evidence 
for an explicit application of the method of analysis and synthesis by Greek math
ematicians of the classical era could finally come from a short passage taken from 
chapter 16 of Aristotle’s Sophistici Elenchi. Here Aristotle insists on the differ
ence between our capacity of seeing and solving the faults of an argument when 
we consider it and our ability in meeting it quickly in discussion. He argues, both 
that we often do not know at certain occasions things we know in other circum
stances, and that speed and slowness in argumentation depend on training. Thus, 
he concludes, “sometimes it happens as with (geometrical) figures [Kadcbtep ev 
rou; biaypappaoiv], for there sometimes [after] having analyzed, on the other 
hand, we are not able to synthesize [dvakuoavre^ eviote ouvOeivoi Jtatav &6ova- 
to'0|xev]” (175a, 26-28)28. The verb “ow rifhipi” seems to refer here to the actual 
construction of the figure after analysis has shown the starting point of it. Thus we 
could imagine that it occurs here in its common sense in Greek common language 
and merely indicates a composition of objects in order to produce an object. But it 
is also possible that Aristotle actually refers to a common procedure in geometry, 
namely the procedure of analysis and synthesis (Hintikka and Remes, 1974, 87).

V.4 C oming B ack to Pappus

The previous examples should be sufficient evidence to support a historical hy
pothesis: Greek mathematicians of the classical age actually applied a two-stage 
method to solve problems29, coupling the construction of mathematical objects 
which satisfy certain conditions, with a previous geometrical reduction, which 
indicated to them both a starting point and a plan for construction. This thesis is 
perfectly consistent with our previous interpretation of Aristotle’s comparison of 
analysis and deliberation in chapter III, 5 of the Nicomachean Ethics. However, 
this comparison disagrees with previous examples of the use of the terms “analy
sis” and “synthesis”. While Aristotle uses only the first, the second occurs very 
prominently both in Apollonius’s and in Archimedes’ arguments. Such a promi
nent occurrence of the second term might perhaps not be very significant, since 
this term here has a meaning that is very close to the common meaning. Even



396 MARCO PANZA

though here synthesis is not strictly a composition of given objects which form— 
because of this composition itself—a new object, it is nothing but a construction 
of a new object, which starts from given objects and follows accepted constructive 
clauses. The almost complete absence of the term “analysis” in Apollonius’s and 
Archimedes’ arguments might in contrast indicate a deep difference between Ar
istotelian conception of analysis as form of thinking and the conceptualization of 
a geometrical procedure, consisting in the investigation of that which is given 
when the objects sought are taken as given30 and aiming at the individuation, both 
of a starting point and of a plan for construction. It could be the case that the term 
“analysis” was used in the classical age to refer to the Aristotelian notion but not, 
or not frequently, to this geometrical procedure.

If this were the case, the two previously mentioned passages from Aristotle’s 
Nicomachean Ethics and Sophistici Elenchi would contain, as a philosophical 
judgment, the acknowledgment of the analytical nature of this geometrical proce
dure. From such a point of view, Pappus’s general description of the method of 
analysis and synthesis seems to occupy a middle position between Aristotle’s con
ceptions and mathematical practice31. Even though Pappus uses the term ‘analy
sis’ to refer to this geometrical procedure (that is just a geometrical reduction), he 
assignes to it a very specific and technical meaning. However this meaning is 
wide enough such that the term “analysis” also refers to Aristotelian reduction to 
principles. Moreover Pappus’s description associates—as Aristotle did—under 
the same term of “theoretical analysis”, both reduction ad absurdum (or conclu
sive reduction to principles) and non-conclusive reduction to principles. Thus it 
actually unifies three procedures. The mathematical relevance of such an unifica
tion is understandable when we observe that the third of these procedures (namely 
non-conclusive reduction to principles) is almost absent from the geometrical prac
tice of the classical age. Besides, the previous example, taken from the scholium 
to book XIII of the Elememts makes manifest the technical gain of applying non- 
conclusive reduction to principles to the proof of geometrical theorems. Even though 
al-Nayrizi’s commentary seems to show that this is not an original idea of Pappus, 
the available evidence seems to confirm that it is nevertheless an acquisition of 
Pappus’ time, at least if we assume that his scholium goes back to that time (like 
it should be the case if Heibeig and Heath are respectively right in ascribing it to 
Heron and in guessing that Heron lived in the third century). The passage from 
the idea of synthesis, as simple composition or construction, to the idea of synthe
sis, as an inferential procedure following an analysis, seems to be joined by such a 
later acquisition.

Nevertheless, the interest of Pappus’s description is not exausted by that. It is 
also concerned with the idea of synthesis as reconstruction of the natural order. As 
we have just seen, Pappus uses the properly Aristotelian term “<puoiq”, saying that
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synthesis orders the consequences and the prolegomena of the givens “Kara <pi3oiv”. 
He not merely refers to a logically correct order here, but appeals to the reality of 
nature. A comparison with the very beginning of Aristotle’s Physics is thus una
voidable. There (184a, 16 -1846,14) Aristotle aigues (184a, 16-18) that the way 
(oboq) of knowledge goes from that whch is more knowable and clear to us, up to 
that which is more knowable and clearer by nature (xfj cpuoei) and specifies (184a 
21-26) that what is manifest and clearer to us is what is more confused (xa mry- 
Kexvneva paAAov), or the whole (oXov). It is only afterwards, he adds, that, 
starting from it, the elements and principles (xa orotxeia al icai agxai) become 
known, by division. Finally he concludes that (in knowledge) we have to proceed 
“from the general to the particular [ek xcdv KafroXou £jti xa Kafr’ EKaoxa]”, 
since the general is a sort of whole, because it contains a plurality of things (otoA.- 
Xa) as (its) parts. Aristotle’s term for “division” is not “avdX,uoiq”, but “biaigeoig”, 
and there is a reason for that. In fact, as long as it is the way of knowledge in the 
Aristotelian sense, division goes from what is given for us to what we seek, from 
the object that is given as such, to the conditions of its realization. This proceed
ing is exactly the opposite of a regressive reduction. Nevertheless, Aristotle’s de
scription has been understood during the Latin and modem ages as a typical 
characterization of analysis (and the term “biaiQEOiq” has often been translated 
by “analysis” or “resolutio”).

Pappus’s reference to the notion of nature provides a key to understand such a 
shifting. It seems just to result from an inversion of the Aristotelian point of view, 
according to which what is given as such is not that which is given to us as such. 
Rather, it is that which is given as such in itself (or in the eternity of truth). Thus 
the problem becomes one of understanding what is given to us as such, according 
to the eternal troth of what is given as such in itself, that means to represent it to 
ourselves as a system or even a collection of parts or properties; these parts or 
properties being intended as first elements, which are given as such in them
selves. I am not arguing that Pappus actually realizes such an inversion (that is 
quite natural from a Platonic point of view, and particularly with respect to math
ematical matters). I am merely observing that Pappus’s argument seems to sug
gest such a possibility or may even be suggested by it32. In this non-Aristotelian 
sense, analysis and synthesis of course come together, since the “resolution” of an 
object into its elements or parts asks for its reconstitution, according to the nature 
(or even its nature). However, such a reconstitution (that is just a synthesis in the 
original sense of this term) is not necessary for the realization of the aim, because 
the problem was that of understanding the object, not that of reconstructing it as 
such. As long as we realize the synthesis, it is nothing but a repetition of a process 
that has to have occurred already in nature. Thus, a new sort of conclusive analy
sis of objects arises. And, even though its notion is definitely not Aristotelian, it
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may be characterized in terms that refer to Aristotle’s Physics. We might call it 
“reduction to elements”33.

VI Thomas

Aristotle’s exposition of the way of knowledge in the beginning of the Physics 
was one of the major references for medieval conceptions of “resolutio” (that is 
“re -so lu tio“ava-A.i3cn.c;”) and “compositio” (that is “cum-positio”:“ow-f)EOi<;”). 
According to B. Gerceau34 (1968, 217) it is, for example, just on the background 
of this text that Albertus Magnus, the master of Thomas, read Chalcidius’s com
mentary to Plato’s Timaeus, where these notions are discussed. This means both 
that he understands them as referring to the process of knowledge—rather than to 
the order of cosmological reality—and that he considers that resolutio brings us 
from what is first in our knowledge to what is first as such. Hence, the latter is 
(from the point of view of the cognitive subject) an upward conduct bringing us 
from the complex in itself, but first for us, to the simple in itself35, but last for us. 
In different terms, it is just a reduction to elements. However, what is complex in 
itself (and first for us), is the individual as such, while what is simple in itself (and 
the last for us) is that which makes the individual belong to a certain species; thus 
resolutio brings us from the individual to the species. Still, the individual is a 
whole, while its elements are parts of it, hence resolutio goes also from the whole 
to its parts. Finally, if the reference is not to a single act of knowledge, but to 
human knowledge as such, the individual is part of multiple and the species is 
unity, thus, resolutio goes from multiple to unity, as Thomas says in De Trinitate 
(qu. 6, a.l, c.). The compositio is then (still for the point of view of the cognitive 
subject) a downward conduct, bringing from the simple in itself to the complex in 
itself, from the universal as a principle, to the individual, from the parts to the 
whole, from the one to the multiple.

Even though this conception inverts the extensional order of Aristotelian anal
ysis, it does not invert its logic (or one of the intensional orders that characterizes 
Aristotelian analysis): analysis always proceeds regressively from the last to the 
first, from the not given to the given, from the problem to its solution, or to the 
conditions of the solution. Moreover, it is a conduct of thinking, a way of knowl
edge.

This is however not the only sense ascribed to the pair “resolutio-compositio" 
in the 13th-century philosophy. An further sense comes up with Peter of Spain, 
from the eclectic views exposed by Boethius in his Commentary on Porphyry’s 
Isagoge, where Platonic and Aristotelian conceptions are applied together to pro
vide a complex representation of logic (Garceau 1968, 210-213). According to 
Boethius, there are two different but complementary ways of distinguishing the 
different parts of logic: either these parts are definitio, partitio and collectio, or
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they are inventio and judicium. While the second distinction comes from Aristo
tle, passing through Cicero’s Topics, the first refers to Phaedrus's distinction be
tween 6 icuqeoi<; andcruvaytoyn. The complementarity of these distinctions appears 
when Boethius aigues that inventio provides material for definitio, partitio and 
collectio—which includes, in turn, demonstrate, dialectica and sophistica, deal
ing respectively with necessary, probable or false arguments—while judicium de
termines whether we are well defined and divided, whether our arguments are 
necessary, probable or false and whether they are linked by inferential relations, 
or not. In this way, Plato’s distinction between biaipeoiq and cruvaycoyn is grafted 
onto an Aristotelian schema. It is hence not surprising that Peter of Spain, more 
than seven centuries later, in his commentary on De anima (Qucest. Prceemb.) 
interpreted the ideas of resolutio and compositio as referring to Plato’s dialectic— 
by effacing the essential distinction between oovaytoyq and cruvdeoiq. Resolutio 
becomes, in this frame, a downward path bringing us from the genus to the spe
cies, from the one to the multiple, while compositio becomes an upward path 
bringing us from the species to the genus, from the multiple to the one.

Even though, in this way, Peter of Spain agrees with Aristotle on the regres
sive nature of analysis, he seems to change the point of view from which analysis 
is considered. Analysis is not regressive because it brings us from the last to the 
first, from the not given to the given. It is regressive because it goes from the 
higher to the lower. It is not a way of knowledge, but a sense in the disposition of 
being.

In Qucestio 14 of Summa, prima secundce (a. 5) Thomas treats the following 
question: “does deliberation [consilum] proceed by resolutorio order?” In the first 
objection, he argues that this cannot always be the case, since deliberation “is 
concerned with that which is done by us [est de his quce a nobis aguntur]” and our 
operations (operationes) proceed more modo compositivo, than modo resoluto
rio; that is, according to Albertus’s views: they go de simplicibus ad composita. 
Still, in the second objection, he adds that deliberation is an inquisitio rationis, 
and, according to the most convenient order, reason “begins with that which is 
prior and goes to that which is posterior [a prioribus incipit, et ad posteriora 
devenit\\ such that deliberation has to go from the present (that is prior), to the 
future (that is posterior), and not viceversa. As Thomas refers just to chapter III.5 
of the Nicomachean Ethics, his answer is obviously positive: deliberation does 
proceed according to the resolutorio order. The aigument implicitly refers to the 
beginning of the Physics. We can consider prior and posterior—he argues—either 
with respect the order of knowledge (cognitione) or to the order of being (esse). If 
what is anterior in the first order were also anterior in the second, deliberation 
would be compositiva. But it is not always so, and it is particularly not so in the 
case of deliberation, where the end (finis) is prior in intention (intentio), but pos-
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tenor in being. Thus, deliberation is resolutiva. The solutions of the previous 
objections are not essentially different: deliberation deals with operations and “or
der of reasoning about operations is contrary to the order of operating [ordo rati- 
ocinandi de operationibus, est contrarius ordini o p e r a n d reason starts from 
what is prior for reason (,secundum rationis), but not always from what is prior in 
time.

Six orders are mentioned in this argument: the order of knowledge, the order 
of reason, the order of being, the order of time, the order of intention and the order 
of (human) operations (or acts). Deliberation—says Thomas—proceeds analyti
cally, since it goes from what is the last in the order of acts to that which is the first 
in the same order. As deliberation is an inquisitio of reason, it has to go from what 
is first for reason to that which is the last for reason. But when reason applies to 
action, what is first for reason, is the last in the order of acts. This is just our end. 
Certainly, it is also the last in the order of time, while it is the first in the order of 
intention. Moreover, it seems to be, according to Thomas’s argument, the first in 
the order of knowledge, and, if it is so, it is then the last in the order of being too. 
Therefore for Thomas, deliberation is an example of analysis, since it brings us 
from the last in the order of being (acts and time) to the first in the order of 
knowledge (intention) and reason, whereas, for Aristotle, it was an example of 
analysis, since it brought us from what is given to us as the object of a certain 
concept (that is just the end), to what is given to us as such (the act we can perform 
here and now). Thus if Thomas’ conclusion is the same as Aristotle’s, it is be
cause of the fact that in deliberation knowledge is nothing but a means for action, 
and it is not intended as such (ibid., I-II, qu. 14, a. 3). Such a remark enables 
Thomas to accept Aristotle’s thesis of chapter III.5 of Nicomachean Ethics, by 
appealing to an aigument that is similar to the one Aristotle advances at the be
ginning of the Physics. However such a double agreement stands on many differ
ences. Nevertheless, on two essential points Aristotle and Thomas agree: for both 
of them, analysis is a regressive conduct of thinking (or reason, according to Tho
mas’ terminology); this conduct can be applied in order to reduce either concepts 
to the conditions of their satisfaction or aims to the conditions of their realization.

The same tension between the point of view of knowledge and the point of 
view of being appears when we consider Thomas’s conception of relations be
tween the pairs resolutio-compositio and inventio-judicium (Garceau, 1968, 218- 
220). As a matter of fact, Thomas sometimes identifies resolutio with judicium 
and compositio with inventio, and at other occasions identifies resolutio with 
inventio and compositio with judicium.

He states the first double identification, when he speaks from the point of view 
of knowledge and considers inventio as a research for conclusions, starting from 
principles, and judicium as an evaluation of conclusions in the light of princi
ples36. This seems to be the case of the Proemio of the commentary to the Posteri
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or Analytics I have quoted before. Now, Thomas is here properly concerned with 
the conduct of reason that brings us to the act of judging, rather than with this act 
as such. According to Garceau (ibid.) this is also the case of the other occurrences 
of the first double identification in Thomas’s writings. If this is correct, Thomas 
asserts that the act of judging is prepared by an analysis. Quaestiones 13 and 14 of 
Summa, prima secundce are even more explicit. In the latter (a. 1), Thomas aigues 
that in doubtful and uncertain matters, reason does not pronounce a judgment 
(profert iudicium) without previous inquistione “concerned with [his] choice [de 
eligendis]”, which is just said “deliberation”. Thus, he says that the act of pro
nouncing a judgment is a sort of choice (electio), that is formally an act of reason, 
but being substantially an act of will, instead (qu. 13, a. 1). If we accept that 
synthesis is just what comes after analysis and is made possible by it, we can 
conclude that the act of judging is a synthesis, it is made possible by an analysis 
and can even express an act of will, as choice is. In this sense, synthesis is no 
more, strictly speaking, a conduct of thinking or a way bringing us from a certain 
stage to a different one. It is a singular act of reason which closes an analysis and 
eventually expresses a will. Whether a judgment, in turn, then is either analytic or 
synthetic, cannot depend on the nature of this act, but on the characters of the 
analysis which leads to it. This exactly seems to be the idea of Kant (here, ch. 12).

Thomas states the second double identification instead, when he speaks from 
the point of view of the intrinsic nature of being, which the results of inventio and 
judicium express or identify. From such a point of view, inventio assumes the 
character of an analysis, since it reduces what is the first for us, but the last and 
the most complex in itself, to the intrinsic simplicity of its principles. Judicium, in 
contrast, is a synthesis, since by it the intrinsic complexity of reality is under
stood, starting from the intrinsic simplicity of principles. In this case, the term 
“ judicium” clearly refers to the act of judgment as such.

Thus, from the point of view of judgment, the two previous double identifica
tions do not contradict one another: in both the cases, the act of judgment seems to 
be intended as an act of synthesis, preceded and prepared by an analytic conduct.

VII Viete and Descartes

Pappus’ characterization of the mathematical method of analysis and synthesis 
and medieval doctrines of resolutio et compositio, in their relations with Tho
mas’s theory of judgment, seem to be the two gateways through which the Aristo
telian idea of analysis enters the modem age. By passing through both these 
gateways it comes to be associated to a non-Aristotelian idea of synthesis, which 
generalizes Plato’s and even a pre-Platonic conception of synthesis as mere com
position of objects (by integrating Plato’s conception of cTuvaycoyfi, for example), 
but also restricts its range, just because of this association. Still, by passing through
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the first of these gateways, it is both clarified—or even codified—and restricted to 
the specific domain of geometry; namely it is identified with nothing but geomet
rical reduction and reduction to principles. Finally, by passing through the second 
gateway, it loses its Aristotelian purity, both being confounded with 6iai()£ai<; 
(and integrating, in such a way, Plato’s dialectic) and being projected on a plural
ity of distinct orders, often opposite each other (here, ch. 13, par. II).

In coming out from the first gateway, Aristotelian idea of analysis is met by 
Vidte, who goes on to formulate a very ambitious program: to apply to geometry 
both methods and results of Diophantus’ arithmetic (ch. 3, par II. 1). This pro
gram is clearly expounded in the Isagoge (1591) and partially realized in a number 
of works published later.

Application to geometry of arithmetical technics was impeded in pre-modem 
mathematics for different reasons, the most important of which was probably the 
absence of a general definition of internal multiplication between geometrical 
magnitudes. Though for Greek mathematicians (integral positive) numbers could 
be multiplied with each other and into any sort of magnitude, the same was not 
true with respect to magnitudes in general. Construction of squares, rectangles, 
cubes or parallelepipeds was of course intended as particular analogues to the 
multiplication of numbers, when two or three segments were involved. This was 
not, however, a general definition of multiplication for geometrical quantities. 
Moreover, such a geometrical “proto-multiplication” was not conservative with 
respect to homogeneity, by producing a result that could be added neither to its 
factors, nor to any other magnitude of the same kind. Vidte’s basic idea, to pass 
beyond such a difficulty was to provide aquasi-axiomatic definition of multiplica
tion as a general operation on quantities (both numbers and magnitudes). In this 
way, he enabled himself to pass from proportions between geometrical magni
tudes like a : b -  A : B, to equations like aB =* bA, and to express different sorts of 
problems involving geometrical magnitudes in terms of equations. In order to 
accomplish that, Vidte proposed to use a genuinely analytic procedure.

In the very beginning of the Isagoge he defines analysis as a “certain way to 
search for the truth in mathematics [veritatis inquendce via qucedam in Mathe- 
maticis]” (Vidte 1591a, 4r). He mentions the opinion according to which Plato 
was the first to come upon (invenire) it37; he ascribes to Theon (who lived in 
Alexandria in the 4th-century a . d.) the merit of being the first to call this way 
“analysis”, and asserts that he is just quoting Theon’s definition. It is possible that 
Vidte refers here to the scholium of book XIII of Euclid’s Elements in the form it 
takes in the Theonine version38. Analysis, he says, is “the assumption of what is 
questioned as if it were admitted, [in order to arrive], by means of [its] conse
quences, to what is admitted to be true [adsumptio qucesiti tanquam concessi per 
consequentia ad verum concessum]”; in contrast (ut contrd), synthesis is “the
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assumption of what is admitted, [in order to arrive], by means of [its] consequenc
es, to the end and comprehension of that which is questioned [adsumptio concessi 
per consequentia ad qucesiti finem & comprehensionem]” (ibid.). The use of the 
terms “finem” and “comprehensionem” is perfectly consistent with the Aristote
lian conception of analysis, as I have presented it, and serves Vidte’s program too. 
In fact, though he mentions the two kinds of analysis distinguished by Pappus (by 
calling them “^rjTqtiKfj” and “jcoqiotikiY’)—saying that the previous definition 
is perfectly pertinent for them—and even asserts to have added a third kind to 
them, which he calls “QT|TiE,f|” (from “qe(d”: to flow; but also: to explain) or 
“ie r̂iYTlTiicn” (from “e^qyeopai”: to conduct up to the end, to explain, or to 
expose), he profoundly changes the intended sense of Pappus’s distinction. Far 
from being three distinct species of the same genus, Viete’s zetetics, poristics and 
exegetics (or rhetics) are three successive stages of the same conduct. According 
to Vidte's general definition, in the first stage “an equation or a proportion is 
obtained between the magnitude which are sought and that which is given [inven- 
itur cequalitas proportiove magnitudinis, de qua quceritur, cum iis quce data sunt]”', 
in the second one “the truth of the theorem concerning with the equation or pro
portion [de cequalitate vel proportione ordinati Theorematis veritas examinatur]”; 
and finally in the third one “the magnitude is exhibited [starting] from the equa
tion or proportion about what is questioned [ex ordinata cequalitate vel propor
tione ipsa de qua quceritur exhibetur magnitudo]” (ibid). However, zetetics more 
properly consists in transforming the given problem in an equation, eventually by 
passing from one or more proportions, and in solving it; clearly it is an analytic 
procedure. Poristics consists in verification of the conclusions of zetetics; it can be 
as such—as we shall see later—either an analytic or a synthetic procedure. Final
ly, exegetics consists in the exhibition of the searched magnitude; it is certainly a 
synthetic procedure .

In order to understand the relations among the three stages of Vidte’s methods, 
we have to investigate the nature of zetetics. As long as it is expounded in general 
terms, Vidte’s idea is quite simple. If a problem is advanced according to which 
certain magnitudes are sought, he proposes to assume that these magnitudes are 
given and to indicate them with certain letters (Vidte actually uses capital vowels 
(here, ch. 6, notr 13), but we can use the last letters of the Latin alphabet, as we 
normally do). Then he proposes to work on these magnitudes as if they were 
actually given, in order to translate, according to the new definition of geometri
cal multiplication, the conditions of the problem in a certain equation that could 
be solved according to the usual arithmetical technics, or transformed into a new 
proportion. Imagine that this problem asks for the construction of two segments 
which should form a rectangle equal to a certain square B and should have the 
same ratio as two other segments S and R, which is a particular case of the zetitic 
11,1 (Vidte 1591 b, lib. II, z. 1). If these segments are called x  and y, we have the
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proportion x : y  = S :R and thus, according to Vidte (but in modem notation),

C y R x  Cy^
x  = —  and y = —  and then B = -----= ------  or Sy2 — RB and Rx2 = SB. Even

R S R S
if these equations were solved, as if they were usual arithmetic equations, the 
exhibition of their roots would not yet be the construction of the segments sought. 
Therefore, it is not the exhibition of the solution of the problem. The situation 
does not change if we transform these equations into two corresponding propor
tions, as Viete actually does. We have then, respectively, the proportions 
S: R = B : y 2 and/? :S  = B :x 2 which do not exhibit as such the segments sought. 
When we face the roots of the previous equations or the proportions that corre
spond to the latter, in both cases two problems remain still open: first to verify, 
starting from the magnitudes that are actually given, whether the relations ex
pressed by these roots or proportions are correct, and second to interpret either of 
these roots or these proportions as suitable suggestions to actually realize the con
struction we were seeking. Poristics should solve the first problem, exegetics should 
solve the second one.

We have just asserted that the first stage of Vidte method is an example of 
analysis. The reason is clear: it is a conduct of thinking, responding to a certain 
aim, which starts from the hypothesis that a certain object, which is only present
ed as the object of a certain concept, is given a such, and runs by assuming that we 
can actually operate on and with such an object. This is also the case of Aristote
lian geometrical construction. However zetetics does not bring us from this hy
pothesis to the exhibition of an object that is given as such, rather it terminates as 
soon as the object which is sought is presented as the object of a new concept: the 
concept of root of a certain equation, or, to be more precise, the concept of being 
the (geometrical) magnitude that is expressed by a root of a certain equation. Thus 
it is not strictly a regressive conduct, since it does not regress from that which is 
not given as such to that which is just given as such. Rather, it exploits the admis
sion occurring in its first stage to exhibit a certain operational relation, that was 
unknown before, between the object sought and the objects given as such. There
fore, as long as it is not a regressive conduct, ViSte’s zetetics is a way to come 
upon a certain relational configuration that was unknown before. Even though it 
is not conclusive with respect to the aim occurring in its first stage, it is conclusive 
with respect to a different aim, which is just that of exhibiting such a configura
tion. It is then an example of a new, non-Aristotelian sort of analysis, that we 
might call a “configurational analysis”.

Because of the particular nature of this analysis—and inspite of ViSte’s decla
ration in the chapter VI of Isagoge (Viete 1591a, 8r), where it is described as a 
sort of synthesis—the stage which follows zetetics can be either an analytic or a 
synthetic procedure. The reason is clear: its specific aim is proving a theorem—
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that is just the conclusion of zetetic—and it can do this either by a conclusive 
reduction to principles or by a synthetic proof that can eventually be preceded by 
a non-conclusive reduction to principles. However, both in the first and in the 
second case, poristics does not realize the aim occurring in the first stage of zetet
ics. Rather, it is conclusive only with respect to an intermediary aim, which is just 
the specific aim the conclusions of zetetics leave to it. The task of realizing the 
principal aim is thus left to the third stage, that is exegetics.

Even though, exegetics thus is a geometrical construction and is then, because 
of its logical form, a quite normal synthesis, its connection with the previous 
analysis is not the same that in Pappusian and Medieval examples. In fact it does 
not start from the object that analysis has indicated. As long as it starts from the 
final stage of analysis (that is the final stage of zetetics), it has to interpret the 
final stage of analysis; namely, it has to transform the expression of a certain 
relational configuration into a suggestion for a geometrical construction. Thus, at 
its very beginning, it has to proceed as analysis does, starting from the presenta
tion of a certain concept and seeking for the first elements of construction. This is 
specifically difficult, because of the non-geometrical character of the configura
tion exhibited by zetetics. In fact, in Viete’s method, zetetics realizes its specific 
aim and exhibit such a configuration, thanks to a quasi-axiomatic definition of 
internal multiplication. But, even though such a definition enables mathemati
cians to write equations where products (and ratios) of magnitudes occur and to 
manipulate them, it does not specify what a product (or a ratio) of magnitudes is. 
This is the source of one of the main difficulties of Viete’s program, since, in order 
to assign a geometrical sense to his equations and their roots, Viete proposes to 
interpret them according to a generalization of the classical definition of product 
of segments as constructions of rectangles or parallelepipeds. The problem with 
this suggestion is twofold. First, such a definition does not work for any sort of 
geometrical magnitude. Second it forces us to distinguish magnitudes according 
to their order with respect to a certain base, since, according to the previous defi
nition, internal multiplication between segments is not conservative with respect 
to homogeneity.

This difficulty is one of the starting points of Descartes’ program in geometry. 
Many scholars have underlined that Cartesian geometry is nothing but a collec
tion of methods to solve geometrical problems. I do not believe this is the case. 
Rather, I think that the aim motivating Descartes’ Geometry was a new founda
tion of geometry as a whole. And such a foundation makes an essential appeal to 
the analytic way of thinking. This is the last stage in the history of the notion of 
analysis I shall consider here, since it is the first stage of a new era, where the 
original Aristotelian notion gets its modem character.
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As is well known, Descartes, in his Discours de la methode, contrasts the 
“Analyse des anciens” and the “Algebre des modernes” (1637, 19). He refers to 
them as two “arts” and considers them together with a third “art”, that is logic. 
His famous four precepts (ibid., 20) are expounded by him as the only “laws” of a 
method that “comprenant les avantages de ces trois [arts], fust exempte de leurs 
defaux” (ibid., 19). The first and the third precept seem to recommend a quite 
non-analytic conduct of thinking: never accept as true anything of which we do 
not have evidence; always start with the simplest and the most easily knowable 
objects in thinking and proceed step by step upwards to the knowledge of the most 
composed ones. Though such an apparent refusal of analysis seems to be balanced 
by the second precept, this precept does not really recommend an analytic con
duct, limiting itself to suggest to always divide any difficulty in as many “parti
cles” as possible. Such an attitude seems to be inconsistent with the equally famous 
precept of the Geometrie, which in contrast recommends a very analytic conduct:

“Ansi, voulant resoudre quelque problesme, on doit d’abord le considerer conune desia fait, & 
donner des nommes a toutes les lignes qui semblent necessarires pour les construiie, aussi bien & 
celles qui sont inconnugs qu’aux autres” {ibid., 300; cf. here, ch. 1,23-26 and ch. 8,208).

The contrast appears to be even more evident when we observe that, just after 
having set forth his four precepts, Descartes presents a very short abstract of his 
geometry, as an example of his method.

How can these precepts for a good conduct of thinking be rendered consistent? 
The answer depends on Descartes’ conception of his method, as a combination of 
the advantages of (Aristotelian) logic, classical geometry (which, by referring to 
Pappus’ interpretation of it, he calls “analysis of the ancients”) and of what he 
calls “the algebra of modems”. From the first of these “arts”—which he here 
understands as the art of conducting logical proofs—Descartes takes the progres- 
sivity of thinking and the certainty of the starting points. From the second, he 
takes both the modalities of giveness of objects and the conditions of their possible 
comparison. Finally, from the third, he takes the modalities of expressing both 
objects and operations and the agility of deduction that these modalities permit; in 
fact, when he speaks of “algebra”, he seems to refer to the modem (for him) 
technics of transforming and solving equations. The key to understanding Des
cartes’ point of view seems just to lie in the previous distinction between modali
ties of giveness and comparison and modalities of expression. This distinction is 
already visible in Viete’s program, the aim of which is just to find a way to work 
with the “algebraic technics” on certain expressions of geometrical objects, in 
order to obtain suitable suggestions to perform classical constructions. However, 
in Descartes’s new geometry it seems to become much more explicit.

In following Israel’s suggestion (here, ch. 1), we might come back to the Reg
ular in order to understand Descartes’ views. In the Regula XIV (Descartes AT, X,
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450-52), Descartes states that there are only two sorts of things which compare 
themselves to each other (the Latin verb is “confero”: literally “to bring together”, 
and it is used here in the passive form): multitudes and magnitudes. And he adds 
that we dispose of two sorts (genara) of figures “to conceive them [ad illas con- 
ceptui nostro proponendas]”. The first type of these figures are diagrams (as sys
tems of points or genealogical trees), the second are geometrical figures. By using 
Descartes’ terms, they respectively “exhibit [or are to exhibit: exhibenda]” multi
tudes and “explicate [explicant]” magnitudes. Among all the possible classes of 
figures of these sorts, Descartes wants to choose only one and use its elements as 
general representations of multitudes and magnitudes. In order to justify his choice, 
he remarks that all the conditions (habitudines) which can subsist (esse) between 
entities of the same genus (that is all the relations between such entities) refer 
(esse referenda) either to order or to measure. Then he states that measure essen
tially differs from order because of the necessity of the consideration of a third 
term, when two entities are compared according to it (which is not the case of 
order). Finally, he argues that “as far as a unity is assumed [beneficio unitatis 
assumptice]" magnitudes can be reduced to multitudes, and the multitudes of uni
ties can be disposed in such an order, that every difficulty “concerning the knowl
edge of measure [quce ad mensurce cognitionem pertinebat]” only depends on 
order. Starting from these premises, Descartes concludes that, as long as it is 
question of proportions between magnitudes, only segments can be considered 
and that the same figures can be used to exhibit both, multitudes and magnitudes.

Descartes’ argument may appear rather obscure, but it becomes very clear as 
soon as it is considered in connection with his geometry. What Descartes says, is 
that if a certain magnitude is assumed as a parameter to measure all the other 
magnitudes of the same genus (a unity of measure), then the essential difference 
between comparison by order and comparison by measure—that is just the neces
sity of a third term—fails, since the third term is given already once for all. Thus, 
it is possible to intend any proportion as a relation with respect to the order and 
pass from it to a usual identity. Namely, as he will teach in the very beginning of 
Geometrie (Descartes 1637, 297-298) and as he anticipates in the Reguala XVIII 
(Descartes AT, X, 463), a proportion like u : a - b :  c (where u is just the unit) 
means that c is the product of a and b. Such a definition is completely independ
ent of the nature of the measured quantities: they can be multitudes or magni
tudes, and, if they are magnitudes, they can be any sort of magnitudes. Therefore, 
to give a sense to the product of two magnitudes a and b, it is merely necessary 
that the unity is chosen as homogenous either to a or to b. But, if this is the case, 
the comparison of distinct quantities can be expressed by a consistent formalism, 
which does not depend on the particular nature of these quantities, and thus, as 
long as we are comparing them, all quantities can be intended as being segments.
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Regula XIV stops here. This is not however the end of the story, since these 
considerations do imply neither that each quantity can be compared to every other 
(since Descartes’ argument refers to the modalities of comparison, but not to the 
possibility of it), nor that the product of two quantities can be exhibited, if these 
quantities are given, together with a unit homogeneous to one of them. According 
to the previous definition, this is only possible, if the fourth proportional between 
these quantities and the unit can be exhibited. If both these quantities are seg
ments, theorem VI, 12 of Euclid’s Elements teaches us that this is always possi
ble. But if this is not the case, no a priori guarantee can be given for that. Thus, 
Descartes’ definition of internal product for any sort of magnitudes (that can be 
easily applied to multitudes too) does not go together with the possibility of exhib
iting this product under any circumstances. If we want this possibility to exist 
always, we have not only to treat or represent all quantities as segments—as long 
as we are measuring them—, we have also to assume that they are segments. The 
same argument may be applied to internal division, integral power and any sort of 
root (the only difference being, for the last case, that the possibility of exhibition 
of every root of a given segment does not depend on any theorem of Euclid’s 
geometry, but on Descartes’ enlargement of Euclid’s constructive clauses).

If we want to do geometry in general, we of course, cannot restrict ourselves to 
the consideration of segments. However, we may assume that only segments are 
given as such and try to construct any geometrical entity (that is a magnitude or a 
form), step by step, starting by segments. This is the progressive way of (Aristote
lian) logic. Nevertheless, if we want to reach non-rectilinear figures by this con
struction, we cannot limit ourselves to Euclid’s constructive clauses. According to 
Descartes, there is no question of adding further postulates to Euclid’s. It is even 
preferable to eliminate these postulates as such. We have only to be confident of 
our capacity to distinguish and trace segments and to perform elementary opera
tions with them (like to construct a circle by rotating a segment) or with ideal 
machines composed by segments or other objects, which have already been con
structed (like in the case of the construction of the ellipse by means of the garden
er’s method). Hence, the construction of geometrical objects, starting from 
segments, is not submitted to any general rule, but has simply to satisfy a condi
tion of exactness, which Descartes actually formulates in his Geometrie in differ
ent and not always consistent ways. This general precept both expresses the 
condition of certainty of the starting points—which Descartes inherited from (Ar
istotelian) logic—and the modalities of giveness of geometrical objects. I have 
just said that Descartes inherited these modalities from classical geometry (read 
through the glasses of Pappus’ interpretation). In fact, these modalities are for
mally the same which work in classical geometry: only objects that are explicitly 
constructed starting from elementary objects are given as such. However, the sub
stance of this condition has changed, since such a condition is no longer expressed
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in terms of deductive constraints (like in the Euclidean deductive system), but it is 
merely satisfied by the application of a constructive capacity which looks after its 
own exactness. Thus the progressive order of Descartes’s method is not the order 
of Aristotelian proof, it is rather an order of construction, or, in the original Latin 
sense of the term, an order of inventio (that is literally the act of coming in or 
upon)39.

As long as geometrical objects are given as such, the modalities according to 
which we can operate on them and compare them, are the same as in classical 
geometry: two segments are added, for example, by juxtaposition (the term is 
explicit) and compared by referring to the conditions of their mutual inclusion. 
This is the second aspect of classical geometry inherited by Descartes. Neverthe
less the objects, which are given as such are not the only ones we are able to 
consider. We can also consider objects, which are simply characterized by the 
conditions they have to satisfy. These objects are not given as such, but, as long it 
is question of their comparison with other objects (which are given, instead), we 
can express them by means of suitable terms and apply to them the usual rules of 
proportion. Moreover, if a unit is given, proportions can be expressed by equa
tions (or, if you prefer, translated into them). Such a possibility enable us to deter
mine the relational configuration of any domain of known or unknown quantities 
and to characterize them as the objects which satisfy (or, better, would satisfy) 
certain conditions. This is the modality for representing both quantities as well as 
operations on quantities. It is the consequent agility of formalism that Descartes 
inherits from the “algebra of modems”. This is also the analytic procedure on 
which Descartes’ geometry is founded. However, this is not a regressive conduct, 
being rather, as in the case of Viete, a configurational analysis (here, ch. 8).

However, two novelties make Descartes’ analysis essentially different from 
Viete’s. First, the introduction of a unit (that is, in modem terms, the neutral 
element of a multiplicative group) eliminates any necessity of distinguishing quan
tities with respect to their (multilicative) order, as long as it is only question of 
expressing their mutual relations; and, if these quantities are supposed being seg
ments, it enable us to perform a finite and regulated construction, which exhibits 
the object (obviously a segment) expressed by every finite algebraic composition 
of given quantities. This means that if analysis terminates in the exhibition of an 
identity like x =*/*(a, b,..., q)—where /(a , b,..., q) is a finite algebraic composi
tion of the given quantities a, b , ..., q—then the successive construction is certain
ly possible and is completely determined by analysis itself. Second, the introduction 
of the idea of coordinates, makes it possible to express geometrical loci by means 
of equations, independently from our capacity of solving the latter. Here to ex
press is not the same than to give; but it is no more the same than to denominate. 
In fact, thanks to the expression of these loci by means of equations, we can estab
lish a number of geometrical properties of them and even classify them. Moreo
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ver, if these equations are solvable, we can even actually construct any finite number 
of points belonging to these loci. Once again, this is not giveness of these objects 
as such, but it is a very strong and geometrically informative characterization of 
them as objects satisfying certain concepts.

These differences between Vote’s and Descartes’ analysis are responsible for 
the results of a new “art”, namely modem analysis as a mathematical theory, the 
new theory of functions. I do not think this to be the effect of a simple oblivion of 
geometrical construction or even of the transformation of the previous conditions 
of characterization into conditions of giveness. Rather, it seems that it is the effect 
of Descartes’ introduction of a new sort of constructive objects, which are not 
particular quantities, but are the relational expressions of quantities or—as they 
will become in the 18th-century—abstract quantities or functions (here, ch. 3 and 
5 and Panza 1992). From here stem a number of new and more modem meanings 
of the terms “analysis” and “synthesis”. The different chapters of the present book 
should make the greater part of these meanings clear and elucidate their mutual 
relations. My aim here was only to suggest the intrinsic dependence of these mean
ings on a single source: the Aristotelian notion of analysis as a regressive conduct 
of thinking performed in order to make the realization of a given aim possible.
Centre F. Viete o f the History and Philosophy o f Sciences,
University o f Nantes

Notes

* I thank Clotilde Calabi, Jean Dhombres, Agnese Grieco, Michael Hoffmann, Francois Loget, Michael 
Otte, Jackie Pigeaud, Bernard Vitrac for their suggestions and linguistic and philosophical advices.

1 We owe a number of our examples of occurrences o f the term “analysis”, both in the Greek corpus and 
somewhere, to Timmermans (1995).

2 True to say, Aristotle’s definition is not so clear. The passage I have mentioned belongs to a larger 
argument, where Aristotle states four different meanings for the expression “(to be) in itself’. According 
to the third of these meanings (Posterior Analytics, 13b 5-10) Q is in itself if it is not said to be of a 
certain subject, let us say P, while, according to the fourth (ibid., 13b 10-16) P is Q in itself, if it is Q 
because of it is just P (and for no other external reason). The first two meanings are those we have just 
exposed in the text However, Aristotle seems to insist on the circumstance that predications “P is Q” and 
“Q is P” occur respectively in the definition of P and Q. Because of that, Barnes (1975,114 and 112) 
argues both that the third and fourth meanings are ontological, while the first and second are logical, and 
that all of them are meanings of “Q holds ofP  in itself”. Moreover, he maintains that the arguments o f* ** 
chapters 19-22 which will be discussed below only refer to the two first meanings. However, it seems to 
me that the third of these meanings is quite different from the other and specifically concerns the fact that 
the predicate ‘Q’ indicates a certain subject, while the fourth integrates the first two by making clear that 
they refer to essence, rather than merely to definition (or even to essential definition, rather than to purely 
linguistic definition).
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3 Even though I come far from that in certain points, my reconstruction is laigely indebted to Barnes’ 
translation and commentaries as they appear in Barnes (1975).

4 Remark that, as such, this neither entails the main thesis of chapters 1 ,19 - 1,22, nor it is entailed by it, 
since it is possible thatP is not able to be defined and known, and all the series of predications as the 
previous ones are finite, these series being infinitely many.

5 According to Barnes (1975, p. 180) the argument for the downward series of Pj is not correct. This is 
quite right if we consider, as Barnes does, this series as a series of predications where the predicate 
“inheres in the definition” (ibid, p. 112) of the subject and we directly refer Aristotle’s argument to the 
possibility of a (finite) proof and definition. If it is so, the fact that for every (natural) number j  there is a 
predicate Pj such that is F ’ is an essential predication (in the previous sense) only means that P 
inheres in the definition of infinitely many subjects. In order to make Aristotle’s argument correct, we 
have to assume that Pj is a subject and namely a species of P— (essentially) defined by the genus to 
which it belongs— and that no subject can contain an infinite number of species (what makes clear the 
role of the second premise advanced by Aristotle at the beginning of chapter 1,22). In any case, if we do 
not refer, as Baines does, the Aristode’s argument directly to the possibility of a (finite) proof and definition, 
it is the argument for the upward series of Qj which fails, except if we accept that the predicate of an 
essential definition is a genus of the subject and no subject can belong to infinitely many embedded genus 
(cf. the previous endnotes 2 and 4).

6 The interpretation of Waitz (Aristotle AOG, II, 353-354), according to which an “analytical” proof is 
rigorous, while a “logical” one is not, seem to be unacceptable.

7 This is one of the roots of the wrong idea of many amateur philosophers, who think that synthesis is 
nothing but invention (or even “intuition” as a creative act).

8 Cf. Proclus (PEEL, ed Friedlein ,17-19), which ascribes this sort of analysis to Eratosthenes.

9 Cf. the previous endnote (5).

I® Literally: “pre-delibered”, since the verb “ {knAeixo” means “to deliberate”, as an act of a council, the 
“PouX.fi” being just the administrative council of a political community.

11 Cf. the previous note (10).

12 Aristotle’s identification of eternity and necessity (his non-modal conception of necessity) has been 
discussed by a number of scholars. Cf. for example Hintikka (1975).

13 Of course regressive reduction is part of what we do when we “work backwards”. Thus the Aristotelian 
notion of analysis is completely compatible with the general meaning that Szab6 (1974) has ascribed to 
the term “avaXuoi<;” as referring to a “working backwards”. It appears to me, however, that the Aristotelian 
notion of analysis is more profound. It is not at all restricted to the level of methodology, but is related to 
fundamental questions of epistemology and metaphyics. We can even regard it as the source of modem 
epistemological conceptions which are not merely concerned with the examples that Szab6 discusses, 
that are, P61ya’s heuristic and Lakatos’ “proof-analysis” or “method of proof(s) and refutations” (cf. 
P61ya 1945, particularly 141, and Lakatos 1976 and PP, II, ch. 5: “The Method of Analysis-Synthesis”, 
70-103).

14 ‘Treasury of Analysis” is Heath’s and Hintikka-Remes’s translation (Euclid EH, 1 ,138; and Hintikka 
and Remes 1974,8). Jones and Ver Eecke translate the same Greek expression respectively with “Domain 
of analysis” (Pappus CJ, 82; cf. here, ch. 8, par. II) and “champ de l ’analyse” (Pappus CVE, 477).

15 Hultsch was here following Halley’s translation in the preface to Apollonius Cutting-off o f a Ratio 
(SRH, XXVIII), which translated “Kata ouX.X.r|ttxv” with “ut paucis dicam”.
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16 For the references, cf. note (14).

*7 On the correspondence between Pappus’s definition and Aristotle’s argument of the chapters III, 3-5 of 
Nicomachean Ethics cf. Hintikka and Remes (1974, 86-87) and Knorr (1986, 356-357) that even 
guesses that Pappus “may present not a distillation of [..] ancient tradition, but rather a rephrasing of 
standard philosophical views” {ibid., 357).

18 On all the question cf. Hintikka and Remes (1974,11-19).

1 9 For a tentative literally translation of the Arabic text cf. Knorr (1986,376).

20 o ther examples of analysis in Heron’s works are listed by Hintikka and Remes (1974,19-20, n. 2) and 
Knorr (1986, 376-377, n. 87). You can also consider the paragraph 136,7 of the [pseudo-] Heron’s 
Definitiones, which (as it mention Porphyry) can not be antecedent to the 3rd century A.D.

21 It is clear that, even though it is possible to intend all the identities (1)-(10) as logical equivalencies, the 
inferential chain ( 1)-(10) is not convertible as such, because of the essential occurrence of ( 1) in the 
passage from (4) to (5).

22 The particular aim of analysis, here, seems just to provide such a suggestion. Thus it does not seem to us 
be “completely artificial” as Knorr says (1986,358).

23 a  reason justifying Pappus’ inclusion of Euclid’s Data in the corpus of analysis is advanced in the note 
(30)above.

24  On the classical distinction between theorems and problems in Greek mathematics cf., for example, 
Caveing (1990,133-37).

25 The same formula appears, sometimes without the particle “6fj” also in: 276,3 and 18; 278,13 and 24; 
280,15; 282,8; 284,8; 286,5; 298,20; and 300,22; while in: 288, 15; 290, 24; and 297,7 we found 
the more explicit formula “the problem will be synthesized in this way [XuvTEdfjoETcn 6f| to ]tQ6f3A.qpci 
otmoq]”. Beside, after having presented the last analysis in prop. n. 49, Apollonius shortly concludes by 
observing that “the synthesis [is] like [that] of the previous [problem] [r| be ouvdeoic; f| aurri rfj ttpo 
auToO]”

26 The second stage in the solution of the problems 1, 4, 5, and 7 is introduced by the formula. 
“luvTETfjoeTai 6f| to 3TQoP>.T||ia ovTajq” (Archimedes OO, 172, 7; 192, 7; 198, 13; and 205, 15 
respectively), while the second stage in the solution of the problems 3 and 6 is introduced by the formula. 
“XuvTETfjoETcu. 6r| ovrox;” {ibid., 184, 21 and 204, 11).

27 The arguments of Menaechmus aim to solve the same problem, namely, that of finding two segments 
which are medium proportional, according to a continuous proportion, between two given segments. 
Consider as an example the first of these arguments. A and£ being the given segments, let us call# and 
C the searched ones. Imagine that these latter are taken on two straight lines perpendicular each other, in 
such a way that they have a common extreme. As Rect.(A, C) -  Sq.(fi) it is clear that the other extreme 
of B belongs to a given parabola passing for the other extreme of C. But as Rect.(C, B) is given—being 
equal to Rect.(A, E)— this point also belongs to an hyperbola that is given too. Thus it is given as well, by 
intersection of two conics. This makes clear that this point can be easily constructed by constructing two 
suitable conics.

28 Remark that Aristotle is clearly not concerned here with a possible convertibility of analysis.

29 The problematic character of geometrical analyses of the classical age is stressed by Knorr (1986). Cf. 
also Hintikka and Remes (1974,84).

30 As a matter of fact this is the structure of all the previous problematic analyses, which are, because of 
that, very similar to many arguments found in the 7th book of Pappus Collection. Cf. as an example the
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proposition 155 (Pappus CH, 905-907), quoted and discussed as paradigmatic by Hintikka and Remes 
(1974,52-53). A similar argument is also in Aristotle’s Meteorologies, 375b, 30-376a, 9. The fact that 
analysis is concerned here with what is given when the problem is assumed to be solved might explain 
Pappus’ inclusion of Euclid’s Data in the corpus of treatise belonging to the domain of analysis (Heath 
1921,422 and Knorr, 1986,109-110).

31 Cf. the previous note (17).

32 Hintikka and Remes (1974,91) observe that “analysis as a philosophical method was in vogue in the 
centuries before Pappus”, when “widely different methods were called ‘analysis’” and {ibid. 89-91) 
evoke the compound influences of Platonic and Stoic traditions on the these conceptions. Knorr (1986, 
357) even argues that “Pappus could pick up [...][his] general views through te medium of commentators 
like Geminus and others, conversant with a syncretizing form of Platonism”.

33 have not to confound reduction to elements in the previous sense, with a natural process of 
decomposition as that which Aristotle evokes in the chapter 4 of book H of Metaphysics (1044a, 15-25). 
Here Aristotle is opposing two (natural) processes according to which a thing comes from an other. The 
first one goes from the matter to the substance and is exemplified by the passage from the sweet to the fat 
and from the fat to the phlegm. At the opposite, the second one goes from the substance to the matter and 
is exemplified by the passage from the bile to the phlegm. Aristotle describes this process in general, by 
saying that a thing comes from another “as being analyzed in (its) principles [on  dvuXuftevroq eiq tt|v 
dexiyv]” (1044a, 24-25) and says that the phlegm comes from the bile “by analyzing [rep dvaXdeoOai]” 
the latter “in [his] first matter [el? rf |v  argc&TTiv OXtjv]” (1044a, 23). Clearly, analysis is not here a 
conduct of thinking, it is rather a natural process of decomposition of objects, the verb “dvaA-ueo” being 
used with a meaning close to the one we have evoked in the previous paragraph I. The fact that this 
meaning occurs sometimes in Aristotle’s writings does not entail that Aristotle does not refer in general 
to analysis as to a (regressive) conduct of thinking. It is just in this sense that Aristotelian notion of 
analysis interests us here.

34 The following remarks on Thomas’s conception of analysis and synthesis and its sources rest largely on 
Garceau’s book (1968, specially 209-220).

35 The idea that (geometrical) analysis brings us “from a complex to the simple” was advanced in the 6th- 
century by John Philoponus in his commentary to Aristotle’s Prior Analytics {Comm. Ar. Gr., XID-2,2, 
16-17: cf. Hintikka and Remes 1974,94). It is not clear however wheter the starting point of analysis is 
the complex in itself or the complex for us; as far as geometrical analysis is concerning, it is probably 
both.

36 w e could maintain that this is due to Albertus’s views, since research necessarily goes from the simple 
to the complex, while the evaluation of the results of a certain research goes from the complex to the 
simple. However, it seems that here we are not speaking of simple and complex in themselves, but of 
simple and complex for us, which is not necessarily the same.

37 This is what Proclus says (PEEL, ed Friedlein 211). It is remarkable that Proclus opposes here the 
method of analysis both to the method for separation (f| 5uxi(>T]Tiicfj)—that he equally ascribes to Plato 
and considers as proper to every science—and to the reduction to the absurd—that, he says, does not 
show what is sought and only refutes its contrary (cf. also ibid., 225,8-12).

38 The terms “finem” and “comprehensionem” (cf. below) could in fact translate the terms “k<xt<xA.T|£iv” 
and “tcaTaA.TpJxv”, which appears there.

39 o f  course, geometrical construction is not blind, it does not work without aims and it does not provide 
objects merely by chance. Rather, it is guided by the aim of constructing objects which satisfy certain 
conditions which are given a priori with respect to i t  Thus, either it is preceded (both for Euclid and 
Descartes) by a geometrical reduction (that is just an analysis) or it consists in this reduction itself (this
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is obviously possible as far as all its steps are trivially convertible). As a matter of fact, Descaate&Geomitrie 
is especially rich in examples where construction is exposed as a progressive conduct. However, the 
essential difference between Euclid’s progressivity (that is and was intended as a synthesis by Pappus) 
and Descartes’ progressivity could have suggested the latter is less far from analysis that the former is, or 
is even easily convertible into it. This could explain the famous remarks on analysis and synthesis advanced 
by Descartes in the “second answers” following his Meditationes, quoted by Israel (here, ch. 1,5-6), 
where analysis is both considered as a conduct of proof and inventio. The essential difference between 
Descartes views—as expounded here—and Aristotelian ones does not lies, as many scholars have observed 
(for example, Timmermans, who construct his book (1995) on this opposition), in Descartes’ identification 
of analysis with a conduct of invention. Foremost, the modem meaning of the term “invention” (both in 
English or French) is strictly different from the meaning of the Latin “inventio” (which in 17th-century 
is simply transferred to the French “invention”), being closer to the original idea expressed by the verb 
“invenire” (literally “to come in, or upon”), which is more like “to found”; to obtain, or even “to reach” 
than “to invent”. And, if we speak of inventio in this sense, it is vety easy to observe that for Aristotle too, 
analysis was a conduct of inventio. The problem rather is that for Aristotle analysis (as long as it is not 
conclusive) does not reach a theorem, or generally the realization of the aim, but reaches the first principles 
of the proof, or generally the conditions of realization of the aim. Thus, it is just “inventive” as long as it 
is not, as such, demonstrative (or at least conclusively demonstrative). For Descartes, in contrast, it 
seems to be “inventive” and “demonstrative” at the same time. As we have just said, we can eliminate 
such a difficulty in the interpretation of Descartes’ text by referring to the difference between Descartes’ 
proofs and usual deductions. But we can also remark that the difficulty is a very local one, since a few 
lines after, when he speaks of the application of analysis and synthesis to metaphysics, Descartes comes 
back to a very classical point of view, speaking about the “first notions [prinue notiones]” of geometry 
(here, ch. 1,6) and remarking (AT, VII, 157) that analytic conduct is the most suitable one in metaphysics, 
since here that which is really important is “to perceive the first notions clearly and distinctly [deprimis 
notionibus clare A distinctepercipiendis)”. Thus the difference with Aristotle reduces to one we have 
extensively discussed above: Descartes is simply referring to ontological (rather than epistemological) 
notions of clearness, evidence and firstness.

i
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27. M. Grene and E. Mendelsohn (eds.): Topics in the Philosophy of Biology. [Synthese Library
84] 1976 ISBN 90-277-0595-X; Pb 90-277-0596-8

28. J. Agassi: Science in Flux. [Synthese Library 80] 1975
ISBN 90-277-0584-4; Pb 90-277-0612-3

29. J.J. Wiatr (ed.): Polish Essays in the Methodology of the Social Sciences. [Synthese Library
131] 1979 ISBN 90-277-0723-5; Pb 90-277-0956-4

30. P. Janich: Protophysics of Time. Constructive Foundation and History of Time Measure
ment. Translated from German. 1985 ISBN 90-277-0724-3

31. R.S. Cohen and M.W. Wartofsky (eds.): Language, Logic, and Method. 1983
ISBN 90-277-0725-1

32. R.S. Cohen, C.A. Hooker, A.C. Michalos and J.W. van Evra (eds.): PSA 1974. Proceedings
of the 4th Biennia] Meeting of the Philosophy of Science Association. [Synthese Library 
101 ] 1976 ISBN 90-277-0647-6; Pb 90-277-0648-4

33. G. Holton and W.A. Blanpied (eds.): Science and Its Public. The Changing Relationship.
[Synthese Library 96] 1976 ISBN 90-277-0657-3; Pb 90-277-0658-1

34. M.D. Grmek, R.S. Cohen and G. Cimino (eds.): On Scientific Discovery. The 1977 Erice
Lectures. 1981 ISBN 90-277-1122-4; Pb 90-277-1123-2

35. S. Amsterdamski: Between Experience and Metaphysics. Philosophical Problems of the 
Evolution of Science. Translated from Polish. [Synthese Library 77] 1975

ISBN 90-277-0568-2; Pb 90-277-0580-1
36. M. Markovid and G. Petrovid (eds.): Praxis. Yugoslav Essays in the Philosophy and 

Methodology of the Social Sciences. [Synthese Library 134] 1979
ISBN 90-277-0727-8; Pb 90-277-0968-8
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37. H. von Helmholtz: Epistemological Writings. The Paul Hertz / Moritz Schlick Centenary 
Edition of 1921. Translated from German by M.F. Lowe. Edited with an Introduction and 
Bibliography by R.S. Cohen and Y. Elkana. [Synthese Library 79] 1977

ISBN 90-277-0290-X; Pb 90-277-0582-8
38. R.M. Martin: Pragmatics, Truth and Language. 1979

ISBN 90-277-0992-0; Pb 90-277-0993-9
39. R.S. Cohen, P.K. Feyerabend and M.W. Wartofsky (eds.): Essays in Memory of Imre

Lakatos. [Synthese Library 99] 1976 ISBN 90-277-0654-9; Pb 90-277-0655-7
40. Not published.
41. Not published.
42. H.R. Maturana and F.J. Varela: Autopoiesis and Cognition. The Realization of the Living. 

With a Preface to ‘Autopoiesis’ by S. Beer. 1980
ISBN 90-277-1015-5; Pb 90-277-1016-3

43. A. Kasher (ed.): Language in Focus: Foundations, Methods and Systems. Essays in Memory 
of Yehoshua Bar-Hillel. [Synthese Library 89] 1976

ISBN 90-277-0644-1; Pb 90-277-0645-X
44. T.D. Thao: Investigations into the Origin of Language and Consciousness. 1984

ISBN 90-277-0827-4
45. Not published.
46. P.L. Kapitza: Experiment, Theory, Practice. Articles and Addresses. Edited by R.S. Cohen.

1980 ISBN 90-277-1061-9; Pb 90-277-1062-7
47. M.L. Dalla Chiara (ed.): Italian Studies in the Philosophy of Science. 1981

ISBN 90-277-0735-9; Pb 90-277-1073-2
48. M.W. Wartofsky: Models. Representation and the Scientific Understanding. [Synthese

Library 129] 1979 ISBN 90-277-0736-7; Pb 90-277-0947-5
49. T.D. Thao: Phenomenology and Dialectical Materialism. Edited by R.S. Cohen. 1986

ISBN 90-277-0737-5
50. Y. Fried and J. Agassi: Paranoia. A Study in Diagnosis. [Synthese Library 102] 1976

ISBN 90-277-0704-9; Pb 90-277-0705-7
51. K.H. Wolff: Surrender and Cath. Experience and Inquiry Today. [Synthese Library 105]

1976 ISBN 90-277-0758-8; Pb 90-277-0765-0
52. K. Kosik: Dialectics of the Concrete. A Study on Problems of Man and World. 1976

ISBN 90-277-0761-8; Pb 90-277-0764-2
53. N. Goodman: The Structure of Appearance. [Synthese Library 107] 1977

ISBN 90-277-0773-1; Pb 90-277-0774-X
54. H.A. Simon: Models of Discovery and Other Topics in the Methods of Science. [Synthese

Library 114] 1977 • ISBN 90-277-0812-6; Pb 90-277-0858-4
55. M. Lazerowitz: The Language of Philosophy. Freud and Wittgenstein. [Synthese Library

117] 1977 ISBN 90-277-0826-6; Pb 90-277-0862-2
56. T. Nickles (ed.): Scientific Discovery, Logic, and Rationality. 1980

ISBN 90-277-1069-4; Pb 90-277-1070-8
57. J. Margolis: Persons and Mind. The Prospects of Nonreductive Materialism. [Synthese

Library 121] 1978 ISBN 90-277-0854-1; Pb 90-277-0863-0
58. G. Radnitzky and G. Andersson (eds.): Progress and Rationality in Science. [Synthese

Library 125] 1978 ISBN 90-277-0921-1; Pb 90-277-0922-X
59. G. Radnitzky and G. Andersson (eds.): The Structure and Development of Science. [Synthese

Library 136] 1979 ISBN 90-277-0994-7; Pb 90-277-0995-5
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60. T. Nickles (ed.): Scientific Discovery. Case Studies. 1980
ISBN 90-277-1092-9; Pb 90-277-1093-7

61. M.A. Finocchiaro: Galileo and the Art of Reasoning. Rhetorical Foundation of Logic and
Scientific Method. 1980 ISBN 90-277-1094-5; Pb 90-277-1095-3

62. W.A. Wallace: Prelude to Galileo. Essays on Medieval and 16th-Century Sources of
Galileo’s Thought. 1981 ISBN 90-277-1215-8; Pb 90-277-1216-6

63. F. Rapp: Analytical Philosophy of Technology. Translated from German. 1981
ISBN 90-277-1221-2; Pb 90-277-1222-0

64. R.S. Cohen and M.W. Wartofsky (eds.): Hegel and the Sciences. 1984
ISBN 90-277-0726-X

65. J. Agassi: Science and Society. Studies in the Sociology of Science. 1981
ISBN 90-277-1244-1; Pb 90-277- 1245-X

66. L. Tondl: Problems of Semantics. A Contribution to the Analysis of the Language of
Science. Translated from Czech. 1981 ISBN 90-277-0148-2; Pb 90-277-0316-7

67. J. Agassi and R.S. Cohen (eds.): Scientific Philosophy Today. Essays in Honor of Mario
Bunge. 1982 ISBN 90-277-1262-X; Pb 90-277-1263-8

68. W. Krajewski (ed.): Polish Essays in the Philosophy of the Natural Sciences. Translated 
from Polish and edited by R.S. Cohen and C.R. Fawcett. 1982

ISBN 90-277-1286-7; Pb 90-277-1287-5
69. J.H. Fetzer: Scientific Knowledge. Causation, Explanation and Corroboration. 1981

ISBN 90-277-1335-9; Pb 90-277-1336-7
70. S. Grossberg: Studies of Mind and Brain. Neural Principles of Learning, Perception, 

Development, Cognition, and Motor Control. 1982
ISBN 90-277-1359-6; Pb 90-277-1360-X

71. R.S. Cohen and M.W. Wartofsky (eds.): Epistemology, Methodology, and the Social
Sciences. 1983. ISBN 90-277-1454-1

72. K. Berka: Measurement. Its Concepts, Theories and Problems. Translated from Czech. 1983
ISBN 90-277-1416-9

73. G.L. Pandit: The Structure and Growth of Scientific Knowledge. A Study in the Methodol
ogy of Epistemic Appraisal. 1983 ISBN 90-277-1434-7

74. A.A. Zinov’ev: Logical Physics. Translated from Russian. Edited by R.S. Cohen. 1983
[see also Volume 9] ISBN 90-277-0734-0

75. G-G. Granger: Formal Thought and the Sciences of Man. Translated from French. With and
Introduction by A. Rosenberg. 1983 ISBN 90-277-1524-6

76. R.S. Cohen and L. Laudan (eds.): Physics, Philosophy and Psychoanalysis. Essays in Honor
of Adolf Grunbaum. 1983 ISBN 90-277-1533-5

77. G. Bohme, W. van den Daele, R. Hohlfeld, W. Krohn and W. Schafer Finalization in
Science. The Social Orientation of Scientific Progress. Translated from German. Edited by 
W. Schafer. 1983 ISBN 90-277-1549-1

78. D. Shapere: Reason and the Search for Knowledge. Investigations in the Philosophy of
Science. 1984 ISBN 90-277-1551 -3; Pb 90-277-1641-2

79. G. Andersson (ed.): Rationality in Science and Politics. Translated from German. 1984
ISBN 90-277-1575-0; Pb 90-277-1953-5

80. P.T. Durbin and F. Rapp (eds.): Philosophy and Technology. [Also Philosophy and
Technology Series, Vol. 1 ] 1983 ISBN 90-277-1576-9

81. M. Markovid: Dialectical Theory of Meaning. Translated from Serbo-Croat. 1984
ISBN 90-277-1596-3
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82. R.S. Cohen and M.W. Wartofsky (eds.): Physical Sciences and History of Physics. 1984.
ISBN 90-277-1615-3

83. E. Meyerson: The Relativistic Deduction. Epistemological Implications of the Theory of
Relativity. Translated from French. With a Review by Albert Einstein and an Introduction by 
Milic Capek. 1985 ISBN 90-277-1699-4

84. R.S. Cohen and M.W. Wartofsky (eds.): Methodology, Metaphysics and the History of
Science. In Memory of Benjamin Nelson. 1984 ISBN 90-277-1711-7

85. G. Tam&s: The Logic of Categories. Translated from Hungarian. Edited by R.S. Cohen. 1986
ISBN 90-277-1742-7

86. S.L. de C. Fernandes: Foundations of Objective Knowledge. The Relations of Popper’s
Theory of Knowledge to That of Kant. 1985 ISBN 90-277-1809-1

87. R.S. Cohen and T. Schnelle (eds.): Cognition and Fact. Materials on Ludwik Fleck. 1986
ISBN 90-277-1902-0

88. G. Freudenthal: Atom and Individual in the Age of Newton. On the Genesis of the Mechanis
tic World View. Translated from German. 1986 ISBN 90-277-1905-5

89. A. Donagan, A.N. Perovich Jr and M.V. Wedin (eds.): Human Nature and Natural 
Knowledge. Essays presented to Marjorie Grene on the Occasion of Her 75th Birthday. 1986

ISBN 90-277-1974-8
90. C. Mitcham and A. Hunning (eds.): Philosophy and Technology II. Information Technology

and Computers in Theory and Practice. [Also Philosophy and Technology Series, Vol. 2] 
1986 ISBN 90-277-1975-6

91. M. Grene and D. Nails (eds.): Spinoza and the Sciences. 1986 ISBN 90-277-1976-4
92. S.P. Turner: The Search for a Methodology of Social Science. Durkheim, Weber, and the

19th-Century Problem of Cause, Probability, and Action. 1986. ISBN 90-277-2067-3
93. I.C. Jarvie: Thinking about Society. Theory and Practice. 1986 ISBN 90-277-2068-1
94. E. Ullmann-Margalit (ed.): The Kaleidoscope of Science. The Israel Colloquium: Studies in 

History, Philosophy, and Sociology of Science, Vol. 1. 1986
ISBN 90-277-2158-0; Pb 90-277-2159-9

95. E. Ullmann-Margalit (ed.): The Prism of Science. The Israel Colloquium: Studies in History, 
Philosophy, and Sociology of Science, Vol. 2. 1986

ISBN 90-277-2160-2; Pb 90-277-2161-0
96. G. Markus: Language and Production. A Critique of the Paradigms. Translated from French.

1986 ISBN 90-277-2169-6
97. F. Amrine, F.J. Zucker and H. Wheeler (eds.): Goethe and the Sciences: A Reappraisal.

1987 ISBN 90-277-2265-X; Pb 90-277-2400-8
98. J.C. Pitt and M. Pera (eds.): Rational Changes in Science. Essays on Scientific Reasoning.

Translated from Italian. 1987 ISBN 90-277-2417-2
99. O. Costa de Beauregard: Time, the Physical Magnitude. 1987 ISBN 90-277-2444-X

100. A. Shimony and D. Nails (eds.): Naturalistic Epistemology. A Symposium of Two Decades.
1987 ISBN 90-277-2337-0

101. N. Rotenstreich: Time and Meaning in History. 1987 ISBN 90-277-2467-9
102. D.B. Zilberman: The Birth of Meaning in Hindu Thought. Edited by R.S. Cohen. 1988

ISBN 90-277-2497-0
103. T.F. Glick (ed.): The Comparative Reception of Relativity. 1987 ISBN 90-277-2498-9
104. Z. Harris, M. Gottfried, T. Ryckman, P. Mattick Jr, A. Daladier, T.N. Harris and S. Harris:

The Form of Information in Science. Analysis of an Immunology Sublanguage. With a 
Preface by Hilary Putnam. 1989 ISBN 90-277-2516-0
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105. F. Burwick (ed.): Approaches to Organic Form. Permutations in Science and Culture. 1987
ISBN 90-277-2541-1

106. M. Almasi: The Philosophy of Appearances. Translated from Hungarian. 1989
ISBN 90-277-2150-5

107. S. Hook, W.L. O’Neill and R. O’Toole (eds.): Philosophy, History and Social Action. Essays 
in Honor of Lewis Feuer. With an Autobiographical Essay by L. Feuer. 1988

ISBN 90-277-2644-2
108. I. Hronszky, M. Feher and B. Dajka: Scientific Knowledge Socialized. Selected Proceedings

of the 5th Joint International Conference on the History and Philosophy of Science organized 
by the IUHPS (Veszpr6m, Hungary, 1984). 1988 ISBN 90-277-2284-6

109. P. Tillers and E.D. Green (eds.): Probability and Inference in the Law of Evidence. The Uses
and Limits of Bayesianism. 1988 ISBN 90-277-2689-2

110. E. Ullmann-Margalit (ed.): Science in Reflection. The Israel Colloquium: Studies in History, 
Philosophy, and Sociology of Science, Vol. 3. 1988

ISBN 90-277-2712-0; Pb 90-277-2713-9
111. K. Gavroglu, Y. Goudaroulis and P. Nicolacopoulos (eds.): Imre Lakatos and Theories of

Scientific Change. 1989 ISBN 90-277-2766-X
112. B. Glassner and J.D. Moreno (eds.): The Qualitative-Quantitative Distinction in the Social

Sciences. 1989 ISBN 90-277-2829-1
113. K. Arens: Structures of Knowing. Psychologies of the 19th Century. 1989

ISBN 0-7923-0009-2
114. A. Janik: Style, Politics and the Future of Philosophy. 1989 ISBN 0-7923-0056-4
115. F. Amrine (ed.): Literature and Science as Modes of Expression. With an Introduction by S.

Weininger. 1989 ISBN 0-7923-0133-1
116. J.R. Brown and J. Mittelstrass (eds.): An Intimate Relation. Studies in the History and 

Philosophy of Science. Presented to Robert E. Butts on His 60th Birthday. 1989
ISBN 0-7923-0169-2

117. F. D’Agostino and I.C. Jarvie (eds.): Freedom and Rationality. Essays in Honor of John
Watkins. 1989 ISBN 0-7923-0264-8

118. D. Zolo: Reflexive Epistemology. The Philosophical Legacy of Otto Neurath. 1989
ISBN 0-7923-0320-2

119. M. Keam, B.S. Philips and R.S. Cohen (eds.): Georg Simmel and Contemporary Sociology.
1989 ISBN 0-7923-0407-1

120. T.H. Levere and W.R. Shea (eds.): Nature, Experiment and the Science. Essays on Galileo
and the Nature of Science. In Honour of Stillman Drake. 1989 ISBN 0-7923-0420-9

121. P. Nicolacopoulos (ed.): Greek Studies in the Philosophy and History of Science. 1990
ISBN 0-7923-0717-8

122. R. Cooke and D. Costantini (eds.): Statistics in Science. The Foundations of Statistical
Methods in Biology, Physics and Economics. 1990 ISBN 0-7923-0797-6

123. P. Duhem: The Origins of Statics. Translated from French by G.F. Leneauxj V.N. Vagliente
and G.H. Wagner. With an Introduction by S.L. Jaki. 1991 ISBN 0-7923-0898-0

124. H. Kamerlingh Onnes: Through Measurement to Knowledge. The Selected Papers, 1853- 
1926. Edited and with an Introduction by K. Gavroglu and Y. Goudaroulis. 1991

ISBN 0-7923-0825-5
125. M. 6apek: The New Aspects of Time: Its Continuity and Novelties. Selected Papers in the

Philosophy of Science. 1991 ISBN 0-7923-0911-1
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126. S. Unguru (ed.): Physics, Cosmology and Astronomy, 1300-1700. Tension and Accommoda
tion. 1991 ISBN 0-7923-1022-5

127. Z. Bechler: Newton’s Physics on the Conceptual Structure of the Scientific Revolution. 1991
ISBN 0-7923-1054-3

128. E. Meyerson: Explanation in the Sciences. Translated from French by M-A. Siple and D.A.
Siple. 1991 ISBN 0-7923-1129-9

129. A.I. Tauber (ed.): Organism and the Origins of Self. 1991 ISBN 0-7923-1185-X
130. F.J. Varela and J-P. Dupuy (eds.): Understanding Origins. Contemporary Views' on the

Origin of Life, Mind and Society. 1992 ISBN 0-7923-1251-1
131. G.L. Pandit: Methodological Variance. Essays in Epistemological Ontology and the

Methodology of Science. 1991 ISBN 0-7923-1263-5
132. G. Munevar (ed.): Beyond Reason. Essays on the Philosophy of Paul Feyerabend. 1991

ISBN 0-7923-1272-4
133. T.E. Uebel (ed.): Rediscovering the Forgotten Vienna Circle. Austrian Studies on Otto 

Neurath and the Vienna Circle. Partly translated from German. 1991 ISBN 0-7923-1276-7
134. W.R. Woodward and R.S. Cohen (eds.): World Views and Scientific Discipline Formation.

Science Studies in the [former] German Democratic Republic. Partly translated from 
German by W.R. Woodward. 1991 ISBN 0-7923-1286-4

135. P. Zambelli: The Speculum Astronomiae and Its Enigma. Astrology, Theology and Science
in Albertus Magnus and His Contemporaries. 1992 ISBN 0-7923-1380-1

136. P. Petitjean, C. Jami and A.M. Moulin (eds.): Science and Empires. Historical Studies about
Scientific Development and European Expansion. ISBN 0-7923-1518-9

137. W.A. Wallace: Galileo’s Logic of Discovery and Proof. The Background, Content, and Use 
of His Appropriated Treatises on Aristotle’s Posterior Analytics. 1992 ISBN 0-7923-1577-4

138. W.A. Wallace: Galileo’s Logical Treatises. A Translation, with Notes and Commentary, of 
His Appropriated Latin Questions on Aristotle’s Posterior Analytics. 1992

ISBN 0-7923-1578-2 
Set (137+ 138) ISBN 0-7923-1579-0

139. M.J. Nye, J.L. Richards and R.H. Stuewer (eds.): The Invention of Physical Science.
Intersections of Mathematics, Theology and Natural Philosophy since the Seventeenth 
Century. Essays in Honor of Erwin N. Hiebert. 1992 ISBN 0-7923- 1753-X

140. G. Corsi, M.L. dalla Chiara and G.C. Ghirardi (eds.): Bridging the Gap: Philosophy, 
Mathematics and Physics. Lectures on the Foundations of Science. 1992

ISBN 0-7923-1761-0
141. C.-H. Lin and D. Fu (eds.): Philosophy and Conceptual History of Science in Taiwan. 1992

ISBN 0-7923-1766-1
142. S. Sarkar (ed.): The Founders of Evolutionary Genetics. A Centenary Reappraisal. 1992

ISBN 0-7923-1777-7
143. J. Blackmore (ed.): Ernst Mach -  A Deeper Look. Documents and New Perspectives. 1992

ISBN 0-7923-1853-6
144. P. Kroes and M. Bakker (eds.): Technological Development and Science in the Industrial 

Age. New Perspectives on the Science-Technology Relationship. 1992 ISBN 0-7923-1898-6
145. S. Amsterdamski: Between History and Method. Disputes about the Rationality of Science.

1992 ISBN 0-7923-1941-9
146. E. Ullmann-Margalit (ed.): The Scientific Enterprise. The Bar-Hillel Colloquium: Studies in 

History, Philosophy, and Sociology of Science, Volume 4. 1992 ISBN 0-7923-1992-3
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147. L. Embree (ed.): Metaarchaeology. Reflections by Archaeologists and Philosophers. 1992
ISBN 0-7923-2023-9

148. S. French and H. Kamminga (eds.): Correspondence, Invariance and Heuristics. Essays in
Honour of Heinz Post. 1993 ISBN 0-7923-2085-9

149. M. Bunzl: The Context of Explanation. 1993 ISBN 0-7923-2153-7
150. I.B. Cohen (ed.): The Natural Sciences and the Social Sciences. Some Critical and Historical

Perspectives. 1994 ISBN 0-7923-2223-1
151. K. Gavroglu, Y. Christianidis and E. Nicolaidis (eds.): Trends in the Historiography of

Science. 1994 ISBN 0-7923-2255-X
152. S. Poggi and M. Bossi (eds.): Romanticism in Science. Science in Europe, 1790-1840. 1994

ISBN 0-7923-2336-X
153. J. Faye and H.J. Folse (eds.): Niels Bohr and Contemporary Philosophy. 1994

ISBN 0-7923-2378-5
154. C.C. Gould and R.S. Cohen (eds.): Artifacts, Representations, and Social Practice. Essays

for Marx W. Wartofsky. 1994 ISBN 0-7923-2481 -1
155. R.E. Butts: Historical Pragmatics. Philosophical Essays. 1993 ISBN 0-7923-2498-6
156. R. Rashed: The Development of Arabic Mathematics: Between Arithmetic and Algebra.

Translated from French by A.F.W. Armstrong. 1994 ISBN 0-7923-2565-6
157. I. Szumilewicz-Lachman (ed.): Zygmunt Zawirski: His Life and Work. With Selected

Writings on Time, Logic and the Methodology of Science. Translations by Feliks Lachman. 
Ed. by R.S. Cohen, with the assistance of B. Bergo. 1994 ISBN 0-7923-2566-4

158. S.N. Haq: Names, Natures and Things. The Alchemist Jabir ibn Hayyan and His Kitab al-
Ahjdr (Book of Stones). 1994 ISBN 0-7923-2587-7

159. P. Plaass: Kant's Theory of Natural Science. Translation, Analytic Introduction and
Commentary by Alfred E. and Maria G. Miller. 1994 ISBN 0-7923-2750-0

160. J. Misiek (ed.): The Problem of Rationality in Science and its Philosophy. On Popper vs.
Polanyi. The Polish Conferences 1988-89. 1995 ISBN 0-7923-2925-2

161. I.C. Jarvie and N. Laor (eds.): Critical Rationalism, Metaphysics and Science. Essays for
Joseph Agassi, Volume I. 1995 ISBN 0-7923-2960-0

162. I.C. Jarvie and N. Laor (eds.): Critical Rationalism, the Social Sciences and the Humanities.
Essays for Joseph Agassi, Volume II. 1995 ISBN 0-7923-2961-9

Set (161-162) ISBN 0-7923-2962-7
163. K. Gavroglu, J. Stachel and M.W. Wartofsky (eds.): Physics, Philosophy, and the Scientific

Community. Essays in the Philosophy and History of the Natural Sciences and Mathematics. 
In Honor of Robert S. Cohen. 1995 ISBN 0-7923-2988-0

164. K. Gavroglu, J. Stachel and M.W. Wartofsky (eds.): Science, Politics and Social Practice.
Essays on Marxism and Science, Philosophy of Culture and the Social Sciences. In Honor of 
Robert S. Cohen. 1995 ISBN 0-7923-2989-9

165. K. Gavroglu, J. Stachel and M.W. Wartofsky (eds.): Science, Mind and Art. Essays on
Science and the Humanistic Understanding in Art, Epistemology, Religion and Ethics. 
Essays in Honor of Robert S. Cohen. 1995 ISBN 0-7923-2990-2

Set (163-165) ISBN 0-7923-2991-0
166. K.H. Wolff: Transformation in the Writing. A Case of Surrender-and-Catch. 1995

ISBN 0-7923-3178-8
167. A.J. Kox and D.M. Siegel (eds.): No Truth Except in the Details. Essays in Honor of Martin

J. Klein. 1995 ISBN 0-7923-3195-8
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168. J. Blackmore: Ludwig Boltzmann, His Later Life and Philosophy, 1900—1906. Book One: A
Documentary History. 1995 ISBN 0-7923-3231-8

169. R.S. Cohen, R. Hilpinen and R. Qiu (eds.): Realism and Anti-Realism in the Philosophy of
Science. Beijing International Conference, 1992. 1996 ISBN 0-7923-3233-4

170. I. Ku?uradi and R.S. Cohen (eds.): The Concept of Knowledge. The Ankara Seminar. 1995
ISBN 0-7923-3241-5

171. M.A. Grodin (ed.): Meta Medical Ethics: The Philosophical Foundations of Bioethics. 1995
ISBN 0-7923-3344-6

172. S. Ramirez and R.S. Cohen (eds.): Mexican Studies in the History and Philosophy of
Science. 1995 ISBN 0-7923-3462-0

173. C. Dilworth: The Metaphysics of Science. An Account of Modem Science in Terms of
Principles, Laws and Theories. 1995 ISBN 0-7923-3693-3

174. J. Blackmore: Ludwig Boltzmann, His Later Life and Philosophy, 1900-1906 Book Two:
The Philosopher. 1995 ISBN 0-7923-3464-7

175. P. Damerow: Abstraction and Representation. Essays on the Cultural Evolution of Thinking.
1996 ISBN 0-7923-3816-2

176. G. Tarozzi (ed.): Karl Popper, Philosopher of Science. (in prep.)
177. M. Marion and R.S. Cohen (eds.): Quebec Studies in the Philosophy of Science. Part I:

Logic, Mathematics, Physics and History of Science. Essays in Honor of Hugues Leblanc. 
1995 ISBN 0-7923-3559-7

178. M. Marion and R.S. Cohen (eds.): Quebec Studies in the Philosophy of Science. Part II:
Biology, Psychology, Cognitive Science and Economics. Essays in Honor of Hugues 
Leblanc. 1996 ISBN 0-7923-3560-0

Set (177-178) ISBN 0-7923-3561-9
179. Fan Dainian and R.S. Cohen (eds.): Chinese Studies in the History and Philosophy of

Science and Technology. 1996 ISBN 0-7923-3463-9
180. P. Forman and J.M. Sanchez-Ron (eds.): National Military Establishments and the Advance

ment of Science and Technology. Studies in 20th Century History. 1996 ISBN 0-7923-3541-4
181. E.J. Post: Quantum Reprogramming. Ensembles and Single Systems: A Two-Tier Approach

to Quantum Mechanics. 1995 ISBN 0-7923-3565-1
182. A.I. Tauber (ed.): The Elusive Synthesis: Aesthetics and Science. 1996 ISBN 0-7923-3904-5
183. S. Sarkar (ed.): The Philosophy and History of Molecular Biology: New Perspectives. 1996

ISBN 0-7923-3947-9
184. J.T. Cushing, A. Fine and S. Goldstein (eds.): Bohmian Mechanics and Quantum Theory: An
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d 2z
dadx

(x  +  e lh ,a  +  e 2k)hk  = z ( x + h ya  +  k ) - z ( x ya  +  k ) - z ( x  +  hya)

+ z ( x , a ) (7')

0<£!  < 1 , 0 < £ 2

dz
- ( x , a  +  rilk )k  =  z ( x , a  +  k ) - z ( x ya)  0 < T ] l <1 (S')

d 2z  
dx da

(x  +  Tjlh,a +  r)2k)kh  = z (x  +  h>a + k ) - z ( x , a  +  k)  +  z ( x , a )

(9')

0 < 77! < 1, 0 < 772 ^ 1

By rearrangement the right sides of (7') and (9') are equal. The left sides may 
therefore be equated:

d 2z d 2z- (x  +  e xh, a  + e 2k)  = — -  (x  + t]t h ,a  +r]2k)  
dadx dxda

Letting h and k  tend to zero we obtain from the continuity of the second partial 
derivatives the desired result

d 2z  = d 2z  
dadx dxda

(10')

This example is rather typical of eighteenth-century calculus theorems and 
their counterparts in modem analysis24. The law of the mean introduces a distin
guished value, localizing at a particular number the analytical relation or property 
in question. The result is then deduced using conditions of continuity and differ
entiability by means of a limit argument. In Euler’s formulation by contrast there 
was no consideration of distinguished or individual values as such. Euler believed 
that the essential element in the demonstration was its generality, guaranteed by a 
formal analytical or algebraic identity. Thus the key step in his proof, the equality 
of the right sides of equations (7) and (9), was an algebraic identity that ensured 
the validity of the result.
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IV Discussion

Euler perceived that the calculus is concerned ultimately with equations express
ing relations of continuous change between variable magnitudes. His thesis con
cerning the primacy of pure analysis derived from a logical appreciation that 
geometrical methods and reasonings are extrinsic to the subject. In formulating 
this view he established the general framework within which analysis would be 
understood by subsequent researchers of the period, most notably Lagrange.

The distinctive character of Euler’s doctrine is apparent when one considers it 
at a general epistemological level. There is a certain formal quality to his analysis; 
it arises ultimately from his conception of the subject as the study of primitive 
abstract relations. In this respect his viewpoint was very different from that of the 
early pioneers, who conceived of the foundation of the calculus in terms of geo
metric conceptions, or that of the nineteenth-century researchers, for whom the 
numerical continuum provided a fundamental structure of interpretation.

The notion of a primitive abstract relation among variables allowed for a di
rect and general approach to the subject, evident in Euler’s derivation of (5) and 
(10) above. This generality was however of a particular sort, accompanied by a 
certain inflexibility of outlook. This became apparent during his debate with 
d’Alembert in the 1750s over the question of the general solution of the wave 
equation. Faced with some of the restrictions imposed by the precepts of his own 
theory (and insisted upon by d ’Alembert) Euler advocated a rejection of the con
cept of a functional equation as a strict relation of equality between analytical 
expressions. As is well known his defence of this viewpoint reduced to ad hoc 
arguments and “visionary” presentiments of a more general mathematics, pre
sented in a few papers; his systematic treatises of the 1750s remained firmly ground
ed in the established conception of analysis (Liitzen 1983) and (Fraser 1989).

It should be emphasized that the rejection of geometric conceptions by Euler 
and other eighteenth-century researchers was not accompanied by the realization 
that the calculus could be developed in full logical isolation as part of pure analy
sis. In Euler’s writings the relationship between foundation, theoretical develop
ment and problem generation is not worked out. The entire project of thcMethodus 
inveniendi consisted of the derivation of differential equations for general prob
lems, each of which embodied characteristics found in a given set of examples 
from geometry or mechanics. In his subsequent research the separation of analy
sis from geometry was made more explicit at a theoretical level. His variational 
investigations however remained centred on the derivation of general differential 
equational forms. He provided no account of how the problems in question might 
originate or be generated within this or any other branch of pure analysis.

He sometimes wrote as if problems are things that are external to analysis that 
guarantee its meaning and validity. In a memoir published in 1758 he investigat
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ed singular solutions to ordinary differential equations, that is, solutions which 
are not included in the general integral containing arbitrary constants. He took a 
differential equation and exhibited a particular function y= f(x ) that satisfied the 
equation but was not in the general solution. He wrote: “Concerning the example 
that I have just set forth, as it is drawn from fantasy, one could doubt whether this 
case is ever encountered in a real problem. But the same examples that I adduced 
in order to clarify the first paradox, will serve also to clarify this one” (Euler 1756; 
OO, ser. 1, XXn, 231)25. (The examples in question concerned curves in the plane 
that satisfied certain tangent conditions.)

The point here is connected to a larger difference of outlook between eight
eenth-century and modem mathematics. That the problems of geometry and me
chanics should conform to treatment by pure analysis was something that Euler 
implicitly accepted as a point of philosophical principle. The term “philosophy” 
(or “metaphysics”) is here being used in the sense identified by Daston:

“The presuppositions (often unexamined) that inform a scientist’s work, which may be of either 
epistemological or ontological import [...] metaphysics is what is left over once the mathematical 
and empirical content have been subtracted (Daston 1991,522)

In the writings of such post-positivist intellectual historians as E. A. Burtt the 
term ‘metaphysics’ in this sense referred to very broad assumptions, such as a 
general Platonic belief among early modem thinkers in the mathematical charac
ter of physical reality26. We suggest that it is also useful at a more concrete level in 
explaining certain tacit but definite attitudes displayed by Euler in his research in 
geometry and analysis.

Demidov writing of the failure of Euler and d’Alembert to understand each 
other’s point of view in the discussion of the wave equation observes:

“A cause no less important of this incomprehension rests, in our opinion, on the understanding of 
the notion of a solution of a mathematical problem. For d ’Alembert as for Euler the notion of such 
a solution does not depend on the way in which it is defined [...] rather the solution represents a 
certain reality endowed with properties that are independent of the method of defining the solu
tion. To reveal these properties diverse methods are acceptable, including the physical reasonings 
employed by d’Alembert and Euler.” (Demidov 1982,37)

A biographer of d’Alembert (Grimsley 1963, 248) has noted his insistence on 
“the elementary truth that the scientist must always accept the essential ‘giveness’ 
of the situation in which he finds himself.” The sense of logical freedom that is 
inherent in modem mathematics was notably absent in the eighteenth century.

U niversity o f  Toronto
Institute f o r  the H istory and Philosophy
o f  Science an d  Technology
Victoria C ollege
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Notes

 ̂ In his history of analytic geometry Boyer (1956,190) observes that for Euler “analysis was not the 
application of algebra to geometry; it was a subject in its own right—the study of variables and functions— 
and graphs were but visual aids in this connection [...] it now dealt with continuous variability based on 
the function concept [...] only with Euler did it [this meaning of analysis] take on the status of conscious 
program.”

2 Emphasis in the original.

3 This view is most clearly presented by Mahoney (1973,36 and 39):

“In the Introduction to the Analytic Art, as in the whole of the Analytic Art itself, algebra was 
transformed from a sophisticated sort of arithmetical problem-solving into the art of mathematical 
reasoning itself, insofar as that reasoning was based on combinatory operations [...] the analytic 
art rose to a position subsuming all combinatory mathematics, whether arithmetic, geometry, or 
trigonometry”.

“The elevation of algebra from a subdiscipline o f arithmetic to the art of analysis deprived it of 
its content at the same time that it extended its applicability. ViSte’s specious logistic, the system 
of symbolic expressions set forth in the Introduction, is, to use modem terms, a language of 
uninterpreted symbols. As a formal language, specious logistic can itself generate problems of 
syntax alone.”

4 In his Die Grundlagen derArithmetik (1884, §10) Frege rejected the use of induction (as it was understood 
in the physical sciences) as a valid principle of arithmetic. He wrote:

“For here there is none of that uniformity, which in other fields can give the method a high degree 
of reliability. Leibniz recognized this already: for to his Philathethe, who had asserted that ‘the 
several modes of number are not capable of any other difference but more or less; which is why 
they are simple modes, like those of space’ ”.

He returns the answer

“That can be said of time and of the straight line, but certainly not for the figures and still less of 
the numbers, which are not merely different in magnitude, but also dissimilar. An even number 
can be divided into two equal parts, an odd number cannot; three or six are triangular numbers, 
four and nine are squares, eight is a cube, and so on. And this is even more case with the numbers 
than with the figures; for two unequal figures can be perfectly similar to each other, but never two 
numbers.”

Later in this section Frege continues:
“In ordinary induction we often make good use of the proposition that every position in space 

and every moment in time is as good in itself as every other. Our results must hold good for any 
other place and any other time, provided only that the conditions are the same. But in the case of 
the numbers this does not apply, since they are not in space or time. Position in the number series 
is not a matter of indifference like position in space.”

5 Our account of Fermat’s number theory is based on Ore (1948), Hoffmann (1960-1962) and especially 
Mahoney (1973, Chapter VI).

6 I quote from Heath translation Euclid (EH).

7 “Tout nombre premier mesure infailliblement une des puissances -1 de quelque progression que ce soit, 
et l ’exposant de la dite puissance est sous-multiple du nombre premier donnd -1 [...].”
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8 Quoted in translation in Mahoney (1973,329).

9 We use the term “coordinate geometry” to designate the subject known since around 1800 as “analytic 
geometry”. The first work to contain the latter term in its title was J.B. Biot’s Essai de giomitrie analytique 
(1803). Loria (1923,142-143) identifies analytic geometry with the “method of coordinates” and states 
that it “has as its goal the investigation, with the aid of coordinates, of all figures that are conceivable in 
the plane or in space.” The employment o f coordinate methods to investigate the elementary plane and 
solid geometry of Euclid, the use of transformations to study conic sections and higher-order polynomial 
curves, more broadly the study by means of coordinate methods of any class of geometric curves, all lie 
within the province of analytic geometry.

Coolidge (1945,20-21) writes:

“This dreary problem, whose algebraic solution gives a conic immediately, seems to have haunted 
the Greek mind. We noted at the beginning of the present chapter Apollonius’ statement that 
others had unsuccessfully tried to solve it. But Apollonius himself does not appear able to carry it 
through. Certain modem mathematicians have put not a little time and strength into the attempt to 
complete such proofs by what we might call strictly Greek methods”.

He mentions Zeuthen (1886,126-63) and Heath for his edition of Apollonius (Apollonius CH, cxxxviii-
c l ) .

11 Pappus’s discussion is in Pappus (Cl, part I). On pp. 587-591 of part two Jones (following Zeuthen 
(1886)) provides an account of how a synthesis of the four-line locus might have been achieved by 
earlier Greek mathematicians, especially Aristaeus.

12 Mahoney (1973, ch. 3) provides an account of Fermat’s researches in coordinate geometry.

1 ̂  With the invention and increasing development of the calculus analytic geometry weakened as an area 
of research. Boyer (1956,153-154) writes:

“In general, l ’Hospital (like Descartes) was more interested in analytic geometry as a means of 
expressing loci algebraically than as a method of deriving the properties of a curve from its equa
tion. This latter aspect he seems to have felt belonged more properly to work in the calculus.”

In reference to the eighteenth century he (1956,193) observes “there was a natural tendency for material 
on curves to be meiged with that on the calculus, and hence analytic geometry sometimes lost its identity.”

1 4 Scott (1938, ch. 4) gives a good account of Wallis’ treatise.

^W estfall (1980, ch. 4) provides an account of Newton’s early mathematical researches. Newton’s papers 
from this period are published in Newton (MP, I.).

16 Both Westfall and Whiteside comment on this difference of approach, although neither identify the 
fundamental character of Newton’s innovation as consisting precisely in his decision to use equations 
between Cartesian variables. Whiteside (1960-1962,245) writes:

“The advance Newton has made on W allis’ inductive approach to integrals— taking the upper 
bound of the integral variable—is that, in allowing a free variable (and its powers) into the pattern, 
he has been able to use the ordering of coefficients given by powers of the variable to point a more 
general aspect of the pattern lost in Wallis tabulated numerical instances.”

Westfall (1980,114-115) writes:

“[...] Newton realized that Wallis’s method was more flexible than Wallis himself had realized.
It is not necessary always to compare the area under a curve with the area of the same fixed square.
In the case of the simple power functions (y = x, x2, x3,...), for example, any value of a: provides a
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base line that can be divided into an infinite number of segments, and with the corresponding value 
of y  it implicitly defines a rectangle with which the area under the curve can be compared.”

17 Varignon does not give the derivation of this equation. It may be obtained from the polar equation

b2
----- = 1 + — cos 6 (6 = Z  BCL)
2 ar a

by differentiating with respect to 0, eliminating sind and setting dz=rdd. Since notation for the 
trigonometric functions has not yet been invented, Varignon would have worked from an equation of the 
form

b2 _ c (CM)

2 ar a r

where CM is the projection of CL on the axis AB.

18 ’Tonamus omnia ista rectangulorum aggregata possibilia, vel omnes viarum possibilium difficultates, 
repraesentari per ipsas KV, curvae VV odinatas ad rectam GK normales [...].” English translation from 
Struik (1969, 278).

1 9 Cf. Jakob Bernoulli (1691), Newton (MF, 176-178) and Newton (MP, III, 312-313) (for the draft from 
the early 1670s). The seventeenth-century history of this problem is described by Whiteside Newton 
(MP, III, 308-311) who writes (ibid., 308):

“The development of this length-preserving transformation in the three decades preceding 1670 
is a fascinating case-history in human insight and preconception which has never been systemati
cally explored in the monograph needed to do it full justice.”

20 In his treatise on the differential calculus Euler provided a detailed account of this procedure for 
introducing higher-order differential coefficients. A discussion of this subject is provided by Bos (1974).

21 “Corollarium 8: Hoc ergo pacto quaestiones ad doctrinam linearum curvarum pertinentes ad Analysin 
puram revocari possunt. Atque vicissim, si huis generis quaestio in Analysi pura sit proposita, ea ad 
doctrinam de lineis curvis poterit referri ac resolvi”.
Scholion 2: “Quanquam huius generis quaestiones ad puram Analysin reduci possunt, tamen expedit eas 
cum doctrina linearum curvarum coniungere. Quodsi enim animum a lineis curvis abducere atque ad 
solas quantitates absolutas firmare velimus, quaestiones primum ipsae admodum fierent abstrusae et 
inelegantes ususque earum ac dignitas minus conspiceretur. Deinde etiam methodus resolvendi huismodi 
quaestiones, si in solis quantitatibus abstractis proponeretur, nimium foret abstrusa et molesta; cum 
tamen eadem, per inspectionem figurarum et quantitatum repraesentationem linearem, mirifice adiuvetur 
atque intellectu facilis reddatur. Hanc ob causam, etsi huius generis quaestiones cum ad quantitates 
abstractas turn concretas applicari possunt, tamen eas ad lineas curvas commodissime traducemus et 
resolvemus. Scilicet, quoties aequation eiusmodi inter x  e ty  quaeritur, ut formula quaedam proposita et 
composta ex x  ety y, si ex ilia aequatione quaesita valor ipsius y  subrogetur et ipsi x  determinatus valor 
tribuatur, maxima fiat vel minima, turn semper quaestionem transferemus ad inventionem lineae curvae, 
cuius abscissa sit x  et applicata y, pro qua ilia formula W fiat maxima vel minima, si abscissa x datae 
magnitudinis capiatur.”

22 “Methodus ergo ante tradita multo latius patet, quam ad aequationes inter coordinatas curvarum 
inveniendas, ut quaepiam expressio Jzdx fiat maximum mimimumve. Extenditur scilicet ad binas 
quascunque variabiles, sive eas ad curvam aliquam pertineant quomodocunque, sive in sola analytica 
abstractione versentur.”
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23 Carathdodory (1952, xxii) offers a different account of this part of theMethodus inveniendi1, he writes:

“[...] die Beispiele, die imerstenTeildesselbenKapitels (Nr. 1 bis 14)behandeltwerden,k6nnen 
as Probme fur die Kovarianz der Eulerschen Gleichungen bei beliebigen Koordinaten- 
TYansformationen bewertet werden. Somit finden wir im Eulerschen Buche die ersten Ansatzen zu 
einer Theorie, die erst in unseren Tagen systematisch entwickelt worden ist.”

In his index (ibid., lix) of Euler’s variational calculus he places these examples under the heading 
“Kovariante transformation von variationsproblemen.” Goldstine (1980,84) also observes:

“It is remarkable that as early as 1744 Euler was already concerned with the problem of the 
invariance of his fundamental equation or necessary condition. In the first part of his Chapter IV 
he indicates that this fundamental condition remains invariant under ‘general’ transformations of 
the coordinate axes [...] he considers a number of examples where*, y  are not related by being 
cartesian, rectangular coordinates, and shows the utility of his ideas on covariance [...]. It is truly 
in keeping with Euler’s genius that he should have worked at ideas that were only to be satisfacto
rily and completely discussed in modem times.”

In our view one should not speak of transformations, invariance or covariance in reference to Chapter 
Four. Although coordinate transformations had appeared in a memoir published by Hermann (1729) 
and were employed by Euler in his Introductio (1748, II, ch. II; for further references cf. Boyer 1956, 
ch. 7) they appear nowhere in theMethodus inveniendi. Euler does not have to show anything when he 
writes down the fundamental equation (5) in polar coordinates; its validity is a logical consequence of 
the generality of the variables in the original derivation. It is unnecessary to invoke concepts of modem 
differential geometry in order to reach a full appreciation of his theory.

24 Other examples are the fundamental theorem of the calculus, the theorem on the change of variables in 
multiple integrals and the fundamental lemma of the calculus of variations.

25 “Pour l ’example que je viens d ’alleguer ici, comme il est forme & fantaisie, on pourrait aussi douter, si 
ce cas se recontre jamais dans la solution d ’un probl&me reel. Mais les memes exemples, que j ’ai rapports 
pour 6claircir le premier paradoxe, serviront aussi & eclaircir celui-ci.”

26 Daston is identifying the sense in which the term metaphysics is used by Burtt and others. She is somewhat 
critical of this usage because it does not take into account the various actual historical systems of 
metaphysics which prevailed in the early modem period. To the extent however that the term serves to 
designate certain extra-scientific or extra-mathematical attitudes in past research it remains a useful 
concept of historical analysis.

EDITH DUDLEY SYLLA

JACOB BERNOULLI ON ANALYSIS, SYNTHESIS, 

AND THE LAW OF LARGE NUMBERS

I Introduction

Jacob Bernoulli was the earliest mathematician to prove a law of large numbers. 
Following in the directions opened by Christiaan Huygens’s On calculations in 
gam es o f  chance (1657), he knew how expectations could be calculated for games 
in which the possible outcomes result from the design of game pieces such as dice 
or cards. He was interested, however, in developing an “art of conjecturing” that 
would apply mathematics to make prudent decisions in civil, moral, and econom
ic matters. By his proof of the law of large numbers, he believed he had shown that 
observed relative frequencies could be reliably used in such calculations. Bernoul
li’s law of large numbers showed that if, for example, one has a die with a one- 
sixth chance of falling with any given side up, then as the die is repeatedly thrown, 
it becomes more and more probable that the observed relative frequency of that 
side being up will fall within some small interval around one-sixth. In the proof of 
this law, Bernoulli assumed that there are a  p r io r i equally likely possible cases in 
a given ratio and demonstrated that, if so, then the observed relative frequencies 
will tend to converge toward the a p r io r i ratio of cases over a large number of 
trials. He also implied, however, that the truth of this proposition meant that it 
would be possible to find, within narrow limits, otherwise unknown ratios of cas
es a p o sterio ri, from the outcomes of frequently repeated trials:

“[...] another way is open to us by which we may obtain what is sought. What cannot be ascer
tained a priori may at least be found out a posteriori, that is from the results many times observed 
in similar situations, since it should be presumed that something can happen or not happen in the 
future in as many cases as it was observed to happen or not to happen in die past in a similar state 
of things.”1 (Bernoulli 1713,224)

Although Jacob Bernoulli was a pioneer in the development of the mathemat
ical theory of probability, his The A rt o f  Conjecturing had less immediate influ
ence than it might have had because he left it unfinished at his death. While large 
parts of the work were completed in the 1680s, well before Bernoulli’s death in 
1705, the book was not published until 1713, by which time Pierre Remond de 
Montmort, Abraham De Moivre, and Nicholas Bernoulli were all active in the
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M. Otte and M. Panza (eds.), Analysis and Synthesis in Mathematics, 79-101.
(g) 1997 Kluwer Academic Publishers. Printed in the Netherlands.
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INTRODUCTION

Time and again, philosophy, in trying to untangle the issues surrounding the an
alytic-synthetic distinction, has doubted that such a distinction can significantly 
be drawn at all. We think, in face of the varied and age-old discussions on it, that 
such reflections amount only to one more documentation of the tenacity of the 
problems behind this distinction. We could even be justified in promoting the 
thesis that this distinction refers to the complex relationship between the universe 
of meanings and the universe of objects and thus concerns each domain of human 
thinking where a form of objectivity is pursued.

If one accepts such a thesis, one will find it very natural that this distinction 
has so frequently occurred in the history of mathematics and in philosophical 
discussions about mathematics. Since Plato, we may encounter quite a number of 
interpretations of the ideas of analysis and synthesis, which are related in one 
sense or other with mathematical thought. Mathematicians of all ages have ap
pealed to them in order to distinguish different forms and styles in their argumen
tation and expositions. Philosophers have referred to them for clarification of the 
specific character of mathematics in its relations to knowledge in general.

In the present volume various instances of the analytic-synthetic distinction 
are discussed in relation to the history and philosophy of mathematics, and some 
new perspectives about possible interpretations and consequences are suggested.

Let us briefly recall a number of interpretations of the notions of analysis and 
synthesis which played a role in history with respect to mathematics.
-  The “logical” interpretation. Analysis proceeds from the general to the particu
lar; synthesis advances in the opposite direction.
-  The “structuralist” interpretation. Analysis is conceived as the decomposition of 
a complex construction given as a whole, in order to reduce it to its elementary 
components. Synthesis is accomplishment of the complex construction, starting 
from its elements.
-  The “methodological” interpretation. Analysis proceeds on the level of the ge
neral only; synthesis is concerned with the particular, considering the general in 
the particular or even individual.
-  The “gnoseological” interpretation. A judgment, or more generally a proposi
tion, is synthetic, if it provides new knowledge, otherwise it is analytic.
-  The “mereologic” interpretation. A predication is analytic if it assigns a certain 
entity to the whole of which it is a part; it is synthetic if this entity is connected to 
a different and independent (even more general) entity.

IX
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-  The “semantic” interpretation. A true statement is analytic if its truth just de
pends on the meaning of the terms occurring in it (and it is then always true as 
long as these meanings do not change). It is synthetic if its truth depends on the 
particular character of the model to which it refers (and it is then true in some 
models and false in others).
-  The “syntactical” interpretations. A sentence is analytic if it is logically deduced 
(or can be logically deduced) from a certain class of axioms, satisfying certain 
conditions. If not, it is synthetic (except if its negation can be logically deduced 
from the same axioms). The different interpretations of such a class obviously 
differ according to the conditions which the axioms have to satisfy. You may re
quire them, for example, to be sentences expressing true analytic statements ac
cording to the semantic interpretation of analyticity, or sentences expressing true 
statements which are true only because of the meaning of the logical constants 
occurring in them, or even, that they are “logical axioms”, or finally that they are 
simply accepted as starting points of deductive reasoning.
-  The “phenomenological” interpretation. By this, analysis and synthesis are un
derstood to be different stages or moments or modalities of mental activity. Syn
thesis is just will, while analysis is deliberation, the complex research which 
prepares and justifies synthesis.
-  The “genetic” interpretation. Analysis proceeds from ideas which are given as 
such in a certain stage of the evolution of reason to the original ones from which 
these ideas originate; synthesis composes or connects the original ideas in order to 
realize the evolutionary process: it is just a figure of the evolution of reason. 
-T he  “representationalist” interpretation. Analysis presents something through 
its specific details; synthesis expresses some essential features or characteristics 
of it.
-T he  “pragmaticist” interpretation. According to this interpretation analytical 
reasoning depends upon associations of similarity, synthetical reasoning upon as
sociations of contiguity.
-  The “programmatic” interpretation. This is expressed in the ideal of the En
lightenment to organize all knowledge in terms of an “analytic” system. Analysis 
is then the aim of a program of classification of knowledge, according to a genet
ic, historical and logical order. It is not concerned with problems of existence, 
since this is rather the problem of synthesis. Synthesis exhibits contents or being, 
without caring for their concepts and it remains deaf when analysis does not fol
low.
-  The “directional interpretation”. In mathematical reasoning or proof, synthesis 
proceeds from the given or known to that which we have to deduce or construct in 
order to solve a certain problem or prove a certain theorem; analysis, in contrast, 
proceeds from the unknown as if it were known, to its possible antecedents until
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arriving at premises we recognize to be true, proven or known. These premises 
then serve as the basis of synthesis.
-  The “configurational” interpretation. Again in mathematical reasoning or proof, 
synthesis determines the consequences of certain premises, by producing a tree of 
successive and related deductions; analysis identifies the functional relations ex
isting in a certain specified domain of known or unknown entities, by transform
ing them into a functional configuration.
-  The “logico-theoretical” interpretation. A mathematical theory is synthetic if its 
objects are constructs, being introduced by recursive reasoning, or simply by suc
cessive descriptions of the repeatable conduct that lead to their exhibition. It is 
analytic, if its objects are characterized by specifying certain conditions or proper
ties they have to satisfy or share either individually or together as a whole system 
or domain.
-  The “historico-theoretical” interpretation. A mathematical theory is synthetic, 
if it refers to the classical geometrical objects or arguments or even to the classical 
theories of proportion, of numbers or magnitudes. It is analytic if it considers its 
objects as arguments of certain equations (rather than proportions) or operations, 
or even as functions.
-T he “linguistic” interpretation. A mathematical arguments or the formulation 
of a mathematical problem or proof is synthetic if it uses the language of classical 
geometry and of the theory of proportions. It is analytic if it uses the language of 
equations, functions or operations.
-  The “disciplinary” interpretations. A version of it is typical for eighteenth cen
tury mathematicians, according to whom analysis is a theory in terms of which all 
of mathematics can be formulated. A modem version of this interpretation states 
that analysis is a branch of mathematics, variously the mathematical theory in
cluding calculus, or the mathematical theory of the continuum, or the domain of 
all the theories where topological arguments, conditions or problems occur; etc.

Though it is not the intention of the following presentations to give a classifi
cation or even an account of the different ways in which mathematicians and 
philosophers have addressed analysis and synthesis or have discussed the analyt
ic-synthetic distinction, the greater part of the previous interpretations are direct
ly or indirectly discussed in the different articles of the present volume. Other 
interpretations, less customary or not as explicitly advanced in the history of math
ematics and philosophy, are also presented or evoked. Finally, in certain cases, 
new interpretations are proposed.

So extended an inquiry is motivated by two convictions. First, behind such a 
wide variety of interpretations a deep unity in meaning and attitude seems to 
subsist, an invariant kernel, which justifies the use of the same terms to express 
different distinctions or views. Second, because of this unity and by searching for
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it, the discussion of the different interpretations of the analytic- synthetic distinc
tion with regard to mathematics, becomes a Konigsweg for tackling what we see 
as the essential problem mathematics presents for historical and philosophical 
considerations, the problem of objectivity as a form of knowledge.

It appears to us that the connections between this fundamental question and 
the analytic-synthetic distinction become particularly pertinent to the philosophical 
and methodological discussions about mathematics after 1800. All the different 
positions in their respective peculiarities, as characterized above, have since then 
been more or less overshadowed by the contrast between pure and applied mathe
matics. Expressed in philosophical terms: all kinds of foundationalism became 
obsolete and at the same time issues of objectivity of knowledge became ever more 
pressing. It seems as if the general spirit of the problems that was expressed by the 
terms “analysis” and “synthesis” can now be summarized by what may be called 
the question of philosophical realism (as opposed to nominalism as well as social 
individualism).

Towards the end of the eighteenth century a new understanding of cognition, 
of science and scientific development as well as of philosophy, emerged. More 
than ever before, the sciences were faced with the inevitability of the complexity 
of experience. Even though quantitative extensions of knowledge had always led 
to changes in scientific methods, techniques and theories, this increase in knowl
edge accelerated to such a degree that the capacity of the traditional information 
processing technologies, based on the spatial organization of knowledge seemed 
exhausted. This led to an estrangement of the natural sciences from the mathe
matically dominated spirit of the past and it also led to new developments in 
mathematics itself.

Since the turn to the nineteenth century a fundamental transition from think
ing in substances (being the subjects of predication) towards relational thinking 
has occurred. Science no longer aimed at phenomena but at the form of things, 
and theories became realities sui generis. It became just as obvious, however, that 
every pertinent piece of theoretical knowledge, being part of some idea or model 
of the real world, will in some way or other take into account that the person 
having the knowledge is part of the system this knowledge represents. All knowl
edge presupposes a subject and an object and relations between these two, (which 
are established by the subject’s activity). And as the multiplicity of subjective 
perspectives grew with the increasing division of labor, it could no longer be over
looked that the subject is not only the dynamical source of knowledge and change, 
but also its object or task. In as much as all knowledge is concerned with either of 
these aspects of the subject’s role, it has a distinctly bipartite structure, which may 
be represented in various ways; for instance, in terms of the well-known comple
mentarity of means and objects of human activity.
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This complementarity of means, that is signs, and objects now seems to lie at 
the heart of the analytic-synthetic distinction.

The present volume offers various suggestions to substantiate such a thesis.

We wish to acknowledge our gratitude to the following persons, without whom 
this project could not have been completed: Lydia Bauer, Michael Detlefsen, An
ita von Duhn, Michael Hoffmann, Michael Mose, Marianne Murphy, Gloria Origgi 
and Klaus Peters.

The financial assistance from the IDM / University of Bielefeld is greatly ap
preciated. In the process of editing this volume we have also received indispensa
ble help from the Series Editor and from the Publisher's side. We feel particularly 
grateful to Evelien Bakker and Annie Kuipers.

Michael Otte 
Marco Panza
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THE ANALYTICAL METHOD IN 

DESCARTES’ GEOMETRIE*

To describe La Geometrie as an “essai’ of the Cartesian method, or as the appli
cation of the rules given in Discours de la methode, has paradoxically contributed 
to an undervaluation of existing connections between this brilliant and famous 
“essai” and Descartes’ philosophical work. In a way this is a paradox, considering 
the fact that this description of La Geometrie underlines the dependency of Des
cartes’ only complete mathematical treatment on the method to follow “pour bien 
conduire sa raison et chercher la verite dans les sciences” and on the metaphysical 
principles on which it is based. Nevertheless the connection between La Geometrie 
and the Cartesian method thus established appears weak. Because of this unsatis
factory situation, the essays dedicated to the study of this text appear to be split 
into “philosophical-humanistic” analyses and “scientific” analyses.

Let us try to clarify the previous statement, beginning with the reasons why 
the connection between La Geometrie and the rules of Discours de la methode 
appears weak. The fundamental reason lies in the vagueness of the methodologi
cal rules expressed in the Discours and summarized in the four famous rules 
governing scientific thought, even if Leibniz’s severity seems excessive when he 
compares them with common recipes and sums them up in the almost obvious 
rule: “sume quod debes, operare ut debes et habebis quod optas” (Leibniz GP, IV, 
329). Nevertheless it is difficult to deny that those who aim at establishing a tight 
connection between the rules of the Discours and the contents of La Geometrie, 
by trying to demonstrate in some way that the latter represent an application of the 
first, as if Descartes had endeavoured to obtain the results of La Geometrie as a 
direct application of his methodological rules, would be disappointed, and achieve 
little more than the impression of a vague link. The situation appears different, 
however, when the whole of Descartes’ work is considered, and not only the Dis
cours. Then, particularly when referring to the Regulce ad directionem ingenii, it 
is possible to trace a much tighter connection between Descartes’ method and the 
contents of La Geometrie, and at the same time to examine some historiographi
cal questions on viewing Descartes’ mathematical work from a different angle. 
The aim of this article is to attempt to highlight these connections and to briefly 
consider the historiographical questions mentioned above. 3

3

M. Otte and M. Panzja (eds.), Analysis and Synthesis in Mathematics. 3-34. 
©  1997 Kluwer Academic Publishers. Printed in the Netherlands.
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As an introduction we will use some observations by E.J. Dijksterhuis, which, 
even though rather general, emphasize the existing link between La Geometrie 
and the Regulce. Dijksterhuis observes that

“[...] if you really want to get to know Descartes’ method, you should not read the enchanting 
Discours, which is more a causeriethm  a treatise, but rather the Regulce ad directionem ingenii 
[...]. As a matter of fact, the Regulce contain an exposition of the so-called Mathesis universalis, 
which Descartes always considered one of his major methodological discoveries and which he 
hoped to see applied in all natural sciences.” (Dijksterhuis 1961,542)

Further on he continues:

“The essay La Giomitrie, in which Descartes presents his new discovery, fully deserves [...] to 
be described as a demonstration of the Cartesian method; yet it does not contain an application of 
the four rules of theDiscours, to which this essay constitutes an appendix. In fact, the true Discours 
de la mithode is set up by the Regulce ad directionem ingenii.” (Dijksterhuis 1961,543)

Dijksterhuis identifies this methodology in the Mathesis universalis and con
sequently the Cartesian ideal in the process of making science mathematical, which 
establishes a central role for La Geometrie as the first step of this process and as 
a model for its realization. Nevertheless, the way in which he characterizes the 
Mathesis universalis and the methodology he derives from it is not only vague but 
also misleading, in a way typical of many ambiguities in historiography dealing 
with these topics.

First of all Dijksterhuis completely identifies the Mathesis universalis with 
the “algebra speciosa” of Viete: consequently, Descartes’ ideal would be nothing 
but the systematic “application of algebraic methods” to all science. In this way 
La Geometrie is nothing but the application of algebraic methods to geometry1, 
which, in part, is true, but in our opinion insufficient to describe the characteristic 
features of Cartesian geometry. Secondly, Dijksterhuis identifies the deductive 
Cartesian method with the logical deductive method of modem mathematics, ex
plicitly referring to the axiomatic method, which constitutes its complete codifi
cation2.

In reality, these two comparisons are strictly correlated so that the discussion 
of one leads directly to the discussion of the other. We will start by commenting on 
the second comparison, recognizing that it is misleading, which a brief reading of 
La Geometrie demonstrates. As will be clarified later, the Cartesian deductivism 
clearly has “constructivistic” character: the only kind of reasoning allowed is that 
which will give an explicit construction of the entity under investigation or the 
result being demonstrated. Consequently any form of reasoning ab absurdo is 
excluded in Cartesian mathematics; moreover the entities all have to be construct- 
ible, which makes it impossible to define them in a conventional or axiomatic 
way. Furthermore, the admissible deductive chains must be finite; consequently, 
also the rudimentary forms of inductive reasoning in Descartes’ work differenti

THE ANALYTIC METHOD IN DESCARTES’ G tO M tJRlE 5

ate from modem mathematical inductive reasoning which, by means of a finite 
number of steps, makes it possible to pass from the finite to the infinite. Thus 
Cartesian deductivism is “constructivistic” and “finitistic”, i.e. far from, if not the 
opposite of, the “logical-formal” deductivism of modem mathematics.

Descartes seems conscious of the particular nature of his method and its posi
tion in comparison with past traditions in mathematics. When Descartes criticiz
es the “vulgar mathematics” (Descartes AT, X, 376 and LR, 34)3 of his time, he 
does not only refer to a sort of intuitive-experimental knowledge, in which the 
validity of the discoveries is particularly uncertain because of the frailty of the 
method used to obtain them4; he also criticizes the deductivism of classical math
ematics, in particular that of the “ancients” and the synthetic method on which it 
is based (Descartes AT, X, 376 and LG, 34)5. Therefore the “analytical” method 
he proposes is neither an intuitive procedure, which relies on the senses, nor an 
abstract formal deductive procedure, which is unable to account for the way in 
which the discovery was reached—similar to the one characterizing the forms of 
reasoning of ancient mathematics6.

The difference between the analytical and synthetic methods and Descartes’ 
evaluations of them are shown in an extremely clear manner in a passage of the 
“answers” to the “second objections” to the Meditationes1. Here Descartes points 
out that in the works of the geometer the methods of demonstration are twofold: 
“l’une se fait par 1’analyse ou resolution, et 1’autre par la synthese ou composi
tion” (Descartes 1647, 387 and AT, VII, 155) and he continues:

“L’analyse montre la vraie voie par laquelle une chose a 6t6 m6thodiquement invent6e, et fait 
voir comment les effets dependent des causes; en sorte que, si le lecteur la veut suivre, et jeter les 
yeux soigneusement sur tout ce qu’elle contient, il n ’entendra pas moins parfaitement la chose 
ainsi d6montr6e, et ne la rendra pas moins sienne, que si lui-meme l’avait invent6e.

Mais cette sorte de demonstration n ’est pas propre & convaincre les lecteurs opiniatres ou peu 
attentifs: car si on laisse 6chapper, sans y prendre garde, la moindre des choses qu’elle propose, la 
n6cessit6 de ses conclusions ne paraitra point; et on n ’a pas coutume d’y exprimer fort amplement 
les choses qui sont assez claires de soi-meme, bien que ce soit ordinairement celles auxquelles il 
faut le plus prendre garde.” (Descartes 1647,387-388 and AT, VII, 155-156)

Therefore the value of the analytical procedure lies in the connection with the 
“true way”, which has made the invention possible, and in the fact that it shows 
the links of causal dependence: this means that it derives from the “constructive” 
nature of this method, even if this advantage can be easily lost, if the chain linking 
the causes and the effects is interrupted, however slightly. The synthetic method 
proceeds in a different way:

“La synthdse, au contraire, par une voie tout autre, et comme en examinant les causes par leurs 
effets (bien que la preuve qu’ elle contient soit aussi des effets par les causes), d6montre & la v6rit6 
clairement ce qui est contenu en ses conclusions, et se sert d ’une lungue suite de definitions, de 
demandes, d ’axiomes, de th6or£mes et de probldmes, afin que, si on lui nie quelques consequences, 
elle fasse voir comment elles sont contenues dans les antecedents, et qu’elle arrache le consentement
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du lecteur, tant obstind et opiniatre qu’il puisse etre; mais elle ne donne pas, comme l’autre, une 
entidre satisfaction aux esprits de ceux qui cfesirent d ’apprendre, parce qu ’elle n ’enseigne pas la 
nfethode par laquelle la chose a 6te invenfee.” (Descartes 1647,388 and AT, VII, 156)

Descartes’ description of the procedure of the synthetic method clearly refers 
to the geometry of the ancients and, in particular, to the model of Euclid. Differ
ing from the analytical method, this procedure gains the reader’s consent, using 
procedures of “coercion” typical of formal logic8. Nevertheless, Descartes criticiz
es the absence of constructivism in it: it “does not teach the method by which the 
thing has been invented”9. The analytical method, on the contrary, has this great 
advantage, which was also recognized but kept “secret” (Descartes 1647, 388 and 
AT, VII, 156)10 by the ancients, and which Descartes, brought to light and exposed 
as a method.

The difference between the analytical and the synthetic method is discussed by 
Descartes as an answer to a concluding remark of the Seconde obiezioni to the 
Meditationes “collected by Mersenne on the basis of remarks from various theolo- 
gicians and philosophers” (Descartes 1647, 359), which invites Descartes to pre
cede “more geometrico” in his exposition:

“[...] ce serait une chose fort utile, si, & la fin de vos solutions, aprts avoir pfemidrement avance 
quelques definitions, demandes et axiomes, vous concluiez le tout selon la m6thode des georndtres, 
en laquelle vous etes si bien verse, afin que tout d ’un coup, et comme d ’une seule illade, vos 
lecteurs y puissent voir de quoi se satisfaire, et que vous remplissiez leur esprit de la connaissance 
de la divinife.” (Descartes 1647,365 and AT, VII, 128)

On the one hand Descartes’ answer makes clear in which sense he believes to 
have to accept the invitation to precede “more geometrico”— i.e. according to the 
analytical and not the synthetic method; on the other hand, as he deals with met
aphysical matters, he endeavours to show the particular inadequacy of synthesis 
in these kinds of questions, recognizing that synthesis appears more acceptable in 
geometrical problems. In specifying this aspect he touches on an issue that is 
particularly interesting for our topic: he asks himself why synthesis can “be useful 
when put after analysis” (Descartes 1647, 388 and AT, VII, 156). This derives 
from the nature of the basic notions of geometry, which, since they are not in 
contradiction with the senses, are accepted unanimously:

“Car il y a cette difference, que les pfemferes notions qui sont supposdes pour demontrer les 
propositions g6om6triques, ayant de la convenance avec les sens, sont revues facilement d ’un 
chacun; c ’est pourquoi il n’y a point 1& de difficult^, sinon k bien tirer les consequences, ce qui se 
peut faire par toutes sortes de personnes, meme par les moins attentives, pourvu settlement qu’elles 
se ressouviennent des choses pfecedentes; et on les oblige aisement £ s’en souvenir, en distinguant 
autant de diverses propositions qu’il y a de choses & remarquer dans la difficult^ propofee, afin 
qu ’elles s 'arretent s£pafement sur chacune, et qu ’on les leur puisse citer par aprds, pour les avertir 
de celles auxquelles elles doivent penser.”11 (Descartes 1647,388-389 and AT, VII, 156-157)
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Therefore it is obvious that the axioms of geometry are not only far from being 
conventional but also only acceptable as far as their contents of truth are “clear” 
and “distinct”: only for this reason the synthetic method can be useful when intro
duced in geometry, naturally “apres l’analyse”. Thus, once again the superiority 
and priority of the analytical-constructive method over the synthetic-formal one is 
emphasized. This has led to two errors: the first one to believe that the use of 
axiomatic procedures is at the centre of the Cartesian “revolution” in mathemat
ics—with Descartes actually dissociating himself from these procedures, even if it 
is in a “form of contents” typical of the geometry of the ancients; the second one to 
speak generally of the central position of the “deductive method” (evoking im
proper associations with the deductive logics of modem mathematics) without 
specifying and clearly underlining the “constructive” character of this method in 
Descartes’ vision. It is necessary, however, to give an exact definition of this “con
structivism”. For this purpose it will be useful to re-examine the Regulce in order 
to show how it can be directly translated into the concept of “geometric construc
tion” and into a precise definition of the forms of such a construction. This leads 
Descartes to a critical re-examination of the concept of “constructibility” of a 
geometric figure as it was defined by previous geometry and to the introduction of 
a new interpretation of such a concept. The Cartesian classification of the curves— 
which can be considered Descartes’ most important contribution to mathemat
ics—is the consequence of such a re-examination and re-definition. In the end the 
Cartesian classification of the curves is a direct consequence of the general princi
ples of the Cartesian analytical method, which are unfolded in the Regulce.

Before concentrating on this more specific analysis, we have to make some 
general observations.

We have tried to show that an accurate explanation of the meaning which 
Descartes attributes to the terms “analytical” and “synthetic” is necessary to fully 
understand the method he follows in his mathematical arguments. Therefore it is 
also necessary to give an exact explanation of these terms with respect to the 
context of Cartesian thought and to their prevalent use at that time, avoiding any 
reference to a non-specific and thus debatable “general meaning” of these terms 
in the history of mathematics. This kind of use, uncritical and unrelated to time, is 
not infrequent in historiography—particularly the one manifesting itself as a kind 
of by-product of research—and has been the source of quite a few misunderstand
ings. A typical manifestation of the cumulative historiographic analysis is the 
incomprehension—or at least the negligence—of the changes in meaning in sci
entific terminology, subtle transformations of meaning which occur silently in the 
course of history, below the unchanged surface of its formal appearance. Marc 
Bloch, having observed how much the term “history” has changed its meaning in 
the course of 2000 years, has given a sharp comment which should be read, re
read and remembered by the historian as a precious memento: “Si les sciences
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devaient, a chacune de leurs conquetes, se chercher une appellation nouvelle—au 
royaume des acad6mies que de baptemes, et de pertes de temps!” (Bloch 1964,1). 
Yet historians of science often forget this rule and venture to analyse a context of 
scientific concepts by taking a meaning for granted that is determined by recur
rent terms which have nothing to do with that very context and that is almost 
always related to a more recent context. In this way the historic specificity of the 
term, i.e. its meaning in relation to the context in which it is used, is changed, 
with rather negative consequences for a correct understanding of the subject. The 
use (and abuse) of the term “analytical geometry” in historiography is an evident 
example of this: the use of the term recurrent in the handbooks of contemporary 
mathematics or at least of the end of the 19th century has been widely accepted 
without any closer examination. In our opinion, this point of view is completely 
inadequate for the specific meaning of “analytical” geometry in Descartes’ work.

Both, the terms “synthetic” and “analytic” have a completely different mea
ning in Descartes’ work than in modem and contemporary mathematics. Since 
the times of Descartes, the modem meaning of the term “synthetic” (i.e. the meaning 
implied from the second half of the 19th century onwards) has undergone radical 
changes: what was essential in the ancient interpretation (i.e. the very demonstra
tive procedures effectively described by Descartes in the Meditationes) was put 
last and the aspect of the intuitive meaning of the discovery first12. Yet the chang
es undergone by the term “analytic” are even more complex. No doubt we have to 
speak about a sequence of slight alterations of meaning during a long period of 
historical development. The history of these changes should be seen within the 
framework of the history of changes in meaning of the concept of analysis. Nei
ther of these ambitious projects will be carried out here and we will limit ourselves 
to pointing out some of the historical layers that cover the Cartesian conception of 
“analytical” geometry. The marked constructive nature of analysis in Cartesian 
geometry—something nonexisting in the modem meaning of the term—should 
be an indication of the occurrence of possible historical sedimentation.

Let us now look at historiography (particularly but not solely at the sector of 
historiography that is linked with research, referred to above). We may even be 
fortunate enough to witness an ongoing attempt of “concealment”! Actually, 
J. Dieudonne, after having listed “analytical geometry” among those “pseudo
sciences” which “it remains to hope we can forget the existence and even the 
name of” (Dieudonn6 1968, 6), continues like this: “Furthermore it is urgent to 
free the term ‘analytical geometry’, which, no doubt, is best to indicate one of the 
most vivid and profound theories of modem mathematics, i.e. the one of analyti
cal varieties, compared to ‘algebraic geometry’, which is the study of ‘algebraic 
varieties’” (ibid., 6). In another piece of writing (where the “liberation” has al
ready taken place) Dieudonne clearly explains the contents which he wants to free 
the term “algebraic geometry” from:
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“It is absolutely intolerable to use ‘analytical geometry’ for linear algebra with coordinates, still 
called ‘analytical geometry’ in the elementary books. Analytical geometry in this sense has never 
existed. There are only people who do linear algebra badly, by taking coordinates and this they 
call analytical geometry. Out with them! Everyone knows that analytical geometry is the theory of 
analytical spaces, one of the deepest and most difficult theories of all mathematics.”(Dieudonn6 
1970, 140)

It is not our aim to discuss this kind of historical destructions (which are 
perpetrated by one of the most authoritative voices not only in mathematics but 
also in the history of mathematics of our time).

Certainly analytical geometry in the sense of “coordinate geometry” has exist
ed. It is important to remember that the term “analytical geometry” did not first 
appear in Descartes but in the Introduction of the first volume of Lacroix’ Traite 
du calcul differentiel et du Calcul integral in the 1797 edition (Lacroix 1797-1798). 
Lacroix explains that his point of view differs completely from the traditional 
constructive one:

“En £cartant avec soin toutes les constructions g6om£triques j ’ai voulu fairs sentir au Lecteur 
qu’il existoit une manidre d ’envisager la g£om6trie, qu’on pourrait appeler ‘G£om£trie analytique’, 
et qui consisteroit & d£duire les propri6t6s de l ’6tendue du plus petit nombre de principes, par des 
mlthodes purement analytiques, comme Lagrange l ’a fait dans sa Mdchanique & l ’6gard des 
propri6t£s de l’6quilibre et du mouvement.” (ibid., I, xxv-xxvi)

In spite of recalling Lagrange, Lacroix admits that it was Monge who first 
presented “sous cette forme l’application de l’Algebre a la Geometrie” (ibid., I, 
xxv-xxvi). Actually, his homonymous treatise (Monge and Hachette 1802) still 
uses this terminology—“application of algebra to geometry”—which, on one hand, 
conveys the idea of an “ancillary” use of algebra in geometry, on the other hand 
suggests a one-sided relationship between the two disciplines in one direction 
only: the use of algebra in geometry as an instrument leads to the need to justify 
algebraic techniques in terms of the main subject—geometry—and consequently 
the translation of algebraic operations into geometrical constructions (i.e. from 
geometry to algebra), while the opposite (from algebra to geometry) does not ex
ist. This is exactly Descartes’ point of view—which justifies the definition of his 
approach as “application of algebra to geometry”—but it is not Monge’s point of 
view, as revealed by Lacroix:

“Qu’on ne croie pas qu’en insistant ainsi sur les avantages de 1’Analyse algdbrique, je veuille 
faire le procSs & la Synthase et d l’Analyse g6om£trique. Je pense au contraire qu’on n£glige trop 
aujourd’hui l’6tude des Anciens mais je ne voudrais pas qu’on melat, comme on le fait dans 
presque tous les ouvrages, les considerations g6om£triques avec les calculs alglbriques; il s£roit 
mieux, ce me semble, que chacun de ces moyens fQt port£ dans des trait£s s£par£s, aussi loin qu’il 
peut aller et que les r£sultats de l’un et de l’autre s ’6clairassent mutuellement en se correspondant 
pour ainsi dire, comme le texte d ’ un livre et sa traduction.” (Lacroix 1797-1798,1, xxv-xxvi)
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Therefore Lacroix’ merit is to have given a new name (which also contains an 
element of continuity in the use of the term “analytical”) to a turning-point in 
geometrical thinking carried out by Monge in the first place. This turning-point 
consists in having given autonomy to the two disciplines—algebra and geome
try—transforming their relationship into a form of specular correspondence. Even 
more clearly Monge pointed out in his lectures on descriptive geometry held at the 
Ecole Normale of the year III that the student had to

“[...] se mettre en 6tat d ’une part de pouvoirecrire en Analyse tous les mouvements qu’il peut 
concevoir dans l ’espace, et de l ’autre de se r6presenter perp6tuellement dans 1’espace le spectacle 
mouvant dont chacune des operations analytiques est i ’6criture.”13(Monge LEN, 367 and 1799,
62)

Algebra is no longer a mere instrument to obtain geometrical constructions in 
an easy way: it offers a translation of the “book” of geometry which one can work 
with; and, vice versa, from the translation it is possible to return to the original 
text. Therefore every geometrical problem is susceptible of an algebraic treatment 
that permits reasoning in a somewhat stenographic abbreviated form, which, in 
the long run, is more powerful than the classic synthetic reasoning; however, a 
geometrical translation exists of every algebraic formulation. So, it is possible to 
obtain from every geometrical locus the algebraic equation representing it, which 
can be manipulated with the autonomous methods of algebra, and vice versa a 
geometrical locus can be obtained from a given equation.

This specularity has been the essence of modem analytical geometry from 
Monge and Lacroix onwards. In this concept coordinate geometry no longer plays 
an accessory or technical but a central role: the role of mediator between algebra 
and geometry, a kind of dictionary to translate from one text to another, indicating 
the correspondence between geometrical locus and equation and vice versa. There
fore it is understandable how, in the modem meaning, the notion of analytical 
geometry has been confounded with the one of “coordinate geometry”, exactly 
because of the central position of this method in guaranteeing the bi-univocal 
relationship between the two disciplines.

Referring to this interpretation of analytical geometry as the study of the prop
erties of extension based on the recognition of the specularity between algebraic 
and geometrical operations and on the consequent central position of coordinate 
geometry we are led back to Fermat and not Descartes. On this point C. B. Boyer 
is completely right, when he observes that it is in Fermat’s work—precisely in his 
short treatise entitled Ad locos pianos et solidos isagoge (Fermat TH, I, 4, 91- 
110)—that “the fundamental principle of analytical geometry is to be found in a 
precise and clear language” (Boyer 1956, 218). Boyer is also right when he ob
serves that Fermat’s phrase stating that a locus exists whenever there are two 
unknown quantities in a final equation, since the extreme of one of them describes
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a straight line or curve, “represents one of the most significant statements in the 
history of mathematics” (Boyer 1956, 190). This is certainly most important as 
regards the notion of analytical geometry of Monge and Lacroix mentioned above: 
actually, Fermat puts forward the principle of bi-univocal correspondence between 
algebra and geometry in a rather explicit way, when he admits that beginning 
with an algebraic equation there can be a geometrical locus—a really revolution
ary idea for his time. The geometric constructions have lost their central position 
at a single blow: it is no longer necessary that a curve can be constructed in order 
to be admissible—which has been fundamental for the priority of geometry over 
algebra—the curve exists only because the equation is given, it is not defined by a 
construction but as “the locus of the points that satisfy the equation”. The central 
position of coordinate geometry follows as an obvious necessity. The fact that 
Fermat’s approach is more “modem” than Descartes’ has been correctly observed 
for some time (Taton 1951,102). Descartes does not admit this vision of geomet
rical loci at all, nor does he accept the specularity between algebra and geometry 
or renounces the central position of the concept of construction. Finally, coordi
nate geometry has a purely technical and accessory role in his work.

At this point some historiographical difficulties arise. Fermat’s point of view, 
though apparently more modem, was certainly not the more influential one: it is 
well-known that the 17th and part of the 18th century was dominated by the Car
tesian geometrical conception; and even when the mathematics of the Enlighten
ment period and the time of the French Revolution—Lagrange, Monge and Lacroix 
in particular—distanced itself from the Cartesian tradition this was done silently, 
underlining in a clear but implicit way the breaking with this tradition. Monge’s 
use of the expression “application of algebra to geometry” reminds us of the con
tinuity with the Cartesian tradition. On the contrary, Lacroix’ naming (the intro
duction of the term “analytical geometry”) equals a more explicit separation, but 
because of the apparent character of continuity, due to the common use of the term 
“analytical”, may not have sufficiently drawn the historians’ attention. This dif
ferent meaning attributed to the concept of analysis, however, is the very basis of 
the big difference between the Cartesian vision and the “modem” use of “analyt
ical geometry”.

It has to be pointed out that the choice of examining the problem of the birth of 
analytical geometry according to a view typical of a “cumulative” historiogra
phy—and thus starting from the modem notion of analytical geometry14—has led 
to serious difficulties and has caused contradictions among numerous historians. 
So, Gino Loria does not conceal the sense of confusion that overcomes the histo
rian when he tries to determine the birth of analytical geometry:

“All those who long for knowing the work which is the starting point of literature on coordinate
geometry experience a great disappointment since Descartes’ La Giomitrie differs from a modem
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treaty of analytical geometry infinitely more than do two expositions, one ancient, one modem of 
any other mathematical discipline.” (Loria 1924,777)

He continues like this, providing a perfect model of cumulative historiography:

Descartes (and this also holds true for Fermat) considered the new discipline a simple meta
morphosis in the geometry of the ancients from the influence of algebra [...]; so the comparison of 
the author of theDiscours de la mithode with Christopher Columbus, who took the conviction to 
have discovered a new world to his grave, is evident; this state of being blind was transmitted from 
the Supreme to his immediate disciples (Loria 1924,777)

Taton reveals the differences between Fermat and Descartes more skillfully, 
characterizing the technical aspects of Cartesian geometry quite well:

“[Descartes] avait confu cette science comme ‘une application de I’algdbre k la g6om6trie’, nom 
qu’elle conservera d ’ailleurs jusqu’au pr6mi£res d6cadaes du XIX sidcle et que Monge lui-meme 
adoptera, c ’est-it-dire comme une technique de structure algSbrique, adapt6e k la resolution des 
probldmes d ’essence g£om6trique et sp£cialement des probldmes des lieux & la manidre 
d ’Apollonius. Ainsi, apparait-elle, non pas comme une branche autonome de la science, mais 
plfltot comme un outil permettant de r6soudre de nombreux probldmes g6om6triques qui n ’entrent 
pas dans le champs normal d ’application directe des propri6t6s classiques tirdes des Elements 
d ’Euclide. Les courbes ne s’y trouvent pas dtudides pour elles-mdmes d ’aprds leurs equations, 
mais 1’intdret se porte quasi exclusivement sur celles qui apparaissent comme solutions de probldmes 
& rdsoudre.” (Taton 1951,101)

Most important in the historiography of analytical geometry remains the work 
of C. B. Boyer (Boyer, 1956), whose merit was to clarify the difference between 
Fermat’s and Descartes’ point of view. As Taton, he recognizes that Descartes’ 
geometry is more an application of algebra to geometry than analytical geometry 
in the sense we understand it today and calls Chasles’ definition of analytical 
geometry as a “proles sine matre creata” (Chasles 1875, 94) “unfortunate”. And, 
after having observed that Cartesian geometry has now become a synonym of 
analytical geometry, but that Descartes’ fundamental goal is quite different from 
the one of modem handbooks, he offers the following characterization of Carte
sian geometry:

“Descartes was not interested in the curves as such. He derived equations of curves with one 
purpose in mind—to use them in the construction of determinate geometrical problems which had 
been expressed by polynomial equations in a single variable.[...] The method of Descartes is that 
of coordinate geometry, but his aim is now found in the theory of equations rather in analytic 
geometry. [...] where Descartes had begun with a locus problem and from this derived an equation 
of the locus, Fermat conversely was inclined to begin with an equation from which he derived the 
properties of the curve. Descartes repeteadly refers to the generation of curves ‘by a continuous 
and regular motion’; in Fermat one finds more frequently the phrase, ‘Let a curve be given having 
the equation [ ...] ’ The one admitted curves into geometry if it was possible to find their equations, 
the other studied curves defined by equations.”l5(Boyer 1956,216-217)
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What exactly are the characteristics of Cartesian geometry? They are described 
by Boyer, when he refers to the differences between Descartes’ and Fermat’s ap
proach. These differences could be summed up as follows: both Descartes and 
Fermat were influenced by Viete; Fermat applied Viete’s method to the problems 
of geometrical loci, whereas Descartes renewed the method by introducing the 
algebraic symbolism, without changing the object of Viete’s researches, i.e. the 
geometrical construction of the roots of an equation. This is certainly correct and 
yet it means that Descartes is nothing but a descendant of Viete: his analytical 
geometry is the continuation of Viete’s ars analytica with the introduction of the 
powerful instrument of algebraic symbolism—without doubt a considerable step 
forward but not doing justice to Fermat’s innovating contribution. This does not 
mean that it is scandalous to reconsider the significance of the Cartesian work. 
But as to the connection between Descartes’ and Viete’s work, it seems that the 
above-named interpretation is based on a merely technical vision of the question.

There are also other reasons for not being satisfied. The problem of the origin 
of analytical geometry cannot be solved by simply stating that Descartes’ geome
try is not the same as modem analytical geometry, and by concluding with re
naming it “application of algebra to geometry”. Moreover this term goes back to a 
later date, so that the question why Cartesian geometry (i.e. the application of 
algebra to geometry) originated as “analytical” geometry or at least as the appli
cation of “analysis” to geometry remains. This is not a simple question of termi
nology but a basic problem which must not be disregarded and reduced to a question 
of names. Once again the answer could be that Descartes is a descendant of Vifcte16. 
At this point, however, we really are dissatisfied. We have already seen how the 
notion of “analytical” in Descartes can neither be reduced to the notion of “analyt
ical” of modem analytical geometry nor to the ars analytica of Viete. The charac
teristics of this notion are to be found in the philosophical sense of the term and 
not in the strictly mathematical sense. It is obvious that the study of Descartes’ 
philosophical work does not provide the key to the understanding of the impor
tance of his mathematical works, it is true, but it is equally evident that, in order to 
understand the work of a scientist-philosopher like Descartes, an analysis which 
is restricted to the study of his contribution viewed solely from the angle of the 
history of geometrical methods is not sufficient.

One of the most important contributions to Descartes’ La Geometrie, apart 
from the writings of Boyer17, is an article by H. J. M. Bos (Bos 1981). Bos’s point 
of view is different from the one prevailing in literature, which he considers un
satisfactory as it aims at solving “the sterile question whether Descartes invented 
analytical geometry or not” (Bos 1981,297). Also Bos’s approach is strictly inter
nal and in no way detached from a “cumulative” point of view. In this way the 
“sterile” question is taken up, possibly in the paradoxical form according to which
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the very “programmatic” intentions of Descartes had restrained the establishment 
of analytical geometry.

“The later synthesis of algebraic and geometrical methods into what is now called analytic ge
ometry was possible only because later mathematicians were not aware of (or foigot) the program
matic problems with which Descartes had struggled.” (Bos 1981,298)

Special emphasis must be put on the fact that Bos’s analysis is clearly directed 
towards the topics and problems we have dealt with so far. First of all, Bos demon
strates that the central theme of La Geometrie and “the key to understand its 
underlying structure [...] and programme” (Bos 1981, 332) is the representation 
of curves. In fact, it is the basis of the relationship between geometry and algebra 
in Descartes’ work, which is connected to the topic of his constructivistic concep
tion and the relation between analysis and synthesis. After a profound analysis of 
the text, Bos indicates what he considers contradictory: the co-existence of a clas
sical programme (already clearly expressed in 1619) which regards geometry as a 
science that “constructs” or solves geometrical problems, which changes the an
cient classification of the curves only slightly (basing it on the use of machines 
which are nothing but the generalization of ruler and compasses) and where alge
bra has no place, and a programme which attributes an important role to algebra18 
and abolishes the ancient classification of curves, and, in doing so, opens the way 
to the modem distinction between algebraic and transcendental curves. In fact, 
there are two co-existing programmes, since Descartes never abandons the vision 
of geometry as science of “constructions” and remains prisoner of some essential 
difficulties. The main difficulty revealed by Bos is the contradiction which can be 
found in the criteria of geometrical acceptability of curves in the programme of 
La Geometrie:

“On the one hand Descartes claimed that he accepted curves as geometrical only if they could be 
traced by certain continuous motions. This requirement was to ensure that intersections with other 
curves could be found, and it was induced by the use of the curve as means o f construction in 
geometry. On the other hand Descartes stated that, under certain conditions, curves represented by 
pointwise constructions were truly geometrical. Pointwise constructions were related to curve 
equations in the sense that an equation for a curve directly implied its pointwise constructions. 
Pointwise construction was used primarily for curves that occurred as solutions to locus problems.

The link between the two criteria is Descartes’ argument that pointwise constructible curves can 
be traced by continuous motions. We have seen that that aigument, and hence also the link, is very 
weak.” (Bos 1981,326)

Looking once again at Cartesian geometry through the lens of modem mathe
matics, i.e. of “analytical geometry”, Bos asks himself:

“Why then did Descartes not cut this Gordian knot in the most obvious way, namely by defining 
geometrical curves as those which admit algebraic equations? Why did he not simply state that all 
such curves are acceptable means of construction and that the degrees of their equations determine
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their order of simplicity? That principle would have removed the contradictions mentioned above.”
(Bos 1981, 326)

After an accurate analysis Bos comes to the conclusion that the contradiction 
is based on the co-existence of the two programmes mentioned above, the second 
of which being the result of a paradigmatical change that occurred between 1619 
and 1637. This change, even though it emphasizes the role of algebra, does not 
modify the nucleus of the first programme and consequently the idea that “geom
etry is the science that solves geometrical problems by constructing points by 
means of the intersection of curves” (Bos 1981, 331). The programme of 1619 
“may have been impracticable but coherent” (Bos 1981, 331), whereas the pro
gramme of 1637 is innovative but incoherent: it introduces algebra without re
nouncing the link with the old geometrical programme and consequently brings 
about a series of difficulties.

This explanation, though accurate, is only descriptive: it does not say any
thing about the motives that led Descartes to take this new position and remain 
obliged to the old one at the same time. Was it a question of mere attachment to 
the past? There is one possible answer, on condition of leaving the link with the 
“sterile” question of Descartes’ relationship with analytical geometry definitely 
behind. In the time between 1619 and 1637 something crucial happened: Des
cartes’ enunciation of the principles of the method. The influence of such an enun
ciation on the programme of La Geometrie is revealed by Bos19. However, by 
restricting the connection to the Discours de la Methode, it is impossible to see 
the amplitude and complexity of the profound link between geometry and method. 
The crucial event between 1619 and 1637 is the publication of the Regulce. In this 
text we find Descartes’ so-called attachment to the classical constructive vision of 
geometry and, at the same time, the importance he attributes to the procedures of 
algebra.

Attempting to draw a parallel between the changes in Descartes’ approach to 
geometrical problems—which certainly exist and consist in passing from a nearly 
orthodoxically classical vision to one that attributes an important role to algebraic 
procedures—Bos refers to Schuster’s theses. Schuster maintains that after 1628 
Descartes abandoned the programme of Mathesis universalis formulated in the 
Regulce because he had encountered some difficulties in constructing a geometri
cal theory of equations (Schuster 1980); consequently he turned to algebra in 
order to solve his technical difficulties. This explanation, however, is not very 
convincing, not only because Descartes was not easily influenced by technical 
difficulties or details20. In the first place the changes in Descartes’ approach to 
geometry are reduced to merely technical reasons. Secondly, it is taken for granted 
that after 1628 Descartes abandoned his programme of Mathesis universalis: this 
means that all connections between the Regulce and La Geometrie are disregard
ed, which really is something impossible to do. Moreover it appears arbitrary to
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talk about a programme of Mathesis universalis which Descartes was to have 
developed in detail, since he considered the enunciation of the methodical rules of 
reasoning more important than anything else. Last but not least the traditional 
conception of geometry which Descartes adhered to in 1619 is claimed to be the 
exact opposite of the method expressed in the Regulce and does not leave any 
space for the algebraic approach. We shall see that this does not hold true: in the 
method enunciated in the Regulce the algebraic procedures, though under a con
structive framework, have a fundamental role. It is not true that in 1628 Descartes 
formulated the Regulce as a specular translation of his geometry of 1619; nor is it 
true that after 1628 a programme that did not exist came to a crisis for technical 
reasons. The contrary holds true: exactly in 1628 the determination of the princi
ples of a new method by Descartes induced a radical change in his consideration 
of geometrical problems. On the one hand, this method is “analytical” and conse
quently chooses methods used in algebra and it is a “constructive” analytical method 
and therefore uses the constructive procedures of classical geometry as its point of 
reference. On the other hand, this constructive analytical procedure, which will 
be described shortly, completely changes the picture of geometry, in particular the 
criteria of representation and admission of curves, where progress and difficulties 
analysed by Bos become evident. It remains doubtful, however, whether Descartes 
ever worried about those difficulties or even perceived them.

Therefore the crucial knot is to be found in Descartes’ method, which is both, 
analytical and constructive. Such a method needs algebra as a universal language, 
which reflects the generality of the method, but at the same time it is constructive 
and does not admit leaps or lacerations in its procedures. Descartes strives to unite 
these two requirements: therefore the contradictions in his text do not arise from 
the co-existence between two different visions of geometry but represent the diffi
culties of one coherent vision21, which is based on a philosophical programme and 
not on one of mathematical nature. The Cartesian “incoherences” only exist when 
they are viewed under the point of view of modem analytical geometry, which 
requires a balanced co-existence between geometry and algebra: Descartes, how
ever, was not at all interested in cutting the “Gordian knot”. For him this “Gord
ian knot” did not exist, nor could he have solved it—not because he was attached 
to an ancient vision of geometry but because it would have been in contradiction 
with his methodological approach. Let us rather have a look at the subordination 
of algebra to geometry, which is no residue of the past but a necessary conse
quence of the Cartesian methodical principles.

A purely internalist historiographic vision can make it even more difficult to 
value the significance of Descartes’ contribution and its position in the history of 
science. Our opinion, which is also based on the big influence that La Geometrie 
had for more than a century, is that Descartes’ contribution meant an enormous 
methodological revolution: this is why his success went beyond the importance of
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the results. In order to understand the reasons, there is no need to go back to the 
traditional connection between La Geometrie and the Discours de la methode: in 
the Regulce ad directionem ingenii it is possible to trace a stronger connection 
which permits re-reading La Geometrie, bringing to light aspects of great impor
tance which, up to now, may have been valued in a one-sided way. The re-reading 
of the work combined with the sound contributions of historiography, in particu
lar those of Boyer and Bos, provides a satisfactory picture of the basic arguments 
of the Cartesian text.

Within the limits of this article it is impossible to embark on a detailed and 
exhaustive analysis of the Regulce, let alone La Geometrie, the contents of which 
will be taken for granted. Here we shall limit ourselves to undo the most impor
tant conceptual knots of the Cartesian analytical method emerging from the Reg
ulce. They can be described as follows.

The first point is the affirmation that knowledge is achieved in a two-fold way: 
by “intuition” (an elementary act the basis of which is not any unreliable informa
tion provided by the senses or by imagination but the conception of a “pure atten
tive spirit” which does not leave any doubts as to what has been understood22 and 
is the matrix of the formation of clear and distinct ideas) and by “deduction” (with 
deduction being a chain of intuitions). It follows that reasoning, being invariably 
based on the use of “concatenations of elementary acts of intuition”, is deduc
tive—which is the second fundamental point.

The third aspect centers on the “constructive” character of the deductive pro
cedure: the chain of deductions on which it is based must not be interrupted, the 
result has to be reached without leaps. In the process of reasoning one term must 
not approach another pre-existing term but all links and relations between them 
have to be indicated so that a chain of intuitions connecting them is constructed. 
Its validity is proved by the fact that the deductive chain can be run through time 
and again in an “ordered” and “continuous” movement, which makes it possible 
to verify whether the construction which conducts to the final truth is valid.

The fourth aspect deals with the possibility of reducing any differences be
tween objects to “differences between geometrical figures”: this is the first form of 
the Cartesian notion of reducing differences to differences of extension in the 
Regulce, which is basic to the Cartesian quantitative conception of the Universe. 
In the Regulce this idea does not immediately appear as a metaphysical principle 
(the possibility of reducing any object to extension), but as an intuitive aid to 
represent the relations which are difficult to conceive in a form more accessible to 
intuition. But this first presentation is followed by an interpretation which out
lines very clearly the explicit metaphysical valence which the concept of exten
sion will assume in subsequent works. In fact, Descartes proposes a quantitative 
interpretation of the Universe, centering on mathematics, i.e. Mathesis universa
lis, completely different from the “vulgar” mathematics of his time, and a univer
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sal knowledge that permits reducing the analysis of any phenomenon to problems 
of “order” and “relations”. In the deductive chain of reasoning every intuition can 
be compared with the subsequent one, as in the comparison of two quantities. So, 
deductive reasoning is transformed, or rather reveals its true nature as a sequence 
of concatenated relations: in it there occurs what happens in mathematical pro
gression, where every term is determined by the relationship with the preceding 
term. By means of the language of algebra, deductive reasoning is translated into 
a sequence of proportions—hence the fundamental role of the theory of propor
tions. Another important consequence is the following: it has been maintained 
that, due to the constructive character of the deductive procedure, no ring of the 
chain can be left out, nor can there be any data without having defined the proce
dure which, starting from a further well-known truth, permits obtaining it (i.e. by 
way of construction). Therefore the translation of the deductive procedure into 
algebraic language (i.e. by means of equations via the theory of proportions) is 
“one-directional”; it is possible to move from the deductive procedure to algebra, 
but not the other way round, since there are no constructive procedures expressed 
by algebra. In the specific field of the relations between algebra and geometry this 
implies that their relations are one-directional: it is possible to pass from the 
geometrical problem to its algebraic translation (provided that the algebraic oper
ations applied are geometrically and thus constructively justified), but not to do 
the opposite, since no “algebraic problems” as such exist. The Mathesis universa
lis, which reflects the constructive form of deductive reasoning and the universal
ity of the well-defined relations that exist among the objects of the Universe, only 
contemplates problems of geometrical construction.

The fifth and last aspect is the following: in all the Regulce there is a parallel 
between “arts” and science, between the procedures of the “mechanical arts” and 
the constructive procedure of deductive reasoning. This is one of the great number 
of aspects of the Cartesian mechanistic conception. This parallelism is translated 
into a parallelism between the procedures of the mechanical “arts” and geometri
cal constructions and is the basis of the definition of the new criterion of demarca
tion between admissible and inadmissible curves, introduced by Descartes, which 
made it possible to go beyond the ancient classification of the curves and re
classify them: an important result, since, apart from some significant but not deci
sive differences, it coincides with the modem classification of algebraic and 
transcendental curves.

Let us now examine more closely the significance and implications of the five 
aspects mentioned above, looking at the form in which they are presented and 
taken up in the Regulce.

Before doing so, however, we want to discuss to two general topics which 
represent a sort of “/e/f-monv” of the Regulce. The first is the refusal of specialis
t s  knowledge in favour of the unity of learning. This is the central theme of
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Regula Z23, but also recurs in many other passages and has important consequenc
es for mathematics. For Descartes the study of specific mathematical problems is 
of no interest at all:

“neque enim magni facerem has regulas, si non sufficerent nisi ad inania problemata resolvenda, 
quibus Logistae vel Geometrae otiosi ludere consueverunt; sic enim me nihil aliud praestitisse 
crederem, quam quod fortasse subtilius nugarer quam caeteri. Et quamvis multa de figuris et 
numeris hie sum dictums, quoniam ex nullis disciplinis tarn evidentia nec tarn certa peti possunt 
exempla, quicumque tamen attente respexerit ad meum sensum, facile percipiet me nihil minus 
quam de vulgari Mathematica hie cogitare, sed quamdam alima me exponere disciplinam, cujus 
integumentum sintpotius quam partes.” (Descartes AT, X, 373-374 and LR, 30-32)

In a certain sense he explicitly declares that he neither is nor wants to be a 
mathematician; he uses mathematics (i.e. certain mathematics, different from the 
“vulgar” mathematics of his time) to determine the principles of a universal meth
od of reasoning24.

The second theme is the refusal of a historical approach to science: Regula III 
establishes a distinct opposition between historical and scientific learning. Ac
cording to Descartes, we would not be able to “express a firm judgement on a 
given question”, even if we read all the works of the ancients. In the following he 
enunciates most clearly the opposition mentioned above: “in fact, we seem to have 
learned from history and not from science” (AT, X, 367 and LR, 16-18). It is 
evident that this opposition is a result of Descartes’ need to proclaim the necessity 
of leaving previous learning aside so as to promote the development of a science 
free from the prejudices of bookish learning. But in doing so he accomplishes 
more than a tactical move: he actually establishes the basis of one of the corner
stones of modem sciences, which has greatly influenced research and its view of 
the role of history: it is a matter of affirming the uselessness of historical learning 
in the determination of trends in scientific research and its opposition to the ac
quisition of scientific learning. As will be shown, this point of view also helps 
Descartes to deal with traditional principles without being prejudiced, re-examin
ing them independent of any reference to historical tradition and only because of 
their conceptual value: an impartiality which is particularly important at the mo
ment he abolishes the classification of the curves, consolidated by a time-hon
oured tradition.

Let us now return to the analysis of the five fundamental topics of the Regula. 
The first two of them are already clearly enunciated in Regula III: the only two 
acts of intellect suitable to obtain knowledge without errors are “intuition” and 
“deduction”. It has to be emphasized that, by defining intuition as the “firm con
ception of a pure and attentive spirit that is bom by the light of reasoning alone”, 
Descartes underlines that this act is purely intellective and differentiates it from 
the “unreliable testimony of the senses” or the “deceptive judgement of imagina
tion” (AT, X, 368 and LR, 20). In order to explain the changes in the use of the
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term, he refers to its Latin meaning “intuitus”25. “Deduction”, on the other hand, 
is the means to get to know other things (most things, actually) which are not 
evident by themselves, provided that they are deduced from true and known prin
ciples by way of a chain of elementary acts of intuition and consequently control
lable at each step. The difference between the first and second act mainly consists 
in the fact that the latter needs a “movement” or a “succession”. This “movement” 
is the key to the deductive process: in fact, it is a ’’continuous and uninterrupted 
movement of thought with a clear intuition of everything”26 (AT, X, 369 and 
LR, 22). Here the influence of two fundamental principles of the Cartesian con
ception is to be found: the principle of “continuity” and the principle of “com
pleteness”. The consequence is a conception of the Universe as a “continuum” 
free from lacerations and interruptions: it is well-known that Descartes complete
ly refused the existence of a vacuum. As to processes of reasoning (which are of 
the same nature as material processes), these principles are reflected in the con
cept of continuity of the deductive chain and in the absence of ruptures and inter
ruptions. It has to be emphasized that the two terms are not synonymous and their 
meanings do not even partially overlap. This is made clear in Regula VII, from 
which emerges that “continuous” means “which does not stop”, “without pauses”, 
“arriving at the very end of the course” and follows all necessary concatenations 
so as to make up for the weaknesses of memory, which is unable to seize the whole 
course of reasoning at once. Moreover, it is evident that the deductive chain moves 
in one direction—from the introduction to the conclusion: by going through the 
chain time and again in a continuous movement (faster and faster), it is possible 
to leave the role of memory aside and obtain a sort of global intuition of the 
whole27. Consequently continuity presents itself as a characteristic feature that 
leads to the comprehension of the whole. Vice versa, the fact, that in the act of 
deducing, the movement of thought is uninterrupted implies that it is not permit
ted to skip any ring of the chain; the conclusions are no longer certain28.

Let us have a look at the consequences which these characteristics of deductive 
reasoning have on the “status” of geometry (as well as that of physics, since the 
possibility of a gap is negated): geometrical reasoning must be constructive, as it 
is based on chains of steps, each depending on the preceding one. The geometrical 
object is only imaginable as constructed by such a succession. Therefore the geo
metrical point cannot be seen “isolated”: when the geometrical object (e.g. a curve) 
is constructed, it has to be explained how to pass from one point to the next one in 
a “continuous” and uninterrupted procedure. As in physical space, also in geo
metrical space there can be no gap. From this results Descartes’ inconceivability 
of the notion of geometrical locus assigned in an abstract way by means of an 
equation and not defined by a construction. The above-mentioned refusal of rea
soning ab absurdo equally depends on this vision (it is not constructive: skipping
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all rings of the chain, it directly compares the last one with the first one and is not 
one-directional).

It has been considered useful to look at the implications of the Cartesian no
tion of geometry, so as not to keep apart two important and intimately interrelated 
aspects. In doing so, however, we have not yet specified the role of geometry in 
Descartes’ notion. It is explained in Regula IV, which contains some famous pas
sages on the meaning of the Mathesis universalis. We are not going to spend 
much time on such a well-known topic, but want to emphasize the parallels be
tween Descartes’ criticism of the particular sciences and the claim that a form of 
universal knowledge is necessary, as well as his criticism of the way to do mathe
matics (geometry and arithmetics). The latter emerges from tradition and the claim 
to “true” mathematics, certainly well-known to the ancients as the easiest and 
most necessary science of all to form and prepare the mind to understand other 
more elevated sciences29. In order to understand what this is all about, however, it 
is not sufficient to refer to etymology, according to which “Mathematics” simply 
means “science”, because in this case also Music, Optics and Mechanics would 
have the same right as Geometry to be called Mathematics30. The substance of 
Mathematics (which makes it a universal science or Mathesis universalis) is the 
study of everything that is connected with order and measure, “no matter whether 
these measures are to be found in numbers, figures, stars, sounds or in any other 
objects”31 (AT, X, 377-378 and LR, 38).

The link between Mathesis universalis and the deductive procedure is evi
dent: just as Mathesis universalis searches order in things, according to Regula V 
“the whole method consists in order and the arrangement of the things towards 
which the mind has to be directed in order to discover some truths”32 (AT, X, 379 
and LR, 42). It follows that the classification of things must no longer be attained 
by means of categories, as in scholastic philosophy, but “according to deductive 
order”33. Finally, “in order to attain science, all things leading to our goal, and 
every singular one in particular, have to be run through in a continuous and unin
terrupted movement of thought and have to be understood in a sufficient and 
methodical enumeration”34.

The concept of “sufficient enumeration” or “induction” could be considered a 
rudimentary version of the principle of mathematical induction known in modem 
mathematics. As the only certain procedure Descartes puts induction next to intu
ition, since it defines inference in each point of the chain. Nevertheless it is quite 
a rudimentary concept of induction: it is hue that the link between subsequent 
steps is decisive, but all steps have to be examined: moreover, in Descartes’ work 
this notion is not subjected to a clear concept of numeration of the steps (as is 
shown in Descartes’ example on circles in Regula V)35. The distance separating 
the Cartesian induction from the modem one still refers to the theme of construc
tivism, which is well-explained by the contents of Regula XI. It has been observed
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that each step has to be controlled, constructed, and nothing can be left out or 
taken for granted, while two verifications are sufficient in modem induction and 
from these infinite cases are deduced. However, Descartes’ opinion on the infinite 
is well-known: his finitism is the second fundamental aspect, mentioned above. In 
the Principia36, for instance, he distinguishes between infinite and indefinite, re
serving the first attribute to God. In this text Descartes declares that he will never 
deal with discussions of the infinite, since he considers it ridiculous that “finite” 
beings pretend to say something about the infinite. This also explains the bound
aries of the relationship between the Cartesian notion of “continuum” and the 
modem one: the idea of completeness and lack of interruptions has nothing to do 
with continuity in the modem sense of the word: therefore Descartes’ complete
ness is a sort of “discrete continuity”.

As has been pointed out, Mathesis universalis also deals with the study of 
measure. The answer to the question whether there exist any parallels between 
mathematics and the deductive method also at this level is positive; in order to 
establish this connection, however, another crucial knot of Cartesian thinking has 
to be considered: the concept of extension and the notion that every object can be 
reduced to characteristics of extension.This is another aspect of Cartesian philos
ophy too well-known to deal with it here: we shall limit ourselves to say some
thing on how it is presented in the Regulce. It is in Regula XII that a representation 
of differences between objects (and related representations) as differences between 
figures is introduced. Descartes observes that there is nothing wrong with con
ceiving the differences that exist between colours like white, blue and red as dif
ferences between figures, as the following or similar ones:

In this way the introduction of useless entities is avoided and an extremely 
natural representation is recurred to. Moreover, the infinite number of figures is 
sufficient to describe all differences between sensitive objects. In this form the 
notion of the quantitative description of differences between sensitive objects is
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introduced in the Regulce: it will be expressed in the different shape of two geo
metrical figures and consequently in their relationship. This is a crucial passage: 
by establishing the central position of the concept of extension, the central role of 
geometry as science of extension in the learning process is also established.

Nevertheless, the form which the principle of reduction to extension assumes 
in the Regulce somewhat differs not only from the metaphysical version of the 
Principia37, but apparently also from the meaning implicit in the text of La 
Geometrie. In fact, in the Regulce differences are described by means of referenc
es to illustrated extensions applying to imagination and, in a certain sense, juxta
posed to quantity. In La Geometrie this juxtaposition disappears, actually it turns 
to a hierarchical relationship: in fact, the role of imagination disappears and ex
tension is reduced to quantity by means of algebra. More precisely, the quantita
tive description of differences by means of extension is realized in a purely 
intellectual way and the instrument of such a realization is the algebraic descrip
tion. We have spoken of apparent differences between Regulce and Geometrie; 
the following propositions represent a decisive step forward: generic references to 
an illustrated representation of differences are abandoned and are described in 
terms of the theory of proportions—at this point the decisive step towards the 
introduction of algebra has been taken. Furthermore, as we shall see, the concept 
of “problem with unknown quantities” and thus the concept of equations is intro
duced. Last but not least the final part of the first book (incomplete as well) makes 
evident that Descartes had a clear notion of the central role of algebra.

Before continuing with these topics, we will point out an important conse
quence of what has been mentioned before: the relationship between extension 
and quantity thus established shows the subordinate position of algebra compared 
to the central one of geometry. Geometry comes first: as science of extension it is 
the instrument to describe and analyse the substance of things: algebra has the 
essential but subordinate role to make it possible to treat extension as quantitative 
description and not as a complex of figurations perceptible by imagination alone. 
This hierarchy is clearly reflected in La Geometrie (from the first pages onwards), 
when Descartes tries to justify the introduction of algebraic operations by means 
of geometry (demonstrating “how arithmetical calculations refer to geometrical 
operations”38 (AT, VI, 369)).

In Regula XII we find the distinction between simple propositions and “quces- 
tiones”: the first only need the distinct intuition of the object and the methods of 
reasoning expounded in the first twelve rules (which are the ones we have sum
marized up to this point), whereas the second (object of the remaining twelve 
rules39) regard the problems which are “perfectly understood”40, even though the 
solution is unknown. These abstract problems in algebra and geometry lead to 
three kinds of questions: a) Which are the signs to recognize the object that is 
being searched? b) What can it be deduced from? c) How does the close dependen
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cy of these things manifest itself? In order to solve these problems, the deductive 
procedure is no longer sufficient, an “art” (i.e. Descartes’ ars analytica, which he 
sets about to expound) has to be introduced: it consists in the “development of 
something that depends on many other” simul implicatis41 (AT, X, 429 and LR, 
140). This “art” is nothing else than the method of solving problems where “un
known quantities” appear (as is explained by Regula XIII, introducing the con
cept of designating something unknown by something that is known) and thus the 
“art” of solving equations. Even though this procedure is different from the de
ductive one (developing what is unknown from what is known), there is a tight 
link with the constructive procedures of deduction, particularly because the ques
tions dealt with are perfectly determined42.

Regula XIV contains the last important step towards the translation of “per
fectly understood” problems into algebraic form. In fact, Descartes observes that 
any knowledge that is not gained by simple intuition is gained by comparison. In 
distinct objects common characteristics are to be found in relations and propor
tions which have to be reduced to equalities. But in virtue of former considera
tions, only quantity is susceptible to this reduction and it is extension that has to 
be chosen from the quantities. So the formulation of a perfectly determined prob
lem is nothing else than the reduction of proportions to equalities. In this rule we 
observe a transition from the definition of these differences between things by 
means of figures to a definition of these differences by means of relations or pro
portions of quantities of extension. The intervention of algebra as an instrument, 
however, has not yet occurred: this happens in Regula XVI, where algebra is 
explicitly introduced as a more compact instrument of symbolical representation43 
than the geometrical-spatial signs which Descartes referred to in the preceeding 
rules; he did so in order to give an example of the translation of relations (or 
differences) between things into relations of extension. This rule is also important 
as a significant step towards algebra: it eliminates the distinction between root, 
square root, third root etc., all reduced to the language of the theory of propor
tions.

It is in Regula XVII, however, that the procedure which Descartes suggests in 
order to solve a perfectly determined problem is expound more clearly, having 
been translated into equations or a chain of proportions. In our opinion, a direct 
parallel can be established between this procedure and the one expound in La 
Geometrie.

Descartes observes that, while there exists an easy and direct way to solve a 
problem in a deductive manner which permits to pass easily from one term to 
another—it is the one of the direct concatenation exposed in Regula XI—the 
situation is different in the case of perfectly understood problems. Let us continue 
with Descartes’ words:
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“Nunc igitur si dependentiam singularum ad invicem, nullibi interrupto ordinem, intueamur, ut 
inde inferamus quomodo ultima a prima dependeat, difficultatem directe percurremus; sed contra, 
si ex eo quod primam et ultimam certo modo inter se connexas esse cognoscemus, vellemus deducere 
quales sint mediae quae illas conjungunt, hunc omnino ordinem indirectum et praeposterum 
sequeremur. Quia vero hie versamur tantum circa quaestiones involutas, in quibus scilicet ab 
extremis cognitis quaedam intermedia turbato ordine sunt cognoscenda, totum hujus loci artificium 
consistet in eo quod, ignota pro cognitis supponendo, possimus facilem et directam quaerendi 
viam nobis proponere, etiam in difficultatibus quantumeunque intricatis; neque quicquam impedit 
quominus id semper fiat, cum supposuerimus ab initio hujus partis, nos agnoscere eorum, quae in 
quaestione sunt ignota, talem esse dependentiam a cognitis, ut plane ab illis sint determinata, adeo 
ut si reflectamus ad ilia ipsa, quae primum occurrunt, dum illam determinationem agnoscimus, et 
eadem licet ignota inter cognita numeremus, ut ex illis gradatim et per veros discursus caetera 
omnia etiam cognita, quasi essent ignota, deducamus, totum id quod haec regula praecepit, 
exequeremur [ ...]” (Descartes AT, X, 460-461 and LR, 200)

Descartes declares that he wants to reserve the examples of this method for the 
subsequent Regula XXIV, which is missing: in our view, however, these examples 
can be found in La Geometrie.

The following Regula XVII teaches us that only four operations (addition, 
subtraction, multiplication and division) are sufficient to establish these mutual 
dependencies, which consents to reduce the definition of mutual dependencies to 
a sequence of proportions. The following step (Regula XIX) is to search as many 
quantities expressed in different ways as there are unknown variables. When the 
equations have been found and all remaining operations have been completed 
CRegula XX), all equations of this kind have to be reduced to a single one, “i.e. to 
the one whose terms occupy the minimum degrees on the scale of quantities, in 
continuous proportion according to which they must be arranged” (Regula XXI; 
Descartes AT, X, 469 and LR, 216).

Let us now turn to the first pages of La Geometrie. Here we find the transla
tion of the procedure just expound with analogue terms and the same methodical 
sequence. It will suffice to read the following passage to verify this statement:

“[...] voulant resoudre quelque problesme, on doit d ’abord le considerer comme desia fait, & 
donner des noms a toutes les lignes qui semblent necessaires pour le construire, aussy bien a celles 
qui sont inconnues qu’aux autres. Puis, sans considerer aucune difference entre ces lignes connues 
& inconnues, on doit parcourir la difficult^ selon l’ordre qui monstre, le plus naturellement de 
tous, en quelle sorte elles dependent mutuellement les unes des autres, iusques a ce qu’on ?it 
trouv6 moyen d ’exprimer une mesme quantite en deux fagons: ce qui se nomme une Equation, car 
les termes de l’une de ces deux fagons sont esgaux a ceux de l’autre. Et on doit trouver autant de 
telles Equations qu’on a suppose de lignes qui estoient inconnuSs. Ou bien, s ’il ne se trouve pas 
tant, & que, nonobstant, on n ’omette rien de ce qui est desirS en la question, cela tesmoigne qu’elle 
n ’est pas entierement determin6e; et lors, on peut prendre a discretion des lignes connues, pour 
toutes les inconnues ausquelles ne correspond aucune Equation. Aprds cela, s ’il en reste ancore 
plusieurs, il se faut servir par ordre de chascune des Equations qui restent aussy, soit en la considerant 
toute seule, soit en la comparant avec les autres, pour expliquer chascune de ces lignes inconnues,
& de faire ainsi en les desmelant, qu’il n ’en demeure qu’une seule, esgale a quelque autre qui soit 
connuS, ou bien dont le quarre, ou le cube, ou le quarre de quarre, ou le sursolide, ou le quarr6 de
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cube, &c., soit esgal a ce qui se produist par T addition, ou soustraction, de deux ou plusieurs 
autres quantity , dont l ’une soit connud, & les autres coient com poses de quelques moyennes 
proportionnelles entre l ’unit6 & ce quarr£, ou cube, ou quam6 de quarr6, & c., m ultip lies par 
d ’autres connuds. Ce que i ’escris en cete sorte:

z >o b,
ou z2 jo -az + bb.

ou z3 30 + az2+ bbz- c3, 

ou z4 >o + az3+ cz3+ d 4,

& c.
C ’est a dire: z, que ie prens pour la quantity inconnud, est esgale ab ; ou le quarre dez estesgale 

au quarr6 de b, moins a multiple par z ; ou le cube de z est esgal a a multiplid par le quarr6 de z, 
plus le quarr6 de b multiplid parz, moins le cube de c; & ainsi des autres.

Et on peut tousiours reduire ainsi toutes les quantiis inconnuds a une seule, lorsque le Problesme 
se peut construire par des cercles & des lignes droites, ou aussy par des sections coniques, ou 
mesme par quelque autre ligne qui ne soit que d ’un ou deux degrds plus compos6e. [...] ie me 
contenteray icy de vous avertir que, pourvfl qu’en demeslant ces Equations on ne manque point a 
se servir de toutes les divisions qui seront possibles, on aura infalliblement les plus simples termes 
ausquels la question puisse estre reduite.” (Descartes AT, VI, 372-374)

The close link between the general methodical principles enunciated in the 
Regulce and their application in La Geometrie is more than evident. Actually, we 
could say that almost the whole procedure to “develop” the unknown quantity into 
equations described in La Geometrie is already contained in the Regulce.

Let us now examine the last of the five fundamental themes which have been 
considered the nucleus of the Regulce: the question of the relationship between 
mechanical arts and geometry. The first reference to this question appears in Re- 
gula VIII, where Descartes, after having given various examples on the use of the 
method, continues like this:

“Haec methodus siquidem illas ex mechanicis artibus imitatur, quae non aliarum ope indigent, 
sed tradunt ipsaemet quomodo sua instrumenta facienda sint. Si quis enim unam ex illis, ex.gr., 
fabrilem vellet exercere, omnibusque instrumentis esset destitutus, initio quidem uti cogeretur 
duro lapide, vel rudi aliqua ferri massa pro include, saxum mallei loco sumere, ligna in forcipes 
aptare, aliaque ejusmodi pro necessitate colligere: quibus deinde paratis, non statim enses aut 
cassides, neque quidquam eoruim quae fiunt ex ferro, in usus aliorum cudere conaretur, sed ante 
amnia malleos, incudem, forcipes, et reliqua sibi ipsi utilia fabricaret. Quo exemplo docemur, 
cum in his initiis nonnisi incondita quaedam praecepta, et quae videntur potius mentibus nostris 
ingenita, quam arte parata, poterimus invenire, non statim Philosophomm lites dirimere, vel solvere 
Mathematicorum nodos, illorum ope esse tentandum: sed iisdem prius utendum ad alia, quaecumque 
ad veritatis examen magis necessaria sunt, summo studio perquirenda; cum praecipue nulla ratio 
sit, quare difficilius videatur haec eadem invenire, quam ullas questiones ex iis quae in Geometria 
vel Physica aliisque disciplinis solent proponi”. (Descartes AT, X, 397 and LR, 76-78)

Descartes’ interest in machines and mechanical arts as a natural consequence 
of his mechanistic conception is well-known. Nevertheless, as Paolo Rossi points
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out, “for Descartes the effective progress of science depends on the work of theo
rists. Technology as such does not contribute to the progress of scientific learning 
atall”(Rossi 1962, 111). Rossi remembers Baillet’s description of Descartes’ project 
to build some halls at the College de France: the craftsmen involved were taught 
the scientific principles of making machines work by professors of mathematics 
and physics. Technology remains subordinate to science, it has to follow its prin
ciples, in particular its methodological principles, and not the product but its 
principle of realization is of interest. In this way Descartes reveals a conception 
which, in a certain sense, is closer to a technological approach than to a technical 
one; the main difference, however, is that the relationship between science and 
technology is somewhat sterile, as technology is considered subordinate to sci
ence. In any case Descartes is interested in technology as deriving from methodi
cal principles, since for him this is the practical verification of the world’s 
mechanical nature. His description of the mechanical arts, where nobody pro
ceeds at random but first prepares the necessary tools following methodical prin
ciples, shows that he sees a concrete connection between some historical forms of 
the “arts” and his method. This connection becomes less vague and boils down to 
a concrete reference in Regula X, where the importance of the simpler arts, which 
are ’’are ruled by order”, is dealt with, those of craftsmen making cloths or carpets 
or embroideries “similar to number combinations and arithmetical operations”44. 
Embroidery is particularly interesting, as it links the characteristics of these arts,
i.e. being simple and methodical, to a specification of their procedures: it is close 
to the theory of proportions. Therefore these arts appear as a concrete representa
tion of the concatenated, continuous and uninterrupted movement which is the 
nucleus of the method. We know that one of the outstanding characteristics of 
technical development in France at the time of Descartes was the diffusion of the 
textile industry based on the use of the power loom(Dockes 1969). So Descartes’ 
reference appears in no way fortuitous: in a new innovative technique like the one 
of power-loom weaving, Descartes saw the expression of a conception of the me
chanical arts based on method in a double sense: in a general sense, since the 
methodical principle is put before the specific realization (the way of weaving is 
more important than the product itself) and in a specific sense, because—as is 
evident in the case of the power-looms—the functioning of the instrument is based 
on a concatenation of coordinate movements following one another according to a 
well-defined rule. This concatenation is determined by precise number relations 
and consequently based on the theory of proportions. All crucial conceptional 
knots of the Cartesian method (continuous and uninterrupted movement, theory 
of proportions) can be found in these examples of mechanical arts.

Several times it has been pointed out that Descartes’ famous instrument of 
movable squares, or rather the instrument to multiply proportions, which appears 
in La Geometrie and has a fundamental role in the classification of curves, had
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been invented by him long before the publication of La Geometrie. This kind of 
power-loom seems to be a further manifestation of a predilection for the proce
dures of the mechanical arts based on the theory of proportions, clearly expressed 
in the Regulce. In any case, Descartes’ instrument of movable squares permits the 
geometrical representation of a sequence of proportions and so it is nothing but 
the concrete translation of a continuous and uninterrupted movement, the subse
quent steps of which are all concatenated according to precise and perfectly deter
mined relations. Although this does not fully meet the necessary qualification of 
constructibility of the Cartesian conception, it stands for the prototype of a class 
of instruments that conform to these qualifications (Bos 1981). Descartes referred 
to this instrument, when he proposed a new classification of “admissible” curves 
which was to substitute the classical subdivision into “geometrical” curves (i.e. 
curves that can be drawn with ruler and compasses or planar loci), curves ob
tained by cutting a section (i.e. conics or linear loci) and “mechanical” curves 
(resulting from the “chaotic” motion of a point). This classification was based on 
the preference of ruler and compasses and could only be changed after their priv- 
iledged position had been abolished and different criteria introduced. Descartes, 
however, did not have the slightest reason to insist on recognizing the ancient 
classification—neither on the methodological nor the technical level ruler and 
compasses were to be preferred, since they only represented a partial and episodic 
working method as to the methodological principles. An instrument like the one 
of movable squares instead constituted their complete and faithful translation.

It is most interesting to read Descartes’ comment on the problem of the classi
fication of curves, which is characterized by the “anti-historic” spirit mentioned 
above.

“Les anciens ont fort bien remarqu6 qu’entre les Problesmes de Geometrie, les uns sont plans, les 
autres solides, & les autres lineaires: c ’est a dire que les uns peuvent estre construits en ne trafcant 
que des lignes droites & des cercles; au lieu que les autres ne le peuvent estre, qu’on n ’y employe 
pour le moins quelque section conique; ni enfin les autres, qu’on n ’y employe quelque autre ligne 
plus compos6e. Mais je m ’estonne de ce qu’il n ’ont point outre cela, distingue divers degr6s entre 
ces lignes plus composees, & ie je s^aurois comprendre pourquoy il les ont nomees Mechaniques, 
plustot que Geometriques.” (Descartes AT, VI, 388)

Descartes’ astonishment could seem somewhat strange, if it were not regarded 
in the above-mentioned anti-historic context. Further on he emphasizes that me
chanical curves do not derive their names from the fact that they are drawn by 
machines, because otherwise also the curves drawn with ruler and compasses, 
which actually are machines, too, would have to be rejected. We know, however, 
that in the ancient classification ‘mechanical’ has a different meaning and, at 
least in Greek tradition, ruler and compasses have an intellectual value—they 
represent ideal perfection (exactly like the machine of movable squares in Des
cartes’ intentions). But Descartes continues as if he was not aware of this:
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“Ce n ’est pas non plus a cause que les instrumens qui servent a les tracer, estant plus composes 
que la reigle & le compas, ne peuvent estre si iustes (Descartes AT, VI, 388-389)

Otherwise they would have to be rejected also from the mechanical curves

“[...] ou c ’est seulement la iustesse du raisonnement qu’on recherche, & qui peut sans doute 
estre aussy parfaite, touchant ces lignes, que touchant les autres autres.” (Descartes AT, VI, 389)

So ‘mechanical’ does not mean inexact—on the contrary, mechanical proce
dures are based on exactness. On the other hand, Descartes does not even consider 
the possible meaning of ‘mechanical’, i.e. “generated by motion”. In this way he 
discards all possible hypotheses of interpretation, only to demonstrate the inco
herence of the ancients, and concludes, declaring that he does not want to change 
any names that have already been accepted by use. In doing so, however, he has 
deprived them from their original meaning: henceforth—though only conven
tionally—‘geometrical’ refers to what is precise and exact and ‘mechanical’ to 
what is not. ‘Mechanical’ alone does not mean anything any longer: it neither 
means “generated by motion” nor “obtained by means of a machine”. Both of 
these meanings would only obstruct Descartes’ new classification, which accepts 
many of the curves that, according to the old classification, were considered “me
chanical” as admissible curves. Now the term ‘mechanical’ only serves to denote 
the opposite of something that is perfectly determined—the contrary of ‘geometri
cal’, which is well-determined. The names remain unchanged, the line of demar
cation of the meanings changes.

Geometry is the science whose object is the measure of bodies. Therefore there 
is no reason to exclude composite lines in favour of simple lines,

“pourvu qu’on les puisse imaginer descrites par un mouvement continu, ou par plusieurs qui 
s’entresuivent & dont les demiers soient entierement regies par ceux qui les precedent: car, par ce 
moyen, on peut tousiours avoir une connoissance exacte de leur mesure.” (Descartes AT, VI, 390)

Here the usual criterion, already familiar to us, re-emerges: constructibility by 
means of a continuous, uninterrupted and coordinate movement. This criterion 
(of which we want to emphasize its “constructive element”) is the true conceptual 
core of Cartesian geometry. This makes the reference to coordinate geometry ap
pear secondary, if not marginal, whereas the classification of curves obtained by 
Descartes by the conceptual use of the instrument of movable squares is most 
important. It is well-known that the classification is not complete—due to its 
constructive character which does not assume the order of the curve as an element 
of classification, as would happen in the case of a point of view based on the 
concept of geometrical locus, i.e. starting from the algebraic equation: it skips 
several steps and therefore does not obtain all algebraic curves, as one would 
expect on the basis of permitted operations, which are the algebraic ones. This 
topic has been widely discussed and studied in the literature45. There is no doubt,
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however, that the Cartesian classification is almost a complete step towards the 
modem distinction of the curves between algebraic and transcendental curves, 
which will be explicitly codified by Leibniz.

Here we conclude our analysis, which is not aimed at going through these 
specific themes already widely analysed by other exhaustive studies but rather at 
showing that certain specific themes (like the one of the classification of the curves 
or the position of Cartesian geometry in the history of analytical geometry) are 
brought into a new light by the analysis of the relationship between the method 
expound in the Regulce and La Geometrie. Cartesian Geometry no longer ap
pears as a step in the formation of analytical geometry in the modem sense of the 
word. It is the result of a very particular view of mathematics, in which the con
cept of geometrical extension has a central role. Descartes’ geometry is “analyti
cal”, not because it highlights coordinate method, but because it recalls a 
methodological principle (indeed “analytical”) centered upon the “deductive” and 
“constructive” procedures of reasoning which are the heart of Cartesian philoso
phy.

University o f Rome "La Sapienza"
Department o f Mathematics

Notes

* This essay is a revised English version of the paper “Dalle Regulce alia Giomitrie” published in Italian 
in the book Descartes: ilMetodo e i Saggi, Atti del Convegno per il 350° anniversario della pubblicazione 
del Discours de la Mithode e degliEssa/s (G. Belgioioso, G. Cimino, P. Costabel, G. Papuli, eds.), Acta 
Enciclopedica no. 18 (2 voll.), Istituto della Enciclopedia Italiana, Roma, 1990: vol. 18**, pp. 441- 
474. We thank the Istituto della Enciclopedia Italiana for the authorization to publish a new English 
version of the essay.

1 This is the meaning that Dijksterhuis attributes to the term “analytical geometry”; Descartes is considered 
its creator: “With the introduction of the new symbolic algebra in geometry he actually became the 
creator of analytical geometry and consequently the author of one of the most fundamental reforms in 
mathematics.” (Dijksterhuis 1961,543)

2 The “possibility of setting out propositions in deductive chains” which Cartesius speaks of is identified 
with the possibility of “expressing the acquired knowledge in axioms”. Dijksterhuis continues: “The 
intention of the cartesian method is [...] to make scientific thought occur [...] through deduction, starting 
out with axioms, and through algebra.” (ibid., 542)

3 The original edition of the Regulce is Descartes (ROP).

4 Descartes talks about these demonstrations “quae casu saepius quam arte inveniuntur, et magis ad oculos 
et imaginationem pertinent quam ad intellectum.” (Descartes AT, X, 376 and LR, 34-36)

5 Descartes remembers to have read nearly everything from the beginning that is usually taught in 
Arithmetics and Geometry and comments: “Sed in neutra Scriptores, qui mihi abunde satisfecerint, tunc 
forte incidebant in manus: nam plurima quidem in iisdem legebam circa numeros, quae subductis 
rationibus vera esse experiebar, circa figures vero, multa ispismet oculis quondammodo exhibebant et
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ex quibusdam consequentibus concludebant; sed quare haec ita se habeant, et quomodo invenirent, menti 
ipsi non satis videbantur ostendere.” (ibidem, AT, X, 375 and LR, 32)

6 Modem axiomatic mathematicians consider it the basis of their method. See J. Dieudonn6’s numerous 
references to the work of Euclid as a point of reference for the logical-deductive axiomatic method (he 
repeats that in order to find a valid reference modem axiomatics have to go back in history to Euclid). Cf. 
e.g. Dieudonn6 (1939).

7 The original edition is Descartes (1641). There exists a French translation of this text published in 
Descartes’ lifetime: Descartes (1647). The quotations are taken from this translation (which Baillet 
maintains to be preferable to the Latin one), while references will be given both to it and to (Descartes 
AT, VII).

8 Note, in particular, the clear reference to the method o f proving ab absurdo (“afin que, si on lui nie 
quelques consequences, elle fasse voir comment elles sont contenues dans les antecedents ”), which 
Descartes implicitly declares not to wish to include in his method (as a consequence of his refusal of 
synthesis).

9 The fact that this formulation and the one of the Regulce quoted in note 5 are nearly identical is rather 
important.

10 Also on that point the Regulce and theMeditationes agree. The previous passage actually continues like 
this: “Les anciens geomdtres avaient coutume de se servir seulement de cette synthase dans leurs Merits, 
non qu’ils ignorassent entidrement l ’analyse, mais, & mon avis, parce qu’ils en faisaient tant d ’etat, qu’ils 
la reservaient pour eux seuls, comme un secret d ’importance” (Descartes 1647,388). In the Regulce: 
“Cum vero postea cogitarem, unde ergo fieret, ut primi olim Philosophiae inventores neminem Matheseos 
imperitum ad studium sapientiae vellent admittere, tanquam haec disciplina omnium facillima et maxime 
necessaria videretur ad ingenia capessendi aliis majoribus scientiis erudienda et praeparanda, plane 
suspicatus sum, quamdam eos Mathesim agnovisse valde diversam a vulgari nostrae aetatis [...].” 
(Descartes AT, X, 376 and LR, 34)

11 The contrary happens in metaphysics, where “la principale difficult^ est de concevoir clairement et 
distinctement les pr6mi&res notions.” (Descartes 1647,389 and AT, VII, 157)

12 in modem mathematics the term ‘synthetic’ has taken a different meaning. It is true that the reaction to 
the “subordination” of geometry to algebra appeared as a return to the ancient world: exactly to “synthetic” 
geometry, which was seen as a way of doing geometry in an autonomous manner and not subordinated to 
the use of analytical procedures. This tendency was called “purism” (with the Italian mathematician 
Luigi Cremona as one of the most important exponents), since it suggested to restore the use of “pure” 
methods in geometry, which were free from any reference to algebra. In the “purist” movement, however, 
the return to intuition took a predominant, if not nearly obsessive, role. Reasoning in a “synthetic” way 
did not only mean to proceed with a sequence of logical operations which were to correlate the geometrical 
characteristics of the entities studied without recurring to algebraic instruments, but to “see” the result, to 
know it by intuition, make it evident for imagination. The prevailing trend of synthetic geometry of the 
19th century expressed a reconquest of the “intuitive geometrical spirit” over the “abstract analytical 
spirit”. Despite refusing the excesses of Cremonian “purism” later on, the Italian geometrical school 
defended “synthetic” geometry right to the bitter end: not so much as a refusal of the algebraic instrument 
but so as to support a vision of the “synthetic” method based on the use of intuition or, more precisely, on 
the psychological acquisition of geometrical concepts. For further details see Israel (1990).

1 ̂ For further detail cf. Taton (1951), 79-92.

* ̂ Not from the one by Dieudonn6, but the one by Monge-Lacroix, the influence of which reaches up to 
recent times.
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I 5cf. also Itard (1984,277): “Descartes affirme plusieurs fois que les courbes organiques conduisent £ une 
equation alg6brique. II n ’affirme ni nie jamais la proposition rSciproque.”

i^C f. ibid., 277-278: “A se placer au niveau elementaire, la Giometrie de Descartes est un ouvrage parmi 
bien d ’autres, et les accusations de plagiat [...] pleuvent de toutes part. [...] On pourra toujours trouver 
chez tel ou tel auteur contemporain ou plus ancien telle ou telle des idees 6mises par Descartes dans sa 
Geom6trie.”

1 7lt is impossible to give even an approximate report on the vast secondary bibliography. So we will only 
remind of some texts which are among the closest to the subject we have been dealing with (and 
consequently close to the general lines we have been following), apart from the ones already quoted. 
First of all the important work by J.Vuillemin, to which we owe an essential contribution to bring the 
philosophic theme closer to the mathematical theme in Descartes’ work: Vuillemin (1960). In this respect 
also Lenoir (1979). It specifies the connection between Regulce and Giomitrie, presenting, however, 
only a general analysis of the relations between the two. See also: Molland (1976), Coolidge (1940), 
Milhaud (1921), Granger (1968), Dhombres (1978), Scriba (1960-1962) and Schuster (1980).

Despite the fact, as Bos observes, that “nowhere in the Giomitrie did Descartes use an equation to 
introduce or to represent a curve.” (Bos 1981,322)

19 Bos observes: “[...] the use of the key words, clear and distinct [...] show that Descartes saw a parallel 
between the series of interdependent motions in [a] machine, all regulated by the first motions, and the 
“long chains of reasoning” in mathematics, discussed in the Discours de la Methode, which provided 
each step in the aigument is clear, yield results as clear and certain as their starting point.” ( ibidem, 310)

20 There is much evidence of that. In his texts numerous sentences like the following famous one can be 
found: “Mais ie ne m ’areste point a expliquer cecy plus en detail, a cause que ie vous osterois le plaisir 
de l ’apprendre de vous mesme, & Futility de cultiuer vostre esprit en vous y exer?ant, qui est, a mon avis, 
la principale qu ’on puisse tirer de cete science. Aussy que ie n ’y remarque rien de si difficile, que ceux 
qui seront un peu vers6s en la Geometrie commune & en l ’Algebre, & qui prendront garde a tout ce qui 
est en ce trait6, ne puissent trover.” (Descartes AT, VI, 374). The original edition of La Giometrie is 
Descartes (1637).

21 On the other hand even Bos observes: “Although there were contradictions in the structure and the 
programme, there was an underlying unity of vision.” (Bos 1981,332)

22 “per intuitum intelligo, non fluctuantem sensuum fidem, vel male componentis imaginationis judicium 
fallax; sed mentis purae et attentae tam facilem distinctumque conceptum, ut de eo, quod intellegimus, 
nulla prorsus dubitatio relinquatur; seu, quod idem est, mentis purae et attentae non dubium conceptum, 
qui a sola rationis luce nascitur [...].” (Descartes AT, X, 368 and LR, 20)

23 “Si quis igitur serio rerum veritatem investigare vult, non singularem aliquam debet optare scientiam: 
sunt enim omnes inter se conjunctae et a se invicem dependentes; sed cogitet tantum de naturali rationis 
lumine augendo [...].” (Descartes AT, X, 361 and LR. 6)

24 It is interesting to note that Descartes refuses to establish any parallels between science and arts at the 
beginning of the Regulae (cf. Regula /), due to the different nature of arts, where the employment of one 
speciality interferes with the employment of another, whereas, according to Descartes, the opposite holds 
true for the sciences, which are linked in such a way that they are more easily assimilated as a whole than 
separately.

25 The verb “intueor” is understood above all in the sense of “consider attentively”, “ponder over”.

26 “Sed hoc ita faciendum fuit, quia plurimae res certo sciuntur, quamvis non ipsae sint evidentes, modo 
tantum a veris cognitisque principiis deducantur per continuum et nullibi interruptum cogitationis motum 
singula perspicue intuentis.”
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27 “Quamobrem illas continuo quodam imaginationis motu singula intuentis simul et ad alia transeuntis 
aliquoties percurram, donee a prima ad ultimam tam celeriter transire didicerim, ut fere nullas memoriae 
partes relinquendo, rem totam simul videar intueri.” (Descartes AT, X, 388 and LR, 58-60)

28 To be more precise, we should point out that Descartes’ meaning of “uninterrupted” is the one closest to 
the modem concept of “continuous”, in particular the one suggested by mathematical terminology. 
However, they only conform in part. We could say that the principles of completeness and continuity 
correspond to the Cartesian principles of continuity and absence of interruption respectively, with some 
translation of the meanings; but on the whole they convey an idea that is rather close to the one suggested 
by the concept of continuum used in modem mathematics.

29 “[...] tanquam haec disciplina omnium facillima et maxime necessaria videretur ad ingenia capessendis 
aliis majoribus scientiis erudienda et praeparanda.” (Descartes AT, X, 375 and LR, 34)

30 “[...] nam cum Matheseos nomen idem tantum sonet quod disciplina, non minori jure, quam Geometria 
ipsa, Mathematicae vocarentur.” (Descartes AT, X, 377 and LR, 36)

31 “Quod attentius consideranti tandem innotuit, ilia omnia tantum, in quibus ordo vel mensura examinatur, 
ad Mathesim referri, nec interesse utrum in numeris, vel figuris, vel astris, vel sonis, aliove quovis objecto, 
tails mensura quaerenda sit.”

32 “Tota methodus consistit in ordine et dispositione eorum ad quae mentis acies est convertendo, ut aliquam 
veritatem inveniamus.”

33 This consequence is discussed in Regula VI.

34 “Ad scientiae complementum oportet omnia et singula, quae ad institutum nostrum pertinent, continuo 
et nullibi interrupto cogitationis motu perlustrare, atque ilia sufficienti et ordinata enumeratione complecti.” 
(Descartes AT, X, 387 and LR, 58)

35 A cumulative historian could say that Descartes did not have the concept of natural number.

36 s ee First Part, Sections 24,25, 26,27.

37 in thePrincipia extension is defined as the main attribute of a body (Part I, Sect. 53) and it is confirmed 
that the nature of a body only consists in being a substance with extension (Part II, Sect. 4). Moreover it 
is affirmed that size does not differ from what is big nor does number differ from what is numbered but 
through thought. Despite a substantial coherence of the two texts, the ways to establish identity between 
matter and extension are different. In the Regulce it is methodical, whereas in Principia it is metaphysical.

38 “Comment le calcul d ’Arithmetique se rapporte aux operations de Geometric.Dijksterhuis ”

39 We only possess the ones from XIII to XXI (the last three are without comments).

40 These differ from the “imperfectly understood” problems, which are part of physics and should have 
been dealt with by Descartes in his last twelve rules.

41 “ [...] sed unum quid ex multis simul implicatis dependens tam artificiose evolvendo, ut nullibi major 
ingenii capacitas requiratur, quam ad simplicissimam illationem faciendam.”

42 “Sed insuper ut quaestio sit perfecta, volumus illam omnino determinari, adeo ut nihil amplius quaeratur, 
quam id quod deduci potest ex datis [...].” (Descartes AT, X, 431 and LR, 142)

43 Algebra consists in abstracting the terms of difficulty from numbers in order to examine their nature. Cf. 
Regula XVI. (Descartes AT, X, 457 and LR 194)

44 “[...] non statim in difficilioribus et arduis nos occupari oportet, sed levissimas quasque artes et 
simplicissimas prius esse discutiendas, illasque maxime, in quibus magis ordo regnat, ut sunt artificum
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qui telas et tapetia texunt, aut mulierum quae acu pingunt, vel fila intermiscent texturae infinitis modis 
variatae; item omnes lusus numerorum et quaecumque ad Arithmeticam pertinent, et similia 
(Descartes AT, X, 404 and LR, 92)

45 See, in particular, Boyer (1956), Vuillemin (1960) and Bos (1981).

ENRICO PASINI

ARCANUM ARTIS INVENIENDI: LEIBNIZ AND ANALYSIS

“Mathematics is an experimental science. The 
formulation and testing of hypotheses play 
in m athem atics a part not other than in 
chemistry, physics, astronomy, or botany” 
(Wiener 1923, 271).

I Introduction

Leibniz was undoubtedly a many-sided man, and a polymathic mind, if ever there 
was one. The concept of analysis is notoriously, for its part, a polycephalous mon
ster, and nearly all its meanings are spread through Leibniz’s multifarious works, 
where the philosophical, epistemological, logical, and mathematical receptions of 
the term seem to be inextricably interwoven. Much the same is true of its counter
term, synthesis, and thus their mutual relation itself presents various aspects.

A thorough survey of these varieties lies far beyond the scope of the present 
study, and they have already supplied the subject-matter of some very good ac
counts (in particular Duchesneau 1993, 55-104). Here we shall just try to find 
some traces of what Goethe would have called a “red thread”—like the one he 
saw metaphorically twisted throughout the literary cordage of Ottilie’s diary in 
the Wahlverwandtschaften. Analysis is introduced by Leibniz in juridical, scien- 
tifical, mathematical, or philosophical contexts, under different conditions and 
with different purposes; but even for such manifold uses should exist some com
mon ground and univocal meaning. The analysis of thoughts and that of truths, 
the analysis of problems and that of things, all imply slightly or consistently dif
ferent proceedings, and nevertheless they must perform somehow one and the 
same operation.

In a very general sense, analysis is for Leibniz, like for anyone else, the reso
lution of something complex into simpler elements. A procedure of this kind is 
applied, for instance, to physical objects by natural scientists. As Leibniz writes to 
des Billettes in 1697, they make use of “a certain analysis of sensible bodies, 
[protracted only to an extent] useful for the practice of their discipline” (Leibniz 
A, I, 13, 656). Depending on their object, such practices can in principle proceed 
in perfectly symmetrical manners, either from individual entities to universal fea
tures, or from universal concepts to particular instances. Thus Martial Gueroult 
distinguished two aspects of analysis with respect to Leibniz, one that “goes from
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the concrete to the abstract; this is the one which tends to ascend indefinitely 
towards the simple notions”; and another one “which, on the contrary, goes from 
the abstract to the concrete and, in principle, from the less to the more real” 
(Gueroult 1946, 251). There are Leibnitian texts on the analysis of physical bod
ies confirming this interpretation1, but it is anyway somewhat too vague to be 
useful outside the immediate terrain of application.

II Truth Conditions

A first preciser specification of analysis, and a distinguishing one as for Leibniz’s 
thought, is its application to truths, that is, as it may also be called, “conceptual” 
analysis:

“According to Leibniz, truths of reason in general, and logical truths in particular, are necessary 
and eternal, true in all possible worlds, provable (i.e. reducible to identical propositions) in a finite 
number of steps, and hence ‘analytic’ in the strong sense (namely, the conceptual analysis that 
shows that the concept of the predicate is contained in that o f the subject can be actually per
formed)” (Dascal 1988,27).

Here a “truth” is the description of a state of fact expressed by one or several 
propositions in the form “subject-predicate” (substance-state), i.e. each proposi
tion specifying a property of a determinated substance at a determinated instant of 
time—a property as such or a property acting as a non-relational “requisition” to 
a relational state of things (Mugnai 1992). Leibniz writes in the § 33 of the Mona- 
dology:

“When a truth is necessary, its reason can be found by analysis, resolving it into more simple 
ideas and truths, until we come to those which are primitive.” (Leibniz GP, VI, 612)

In every propositional truth, the predicate is someway contained in the subject, 
connected by conditions that can be shown by analysis—just like mathematical 
theorems, Leibniz adds notably, “are reduced by analysis to Definitions, Axioms 
and Postulates” {ibid.).

So there must also be a reason, or a chain of reasons, for all truths of fact, that 
is to say, for contingent truths. They concern the sequences of events that consti
tute the universe of created beings, in which “the analysis into particular reasons 
might go on into endless detail” {ibid., 613), because of the immense variety of 
things in nature and the infinite division of bodies.

“There is an infinity of present and past forms and motions which join to make up the efficient 
cause of my present writing; and there is an infinity of minute tendencies and dispositions of my 
soul, which contribute to make its final cause.” (ibid.)

And all this minuteness involves infinite other contingent objects and events, 
“each of which still requires a similar analysis” {ibid.). As Leibniz once briefly
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condensed his theory of contingency, the root of contingency lies in the infinite 
{radix contingentiae est in infinitum): truths of fact are contingent, because no 
analysis can exhaust the infinite complexity of their truth conditions.

We are confronted here with the most general sense of the term, in which the 
concept of analysis is restricted to its fundamental elements. In so far as this is 
meant, it is true what Rescher maintains: that for Leibniz ‘“analysis’ is a logical 
process of a very rudimentary sort, based on the inferential procedures of defini
tional replacement and determination o f predicational containment through ex
plicit use of logical processes of inference” (Rescher 1967, 23). But it’s easy to 
find quite different epistemological conceptions of analysis in Leibniz’s writings, 
in particular when questions concerning the scientific method are dealt with.

I ll There is Method in’t

Leibniz felt a lively interest in the advancement of medical knowledge and of its 
methods. In a De scribendis novis medicinae elementis, written in 1680-82, we 
find the following remarks on the difference between analysis and synthesis in the 
study of pathology:

“The method is truly analytical when, for every function, we investigate its media, or organs, and 
their modes of operating; thus we acquire knowledge of the body from [the knowledge of] its 
parts. After having completed this, we’ll return to the synthesis, coordinating everything to the 
one, and we’ll describe the prime motor, the instruments of motion (both the liquid and the solid 
ones), their connections, and the whole economy of the animal.” (Pasini 1996,214)

The synthesis is then drawn from theoretical principles, namely the Galenic 
distinction of vessels, humours and spirits, out of which Leibniz’s favourite defi
nition of the animal body as an “hydraulo-pneumatical-pyrobolical engine” can 
easily be deduced.

Synthesis is here an a priori proceeding, while analysis is a method to acquire 
empirical knowledge. Both contribute to the investigation of physiology, but anal
ysis seems to act as first, being the chief means to systematically gather informa
tion, whereas synthesis represents the correct foundation by which it is possible to 
gain systematicity for the information collected. This conception, of course, is not 
in any way peculiar of Leibniz2.

If we read further in the De scribendis novis medicinae elementis, towards the 
end we encounter again the opposition of analysis and synthesis; this time the 
matter is not the method of investigation, but the communication of knowledge. 
Both analysis and synthesis again play a defined role: this is quite relevant, since 
the idea that analysis pertains mainly to discovery and synthesis to explaining and 
teaching is at Leibniz’s time very close to a commonplace.
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“Duplex Methodus tractandi Morbos”, he declares, “una Analytica per symp- 
tomata, altera Synthetica per causas” {ibid., 217). Disease can be considered 
analytically, based upon symptoms, or synthetically, based upon causes. It is im
portant to teach first the true analysis of illness, writes Leibniz further, namely 
“the art both to inquire into the signs, and to identify an illness by means of signs” 
{ibid.). Synthesis will be taught only after giving a specimen of analysis, i.e. “a 
general healing method, which is to the pathological synthesis what algebra is to 
the elements of geometry” {ibid.). Here again we see Leibniz draw a parallel with 
mathematics, and in particular between the method of analysis in general, and 
algebra—that is, for a mathematician of his time, analysis in the most proper 
sense.

IV The Anatomy of Wit

Leibniz maintains, more in general, that inventive people who make discoveries 
and enlarge knowledge usually proceed in two ways: “per Synthesin sive Combi- 
nationem et per analysin’’ (Leibniz VE, 1362), as we read in a De arte character- 
istica et inventoria. Combination, or synthesis, is a conjunction of thoughts, 
maybe even arbitrary, so devised as to let some new knowledge arise. Analysis 
requires dwelling upon the proposed subject, and to resolve its concept into other 
simpler concepts, or to determinate its requisite elements or components.

Leibniz observes that all inventive spirits are either more combinatorics or 
more analytical in disposition. A combinatorics wit can recall things past and 
connect them to present needs and experiences. Analytics thoroughly examine 
present things, but remain so immersed in their object as to limit their power of 
observation. Combinatorics spirits are superior, because their ability is a rare gift: 
“Combinare vero remota promte, non est cujusvis” {ibid., 1363).

In the second version of a programmatic sketch De arte combinatoria scribenda, 
Leibniz remarks analogously:

“I must premise a chapter concerning the difference between the analytical and the combinatory
method, and the difference between analytical and combinatory wits.” (Leibniz VE, 1098)

Analytical wits, according to him, are more short-sighted, so to speak, while com
binatorics ones are rather long-sighted (“Analytici magis Myopes; Combinatorii 
magis similes pres bites", ibid., 1099): in fact, in analysis it is suitable to pay 
attention to fewer things, but with more precision, whereas combinatorics consid
ers many things together, and much more perspectively; thus analysis has more in 
common with miniature painting, and combinatorics with large-scale sculpture.

Analysis is much easier to apply, since it consists of definable procedures:
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“Once a procedure of analysis is detected, it requires only attention, or firmness of mind [...] and 
indeed there are such people, whose wit is not vagabond, and who are able to reckon in their 
imagination, even without paper and pencil.” (ibid.)

Combinatorics, on the contrary, requires to quickly and promptly browse a mani
fold of subjects, and to treat them in unexpected ways. Their practical instruments 
also differ: people with a weaker imagination make use of figures and symbols to 
better focus questions, while those with a weaker memory and unable to represent 
many things together, are helped by the use of tables. “Characteristica vera et 
tabulis et analysi auxiliatur” {ibid.).

In the art of discovery, that is in the course of knowledge, both analytic and 
combinatorics spirits, as we read in the De arte characteristica et inventoria, will 
particularly profit of a method. The method is described in general: “Methodus 
inveniendi consistit in quodam cogitandi filo id est regula transeundi de cogita- 
tione in cogitationem” {ibid.). Method means something that provides the think
ing processes with a leading thread, i.e. with a rule regulating the movement from 
one thought to the other. The rule must consist in a palpable instrument: as the 
compass rules the hand in correctly tracing a circle, for correct thinking “instru- 
mentis quibusdam sensibilibus indigemus” {ibid.). These palpable instruments of 
thought are again tables for the combinatorics and characters—symbols—for the 
analysis3.

“Characterem voco quicquid rem aliam cogitanti repraesentat” {ibid.)—a char
acter is anythings that represents another thing to a thinking person. If we could 
keep the things themselves before us, we would have less need for such charac
ters. The representation is based on some relation or rule of correspondence be
tween them: so the ellipse represents a circle by being its projection. Models and 
figures of things can be considered as characters: they too are crafted so as to 
express the essence of the thing. Characters do not need to be similar to the objects 
they represent: numerical symbols express correctly the properties of number, but 
they do not resemble them.

V Thought Instruments

This conception of the method as an instrument, or a collection of instruments 
and techniques, rather than a set of precepts, marks one of the most important 
differences between Leibniz and the greater part of his contemporaries, notably 
Descartes. For Leibniz a method “is” an instrument, and an instrument, in the 
method of analysis, is an algorithm based on characters. Hence, on non-mathe- 
matical ground too, analysis is in principle a symbolic operation for Leibniz. More
over, systems of symbolic operations, i.e. algorithms, can legitimately be used, 
both for the comprehension and organization of existing knowledge and for the 
creation of new knowledge, also outside their traditional grounds.
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The construction of general methods for the acquisition, sharing and trans
mission of knowledge, in the form of complex algorithmic instruments for logical 
and conceptual calculus, is an idea that dates back to the young Leibniz. Adoles
cent, he devised an “alphabet of human thoughts”: it will grow into one of Leib
niz’s greatest projects, that of an art of discovery based on a “characteristic” (art 
of characters or symbols) of general use for combinatorics and analysis at the 
same time.

An analysis of our thoughts (analyse de nos pensees), states Leibniz in 1684, 
is “of the greatest importance both forjudging and for inventing” (Leibniz A, I, 4, 
342). This analysis of thought, he specifies elsewhere, “respondet analyst charac- 
terum”, corresponds to a symbolic analysis, in that characters can express our 
thoughts and their relations, thus providing our reasonings with a “mechanical 
thread” (Leibniz VE, 811). This idea is explained more clearly in many program
matic essays, one of which received the not particularly original title of Initia et 
specimina scientiae novae generalis (“First steps and examples of a new general 
science”). Leibniz distinguishes between dialectics, or analysis of opinions, and 
analysis of truths; the latter, he affirms, is the secret for the development of the art 
of invention and discovery:

“I shall also add the vulgar analysis of human judgements, i.e. the principles on which human 
opinions are based, that are dialectic and ought not to be despised. It wouldn’t be necessary to 
bring them into surer principles, only with the purpose to confirm something we already know.
But since the whole secret of the art of discovery [totum arcanum artis inveniendi], by virtue of 
which human science could make an immense progress, depends on the analysis of truths (that is 
the emendation of our thoughts), it is convenient to proceed to the highest levels of analysis.” 
(Leibniz VE,702)

This art will comprehend a method to perform rigorous demonstrations in any 
field, “equal or even superior to mathematical ones, which suppose many ele
ments that here could be demonstrated” (ibid.). It is a wholly new calculus that, 
according to Leibniz, is at work, in every human reasoning and is nevertheless as 
accurate as arithmetical or algebraic calculations are.

The same concepts are repeated ever and again in Leibniz’s countless mani
festoes for this new discipline:

“Since when I had the pleasure to considerably improve the art of discovery, or analysis, of the 
mathematicians, I began to have certain new views, that is, to reduce all human reasoning to a sort 
of calculus, which would be of use in discovering a truth in so far as it is possibleej: datis, i.e. from 
what is given or known.” (Leibniz GP, VII, 25)

A universal writing would also result from it, that “would be like a sort of 
general algebra, and would provide the means to perform reasoning by calcula
tion” (ibid., 26): such a calculus would not only be an instrument for learning and
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research, but it would be an infallible judge of controversies as well, offering a 
way to solve disputes by simple reckoning.

Leibniz explains this extended meaning of calculus in a letter he wrote to 
Tschimhaus in 1678: “Nihil enim aliud est Calculus, quam operatio per charac- 
teres, quae non solum in quantitate, sed et in omni alia ratiocinatione locum 
habet” (Leibniz GM, IV, 462). A calculus is nothing else than an operation per
formed by means of characters—that is, an algorithm of symbolic analysis—that 
takes place not only with quantities, but in any kind of reasoning as well.

VI The Place of Analysis

The place of analysis in this more general frame is, as one may expect, quite 
variable. In a short and schematic note, Leibniz lists the chapters for a work to be 
entitled Guilielmi Pacidii Plus Ultra sive Initia et specimina scientiae generalis. 
There we find among others the following arrangement of analysis and synthesis, 
combinatorics and discovery, mathesis and art of invention:

“ 10. De arte inveniendi
11. De synthesi seu arte combinatoria
12. De Analyst
13. De combinatoria speciali, seu scientia formarum, sive qualitatum in genere sive de simili 

etdissimili
14. De Analysi speciali seu scientia quantitatum in genere seu de magno et parvo
15. De mathesi generali ex duabus praecedentibus composite.” (Leibniz GP, VII, 49-50)

Analysis and combinatoric in general seem to be tied to the art of invention; 
two more specific versions, that concern quantity and form, are presented as the 
two branches that compose universal mathesis4.

Another, more detailed program is rubricated Initia et specimina scientiae 
generalis. It describes at length the structure of a complex work, dedicated to the 
“instauratione et augmentis scientiarum” (Leibniz GP VII, 57). After a first book 
dedicated to the logical form of arguments and to the ways to determine the eter
nal truths, the second book should treat de arte inveniendi, the “art of discovery, 
namely that of the tangible thread by which investigation is ruled”, and of its 
divisions, “ejusque artis speciebus”, namely combinatorics and analytics (ibid.).

In the Fundamenta calculi ratiocinatoris (1688-1689) Leibniz defines the cal
culus used in the universal art of characters as follows: “A calculus or operation 
consists in the exhibition of relations, performed by the transmutation of formulas 
according to some prescribed rule” (Leibniz VE, 1205); again, it might well be an 
exemplary definition of the analytical proceedings. And anyway, for Leibniz, any 
analytical calculation is a formal argument: as we read in a letter to the palatine 
countess Elisabeth of 1678:
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“un calcul d ’analyse est un argument in forma, puisqu’il n ’y a rien qui y manque, et puisque la 
forme ou la disposition de tout ce raisonnement est cause de l’evidence.” (Leibniz A, II, 1,437)

When Leibniz defines combinatorics in his De artis combinatoriae usu in 
scientia generali (of 1683-84), he states that “Combinatoria agit de calculo in 
universum”, the combinatorics art deals with every aspect of the calculus, “that is 
to say, with universal marks or characters [...] and their rules, dispositions and 
processes, or with formulas universally. Of this general calculus, the algebraic 
calculus is a species, i.e. the one based on the laws of multiplication” (Leibniz 
VE, 1354).

If even combinatorics reveals itself blatantly to be framed just like analysis, on 
the other hand mathematical analysis is clearly, as Leibniz himself often affirms, 
a specimen of the ars characteristica. In 1691 Leibniz writes to Huygens that:

“The best and most convenient feature in my new calculus is this: that it exhibit truths by means 
of a sort of analysis, without any of those efforts of the imagination, that often succeed only by 
chance, and thus gives us the same advantage over Archimedes that Vieta and Descartes let us 
gain over Apollonius.” (Leibniz GM, II, 104)

The infinitesimal calculus, he means, frees the geometer from the need to concen
trate on the geometrical situation of the problem in order to devise a helpful con
struction, such as the insertion of a suitable ad-hoc linear segment.

Three months later Leibniz hammers again the qualities of his calculus in 
Huygens’ mind, and he supports his argument with an example:

“I remember that, as I once studied the cycloid, my calculus presented to me the greater part of 
the discoveries that have been made on the subject, nearly without any need for meditation. In
deed, what I like best in this calculus, is that it gives us the same advantage in the field of 
Archimedean geometry that Vieta and Descartes have given us in Euclidean and Apollonian ge
ometry, since it exempts us from working with the imagination.” (ibid., 123)

In fact, from the study of the function it is possible to exhibit numerous geometri
cal properties of the curve, by way of analysis: “Caeteraque omnia circa cycloidem 
inventa, pluraque alia similiter ex tali calculo analytice derivantur.” (Leibniz 
GM, H, 118)

VII Calculus on My Mind

Leibniz often intends by “analysis” a particular analytical method or a set of ana
lytical techniques, developed by other mathematicians, and from some writings of 
his, one might imagine that “quot sunt capita, tot sunt analyses”. Leibniz is clear
ly conscious of the novelty and peculiarity of his mathematical discoveries. He 
writes in 1692:
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“I have developed a new analysis concerning the infinite; it is quite different from Cavalieri’s 
geometry of indivisibles and from Wallis’ arithmetic of infinite series, since it doesn’t depend on 
lines as the former, nor on numerical series, as the latter, but it is general, and thus symbolic or 
Specious. But instead of the vulgar analytical calculus applying to powers and roots, it performs 
the calculus of differences and summations.” (Leibniz GM, V, 263-264)

“Vulgar” analysis (i.e. the algebra of Descartes, his mathematical and philo
sophical tete de turque) is often reprehended by Leibniz, since it doesn’t compre
hend some of the most fascinating concepts of seventeenth century mathematics 
(infinitesimals, imaginary numbers), nor some of the most important objects of 
Leibniz’s analytic research (transcendent relations, the theory of determinants).

A very important methodological distinction is drawn in a famous letter ad
dressed to Antonio Magliabecchi. There are two forms of analysis, states Leibniz 
here; first comes the analysis of Vieta and Descartes, that is considered by the 
modems to be the only analysis, and “that solves every problem, studying the 
relation of the unknown to the known quantities” (Leibniz GM, VII, 312). The 
other one has its scope in reducing the problem “to a different problem, easier 
than the first one” (ibid.). The latter was known also to the ancients, as it appears, 
for instance, from the Data. In writing to Huygens, Leibniz explains this distinc
tion as that between analysis “per saltum" and “per gradus, cum problema prop- 
ositum reducimus ad aliud facilius” (Leibniz GM, II, 116-117). The first one is 
more absolute, but the second often works better.

In De methodis synthetica et anagogica applicandis in algebra, the synthetic 
method is defined analogously: “cum problema difficile soluturi incipimus a fa- 
cilioribus” (Leibniz VE, 1095). Leibniz also observes that algebra performs a 
fake synthesis, in treating the unknown quantities as if they were known. The 
anagogic method is that of pure analysis, “quae nihil syntheseos habef (ibid.); 
and the “Data veterum” are of pertinence to the anagogic method, that hence 
appears to be the heir of the method described to Magliabecchi. Here we proceed 
backwards, “always reducing the problem to another, easier problem. And this is 
my method” (ibid.), adds Leibniz, used for ordinary equations, but also for the 
resolution of the ordinates of a curve, viz. in transcendent problems.

Another front is to be opened soon. As Leibniz writes to Melchisedec The- 
venot in 1691:

“Since I believe that geometry and mechanics have now become fully analytical, I have devised 
to extend the calculus to other subjects, even to subjects that until now nobody thought would 
have supported it.” (Leibniz A, 1,7,356)

And he adds, as usual: “Here I mean by ‘calculus’ every notation representing a 
reasoning, even without any relationship to numbers” (ibid.).

In 1679, four years after the completion of his work on the fundamentals of 
the infinitesimal calculus, Leibniz writes to Huygens: “Mais apres tous les pro-
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gres que j ’ay faits en ces matieres, je ne suis pas encor content de l’algebre” 
(Leibniz GM, II, 18-19), after all the work I did with algebra I think we need 
something different and more powerful in treating with geometrical entities. It is 
“une autre analyse proprement geometrique ou lineaire, qui nous exprime direct- 
ement situm” (ibid., 19): an analysis specific to loci, i.e. an analytic topology. 
Algebra represents quantities by appropriate symbols and operations: other sym
bols and operations can calculate forms, angles, orientations, movements, in their 
qualitative aspects too.

The most important use of this analysis, anyway, is to help in geometrical 
reasoning: “on trouve ainsi par une espece de calcul”, the same words used to 
describe the advantages of infinitesimal analysis, “tous ce que la geometrie ensei- 
gne jusqu’aux elemens d’une maniere analytique et determinee” (ibid., 26). By 
this calculus it is possible to determine analytically everything that belongs to 
geometry, up to its most fundamental elements.

As an obvious example of immaterial cognitive technology, this new analysis 
situs is, of course, an art of characters, and an art of invention: “Cette caracteris- 
tique”, adds Leibniz, will even express in symbols all mechanical structures and 
will help us to find new geometrical constructions, “a trouver de belles construc
tions”, since it contains at one time both the procedures of calculus and of con
struction (Leibniz GM II, 30-31).

VIII An Engine for Your Thoughts

“Quod omnium maxime quaero est Machina, quae pro nobis faciat operationes 
analyticas, quemadmodum Arithmetica a me reperta facit numericas” (Leibniz 
A, VI, 3, 412). What I most desire, Leibniz writes already in 1674, is a machine 
that performs analytical operations, just as the calculating machine he invented 
carries out the arithmetic ones. This idea of an analytical engine is hindered, one 
may say, by the inadequacy of its programming language, since “the universal 
analysis depends on the development of a universal character” (Leibniz A, VI, 3, 
413). Meanwhile, for the use of complex reasonings, it is acceptable to surrogate 
the required special-purpose characters with generic characters, such as the let
ters used in geometry5. But in general the signs we presently use to compose 
analytical formulas, adds Leibniz, can’t suitably express the mental operations 
involved in their treatment by means of simple analytical procedures as transposi
tions or linear transformations. Anyway, it is not an impossible task, since “omnes 
cogitationes non sunt nisi simplices complicationes idearum” (ibid.): thoughts 
derive in the ultimate analysis from simple components, simply combined, as 
words are composed by simple letters, and the complex apparatus of thoughts 
needs only to be brought back to such simplicity.
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But in reality our thoughts are not so transparent: even if we were able to 
perform thorough analyses of the concepts we use, we would not ipso facto be 
aware of its results at any moment of our thinking processes: “when a notion is 
very composite, we can’t think of all its ingredients together, as with an intuitive 
notion” (Leibniz GM, IV, 610). Leibniz discusses such issues in his Meditationes 
de cognitione, veritate et ideis, a short essay published in 1684 and dealing main
ly with the classification of ideas into clear, distinct, obscure, adequate etc. We 
have a distinct notion of something, Leibniz affirms, if our knowledge contains 
enough marks to discern it from all similar objects. But “in most cases, in partic
ular when a very complex Analysis is required, we can’t represent intuitively the 
whole nature of the object, and we use signs instead” (ibid.).

This sort of reasoning, says Leibniz, can be called “blind reasoning, or also 
symbolic reasoning, as we make use of in Algebra and Arithmetic, and indeed at 
every moment” (ibid.). Symbols, like those of analysis, are the true instruments of 
thought: in particular, they are for human thought a sort of indispensable blind
flying instruments—under conditions where normal thought is “blind-thought”. 
“Er huius generis cogitationes”, in Leibniz’s words, “soleo vocare caecas, quibus 
nihil apud homines frequentius aut necessarium magis” (Leibniz A, VI, 2, 481). 
This is the most intimate kernel and the real operational mode of human thought: 
that it operates mostly by means of symbols, that is to say it operates in the same 
way as algebraic algorithms, or analytical algorithms do—those of the “literal” or 
“specious” analysis. That’s why this last one is so successful, and useful, and sure 
in matters so difficult and general as reasoning and problem solving: “Hinc Sym- 
bolica ilia recentiorum analysis [...] tanti est ad celeriter et secure ratiocinan- 
dum usus” (ibid.).

The cogitatio caeca or symbolica finally is, according to Leibniz, in itself the 
best human instrument for problem solving, that is to say for the augmentation of 
“both knowledge, and happyness” (ibid.)—and mathematical analysis mirrors it. 
Not bad, in the end.

Notes

1 In the De modo perveniendi as veram corporum analysin of 1677: “Duplex est resolutio: una corporum 
in varias qualitates per phenomena seu experimenta, altera, qualitatem sensibilium in causas sive rationes 
per ratiocinationem” (Leibniz GP, VII, 268). If we combine such analyses with experiments, adds Leibniz, 
we’ll easily determine the causes of any quality found in any physical subject.

2 For instance, a quite conformable statement can be read in Newton’s Optics: “The Synthesis consists in 
assuming the Causes discover’d, and establish’d as Principles, and by them explaining the Phenomena 
proceeding from them” (Newton 1704,405).
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3 It must be observed that the instruments intended for the combinatorics are mostly traditional, static and 
trite; the instruments for analysis powerfully embody innovation.

4 And in the Elementa nova matheseos universalis (written between 1684 and 1687): “Tradetur et 
Synthesis et Analysis, sive tam Combinatoria, quam Algebra.” (Leibniz VE, 987).

5 In this way, if the specific knowledge that enters in a logical calculation is already set up, it will be easier 
to coordinate this particular specimen of the art to the general frame of the universal characteristic.

C R A IG  G . FR A S E R

THE BACKGROUND TO AND EARLY EMERGENCE 

OF EULER’S ANALYSIS

I Introduction

In cultivating analysis Euler is sometimes seen as someone whose primary achieve
ment was the development of tendencies in the Leibnizian school. Typical here is 
Bourbaki’s statement (Bourbaki 1974, 246) that he carried “the Leibnizian for
malism to an extreme” thereby “completing the work of Leibniz”. A somewhat 
different view is expressed by Boyer (Boyer 1939, 243) who calls attention to 
Euler’s originality: “Most of his predecessors had considered the differential cal
culus as bound up with geometry, but Euler made the subject a formal theory of 
functions which had no need to revert to diagrams or geometrical conceptions”1.

The present paper is devoted to a study of the role of analysis in the back
ground to and early development of Euler’s mathematical research. Euler’s Meth- 
odus inveniendi lineas curvas of 1744 (Euler 1744), the first systematic treatise 
on what would later become known as the calculus of variations, is here identified 
as the locus classicus for the initial emergence of a fully analytical conception of 
the calculus. The work contained many of the technical and notational innova
tions that would be elaborated in his mid-century textbooks on infinitesimal anal
ysis. In addition, in chapter four of the treatise Euler developed the subject in a 
way that exhibited its analytical character at a deeper theoretical level.

To understand the origins of Euler’s programme we first provide a survey of 
analytical conceptions in earlier mathematics. We then turn to a consideration of 
the relevant parts of the Methodus inveniendi, ending with a discussion of the 
mathematical and philosophical character of his approach to analysis.

II Analytical Methods in Early Modern Mathematics

It is possible to trace a continuous development in European mathematics that 
begins in the thirteenth century and leads by 1700 to the extensive employment of 
symbolic methods. Techniques of analysis came to play an important role in such 
distinct areas as the theory of determinate equations, arithmetic, coordinate ge
ometry and the calculus. Our survey will focus on the emergence of the concepts
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of equation and variable, and on the question of the degree to which symbolic 
methods formulated essential mathematical features of the subject under study.

II. 1 A nalytic A rt

The concept of analysis and the name itself became part of early modem mathe
matics largely as a result of the work of Francis Viete. His essay of 1591, In 
artem analyticen isagoge (1591a), initiated a series of researches by himself and 
such contemporaries of his as Marino Ghetaldi and Thomas Harriot that together 
contributed to the widespread employment in the seventeenth century of symbolic 
mathematical methods.

A substantial historical literature, deriving from the work of Jakob Klein (Klein 
1934-1936), emphasizes Viete’s modernity as a mathematician. It is suggested 
that his notion of specious logistic involved a theoretical widening of the concept 
of magnitude to include both arithmetic and geometric quantity. In adapting ideas 
from Diophantus’s arithmetic to the realm of geometric analysis he was led to 
generalize Diophantus’s concept of species. According to Klein {ibid., 166-167), 
“the eidos concept, the concept of the ‘species’, undergoes a universalizing exten
sion while preserving its tie to the realm o f numbers. In the light o f this general 
procedure, the species, or as Viete also says, the ‘forms of things’f...] represent 
‘general’ magnitudes simply”2.

Associated with this general concept of number, it is suggested, there emerged 
in his analytic art, with its use of symbols to represent unknowns and parameters, 
a structural, syntactic approach to mathematics3. Because the terms of his system 
could be given different interpretations in arithmetic and geometry the purely 
combinatorial properties of operations performed on analytical expressions were 
exhibited as an object of interest.

Klein’s essay and the historical writings it has inspired have resulted in a 
renewed interest in Viete’s algebra and have led to a better appreciation of his role 
in early modem mathematics. We will however argue in what follows that sugges
tive and informative as Klein’s essay has been, his whole thesis must be qualified 
at certain fundamental points.

The widening of the concept of magnitude that is attributed to Viete had al
ready taken place and was well assimilated within algebraic practice at least a 
century before he wrote. Algebra was known as “the art of the thing and the 
power” or “the great art” or “the greater part of arithmetic”. The progress of 
symbolic methods consisted of the replacement of the largely rhetorical proce
dures inherited from Islamic mathematicians by ones that used a syncopated or 
partial formalism in the solution of problems involving the determination of an 
unknown quantity. Study of quadratic, cubic and quartic equations led to the in
troduction of expressions denoting the roots of non-square numbers; thus magni
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tudes traditionally regarded as geometrical entities were denoted as numbers within 
the confines of what was essentially an arithmetical algebra.

In emphasizing the radical character of the Vietan concept of magnitude, Klein 
has overlooked the full mathematical significance inherent in the assimilation 
(well established by 1590) of surd numbers into arithmetical algebra.He is to be 
sure aware of this earlier tradition, writing that “the new number concept [...] 
already controlled, although not explicitly, the algebraic expressions and investi
gations of Stifel, Cardano, Tartaglia, etc.” {ibid., 178). Nevertheless he concludes 
of the cossist school that “in its whole mode of operating with numbers and number 
signs, its self-understanding fails to keep pace with these technical advances. This 
algebraic school becomes conscious of its own ‘scientific’ character and of the 
novelty of its ‘number’ concept only at the moment of direct contact with the 
corresponding Greek science, i.e., with the Arithmetic of Diophantus” {ibid., 148). 
To this one may reply in two ways. Self-consciousness on the part of researchers, 
however significant, is not necessary in order for important conceptual advances 
to take place; the latter may be, as they were for the cossist algebraists, logical 
concomitants of technical developments within the subject itself. Second, if in
deed an explicit awareness of conceptual advance is present it is necessary to 
show how this influenced and shaped the direction of mathematical research.

Another difficulty with Klein’s thesis is that it understates the extent to which 
Viete situated his notion of species within a classical Euclidean theory of magni
tude. He seems to have regarded the general magnitudes of his specious logistic as 
geometrical entities. He uses the words “ducere” and “adplicare”, terms denoting 
geometric operations, in his definition of the multiplication and division of mag
nitudes (writing for example, “magnitudinem in magnitudinem ducere”), and re
tains dimensional homogeneity as a fundamental principle. His vision of a general 
theory of quantity applicable to either number or line segments was already real
ized in Elements V, a part of the Euclidean canon that he drew upon in chapter 2 
of his Analytic Art. (Advocates of the notion of “symbolic magnitude” never ex
plain how book V of the Elements—a general theory of magnitude without sym
bols in the Vietan sense—is possible.)

Certainly Viete showed a stronger interest in mathematical method than had 
earlier researchers. To attribute to him a radical new syntactic or structural con
ception of mathematics seems however doubtful. He viewed analysis not as an 
autonomous subject but as an “art”, as a tool in solving problems, be they ones in 
geometry, the theory of equations or Diophantine arithmetic. The content of math
ematics was for him not a system of relations but a set of concrete problems in 
these subjects. His notational innovations were developed within this historically 
particular programme of research. His technical vocabulary and fondness for for
mal categories indicate the continued influence on him of scholastic thought. In
congruous mathematical elements were contained in his attempt to adapt ideas
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from Diophantine arithmetic, essentially a work of rational number theory, to the 
art of algebra as it was employed in the solution of geometrical problems.

Viete’s conceptual advances, the introduction of distinct symbols for variables 
and parameters and the adoption of an operational formalism, represented a sig
nificant contribution to mathematical method. They provided an orderly and uni
form notation for handling the material on algebraic identities and polynomial 
equations that had appeared in Cardano’s Ars Magna (Cardano 1545), and per
mitted the emergence of “the first consciously articulated theory of equations” 
(Mahoney 1973, 36). Perhaps most important mathematically, his notational sys
tem allowed one to investigate the relationship between the coefficients of a poly
nomial and the structure of its roots; it must be said however that this last line of 
investigation developed slowly and only became established in the later eight
eenth century.

Of considerable conceptual significance, particularly for the later development 
of the calculus, was the idea of a function. The notion of a general expression/(A) 
defined in terms of the variable A was present in embryonic form in Viete’s sys
tem, where the square of the magnitude denoted by the symbol A was denoted by 
an expression (“A quadratus”) that itself contained A. Instead of the “res” and the 
“census” of traditional algebra, separate terms denoting distinct entities, one now 
had a notation that reflected the underlying operations performed on the magni
tudes being represented. That the functional idea could only receive a somewhat 
limited development by Viete was a consequence of the fact that he viewed his 
symbol “A” not as a variable in the full sense but as an unknown, an object whose 
value was to be determined in the course of the solution of a problem (Boyer 1956, 
60). His definition of an equation, “the coupling of an unknown magnitude with a 
known” reflected this particular perspective.

II.2 T heory of Numbers

The figures of Euclidean plane geometry are coherent unitary objects whose iden
tity is defined in terms of certain universal attributes, such as being three-sided or 
being right-angled. Results in geometry become theorems by virtue of the inher
ent generality of figures as mathematical objects. As commentators from Leibniz 
to Frege have emphasized, whole numbers—the objects of arithmetic—are differ
ent sorts of things, possessing particular individual characteristics4. Propositions 
in Euclidean arithmetic (Elements VII, VIII and IX) are formulated in terms of 
classes of numbers, such as being prime, being perfect, or being a member of a 
geometric progression. These classes are delineated rhetorically, without the aid 
of symbolic notation.

It is ironic that Viete turned to Diophantus’s Arithmetic, a work of rational 
number theory, as a source of inspiration for developing methods in algebra and
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geometry, the sciences (for him) of continuous magnitude. An opposite sort of 
irony characterized Pierre Fermat’s extensive researches in theoretical arithme
tic5. In his study of geometry he adopted Viete’s system of notation, using it to 
formulate mathematically the idea of coordinate geometry. He also studied the 
Arithmetic carefully and greatly extended the results contained there, in the proc
ess laying the foundation of modem number theory. Throughout these latter re
searches he employed a predominately rhetorical mode of presentation. Although 
he used hindu-arabic numerals and some signs for arithmetic operations, his state
ment and demonstration of theorems were presented in words without the aid of 
symbolic notation.

The style of Fermat’s writings is illustrated by a comparison with Euclid, whose 
mode of expression in number theory was also rhetorical. Consider Euclid’s asser
tion (Elements IX, 36) that a number of the form 2P_1(2P-1) is perfect if 2P-1 is 
prime6: “If as many numbers as we please beginning from an unit be set out con
tinuously in double proportion, until the sum of all becomes prime, and if the sum 
multiplied into the last make some number, the product will be perfect”.

Consider now Fermat’s original statement of what is known as Fermat’s little 
theorem, the assertion (in modem mathematical language) that p  divides aP~l- 1, 
where a and p are relatively prime numbers7: “Without exception, every prime 
number measures one of the powers -1 of any progression whatever, and the expo
nent of the said power is a submultiple of the given prime number -1 ” (Fermat, 
TH, V. 1, 209).

In his rhetorical expression as well as in his interest in integral rather than 
rational solutions Fermat seemed to be looking past Diophantus to the arithmetic 
books of Euclid’s Elements as a source of inspiration. In 1657 he explicitly criti
cized the use of geometrical considerations in arithmetic (presumably because 
they entailed conceptions of continuous magnitude) and, appealing to Euclid, urged 
that “arithmetic redeem the doctrine of whole numbers as a patrimony of its own”8. 
Although many problems of rational arithmetic reduced to ones of whole-number 
arithmetic it was also the case that certain interesting questions in the latter sub
ject became trivial when the class of permissible solutions was extended to ration
al numbers. It is very possible that his disinclination to use literal notation derived 
from a desire to emphasize the autonomy of whole-number arithmetic.

There is it must be noted some evidence that Fermat privately employed alge
braic methods in his arithmetic researches, and some of his correspondents sus
pected him of having done so. His contemporary Descartes made use of formulas 
to express arithmetical results. Nevertheless, in all of his extant writings, in all of 
the different phases of his research, Fermat did not employ symbolic algebraic 
notation.

The awkwardness of rhetorical formulations and the need for more and more 
detailed statements of results eventually imposed restrictions on the sort of theory
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that could be developed. Fermat’s decision not to give a fuller account of his 
researches may have derived in part from the demands that such a mode of expo
sition entailed. The concept of an arithmetic variable—an entity that could as
sume any of a given set of whole-number values—was central to the progress of 
number theory as it was to develop after him. It enabled one to reify in formulas 
expressions and relations that could then be studied or manipulated at will in the 
course of the investigation.

It should nevertheless be remembered that at the most fundamental level it 
was numbers and their properties, and not any system of relations embodying 
these properties, which constituted the fundamental subject of the theory of num
bers. The role of the variable was not an essential one; each symbolic statement 
could always be re-expressed in terms of a proposition about classes of numbers.

II.3 C o o r d in a te  G e o m e t r y9

Euclid and Apollonius had derived results about curves that express relations of 
equality between magnitudes associated with these figures, relations that are valid 
for an arbitrary point taken on the perimeter of the curve. In Elem ents HI, 36 one 
is given a point D  outside of a circle and asked to draw from it two lines; the first 
DB  is tangent to the circle and the second D CA  cuts the circle at the points C and 
A (fig. 1). Euclid showed that the square on DB  is equal to the rectangle on D C  
and DA. In book I of the Conics Apollonius introduced the ellipse as the section 
obtained by intersecting a plane with an oblique circular cone (fig. 2). Such a cone 
is formed by the lines joining the perimeter of a circle to a point not in the plane of 
the circle. Let PP' be a given axis through the centre of the ellipse and let Q  be a 
point on the perimeter of the ellipse. Consider the line VQ of intersection of the 
plane of the ellipse and the plane of that circle through V which is parallel to the 
base; Q  is the point where the line meets the ellipse. The line VQ is called an 
“ordinate”. In I, 15 Apollonius showed that the rectangle on P V  and V P ’ is in a 
given constant ratio to the square on VQ.

In these propositions the curve is introduced and the given relation is then 
exhibited as a property satisfied by it. The relation represents one of several prop
erties and is not regarded as defining or definitively expressing the curve. The 
primary purpose of the results is found in the solution of other problems. In E le
m ents IV Euclid used III, 36 in his construction of the regular pentagon. In Conics 
III Apollonius employed the theory of the earlier books in his investigation of the 
problem of the locus to three and four lines.

This last problem is of great historical significance for the later development 
of coordinate and projective geometry and possesses in its own right certain points 
of conceptual interest. Consider four lines given in position in the plane. It is 
necessary to determine the locus of points P  such that the rectangle formed by the
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distances from P  measured in given directions to the first two lines is in a speci
fied ratio to the rectangle formed by the distances measured in given directions to 
the other two lines. (In the case of three lines one of the rectangles becomes a 
square.) It turns out that the locus is in every instance a conic section. In the same 
book Apollonius provided a detailed discussion of the problem, developing results 
that would (at least in principle) form the basis for a complete solution10.

In book VII of his C ollection  Pappus called attention to the three and four line 
problem and discussed the work of earlier geometers11. He also raised the question 
of the nature of the locus when the number of lines exceeds four. The distances 
that appear in this problem are magnitudes that are assumed to vary while the 
relation expressed by the locus condition itself continues to hold. (This relation 
was expressed in two forms by Pappus, in terms of the ratio of figures or solids, 
and for the more general case in terms of compound proportions.) What logically 
distinguishes these magnitudes within the problem is that they vary, and that the 
locus is produced in consequence of their variation. The concept of a variable 
would therefore seem to be implicitly present in Pappus’s formulation.

The Collection became available in Western Europe in 1588 in Commandi- 
no’s Latin translation (Commandino 1588). When Descartes began to study the 
locus problem in 1632 he did so having already had some grounding in Vietan 
algebra and the theory of equations. His G eom etrie (1637) may be seen as a fairly 
natural development arising from the application of algebraic methods to a prob
lem of current interest. His approach to the investigation of the locus was very 
simple. Let AB be one of the lines that are given in position, C be a point on the 
locus and CB the line segment that is to be drawn from C to AB. Descartes took 
AB  and CB as his given reference lines and let x=AB  and y= C B  (fig. 3). (Notice 
that the problem is especially suited to coordinate methods, because the line seg
ment CB from C to AB  is always drawn at the same angle to AB.) He calculated
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Figure 3

the various distances of the problem in terms of x  and y and proceeded to express 
the locus condition as an indeterminate equation in these variables.

In the original locus problem there were as many variable magnitudes as there 
were lines given in position. In Descartes’ geometry by contrast the problem was 
reduced to the consideration of two variables connected by means of an equation. 
His theory opened up the possibility—at least in principle—that continuous vari
ation could be studied by examining how one variable changes with respect to the 
other within such a relation.

The last question however was one that Descartes never pursued. His investi
gation remained firmly centred on the classical problem of constructing solutions 
to geometrical problems. His interest in equations was based primarily on the role 
they played in such solutions. Within this programme it was necessary to deter
mine points on a curve by means of acceptable instruments of construction (Bos 
1981).The curve enjoyed a dual status, as something that was a solution to a geo
metrical problem and as something that could itself be used as a tool in the con
struction of a solution. The study of indeterminate equations yielded information 
about the associated curves, while determinate equations could be solved to obtain 
particular points on the curve.

Fermat’s writings from the same period demonstrate a better appreciation of 
the general methodological character of coordinate geometry. In his Ad locos et 
solidos isagoge of 1637 (TH, I, 4, 91-110) he enunciated the principle that to any 
equation in two variables there corresponds a curve in the plane, one given by 
means of the graphical method of his coordinate system12. He was however prima
rily interested in geometrical loci problems, in which the final equation is always
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an algebraic or polynomial relation. His continued interest in restoring Greek 
mathematical works indicated the strong classical character of his investigation.

Throughout the early history of coordinate geometry there seems to have been 
little interest in the mathematical investigation by means of graphical techniques 
of arbitrary relations among magnitudes, abstractly considered. The familiar mod
em use of graphs to represent the behaviour of virtually any two related quantities 
that are found anywhere was notably absent during the period.

II.4  T he C alculus

II.4.1 E q u a t i o n s

While established research in coordinate geometry remained centred on geomet
rical construction a whole new line of investigation was opened up with the grow
ing interest in quadrature and tangent problems. Early work on what later became 
the calculus was connected with the programme of study set forth in Van Schooten’s 
Latin edition of Descartes’s Geometrie (Descartes, 1659-1661). Out of these de
velopments came a new part of mathematics, one that soon achieved considerable 
prominence as an area of research13.The relevant history has been well document
ed in the literature. Our discussion will be confined to two examples which illus
trate some of the conceptual and technical issues associated with the role of the 
equation in the early calculus.

The first example involves a comparison of Wallis’s A r i t h m e t i c a l  in f in i to r u m  

(1656) and Newton’s researches on infinite series from the 1660s. Wallis was a 
proponent of the new analysis and employed symbolic notation freely in his book. 
His primary goal was to investigate quadratures and cubatures by means of arith
metic methods involving infinite numerical series. In Proposition XIX he consid
ered the series

0+1 = 1 1 1 1  0 + 1 + 4 = 5
l + l = 2 - 2 _ 3 + 6 ’ 4 + 4 + 4 = 1 2
0 + 1 + 4+ 9  = 14 7 1 1-------------------- = — = —+ — , e t c .
9 + 9 + 9 + 9 = 34 18 3 18

1 1
—l----
3 12

It is clear that when the number of terms become infinite the value of the series is

1/3. (Wallis wrote down the general formula for the numerator as
/ +1 

3
/2 + — /2

61
He showed how this result may be used to obtain the ratio of the area under a 
parabola to the circumscribed rectangle, and the ratio of the volume of a cone to
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the circumscribed cylinder. He proceeded in the treatise to extend the result, and 
through the skilful and extensive use of interpolation went very far in obtaining 
numerical series expressions for various quadratures14.

In the winter of 1664-1665 Newton began to study the A rithm etica infinito- 
rum , research which he carried out at the same time he was reading Van Schooten’s 
edition of the Geom etrie. He recorded his progress in notebooks which have sur
vived15. His fundamental innovation was to reformulate Wallis’ investigation in 
terms of equations between Cartesian coordinate variables. By setting the prob
lem in this way he made relations between continuously changing magnitudes the 
central object of study. An equation implies the existence of a relation that re
mains valid as the variables change continuously in value. It is this fundamental 
fact—the continuous and permanent character of the relation, its persistence dif
ferentially in the neighbourhood of each real number—that was exploited by New
ton in expressing the connection between the equation of the curve and the formula 
for its quadrature. This fact would also be the basis for his subsequent investiga
tion, set forth in the 1669 paper D e analysi, relating the quadrature of a curve to 
its equation by means of differentiation16.

Although Wallis was an advocate of the new analysis he did not make essen
tial use of relations among variable magnitudes in his investigation. His approach 
was not “analytical” in the deeper sense discernible in Newton’s early work on 
infinite series and quadratures.

Our second example concerns some later work of Newton and the French 
mathematician Pierre Varignon. The motion of a freely moving particle acted 
upon by a central force was the subject of book one of Newton’s Principia mathe- 
m atica  (1687) as well as of a memoir by Varignon published by the Paris Acade
my in 1703 (Varignon 1701). Both men established that motion in an ellipse with 
the force centre at one focus implies an inverse-square force law. In a break with 
his early mathematical work of the 1660s Newton abandoned Cartesian analytical 
methods, turning instead to a kind of infinitesimal-geometrical theory of limits. 
Varignon by contrast used techniques of the recently established Leibnizian calcu
lus in his solution.

In Proposition VI and its corollaries Newton had derived a measure for the 
force in terms of geometrical quantities associated with the curve. In the next few 
propositions he calculated the force law when the trajectory was assumed to have 
a given form. In Proposition XI he considered the case of the ellipse. In fig. 4 the 
point P  is the position of the particle on the ellipse at a given instant, C is the 
centre of ellipse, S is one of the foci and the centre of the force, and CA and CB are 
the semi-major and semi-minor axes. Through P  draw the tangent RP. The line 
D C K  is drawn through C  parallel to the tangent intersecting the ellipse at the 
points D  and K. The lines CP  and CD  are then conjugate axes of the ellipse 
corresponding to the point P. Let E  be the intersection of the SP and D C . Draw the
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perpendicular P F  from P  to Dk. Let Q  be a point on the ellipse near P. Draw the 
line Q v  parallel to the tangent intersecting the conjugate diameter PC G  at v. In the 
course of his derivation Newton made use of the following two equations:

G v  • Pv: Q v2 =  P C 2: C D 2

C A :PF =  CD:CB

These he presented as known properties of the ellipse; of the second relation he 
noted that it had been “demonstrated by the writers on the conic sections.”(Note 
that the first of these relations is the one from Apollonius’s Conics I, discussed 
earlier.) He also proved that the quantity E P  is a constant equal to the semi-major 
axis CA. Using this fact and the above relations he was able to show that the force 
is inversely proportional to the distance SP.

Varignon began by expressing the trajectory relative to a coordinate system in 
which the variables are the distance r  from the force centre and the quantity z, 
where d z  is defined as the projection of the element of path-length ds on the 
perpendicular to the radius. The tangential component of the force is equated to 
the expression dds/dd t, where s  is the path length and t is the time. The derivation 
of the inverse-square law for the case of the ellipse is a model of simplicity. Con
sider the ellipse with major axis AB, foci D  and C and force centre at C  (fig. 5). Set 
A B = a , D C - c  and t f = a 2-c*. Let L  be a point on the ellipse, C L=r. If / is a point 
close to L  and the perpendicular IR is drawn to CL then the differential d z -R l.  
Varignon gave the equation of the ellipse in the form17
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bdr = d z 4  4ar -  4 rr -  bb

Using the relation ds2= dr2+ d z! and the area law rd z= d t he reexpressed this equa
tion in the form

4a  -  4r _  bbds2 

r  d t2

2a
Differentiation of this equation with respect to t led to the expression 2 2 f°r 
the force, which yielded the desired result. r

Both Newton and Varignon employed equations that express relations between 
continuously varying magnitudes and in this sense both of their derivations may 
be said to be analytical. There were however important differences of approach. In 
Newton’s solution the ellipse with its various properties acts as a synthetic geo
metrical object, controlling the form of the derivation. In Varignon’s memoir by 
contrast the ellipse is specified by a single equation between two variables relative 
to a fixed coordinate system. The entire mathematical content of the problem is 
reduced to the study of this equation; all of the properties of the ellipse needed for 
the solution are contained in it. The solution therefore evolves through a mechan
ical application of the differential algorithm.

II.4.2 G r a p h i c a l  T e c h n i q u e s

The curve was an object of considerable mathematical and physical interest through
out the seventeenth and eighteenth centuries. A few examples from the period 
1680-1740 illustrate this point. The study of the relations that subsist between the 
lengths of curves gave rise to a theory of elliptic integrals. In work in the calculus 
of variations classes of curves constituted the primary object of study. In analytical 
dynamics attention was concentrated on determining the relation between trajec
tories and force laws. In the theory of elasticity researchers studied the shape of 
static equilibrium assumed by an elastic lamina under various loadings, as well as 
the configurations of a vibrating string.

The curve also played a fundamental and very different role in the conceptual 
foundation of the calculus. The situation is illustrated by work in problems of 
maxima and minima, an important part of the subject. In the very first published 
paper in the calculus Leibniz (1684) used his differential algorithm to derive the 
optical law of refraction from the principle that light follows the path of least 
time. He considered the points E  and C on opposite sides of a line 55 separating 
two optical media (fig. 6). It is necessary to find the point F  on 55 such that a ray 
of light travelling the path E FC  does so in the least time. The time of transit from
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E  to F  is equal to the product of the distance EF  and a constant equal to the 
reciprocal of the velocity in the first medium; this product Leibniz regarded as a 
rectangle of sides EF  and a given constant line r. The time from F  to C was 
likewise regarded as a rectangle of sides F C  and a line h. The total time of transit 
along E F C  is therefore equal to the sum of these rectangles. Leibniz (ibid. 1684) 
wrote: “Let us assume that all such possible sums of rectangles, or all possible 
paths, are represented by the ordinates K V  of curve W  perpendicular to the line 
G K ” (fig. 7)18. Letting x = Q F = G K  be the abscissa and w = K V  be the ordinate he 
had in fig. 7 a curve W M  representing the time of transit as a function of the 
distance x  from Q  to F. He calculated this time as an expression in x  and applied 
the differential theory he had previously introduced for curves to obtain the path 
given by the known law of refraction.

In this problem the primary object of interest is the relation between two mag
nitudes, the distance QF  and the time of transit that corresponds to this distance. 
Although there is nothing in the nature of this relation that logically entails a 
geometric interpretation Leibniz nevertheless chose to represent it graphically by 
means of a curve. He could then apply his differential algorithm which had been 
introduced earlier for the analysis of curves.

Graphical procedures had been employed by Galileo in his D iscorsi (1638) to 
relate the speed of a falling body to the time of its descent. They had become 
common in mathematical treatises by the late seventeenth century. Barrow in his 
Lectiones geom etricae (1670) represented quadrature relationships in this way. 
In his Principia m athem atica  (1687) Newton investigated the inverse problem of 
central-force particle motion. In Propositions XXXIX and XLI of book one he 
graphed the force as a function of the projection of position on the orbital axis and
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analyzed the resulting curve to arrive at expressions for the particle’s trajectory. 
Jakob Bernoulli employed graphical methods throughout his researches of the 
1690s. In his study of the elastica the relation between the restoring force and the 
distance along the lamina was superimposed in graphical form on the diagram of 
the actual physical system.

The first textbook on the differential calculus, l ’Hopital’s A nalyse des infini- 
m ent p e tits  (1696), was a systematic attempt to ground the calculus in a theory of 
curves. The way in which this was done by him and other researchers of the 
period has been documented in the historical literature (Bos 1974). Of particular 
interest for the present discussion is his treatment of problems of maxima and 
minima. These problems were explicitly formulated as ones of finding the maxi
mum or minimum ordinate of a curve. The equation of condition dy  -  0 or d y  = oo 
was deduced by considering successive values of dy  and noting that about a max
imum or minimum ordinate these values must change in sign. In several exam
ples, each of which gave rise to a relation between two variables, he used graphical 
techniques to refer the problem of finding an extremum to the consideration of an 
associated curve.

In the ninth example l’Hopital introduced a curve AEB (fig. 8) given in posi
tion and two fixed points C and F. Consider a variable point P  on the curve and let 
C P -u  and P F =z. Consider a quantity (what would later be called a function) 
composed in some definite way from the variables u and z. It is necessary to find 
the point P  so that this quantity is a maximum or a minimum. To solve this prob
lem l’Hopital joined the points C  and F  to form a base axis CF. The ordinates Q M  
and OD  give the values of the quantity corresponding to the points P  and E. In 
contrast to the primary curve AEB the curve M D  joining M  and D  is a purely

H
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logical construction expressing the quantity as a function of position along CF. 
L’Hopital observed that at P  “the ordinate Q M  which becomes OD  must be the 
greatest or least of all companion ordinates.” He derived using the differential 
algorithm a solution in the particular case where the quantity is equal to au + z2 (a  
constant), obtaining adu + 2 zd z  = 0 or du : d z  = 2 z : a  as the differential equation 
which defines P.

The grounding of basic calculus procedures in terms of the properties of the 
curve, and the common practice of representing relations between magnitudes 
graphically by means of curves, led to a tendency to see the early calculus as 
something that was essentially geometrical. The term “fine geometry” employed 
at the time conveys the contemporary understanding. At the most fundamental 
level the geometrical character of the early calculus conditioned how the subject 
was understood, allowing it to be experienced intellectually as an interpreted, 
meaningful body of mathematics.

II.4.3 C o o r d in a t e  S y s t e m s

It is clear that graphical methods played a role in the early calculus that would 
later be filled by the function concept. An example of this is Varignon’s 1706 
memoir “Nouvelle formation des spirales” (1704). The paper is devoted to the 
investigation of curves given in terms of polar variables. Although Cartesian ge
ometry was originally developed for oblique and orthogonal coordinates there had 
been an early interest in other reference systems. Study of Archimedes’s On sp i
rals led in the seventeenth century to the invention of transformations that corre
lated areas expressed in terms of polar quantities to ones defined in terms of 
Cartesian coordinates. In the writings of Cavalieri, Roberval, James Gregory, Bar- 
row, Newton and Jakob Bernoulli there was an interest in applying calculus-relat
ed procedures to curves expressed in polar quantities. In Varignon’s own earlier 
work in orbital dynamics (as we saw in § II.4.1) he considered expressions for the 
force that were functions of the distance from the particle to a given centre; it was 
therefore natural that polar quantities were employed to analyze the resulting 
motion.

In his 1706 memoir Varignon considered a fixed reference circle ABYA with 
centre C  (fig. 9). A “courbe generatrice” H H V  is given; a point H  on this curve is 
specified by the perpendicular ordinate GH , where G  is a point on the axis xC X  of 
the circle. The line CX  is conceived as a ruler that rotates with centre C in a 
clockwise direction tracing out a spiral OEZAEK. Consider a point E  on the spi
ral. With centre C draw the arc EG. Let c  = the circumference of the reference 
circle ABYA, x  = arc AM B, C A =a, C E = y , G H = z and A D - b  a constant line. The 
arc x  is defined by the proportion c:x=b:z. Varignon wrote what he called the 
“equation generate de spirals a l’infini” as cz=bx. By substituting the value for z
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given by the nature of the generating curve into this equation the character of the 
spiral was revealed. Depending on whether the generating curve was a parabola, 
hyperbola, logarithm, circle, etc., the corresponding spiral was called parabolic, 
hyperbolic, logarithmic, circular etc.

That one could introduce curves in a polar reference system by considering 
arbitrary relations between the radius and the pole angle was presented by Vari- 
gnon as a substantial advance. Earlier mathematical researches had concerned 
such special cases as the parabolic spiral. In Varignon’s dynamical investigations 
the trajectory was something that was logically given as part of the physical prob
lem. In the present paper by contrast the “equation” of the spiral is formulated a  
p rio r i in terms of Cartesian coordinates in the associated “generating curve”. The 
latter embodies in graphical form the functional relationship between the polar 
variables and acts as a standard model to which this relationship may be referred.

A prominent subject of Varignon’s paper, the rectification of polar curves, is of 
interest from the viewpoint of the conceptual foundations of analysis. Newton and 
Jakob Bernoulli had independently studied the path-lengths of pairs of associated 
curves, one member given in Cartesian and the other in polar coordinates19. The 
Cartesian formula for the differential element of path length is ds2=dx2+ d y2, where 
x  is the ordinate and y  the abscissa; the polar expression of the same quantity is 
ds2- d x 2+x2d&1, where x  is now the radius and Q is the polar angle. If the element 
of length is assumed to be the same along both curves (so that there respective 
lengths for a given value of x  are equal) we are led to the differential equation 
d y= x d d  relating the respective coordinate variables. It was clear for example that

the integral Vl + x 2 dx gives both the length along the parabola y -  ~  x2 as well
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as the length along the Archimedean spiral x=G. The rectification of the spiral, a 
mechanical curve, was reduced to that of the simpler and better known conic 
section, a result of considerable interest to mathematicians of the period. Varignon’s 
study of rectification consisted in large part in the extension and further develop
ment of this result.

The common use of non-Cartesian coordinates in the early calculus was in the 
computation of geometric quantities associated with the curve. Thus polar coordi
nates were employed in certain problems because they provided a suitable meas
ure of the radius of curvature of a curve. The geometrical object was given and the 
coordinate description was varied for the purposes of investigation. Varignon’s 
paper pointed in the opposite direction. Contained in his study, if only implicitly, 
was the realization that the same formula could receive distinct geometric inter
pretations, depending on the meaning assigned to the coordinate variables of the

problem. The interpretation of the formula f 4 \  + x 2 dx in the preceding para-

graph will differ depending on whether x is regarded as an orthogonal or a polar 
variable. This conclusion suggested more generally the possible existence of a 
stable analytical core for the calculus. The work of Euler that we shall we consider 
in the next section was based in large part on the elevation of this insight to an 
explicit and systematic programme of research in infinitesimal analysis.

I ll Euler’s Analysis

III.1 By the early eighteenth century symbolic methods were common in Conti
nental mathematics. In the infinitesimal calculus especially there were strong an
alytical elements in the researches of the Bemoullis, Varignon, Taylor (English, 
but an important influence on the Continent), Hermann, Fagnano, Riccati, and 
others, elements that were combined however with pervasive geometric modes of 
representation.

Euler became established as a mathematician of note during the decade of the 
1730s. He was a young man in his twenties, a member of the St. Petersburg Acad
emy of Sciences and a colleague of Hermann, Daniel Bernoulli and Goldbach. His 
interest in analysis is evident in writings from this period, including his major 
treatise on particle dynamics, M echanica sive motus scientia analytice exposita  
(1736). Although the theme of analysis was well established at the time there was 
in his work something new, the beginning of an explicit awareness of the distinc
tion between analytical and geometrical methods and an emphasis on the desira
bility of the former in proving theorems of the calculus.

The direction of Euler’s research in the later 1730s and early 1740s may be 
followed in his work in the calculus of variations, leading up to the publication in
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1744 of his M ethodus inveniendi. His investigation began from earlier results of 
Jakob Bernoulli, Brook Taylor and Johann Bernoulli. Jakob and Taylor’s researches 
were linked by an appreciation at the level of technical approach for the analytical 
solution of isoperimetric problems. By contrast, Johann’s major memoir of 1719, 
an extended exposition of his brother’s ideas, emphasized a more geometric ap
proach to the same subject. Although Euler had been Johann’s student in Basel 
his own conception of variational calculus seems to have evolved under the influ
ence of Jakob and Taylor (Fraser 1994).

III.2 The M ethodus inveniendi contained many of the advances that would be 
systematically developed by Euler in his later treatises: the function concept; the 
notion of a trigonometric function and the associated notation; and a uniform 
procedure for introducing higher-order differentials. At a deeper level the work 
expressed an appreciation for the mathematical possibilities of a more abstract 
approach to analysis.

A typical problem of the early calculus involved the determination of a magni
tude associated in a specified way with a curve. To find the tangent to a curve at a 
point it was necessary to determine the length of the subtangent there; to find the 
maximum or minimum of a curve one needed to calculate the value of the abscissa 
that corresponded to an infinite subtangent; to find the area under a curve it was 
necessary to calculate an integral; to determine the curvature at a point one had to 
calculate the radius of curvature.

The calculus of variations extended this paradigm to classes of curves. In the 
fundamental problem of the M ethodus inveniendi it is required to select that curve 
from among a class of curves which makes a given magnitude expressing some 
property a maximum or minimum. More precisely, Euler considered curves that 
are represented analytically by means of relations between x  and y  in terms of an 
orthogonal coordinate system (fig. 10). The magnitude that is to be maximized or 
minimized is expressed as a definite integral

W  = ^Z dx  (from x  = a  to x  = b), (1)

a formula that quantifies in analytical terms the given extremal property. Z is 
regarded by Euler as a “function” of x, y  and the differential coefficients (i.e., 
derivatives) p , q, r , ... of y  with respect to x. The latter are given by the relations 
dy= pdx , d p -q d x , dq= rdx , ..., a procedure for introducing higher-order deriva
tives that was Euler’s own invention20.

Near the beginning of his treatise Euler (Euler 1744, 13) noted that a purely 
analytical interpretation of the theory is possible. Instead of seeking the curve 
which renders W  an extremum one seeks that “equation” between jc and y  which
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among all such equations when introduced into (1) renders the quantity W  a max
imum or minimum. He wrote:

“Corollary 8. In this way questions in the doctrine of curved lines may be referred back to pure 
analysis. Conversely, if questions of this type in pure analysis be proposed, they may be referred to 
and solved by means of the doctrine of curved lines.

Scholium 2. Although questions of this kind may be reduced to pure analysis, nevertheless it is 
useful to consider them as part of the doctrine of curved lines. For though indeed we may abstract 
from curved lines and consider absolute quantities alone, so these questions at once become ab
struse and inelegant and appear to us less useful and worthwhile. For indeed methods of resolving 
these sorts of questions, if they are formulated in terms of abstract quantities alone, are very ab
struse and troublesome, just as they become wonderfully practical and are made simple to the 
understanding by the inspection of figures and the linear representation of quantities.So although 
questions of this kind may be applied equally to abstract and concrete quantities it is most conven
ient to formulate and solve them by means of curved lines. Thus if a formula composed of x andy 
is given, and that equation between jc andy is sought such that, the expression for y in terms of jc 
given by the equation being substituted, there is a maximum or minimum; then we can always 
transform this question to the determination of the curved line, whose abscissa isjc and ordinate is 
y , for which the formula W is a maximum or minimum, if the abscissajc is assumed to have a given 
magnitude.”21 (Euler 1744,14)

Euler’s view seems to have been that while it is possible in principle to ap
proach the calculus of variations purely analytically it is more effective in practice 
to refer problems to the study of curves. This conclusion could hardly have seemed 
surprising. Each of the various examples and problems which historically made 
up the subject had as its explicit goal the determination of a curve; the selection of 
such objects was part of the defining character of this part of mathematics. What 
is perhaps noteworthy about Euler’s discussion is that he should have considered 
the possibility at all of a purely analytical treatment.
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III.3 The main body of variational results, presented in chapters two and three, is 
formulated throughout in terms of the properties of curves. Euler’s approach is 
indicated by his derivation of the fundamental necessary condition known in the 
modem subject as the Euler (or Lagrange-Euler) differential equation. He devel
oped his derivation with reference to fig. 11, in which the line amnoz is the hypo
thetical extremalizing curve. The letters M, N, O designate points of the x-axis AZ  
infinitely close together. The letters m, n, o designate corresponding points on the 
curve given by the ordinates Mm, Nn, Oo. Let AM=x, AN=x/, AO=x" and Mm=y, 
Nn=y', Oo-y'. The differential coefficient p  is defined by the relation dy-pdhc, 
hence p=dy/dx. We have the following relations

P =

P' =

y ' - y
dx

dx

(2)

Suppose now that we are given a determinate “function” Z containing x, y and 
p=dy/dx.The integral (1) was regarded by Euler as an infinite sum of the form 
...+Z, dx+Zdx+Z'dx+ w h e r e  Z, is the value of Z at x-dx, Z  its value at x  and Z' 
its value at x+dx, and where the summation begins at x=a and ends at x=b. Let us 
increase the ordinate /  by the infinitesimal “particle” nv, obtaining in this way a 
comparison curve amvoz. Consider the value of (1) along this curve. By hypothe
sis the difference between this value and the value of (1) along the actual curve 
will be zero. The only part of (1) that is affected by varying/ is Zdx+Z'dx=(Z+Z')dx. 
Euler wrote:

F igure 11
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dZ = Mdx + Ndy + Pdp 
dZ ' = M'dx + N 'dy'+ P 'dp'

He proceeded to interpret the differentials in (3) as the infinitesimal changes 
in Z, Z', x, y, / ,  p, p' that result when /  is increased by nn. From (2) we see that dp 
and dp' equal nn/dx and -nn/dx. (These changes are presented in the form of a 
table, with the variables in the left column and their corresponding increments in 
the right column.) Hence (3) becomes

dZ =
(4)

dZ' = N ' n v - P ' nv
dx

eb
Thus the total change in Zdx equals (dZ+dZ’)dx = nv-(P+N’dx-P’). This

expression must be equated to zero. Euler set P’-P=dP and replaced N ’ by N. He 
therefore obtained 0=Ndx-dP or

N - * ? =  o
dx

(5)

as the final equation of the problem.
Equation (5) is the simplest instance of the Euler differential equation, yield

ing a necessary condition that must be satisfied by the extremalizing arc. In mod-

. . .  dfem notation it is written ——  
<9y dx Kdy' ,

= 0 . Its derivation by Euler was a major

theoretical achievement, representing the synthesis in one equational form of the 
many special cases and examples that had appeared in the work of earlier re
searchers.

The remainder of chapter two consists of the presentation of a large number of 
examples as well as the extension of the variational theory to the case where 
higher-order derivatives of y with respect to x  appear in the integrand Z of (1). In 
chapter three, mathematically the most advanced of the treatise, Euler considered 
problems where variables that satisfy certain auxiliary relations are introduced 
into the integrand Z of the variational integral (1). This investigation, which was 
motivated by examples involving the constrained gravitational motion of particles
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in resisting media, led once again to an analytical solution in the form of differen
tial equations.

III.4 The basic variational problem of maximizing or minimizing (1) involves 
the selection of a curve from among a class of curves. In the derivation of (5) the 
variables x  and y  are regarded as the orthogonal Cartesian coordinates of a curve. 
Each of the steps in this derivation involves reference to the geometrical diagram 
in Figure 11. In chapter four, however, Euler returned to the point of view that he 
had indicated at the beginning of the treatise. In the opening proposition the var
iational problem is formulated as one of determining that “equation” connecting 
two variables x  and y  for which a magnitude of the form (1) (given for the general 
case where higher-order derivatives and auxiliary quantities are contained in Z) is 
a maximum or minimum. In his solution he noted that such variables can always 
be regarded as orthogonal coordinates and so determine a curve. The solution 
then follows from the theory developed in the preceding chapters. In the first 
corollary he wrote:

“Thus the method presented earlier may be applied widely to the determination of equations 
between the coordinates of a curve which render any given expression SZdx a maximum or a 
minimum. Indeed it may be extended to any two variables, whether they involve an arbitrary 
curve, or are considered purely in analytical abstraction.”22 (Euler 1744,129)

Euler illustrated this claim by solving several examples using variables other 
than the usual rectangular Cartesian coordinates. In the first example he em
ployed polar coordinates to find the curve of shortest length between two points. 
We are given (fig. 12) the points A  and M  and a centre C; it is necessary to find the 
shortest curve A M  joining A  and M . Let x  be the pole angle A C M  and y  the radius

F igure 12 F igu re 13
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CM . Because the differential element of path-length is equal to •J d y 2 + y 2d x 2 the

formula for the total path-length is J d x ^ y y  +  p p  , where p d x = d y  and the integral 
is taken from x=0 to x -Z A C M . Here x  does not appear in the integrand Z of the 
variational integral, so that dZ = N dy+ P dp . The equation (5) gives N = dP /dx  so 
that we have dZ = d P p + P d p  and a first integral is Z + C = P p , where C is a constant.

Since Z Z  = ■Jyy + p p  we have

C + ,J(y y  +  pp) PP

V (y y + p p )
i. e.: yy

yl(yy + pp)
Const. =  b

Let P M  be the tangent to the curve at M  and CP the perpendicular from C to this 
tangent. By comparing similar triangles in fig. 12 we see that M m :M n=M C:CP.

Since Mm = d x J y 2p 2 , M n-ydx  and M C -y  it follows that CP = =?  .
h 2 + p 2

Hence CP is a constant. Euler concluded from this property that the given curve 
A M  is a straight line.

Note that Euler was completely comfortable with polar coordinates; gone is 
the Cartesian “generating curve” Varignon had employed in his investigation of 
1706 in order to introduce general curves using polar quantities. In the second 
example he displayed a further level of abstraction in his choice of variables. Here 
we are given the axis A C  with the points A  and P, the perpendicular line P M  and 
a curve ABM joining A  and M (fig. 13). Given that the area ABM P  is some given 
constant value we must find that curve A B M  which is of the shortest length. Euler 
set the abscissa A P = t, the ordinate P M = y  and let x  equal the area under the curve

from A to P. We have d x - y d t  and the variational integral becomes I d y 1 + d x 2

yy
Because x  does not appear in the integrand we obtain as before the first integral 
Z = C + p P . Substituting the expressions for Z and P into this integral we obtain

J jl+ y y p p ) ypp

J ( \  + yypp)y
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Letting dx=ydt we obtain after some further reductions the final equation 

t = c±4(j>b -  yy) . Hence the desired curve is the arc of a circle with its centre on 
the axis AP.

A range of non-Cartesian coordinate systems had been employed in earlier 
mathematics but never with the same theoretical import as in Euler’s variational 
analysis. Here one had a fully developed mathematical process, centred on the 
consideration of a given analytically-expressed magnitude, in which a general 
equational form was seen to be valid independent of the geometric interpretation 
conferred upon the variables of the problem. Thus it is not at all essential in the 
reasoning employed in the derivation of (5) that the line AZ be perpendicular to 
Mm (fig. 11); indeed it is clear that the variable x  need not be a length nor even a 
coordinate variable in the usual sense. As Euler observed in the first corollary, the 
variables of the problem are abstract quantities, and fig. 11 is simply a convenient 
geometrical visualization of an underlying analytical process23.

Euler’s statement at the beginning of the treatise that it was possible to consid
er the subject as one of “pure analysis” seemed somewhat speculative. By showing 
in chapter four how the basic variational problem and its solution could be inter
preted abstractly he had supplied this view with a considerable degree of mathe
matical credibility.

III.5 R efinement

Although Euler in 1744 clearly recognized the essential analytical character of 
the variational calculus his insight was not fully developed in his treatise. Its title 
“Method of finding curves...” indicated that the primary object of study continued 
to be the curve. In his later variational writings, in part in response to Lagrange’s 
research, he developed and refined further the conception outlined in chapter four. 
More generally there was an increasing emphasis on analysis throughout his math
ematical work. Conceptually, the most significant change was the explicit replace
ment of the geometric curve by the analytical relation (conceived as a functional 
equation between two variables) as the fundamental concept of the variational 
theory; instead of selecting a curve from among a class of curves it was now 
required to select a relation from among a class of relations.

The function concept played a dual role in Euler’s emerging programme. The 
functional equation y=f(x) enabled one to conceive analytically of arbitrary rela
tions between the variables x  and y. In addition, the notion of an expression com
posed of variables and constants (denoted for example by Z in the formulation of 
(1)) allowed the formal statement of general propositions and made it possible to 
express the content of the subject in purely analytical terms.
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A relation between variables is regarded by Euler as a primitive of the theory; 
it is not further conceptualized, as it would be in later real-variable calculus, in 
terms of the numerical structure of the continuum of values assumed by each 
variable. This notion of a primitive abstract relation in large part defined the 
distinctive character of his approach to analysis. The point in question is illustrat
ed by his demonstration of theorems of the calculus. We will consider one exam
ple in detail. At the same time he was composing the Methodus inveniendi he 
published a memoir (Euler 1734-1735) containing an analytical proof of the the
orem on the equality of mixed partial differentials. He was motivated in doing so 
by a belief that a geometrical demonstration would be “drawn from an alien source”. 
He considered a quantity z that is a function of the variables x  and a. If dx and da 
are the differentials of x  and a, let <?,/, and g denote the values of z at (x+dx, a), 
(.x, a+da) and (x+dx, a+da). Euler differentiated z holding a constant to obtain

Pdx = e-z (6)

Here P denotes the differential coefficient, in later mathematics the partial 
derivative of z with respect to x. He differentiated Pdx holding x  constant

Bdxda = g-f-e+z (7)

He then differentiated z holding a constant to obtain

Qda -  f - z  (8)

Finally he differentiated Qda holding x constant:

Cdadx = g-e-f+z (9)

By rearrangement of terms the right sides of (7) and (9) are seen to be equal. 
Equating the left sides Euler obtained

B = C (10)

which is the desired result.
In later real analysis this argument would be reformulated using the law of the 

mean and a limit argument. Suppose z=z(x,a) and its first and second partial 
derivatives are defined and continuous on a rectangular region in the x-a  plane. 
For x  and a in this region we have by the law of the mean for small h and k the four 
equations

ch
—-(x  + e lh,a)h = z(x + h ,a )-z (x ,a )  0 < £ ! < 1  (6')
ox
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d 2z
dadx

(x  +  e lh ,a  +  e 2k)hk  = z ( x + h ya  +  k ) - z ( x ya  +  k ) - z ( x  +  hya)

+ z ( x , a ) (7')

0<£!  < 1 , 0 < £ 2

dz
- ( x , a  +  rilk )k  =  z ( x , a  +  k ) - z ( x ya)  0 < T ] l <1 (S')

d 2z  
dx da

(x  +  Tjlh,a +  r)2k)kh  = z (x  +  h>a + k ) - z ( x , a  +  k)  +  z ( x , a )

(9')

0 < 77! < 1, 0 < 772 ^ 1

By rearrangement the right sides of (7') and (9') are equal. The left sides may 
therefore be equated:

d 2z d 2z- (x  +  e xh, a  + e 2k)  = — -  (x  + t]t h ,a  +r]2k)  
dadx dxda

Letting h and k  tend to zero we obtain from the continuity of the second partial 
derivatives the desired result

d 2z  = d 2z  
dadx dxda

(10')

This example is rather typical of eighteenth-century calculus theorems and 
their counterparts in modem analysis24. The law of the mean introduces a distin
guished value, localizing at a particular number the analytical relation or property 
in question. The result is then deduced using conditions of continuity and differ
entiability by means of a limit argument. In Euler’s formulation by contrast there 
was no consideration of distinguished or individual values as such. Euler believed 
that the essential element in the demonstration was its generality, guaranteed by a 
formal analytical or algebraic identity. Thus the key step in his proof, the equality 
of the right sides of equations (7) and (9), was an algebraic identity that ensured 
the validity of the result.
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IV Discussion

Euler perceived that the calculus is concerned ultimately with equations express
ing relations of continuous change between variable magnitudes. His thesis con
cerning the primacy of pure analysis derived from a logical appreciation that 
geometrical methods and reasonings are extrinsic to the subject. In formulating 
this view he established the general framework within which analysis would be 
understood by subsequent researchers of the period, most notably Lagrange.

The distinctive character of Euler’s doctrine is apparent when one considers it 
at a general epistemological level. There is a certain formal quality to his analysis; 
it arises ultimately from his conception of the subject as the study of primitive 
abstract relations. In this respect his viewpoint was very different from that of the 
early pioneers, who conceived of the foundation of the calculus in terms of geo
metric conceptions, or that of the nineteenth-century researchers, for whom the 
numerical continuum provided a fundamental structure of interpretation.

The notion of a primitive abstract relation among variables allowed for a di
rect and general approach to the subject, evident in Euler’s derivation of (5) and 
(10) above. This generality was however of a particular sort, accompanied by a 
certain inflexibility of outlook. This became apparent during his debate with 
d’Alembert in the 1750s over the question of the general solution of the wave 
equation. Faced with some of the restrictions imposed by the precepts of his own 
theory (and insisted upon by d ’Alembert) Euler advocated a rejection of the con
cept of a functional equation as a strict relation of equality between analytical 
expressions. As is well known his defence of this viewpoint reduced to ad hoc 
arguments and “visionary” presentiments of a more general mathematics, pre
sented in a few papers; his systematic treatises of the 1750s remained firmly ground
ed in the established conception of analysis (Liitzen 1983) and (Fraser 1989).

It should be emphasized that the rejection of geometric conceptions by Euler 
and other eighteenth-century researchers was not accompanied by the realization 
that the calculus could be developed in full logical isolation as part of pure analy
sis. In Euler’s writings the relationship between foundation, theoretical develop
ment and problem generation is not worked out. The entire project of thcMethodus 
inveniendi consisted of the derivation of differential equations for general prob
lems, each of which embodied characteristics found in a given set of examples 
from geometry or mechanics. In his subsequent research the separation of analy
sis from geometry was made more explicit at a theoretical level. His variational 
investigations however remained centred on the derivation of general differential 
equational forms. He provided no account of how the problems in question might 
originate or be generated within this or any other branch of pure analysis.

He sometimes wrote as if problems are things that are external to analysis that 
guarantee its meaning and validity. In a memoir published in 1758 he investigat
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ed singular solutions to ordinary differential equations, that is, solutions which 
are not included in the general integral containing arbitrary constants. He took a 
differential equation and exhibited a particular function y= f(x ) that satisfied the 
equation but was not in the general solution. He wrote: “Concerning the example 
that I have just set forth, as it is drawn from fantasy, one could doubt whether this 
case is ever encountered in a real problem. But the same examples that I adduced 
in order to clarify the first paradox, will serve also to clarify this one” (Euler 1756; 
OO, ser. 1, XXn, 231)25. (The examples in question concerned curves in the plane 
that satisfied certain tangent conditions.)

The point here is connected to a larger difference of outlook between eight
eenth-century and modem mathematics. That the problems of geometry and me
chanics should conform to treatment by pure analysis was something that Euler 
implicitly accepted as a point of philosophical principle. The term “philosophy” 
(or “metaphysics”) is here being used in the sense identified by Daston:

“The presuppositions (often unexamined) that inform a scientist’s work, which may be of either 
epistemological or ontological import [...] metaphysics is what is left over once the mathematical 
and empirical content have been subtracted (Daston 1991,522)

In the writings of such post-positivist intellectual historians as E. A. Burtt the 
term ‘metaphysics’ in this sense referred to very broad assumptions, such as a 
general Platonic belief among early modem thinkers in the mathematical charac
ter of physical reality26. We suggest that it is also useful at a more concrete level in 
explaining certain tacit but definite attitudes displayed by Euler in his research in 
geometry and analysis.

Demidov writing of the failure of Euler and d’Alembert to understand each 
other’s point of view in the discussion of the wave equation observes:

“A cause no less important of this incomprehension rests, in our opinion, on the understanding of 
the notion of a solution of a mathematical problem. For d ’Alembert as for Euler the notion of such 
a solution does not depend on the way in which it is defined [...] rather the solution represents a 
certain reality endowed with properties that are independent of the method of defining the solu
tion. To reveal these properties diverse methods are acceptable, including the physical reasonings 
employed by d’Alembert and Euler.” (Demidov 1982,37)

A biographer of d’Alembert (Grimsley 1963, 248) has noted his insistence on 
“the elementary truth that the scientist must always accept the essential ‘giveness’ 
of the situation in which he finds himself.” The sense of logical freedom that is 
inherent in modem mathematics was notably absent in the eighteenth century.
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Notes

 ̂ In his history of analytic geometry Boyer (1956,190) observes that for Euler “analysis was not the 
application of algebra to geometry; it was a subject in its own right—the study of variables and functions— 
and graphs were but visual aids in this connection [...] it now dealt with continuous variability based on 
the function concept [...] only with Euler did it [this meaning of analysis] take on the status of conscious 
program.”

2 Emphasis in the original.

3 This view is most clearly presented by Mahoney (1973,36 and 39):

“In the Introduction to the Analytic Art, as in the whole of the Analytic Art itself, algebra was 
transformed from a sophisticated sort of arithmetical problem-solving into the art of mathematical 
reasoning itself, insofar as that reasoning was based on combinatory operations [...] the analytic 
art rose to a position subsuming all combinatory mathematics, whether arithmetic, geometry, or 
trigonometry”.

“The elevation of algebra from a subdiscipline o f arithmetic to the art of analysis deprived it of 
its content at the same time that it extended its applicability. ViSte’s specious logistic, the system 
of symbolic expressions set forth in the Introduction, is, to use modem terms, a language of 
uninterpreted symbols. As a formal language, specious logistic can itself generate problems of 
syntax alone.”

4 In his Die Grundlagen derArithmetik (1884, §10) Frege rejected the use of induction (as it was understood 
in the physical sciences) as a valid principle of arithmetic. He wrote:

“For here there is none of that uniformity, which in other fields can give the method a high degree 
of reliability. Leibniz recognized this already: for to his Philathethe, who had asserted that ‘the 
several modes of number are not capable of any other difference but more or less; which is why 
they are simple modes, like those of space’ ”.

He returns the answer

“That can be said of time and of the straight line, but certainly not for the figures and still less of 
the numbers, which are not merely different in magnitude, but also dissimilar. An even number 
can be divided into two equal parts, an odd number cannot; three or six are triangular numbers, 
four and nine are squares, eight is a cube, and so on. And this is even more case with the numbers 
than with the figures; for two unequal figures can be perfectly similar to each other, but never two 
numbers.”

Later in this section Frege continues:
“In ordinary induction we often make good use of the proposition that every position in space 

and every moment in time is as good in itself as every other. Our results must hold good for any 
other place and any other time, provided only that the conditions are the same. But in the case of 
the numbers this does not apply, since they are not in space or time. Position in the number series 
is not a matter of indifference like position in space.”

5 Our account of Fermat’s number theory is based on Ore (1948), Hoffmann (1960-1962) and especially 
Mahoney (1973, Chapter VI).

6 I quote from Heath translation Euclid (EH).

7 “Tout nombre premier mesure infailliblement une des puissances -1 de quelque progression que ce soit, 
et l ’exposant de la dite puissance est sous-multiple du nombre premier donnd -1 [...].”
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8 Quoted in translation in Mahoney (1973,329).

9 We use the term “coordinate geometry” to designate the subject known since around 1800 as “analytic 
geometry”. The first work to contain the latter term in its title was J.B. Biot’s Essai de giomitrie analytique 
(1803). Loria (1923,142-143) identifies analytic geometry with the “method of coordinates” and states 
that it “has as its goal the investigation, with the aid of coordinates, of all figures that are conceivable in 
the plane or in space.” The employment o f coordinate methods to investigate the elementary plane and 
solid geometry of Euclid, the use of transformations to study conic sections and higher-order polynomial 
curves, more broadly the study by means of coordinate methods of any class of geometric curves, all lie 
within the province of analytic geometry.

Coolidge (1945,20-21) writes:

“This dreary problem, whose algebraic solution gives a conic immediately, seems to have haunted 
the Greek mind. We noted at the beginning of the present chapter Apollonius’ statement that 
others had unsuccessfully tried to solve it. But Apollonius himself does not appear able to carry it 
through. Certain modem mathematicians have put not a little time and strength into the attempt to 
complete such proofs by what we might call strictly Greek methods”.

He mentions Zeuthen (1886,126-63) and Heath for his edition of Apollonius (Apollonius CH, cxxxviii-
c l ) .

11 Pappus’s discussion is in Pappus (Cl, part I). On pp. 587-591 of part two Jones (following Zeuthen 
(1886)) provides an account of how a synthesis of the four-line locus might have been achieved by 
earlier Greek mathematicians, especially Aristaeus.

12 Mahoney (1973, ch. 3) provides an account of Fermat’s researches in coordinate geometry.

1 ̂  With the invention and increasing development of the calculus analytic geometry weakened as an area 
of research. Boyer (1956,153-154) writes:

“In general, l ’Hospital (like Descartes) was more interested in analytic geometry as a means of 
expressing loci algebraically than as a method of deriving the properties of a curve from its equa
tion. This latter aspect he seems to have felt belonged more properly to work in the calculus.”

In reference to the eighteenth century he (1956,193) observes “there was a natural tendency for material 
on curves to be meiged with that on the calculus, and hence analytic geometry sometimes lost its identity.”

1 4 Scott (1938, ch. 4) gives a good account of Wallis’ treatise.

^W estfall (1980, ch. 4) provides an account of Newton’s early mathematical researches. Newton’s papers 
from this period are published in Newton (MP, I.).

16 Both Westfall and Whiteside comment on this difference of approach, although neither identify the 
fundamental character of Newton’s innovation as consisting precisely in his decision to use equations 
between Cartesian variables. Whiteside (1960-1962,245) writes:

“The advance Newton has made on W allis’ inductive approach to integrals— taking the upper 
bound of the integral variable—is that, in allowing a free variable (and its powers) into the pattern, 
he has been able to use the ordering of coefficients given by powers of the variable to point a more 
general aspect of the pattern lost in Wallis tabulated numerical instances.”

Westfall (1980,114-115) writes:

“[...] Newton realized that Wallis’s method was more flexible than Wallis himself had realized.
It is not necessary always to compare the area under a curve with the area of the same fixed square.
In the case of the simple power functions (y = x, x2, x3,...), for example, any value of a: provides a
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base line that can be divided into an infinite number of segments, and with the corresponding value 
of y  it implicitly defines a rectangle with which the area under the curve can be compared.”

17 Varignon does not give the derivation of this equation. It may be obtained from the polar equation

b2
----- = 1 + — cos 6 (6 = Z  BCL)
2 ar a

by differentiating with respect to 0, eliminating sind and setting dz=rdd. Since notation for the 
trigonometric functions has not yet been invented, Varignon would have worked from an equation of the 
form

b2 _ c (CM)

2 ar a r

where CM is the projection of CL on the axis AB.

18 ’Tonamus omnia ista rectangulorum aggregata possibilia, vel omnes viarum possibilium difficultates, 
repraesentari per ipsas KV, curvae VV odinatas ad rectam GK normales [...].” English translation from 
Struik (1969, 278).

1 9 Cf. Jakob Bernoulli (1691), Newton (MF, 176-178) and Newton (MP, III, 312-313) (for the draft from 
the early 1670s). The seventeenth-century history of this problem is described by Whiteside Newton 
(MP, III, 308-311) who writes (ibid., 308):

“The development of this length-preserving transformation in the three decades preceding 1670 
is a fascinating case-history in human insight and preconception which has never been systemati
cally explored in the monograph needed to do it full justice.”

20 In his treatise on the differential calculus Euler provided a detailed account of this procedure for 
introducing higher-order differential coefficients. A discussion of this subject is provided by Bos (1974).

21 “Corollarium 8: Hoc ergo pacto quaestiones ad doctrinam linearum curvarum pertinentes ad Analysin 
puram revocari possunt. Atque vicissim, si huis generis quaestio in Analysi pura sit proposita, ea ad 
doctrinam de lineis curvis poterit referri ac resolvi”.
Scholion 2: “Quanquam huius generis quaestiones ad puram Analysin reduci possunt, tamen expedit eas 
cum doctrina linearum curvarum coniungere. Quodsi enim animum a lineis curvis abducere atque ad 
solas quantitates absolutas firmare velimus, quaestiones primum ipsae admodum fierent abstrusae et 
inelegantes ususque earum ac dignitas minus conspiceretur. Deinde etiam methodus resolvendi huismodi 
quaestiones, si in solis quantitatibus abstractis proponeretur, nimium foret abstrusa et molesta; cum 
tamen eadem, per inspectionem figurarum et quantitatum repraesentationem linearem, mirifice adiuvetur 
atque intellectu facilis reddatur. Hanc ob causam, etsi huius generis quaestiones cum ad quantitates 
abstractas turn concretas applicari possunt, tamen eas ad lineas curvas commodissime traducemus et 
resolvemus. Scilicet, quoties aequation eiusmodi inter x  e ty  quaeritur, ut formula quaedam proposita et 
composta ex x  ety y, si ex ilia aequatione quaesita valor ipsius y  subrogetur et ipsi x  determinatus valor 
tribuatur, maxima fiat vel minima, turn semper quaestionem transferemus ad inventionem lineae curvae, 
cuius abscissa sit x  et applicata y, pro qua ilia formula W fiat maxima vel minima, si abscissa x datae 
magnitudinis capiatur.”

22 “Methodus ergo ante tradita multo latius patet, quam ad aequationes inter coordinatas curvarum 
inveniendas, ut quaepiam expressio Jzdx fiat maximum mimimumve. Extenditur scilicet ad binas 
quascunque variabiles, sive eas ad curvam aliquam pertineant quomodocunque, sive in sola analytica 
abstractione versentur.”
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23 Carathdodory (1952, xxii) offers a different account of this part of theMethodus inveniendi1, he writes:

“[...] die Beispiele, die imerstenTeildesselbenKapitels (Nr. 1 bis 14)behandeltwerden,k6nnen 
as Probme fur die Kovarianz der Eulerschen Gleichungen bei beliebigen Koordinaten- 
TYansformationen bewertet werden. Somit finden wir im Eulerschen Buche die ersten Ansatzen zu 
einer Theorie, die erst in unseren Tagen systematisch entwickelt worden ist.”

In his index (ibid., lix) of Euler’s variational calculus he places these examples under the heading 
“Kovariante transformation von variationsproblemen.” Goldstine (1980,84) also observes:

“It is remarkable that as early as 1744 Euler was already concerned with the problem of the 
invariance of his fundamental equation or necessary condition. In the first part of his Chapter IV 
he indicates that this fundamental condition remains invariant under ‘general’ transformations of 
the coordinate axes [...] he considers a number of examples where*, y  are not related by being 
cartesian, rectangular coordinates, and shows the utility of his ideas on covariance [...]. It is truly 
in keeping with Euler’s genius that he should have worked at ideas that were only to be satisfacto
rily and completely discussed in modem times.”

In our view one should not speak of transformations, invariance or covariance in reference to Chapter 
Four. Although coordinate transformations had appeared in a memoir published by Hermann (1729) 
and were employed by Euler in his Introductio (1748, II, ch. II; for further references cf. Boyer 1956, 
ch. 7) they appear nowhere in theMethodus inveniendi. Euler does not have to show anything when he 
writes down the fundamental equation (5) in polar coordinates; its validity is a logical consequence of 
the generality of the variables in the original derivation. It is unnecessary to invoke concepts of modem 
differential geometry in order to reach a full appreciation of his theory.

24 Other examples are the fundamental theorem of the calculus, the theorem on the change of variables in 
multiple integrals and the fundamental lemma of the calculus of variations.

25 “Pour l ’example que je viens d ’alleguer ici, comme il est forme & fantaisie, on pourrait aussi douter, si 
ce cas se recontre jamais dans la solution d ’un probl&me reel. Mais les memes exemples, que j ’ai rapports 
pour 6claircir le premier paradoxe, serviront aussi & eclaircir celui-ci.”

26 Daston is identifying the sense in which the term metaphysics is used by Burtt and others. She is somewhat 
critical of this usage because it does not take into account the various actual historical systems of 
metaphysics which prevailed in the early modem period. To the extent however that the term serves to 
designate certain extra-scientific or extra-mathematical attitudes in past research it remains a useful 
concept of historical analysis.

EDITH DUDLEY SYLLA

JACOB BERNOULLI ON ANALYSIS, SYNTHESIS, 

AND THE LAW OF LARGE NUMBERS

I Introduction

Jacob Bernoulli was the earliest mathematician to prove a law of large numbers. 
Following in the directions opened by Christiaan Huygens’s On calculations in 
gam es o f  chance (1657), he knew how expectations could be calculated for games 
in which the possible outcomes result from the design of game pieces such as dice 
or cards. He was interested, however, in developing an “art of conjecturing” that 
would apply mathematics to make prudent decisions in civil, moral, and econom
ic matters. By his proof of the law of large numbers, he believed he had shown that 
observed relative frequencies could be reliably used in such calculations. Bernoul
li’s law of large numbers showed that if, for example, one has a die with a one- 
sixth chance of falling with any given side up, then as the die is repeatedly thrown, 
it becomes more and more probable that the observed relative frequency of that 
side being up will fall within some small interval around one-sixth. In the proof of 
this law, Bernoulli assumed that there are a  p r io r i equally likely possible cases in 
a given ratio and demonstrated that, if so, then the observed relative frequencies 
will tend to converge toward the a p r io r i ratio of cases over a large number of 
trials. He also implied, however, that the truth of this proposition meant that it 
would be possible to find, within narrow limits, otherwise unknown ratios of cas
es a p o sterio ri, from the outcomes of frequently repeated trials:

“[...] another way is open to us by which we may obtain what is sought. What cannot be ascer
tained a priori may at least be found out a posteriori, that is from the results many times observed 
in similar situations, since it should be presumed that something can happen or not happen in the 
future in as many cases as it was observed to happen or not to happen in die past in a similar state 
of things.”1 (Bernoulli 1713,224)

Although Jacob Bernoulli was a pioneer in the development of the mathemat
ical theory of probability, his The A rt o f  Conjecturing had less immediate influ
ence than it might have had because he left it unfinished at his death. While large 
parts of the work were completed in the 1680s, well before Bernoulli’s death in 
1705, the book was not published until 1713, by which time Pierre Remond de 
Montmort, Abraham De Moivre, and Nicholas Bernoulli were all active in the
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field of mathematical probability and in direct communication with each other, so 
that they tended to be more influenced by each other than by Jacob Bernoulli’s 
work directly2. Because of this publication history, it may be difficult to discern 
Jacob Bernoulli’s personal understanding of the foundations of mathematical prob
ability and hence difficult to understand what he intended to accomplish through 
his proof of the law of large numbers. Ian Hacking, in particular, has raised prob
lems about the correct understanding of Bernoulli’s intended interpretation of the 
law of large numbers (Hacking 1975, ch. 17 ,154-165)3. These problems are com
pounded by the fact that Bernoulli’s work breaks off immediately after his proof. 
In one sense it does not matter what Bernoulli intended, since the proof of the 
theorem holds mathematically no matter how Bernoulli himself understood it. 
Nevertheless, we may more easily place Jacob Bernoulli within in the history of 
probability theory if his own interpretation of his work is understood. If I seem to 
belabor my criticism of Hacking’s discussion of Bernoulli’s work, it is because it 
has been influential in shaping subsequent research concerning the early history 
of probability theory.

Why, then, did Bernoulli believe that his proof of the law of large numbers 
implied that, if one makes a sufficient number of observations, it is possible to 
discover the ratio of cases, within narrow limits, a p o sterio ri in a trustworthy 
way? Why did he believe that his proof was such a significant achievement, more 
significant than if he had discovered a way to square the circle—a discovery which, 
even if it would have been great, would have been of little use?4 Is there evidence 
elsewhere in his work in general and in The A rt o f  Conjecturing in particular that 
would help to answer this question?

In this paper I attempt to discern Jacob Bernoulli’s understanding of the sig
nificance and use of his law of large numbers by first examining what Bernoulli 
had to say on mathematical methodology, and in particular on the uses of mathe
matical analysis and synthesis. For Bernoulli, a mathematical synthesis moves 
from what is prior and better known to what is posterior, but a mathematical 
analysis lacks this sense of direction. When Bernoulli contrasts an analytic meth
od to a synthetic one, by an analytic method he almost always means an algebraic 
one. The central lemmas of Bernoulli’s proof of the law of large numbers are 
algebraic and so analytic in his sense.

After examining what Bernoulli had to say about analysis and synthesis and 
how he went about proving the law of large numbers, I then describe how the law 
of large numbers and its proof fit into Bernoulli’s more general world view. Jacob 
Bernoulli developed his art of conjecturing or doctrine of chances with the under
standing that God has designed the universe to follow natural laws or regularities 
and that we only use ideas of chance where we lack knowledge of the underlying 
causes—not that these underlying causes do not in fact exist. To God everything is 
known and certain. In Bernoulli’s view, the law of large numbers shows that over
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the long run the underlying regularities of nature will manifest themselves. Final
ly, Bernoulli’s particular use of algebra and of the properties of binomial expan
sions to prove the lemmas that form the core of his demonstration of the law of 
large numbers fit with this “God’s eye” view of the universe, in which everything 
is immediate and there is no scope for ordering into what is mathematically prior 
or posterior. Thus Jacob Bernoulli’s ideas about God and the world combine with 
his reliance on algebra in proving the law of large numbers to explain what has 
seemed so problematic to critics like Hacking about Bernoulli’s intended interpre
tation of his law of large numbers: why he “assumed” the existence of a ratio of 
cases in his proof of the law of large numbers and nevertheless believed that the 
proof justified the use of observed frequencies to discover such ratios to a close 
approximation. Thus an understanding of Bernoulli’s ideas of analysis and syn
thesis helps to clear up modem philosophical perplexities about his intended in
terpretation of the law of large numbers.

II Jacob Bernoulli on Analysis and Synthesis

Part I of The A rt o f  Conjecturing is a reprinting with notes of Christiaan Huy
gens’s On Calculations in G am es o f  Chance. In it Huygens, and Bernoulli follow
ing him, frequently derive expectations in games of chance iteratively, by building 
up from the simplest cases (for instance to find players’ relative expectations when 
one more round will determine the winner) to more complex cases (for instance to 
find the players’ relative expectations when the game is broken off considerably 
before the end). In games in which each player’s chances depend on those of other 
previous players and vice versa, however, Huygens and Bernoulli sometimes use 
simultaneous equations to determine the expectations. About this resort to alge
bra, Bernoulli says in his note on the first problem of Huygens’s Appendix:

“Now since all these chances are different and unknown and since any preceding chance depends 
on the following chance and the following chance in turn on the preceding [...] it follows that this 
Problem cannot be solved, at least by the Author’s method [...] otherwise than by means of alge
braic analysis.”5 (1713,50)

But Bernoulli seems to think a synthetic approach is preferable. Thus, earlier, 
in his note on Huygens’s Proposition XIV, Bernoulli writes:

“The Author in this Problem is compelled for the first time to employ algebraic analysis, while in 
the preceding only synthesis was used. The difference between these two is that in all the former 
propositions the expectation sought was derived from other expectations that were either totally 
known and given, or, indeed, not known, but naturally prior and simpler, and not dependent in 
turn upon that sought. For this reason, it was possible, by beginning with the aid of the simplest of 
all of them, to proceed step by step to unravel other more complex cases without any analysis. 
Here, however, the matter is different [...]. It is worthwhile to have observed this, so that by a clear
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example it may appear what the difference is between the two methods and when one or the other 
is to be turned to."6(ibid., 47-48)

Bernoulli follows this by suggesting his own alternative method that can be 
used both when synthesis is normally used and when algebraic analysis had been 
resorted to:

“I have said that it cannot be done following in the author’s footsteps. There is, however, still 
another special way by which I may pursue what is sought short of any analysis. This additional 
way may also be usefully employed in what follows. Let us, in place of the two alternate players, 
hypothesize infinitely many players, to each of whom in order, one after the other, only one throw 
is conceded [...]. (ibid., 60-61)

Further, the method familiar to us may also be used with regard to this hypothesis, nor is this 
method less compatible with questions that are commonly solved by synthesis alone than with 
those that require analysis.”7 (ibid., 48)

Since Bernoulli’s terminology alternates between “algebraic analysis [analysis 
a lgebra ica]” and simply “analysis [analysis]”, it is clear that by “analysis” he 
often means, in our terms, simply algebra. Elsewhere, following Huygens, he calls 
“analysis” the working out of the solution to a problem (ibid., 2-3)8. On the other 
hand, as is clear from his definitions of analysis and synthesis, he does sometimes 
have a directional differentiation between analysis and synthesis in mind. In Ber
noulli’s terminology a “synthesis” is mathematical reasoning that goes step by 
step from what is prior and already known to what is at first unknown, while 
“analysis” is a line of mathematical reasoning that may involve recursion and/or 
solution of simultaneous equations. Discussing a problem in which three players 
in turn draw stones without replacing them from an um originally containing 12 
stones, Bernoulli states that in the end one comes down to known chances, so that 
the problem can then be reversed to build up a synthesis from the simplest cases:

“If, again, the sense of the problem were that the stones taken from a common supply of 12 were 
not replaced after being taken from the um, then the first player indeed would, after playing, take 
third place and the third player second place and the second player first place, but, on that account, 
the players would not exchange among themselves chances equal to those that existed at the start, 
as happened under the preceding hypothesis. Rather, they would continually acquire new chances, 
different from the earlier chances, because of the changed number of stones. These chances would 
be simpler to the extent that more black stones were withdrawn and such that finally they end in 
chances that are altogether known. On account of this, we can begin, using the Author’s accus
tomed method, from the simplest cases, and proceed backwards through all the intermediate cases, 
arriving finally at the case proposed in the question, having used the method of synthesis."9(ibid.,
59)

In sum, Bernoulli uses the word “synthesis” in the sense standard from the 
time of the Greeks to mean a demonstration beginning from axioms, postulates, 
or what is prior and better known and moving to what was previously not known 
or not proved. “Analysis,” on the other hand, for him as for the Greeks, is a 
method that does not begin from what is better known, but from something not
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known, or not yet proved. Bernoulli is unlike the Greeks, however, because he has 
a method of analysis in mind, namely algebra, or the solution of simultaneous 
equations with unknowns.10 While there is a perennial question about Greek geo
metrical analysis, because it seems to assume unjustifiably that the deductions of 
the analysis will always be reversible to construct the desired synthesis (Mahoney 
1968), there is no such problem with algebraic analysis, which is, in this sense, 
directionless. Thus Bernoulli understands Huygens’s On Calculations in Gam es 
o f  Chance to exhibit or demonstrate a small number of approaches or methods, 
both synthetic and analytic, by which problems concerning games of chance may 
be solved. While a synthetic method may be more natural, building up from the 
prior and better known to what is sought, an algebraic method also achieves the 
desired results, and that without the necessity of being supplemented by a synthe
sis.

I ll A  P riori, A  P osteriori, and the Law of Large Numbers

When in Part IV of The A rt o f  Conjecturing Bernoulli introduces his law of large 
numbers, he does not use concepts of analysis and synthesis to indicate directions 
of reasoning, but rather the concepts of a p r io r i and a posteriori. After the lines 
quoted above (at note 1), Bernoulli goes on:

“If, for example, there once existed three hundred people with the same age and body type as 
Titius now has, and you observed that two hundred of them died before the end of a decade, while 
the rest lived longer, you could safely enough conclude that there are twice as many cases in which 
Titius also may die within a decade as there are cases in which he may live beyond a decade. 
Likewise if someone for several years past should have observed the weather and noted how many 
times it was clear or rainy or if someone should have very frequently watched two players at a 
game and should have seen how many times this or that player won, just by doing so one would 
have discovered the ratio that probably exists between the numbers of cases in which the same 
outcomes can happen or not happen in the future in circumstances similar to the previous ones.”11 
(1713, 224-225)

The method of arguing a posteriori, or empirically, in this period could also be 
called “analysis,” as Isaac Newton does in his famous Query 31 of the Opticks:

“As in Mathematicks, so in Natural Philosophy, the Investigation of difficult Things by the Method 
of Analysis, ought ever to precede the Method of Composition. This Analysis consists in making 
Experiments, and Observations, and in drawing general Conclusions from them by Induction [...].
By this way of Analysis we may proceed from Compounds to Ingredients, and from Motions to the 
Forces producing them; and in general, from Effects to their Causes, and from particular Causes to 
more general ones, till the Argument end in the most general. This is the Method of Analysis: And 
the Synthesis consists in assuming the Causes discover’d, and establish’d as Principles, and by 
them explaining the Phaenomena proceeding from them and proving the Explanations.” (Newton 
1704, 404-405)
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Here Newton links the methods of analysis and synthesis in mathematics and 
in physics, explaining physical analysis as induction from experimental data. This 
might lead us to believe that Jacob Bernoulli also intended his a posteriori meth
od to be based on induction. But in turning to the proof of his law of large num
bers, Bernoulli shows no concern about problems of induction. Rather, in order to 
justify the use of observed frequencies as the basis for decisions or predictions, 
Bernoulli thinks he needs to show two things. First, he wants to demonstrate that 
as the number of observations increases, the probability that the a posteriori ob
served ratio of outcomes corresponds closely to an a priori ratio also increases— 
this is something even ordinary people commonly assume, but they do not know 
how to prove it:

“This empirical way of determining the number of cases by experiment is neither new nor un
common. The author of The Art o f Thinking [i.e., Antoine Amauld], a man of great acuteness and 
talent, made a similar recommendation in Chapter 12 and following of the last part [i.e., Part IV], 
and everyone consistently does the same thing in daily practice. Neither should it escape anyone 
that to judge in this way concerning some future event it would not suffice to take one or another 
experiment, but a great abundance of experiments would be required, given that even the most 
foolish person, by some instinct of nature, alone and with no previous instruction (which is truly 
astonishing), has discovered that the more observations of this sort are made, the less danger there 
will be of error. But although this is naturally known to everyone, the demonstration by which it 
can be inferred from the principles of the art is hardly known at all, and, accordingly, it is incum
bent upon us to expound it here.”12(1713,225)

But, second, beyond demonstrating the effect of increasing numbers of obser
vations, Bernoulli also wants to prove that the process does not reach a limit of 
certainty or probability beyond which greater probability is impossible:

“But I would consider that I had not achieved enough if I limited myself to demonstrating this 
one thing, of which no one is ignorant. Something else remains to consider, which perhaps no one 
has thought about up to this point. It remains, namely, to ask whether as the number of observa
tions increases, so the probability increases of obtaining the true ratio between the numbers of 
cases in which some event can happen and not happen, such that this probability may eventually 
exceed any given degree of certainty. Or whether, instead, the problem has an asymptote, so to 
speak; whether, that is, there is some degree of certainty that may never be exceeded no matter how 
far the number of observations is multiplied, so that, for example, we may never be certain that we 
have discovered the true ratio of cases with more than a half or two-thirds or three-fourths parts of 
certainty.”13 (ibid.)

With this introduction, Bernoulli then goes on to his proof, which assumes a 
priori ratios exist, although they may or may not be known. What then is the 
relationship of analysis and synthesis, or the relationship of the a priori and the a 
posteriori, in this proof? Given Bernoulli’s earlier discussions of mathematical 
analysis and synthesis, we should expect him to take a consistent position on these 
matters14.

JACOB BERNOULLI ON ANALYSIS AND SYNTHESIS 85

IV Bernoulli’s Proof of the Law of Large Numbers

In order to investigate this question further, it will be worthwhile to examine 
Bernoulli’s proof of his law of large numbers. Bernoulli achieves his proof by first 
demonstrating five lemmas concerning the terms of a binomial expansion. He 
then is able to prove his law essentially by showing how the various terms of the 
binomial expansion correspond to possible outcomes of nt trials of a situation in 
which there are r cases for a positive outcome and s cases for a negative one, 
t = r + s, and n is some large integer. Todhunter states the essentials of the proof 
quite clearly and succinctly:

“We will now state the purely algebraical part of the theorem. Suppose that (/■+$)"' is expanded 
by the Binomial Theorem, the letters all denoting integral numbers and / being equal to r + s. Let 
u denote the sum of the greatest term and the n preceding terms and the n following terms. Then by 
taking n large enough the ratio of u to the sum of all the remaining terms of the expansion may be 
made as great as we please. If we wish that this ratio should not be less than c it will be sufficient 
to take n equal to the greater of the two following expressions:

log c + log(5 + 1) s s— -------------(1+— ) -  —
log(r + 1) -  log r r + 1 r + 1

and

log c + log(r -  1) r 1—------------- (1 +----- ) - ----- _
10g(j+ 1) -  log 5 5 + 1 5 + 1

[...] Let us now take the application of the algebraical result to the Theory of Probability. The 
greatest term of (r+5)m, where / = r+5 is the term involvingrJ'rsn’. L etr and 5 be proportional to the 
probability of the happening and failing o f an event in a single trial. Then the sum of the2n+ l 
terms of (r+s)M which have die greatest term for their middle term corresponds to the probability 
that in nt trials the number of times the event happens will lie between n(r-1) and n(r+1), both 
inclusive; so that the ratio of the number of times the event happens to the whole number of trials

lies between r  + -- and - — -  . Then, by taking for n the greater of the two expressions in the 
/ t

preceding [...], we have the odds of cto  1 that the ratio of the number of times the event happens to

r +1 r -  1
the whole number of trials lies betw een------  a n d -------.” (Todhunter 1949,71-72)

t t

Now, because the central work of the proof is done by means of lemmas con
cerning any binomial expansion, it is not immediately clear whether Bernoulli 
would consider the reasoning in his proof of the main theorem to have been ana
lytic or synthetic. But Todhunter’s labelling of the lemmas as “the purely algebra
ical part of the theorem,” provides a needed clue: the five lemmas are in a sense 
Bernoulli’s analysis of the problem, while the synthesis is what Todhunter calls 
“the application of the algebraical result to the Theory of Probability” and what 
Bernoulli himself calls the demonstration of the principal proposition15. In the
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proofs of his lemmas, Bernoulli takes it for granted that mathematicians know the 
series expansions of binomials to various powers, and he treats them as pure math
ematics, abstracted from any particular application16. He raises the possibility in a 
scholium that someone may object to the way he has made use of infinites in his 
proof of Lemmas 4 and 5, but provides an alternative interpretation for such ob
jectors that requires only finite numbers and not infinites17. The proof of the sec
ond lemma is an informal induction18.

Based on the algebraic analysis of the lemmas, Bernoulli’s proof of the law of 
large numbers is synthetic, starting from what is known through the lemmas and 
moving to prove the desired conclusion. How he gets from the pure mathematics 
of the lemmas to the proof of his law of large numbers is, in his terms, simply “by 
the application of the foregoing lemmas to the present purpose”, that is, by inter
preting the terms of the binomial expansion as expressing the numbers of ways in 
which various possible outcomes of a series of observations can occur. Bernoulli 
writes:

“Demonstration. Let nt be the number of observations to be taken, and let us ask how great is 
the expectation or how great is the probability, that they will all be fecund except for, first, none, 
then 1 ,2 ,3 ,4 , etc. sterile. But since in any observation there are, by hypothesis, t cases at hand, 
and of them r are fecund and s sterile, and the individual cases of one observation can be combined 
with the individual cases of the other, and those combined can be joined again with the individual 
cases of the third, fourth, etc., it is easy to see that this situation fits the Rule in the Notes appended 
to the end of Proposition XIII. [ji'c, should be XII] in Part I, and its Corollary 2, which contains a 
general formula, with the help of which it is seen that the expectation of no sterile observations

nt jnt c nt n t-1 nt r nt{flt — \ ) nt-2 nt ris r :t , of one — r  s : t  , of two -------------- r s s : t  o f  th ree
1 1-2

nt(nt -  l)(nt -  2) m_3 3
------------------------r s

1- 2- 3
t"' and so forth. Consequently, omitting the common denominator

/" th e  degrees ‘of probability or the numbers’ of cases in which it can happen that all the experi
ences are fecund, or all except one sterile one, or all except 2 ,3 ,4 , etc. are expressed in order by

nt nt_i n t ( n t - l )  nt_2 nt(nt -  \){nt -  2) „,_3 3 ...................... .....  .
, —  r s ,------------- r ss,-------------------------r s etc. Now these, in fact, are the

1 1-2 1- 2- 3
terms of the power nt of the binomial r+s, investigated just now in our lemmas. Then all the rest is 
completely evident. Indeed, it is clear from the nature of the progression that the number of cases 
that combine ns sterile experiences with nr fecund ones is the maximum term M, or the term that 
ns terms preceed and nr follow, by Lemma 3.”l9(Bemoulli 1713,236-237)

Thus Bernoulli bases his demonstration upon the algebraic lemmas, interpret
ing the terms of the binomial expansion in terms of the probabilities of various 
outcomes of a series of observations. The largest term of the binomial expansion 
represents the numbers of ways in which the ratio of fertile to sterile observations 
may equal the underlying ratio of cases.
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V Cases (casus) and Bernoulli’s Conceptions of God and the World

What in Jacob Bernoulli’s larger world view justified his belief that cases of death, 
or of weather, or of winning at tennis, and so forth could be represented by the 
terms of a binomial expansion as he represented them in his proof of the law of 
large numbers? Or why would a prudent physician or insurance agent be wise or 
justified in using observed ages at death of people in various situations to calcu
late the life expectancies of living people of given age and circumstances? Not 
only did Bernoulli not know what the fundamental a priori ratios of cases were for 
diseases or the weather or any other of the political, moral, or economic situations 
to which he hoped to apply the art of conjecturing, but also, from our point of 
view, he did not know that there were fundamental a priori ratios of cases.

Leibniz raised this objection in correspondence with Bernoulli near the end of 
the latter’s life, arguing that the risks of various diseases are not known and, in 
fact, may not be stable. In response, Bernoulli admitted that the situation quite 
likely changes over time. Modem life expectancy, Bernoulli reasoned, was doubt
less different from the life expectancy in Biblical times. Nevertheless Bernoulli 
was optimistic that there was enough stability in the real world for his a posteriori 
method to be useful. A central reason for this optimism was that even if we do not 
know anything about the ratios in real world cases, God knows. Things are uncer
tain to us, but not to God:

“All things under the sun, which are, were, or will be, in themselves and objectively always have 
the highest certainty. This is evident concerning past and present things, since by the very fact that 
they are or were, these things cannot not exist or not have existed. Nor should there be any doubt 
about future things, which in like manner, even if not by the necessity of some inevitable fate, 
nevertheless by divine foreknowledge and predetermination, cannot not be in the future. Unless, 
indeed, whatever will be will occur with certainty, it is not apparent how the praise of the highest 
Creator’s omniscience and omnipotence can prevail.’’20(i7>/d., 210-211)

Responding directly to Leibniz’s argument, Bernoulli said:

“Let me remove a few objections which certain learned men have raised against these views. [...] 
They object first that the ratio of stones is different from the ratio of diseases or changes in the air: 
the former have a determinate number, the latter an indeterminate and varying one. I reply to this 
that both are considered to be equally uncertain and indeterminate with respect to our knowledge.
On the other hand, that either is indeterminate in itself and with respect to its nature can no more be 
conceived by us than it can be conceived that the same thing at the same time is both created and 
not created by the Author of nature: for whatever God has made, he has, by that very act, also 
determined at the same time.”21 (ibid., 227)

Thus Jacob Bernoulli did not believe that nature or even human life is inher
ently statistical or probabilistic22 (Daston 1992). Although he was not sure how 
human freedom could be reconciled with the fact that God determines and fore
sees everything that will happen, Bernoulli nevertheless believed that everything
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is determined by God23. Humans use probabilistic reasoning, he said, not because 
the world is inherently governed by chance, but because we do not know its hid
den mechanisms. The laws of physics and the initial conditions determine which 
side of a die will fall facing up. We say that each face has a one-sixth chance of 
facing upwards because we do not know the exact initial conditions or perhaps all 
the laws of physics, but the fall of the die is nonetheless physically determined.

Bernoulli’s understanding that there are a p r io r i ratios of cases in real world 
situations helps to elucidate the cryptic statement with which The A rt o f  C onjec
turing ends:

“Whence at last this remarkable result is seen to follow, that if the observations of all events were 
continued for the whole of eternity (with the probability finally ending in perfect certainty) then 
everything in the world would be observed to happen in fixed ratios and with a constant law of 
alternation. Thus in even the most accidental and fortuitous we would be bound to acknowledge a 
certain quasi necessity and, so to speak, fatality. I do not know whether Plato already wished to 
assert this result in his dogma of the universal return of things to their former positions, in which he 
predicted that after the unrolling of innumerable centuries everything would return to its original 
state.”24 (ibid., 239)

To a modem eye this passage seems to mean only that if all events of all 
eternity are taken into account, then they will have some ratio to each other, what
ever that may be. Bernoulli, however, when he says, “fixed ratios and with a 
constant law of alternation,” implies that there will be some lawlike ratios of 
integers, small or large, but not unrecognizable as such.

Up to this point, I have been translating “casus” when it appears in Bernoulli’s 
Latin as “cases,” as when he says in introducing his a posterio ri method of deter
mining the ratios of cases, “it ought to be anticipated that something can happen 
or not happen in the future in as many cases as it was observed to happen or not to 
happen in the past in a similar state of things.”25 (ibid., 224) When, in the eight
eenth century, other authors writing about games of chance translated “casus” in 
this sense into English, they almost always translated it as “chances.” If I translat
ed Bernoulli as saying, “it ought to be anticipated that something can happen or 
not happen in the future with as many chances as it was observed to happen or not 
to happen in the past in a similar state of things,” then Bernoulli might seem to 
believe that chance was intrinsic to physical reality and not only to our thinking 
about it.

What, then, is a “casus” for Bernoulli? His models or metaphors for casus 
come first of all from games. Casus sometimes correspond to stones to be drawn 
out of an urn26. Dice and cards also provide common models. With stones in an 
urn there may be many stones of the same color any of which is equally likely to be 
drawn. Cards provide a more complicated set of possibilities of a similar type. 
With normal dice, on the other hand, each die might be thought to have an equal 
proclivity for falling with any of its faces up. Hence, with stones in an urn or cards
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or dice, the “casus” correspond to separable aspects of physical reality, but their 
ease in occurring may depend on various factors configuring the situation, as well 
as on the items themselves. It is not essential to these models that the game pieces 
themselves have some inherent “proclivity” to exhibit one or another case, that is, 
that they have in themselves some inherent “probability” of appearing one way or 
another. Jacob Bernoulli in The A rt o f  Conjecturing never uses “probability [pro- 
babilitasY ’ to refer to inherent properties or proclivities of stones or cards or dice, 
but always to refer to degrees of certainty about the truth of propositions.

While Abraham De Moivre in his The D octrine o f  Chances consistently uses 
“chances” with regard to alternative possibilities, his statements about these chances 
show that he too did not believe that the underlying reality was governed by chance 
as we understand it. In a typical problem, he says:

“To find the Probability of throwing a Chance assigned a given number of times without inter
mission, in any given number of Trials.” (De Moivre 1718,254)

Here the “chance assigned” could be anything, say to throw a 7 with two dice: the 
“chance assigned” is some specific outcome, one of several possible outcomes. 

After De Moivre has discussed the law of large numbers he says:

“Chance, as we understand it, supposes the Existence of things, and their general known Prop
erties: that a number of Dice, for instance, being thrown, each of them shall settle upon one or 
other of its Bases. After which, the Probability o f an assigned Chance, that is of some particular 
disposition of the Dice, becomes as proper a subject of Investigation as any other quantity or Ratio 
can be.

But Chance, in atheistical writings or discourse, is a sound utterly insignificant: It imports no 
determination to any mode o f Existence1, nor indeed to Existence itself, more than to non-exist
ence; it can neither be defined nor understood: nor can any Proposition concerning it be either 
affirmed or denied, excepting this one, ‘That it is a mere word.’” (ibid., 253)

Shortly before this passage, De Moivre wrote:

“From what has been said, it follows, that Chance very little disturbs the Events which in then- 
natural Institution were designed to happen or fail, according to some determinate Law; for if in 
order to help our conception, we imagine a round piece of Metal, with two polished opposite faces, 
differing in nothing but their colour, whereof one may be supposed to be white, and the other 
black; it is plain that we may say, that this piece may with equal facility exhibit a white or black 
face, and we may even suppose that it was framed with that particular view of shewing sometimes 
one face, sometimes the other, and that consequently if it be tossed up Chance shall decide the 
appearance [...] yet the appearances, either one way or the other, will perpetually tend to a propor
tion of Equality [...]. What we have said is also applicable to a Ratio of Inequality [...]. And thus 
in all Cases it will be found, that altho’ Chance produces Irregularities, still the Odds will be 
infinitely great, that in the process o f Time, those Irregularities will bear no proportion to the 
recurrency o f that Order which naturally results from Original Design.” (ibid., 250-251)

Thus, for De Moivre, and I suggest also for Jacob Bernoulli, there are laws of 
nature which in the long run will appear, however “chance” may obscure them in
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the short run. Moreover, according to De Moivre, it is God who has determined 
and continues to determine these regularities, not some intrinsic propensities or 
proclivities of material bodies:

“[...] such Laws, as well as the original Design and Purpose of their Establishment, must all be 
from without', the Inertia of matter, and the nature of created Beings, rendering it impossible that 
any thing should modify its own essence, or give to itself, or to any thing else, an original determi
nation or propensity. And hence, if we blind not ourselves with metaphysical dust, we shall be led, 
by a short and obvious way, to the acknowledgment of the great Maker and Governour o f all; 
Himself all-wise, all-powerful and good." (ibid., 252)

From this point of view, then, for De Moivre (and for Bernoulli as well) it is 
clear that consistently observed frequencies of events in the world reveal the laws 
of nature or structures built into the universe no less than faces built into a die:

“As, upon the Supposition of a certain determinate Law according to which any Event is to 
happen, we demonstrate that the Ratio of Happenings will continually approach to that Law, as the 
Experiments or Observations are multiplied: so, conversely, if from numberless Observations we 
find the Ratio of the Events to converge to a determinate quantity, as to the Ratio ofP to Q; then we 
conclude that this Ratio expresses the determinate Law according to which the Event is to happen.

For let that Law be expressed not by the Ratio P:Q, but by some other, as R:S\ then would the 
Ratio of the Events converge to this last, not to the former: which contradicts ourHypothesis. And 
the like, or greater, Absurdity follows, if we should suppose the Event not to happen according to 
any Law, but in a manner altogether desultory and uncertain; for then the Events would converge 
to no fixt Ratio at all.” (ibid., 251 -252)

Thus De Moivre’s “chances,” no less than Bernoulli’s “casus”/“cases”, reflect 
the laws of nature built into the existence of things and not something “desultory.” 
They come “from without,” that is from God or the First Cause, who, in creating, 
gives determination to creation. If there is chance in creation, it is only because 
God, like a dice maker, has designed into creation certain features that will result 
in the appearance of events with certain frequencies, as the designer of a die 
designs the die to come up one-sixth of the time on each of its faces. It is these 
features of God’s design that can be found out a posteriori by observing the ratios 
of outcomes in the world over sufficiently long periods of time.

That there will be ratios in events observed over long periods of time results 
from God’s design, but ratios observed a posteriori will not always correspond to 
the most fundamental structures of reality. In his commentary on Huygens, Ber
noulli at first assumed that the ratios of cases used in the calculations resulted 
from the nature of the game pieces, but as he went on he noticed that Huygens 
sometimes treated the numerator and denominator of a fraction representing an 
expectation as if they represented numbers of cases, even if they were derived in a 
different way:

“It helps here to observe that the Author supposes that any expectation expressed as a fraction 
may also be considered as if  it resulted from as many cases for obtaining the stake a  as are indi
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cated by the numerator of the fraction and as many cases for obtaining nothing as are signified by 
the difference between the denominator and the numerator, notwithstanding that perhaps that ex
pectation was arrived at in another way. Thus although the person who undertakes to throw two 
sixes in two tries arrives at his expectation of (71/1296)a by a case for obtaining a and 35 cases for 
(1 /36)o, nevertheless one could judge him to obtain it by 71 cases for obtaining a and 1225 cases 
for 0.” (Bernoulli 1713,29)

Thus the ratios of cases observed in wins and losses of tennis players over time 
may not correspond directly to some basic features of the minds or bodies of the 
players or their equipment, but to complex interactions of many factors. In an 
early consideration of tennis published in 1686, Bernoulli stated that the underly
ing ratio of cases may be incommensurable27.

Mathematically, “cases” enter Bernoulli’s proof of the law of large numbers in 
two ways. First of all, there are the fundamental cases with which the proof be
gins, that is r cases for a fertile outcome and s cases for a sterile one. But after nt 
observations have been made, there are also more complex cases, first the case in 
which all outcomes are fertile or positive, then the case in which the first trial is 
sterile, but the rest fertile, and so forth. The largest term of the binomial expan
sion is shown to represent the numbers of cases in which the individual outcomes 
are in the ratio of the underlying cases (corresponding to the two terms of the 
binomial, r and 5 ). The probability that the ratio of outcomes will fall within some 
small interval around the ratio corresponding to the ratio of the underlying cases 
is explained to be proportional to the sum of a certain number of terms of the 
binomial expansion on either side of the largest term. Then the ratio between this 
sum and the sum of all the terms outside the limits is shown to increase without 
limit as the number of trials, nt, increases. A very large number of trials is re
quired if it is desired that there be a very high probability that the ratio fall within 
very narrow limits. In interpreting this result, Bernoulli assumes that he is look
ing for ratios of integers and he talks about finding, determining, or discovering 
the ratio28. He seems to take it for granted that it will be obvious what the “real 
ratio” of cases is, even if the observed ratio of frequencies after many trials should 
deviate from it very slightly29.

Did Bernoulli think that there really were in the outside world “cases” corre
sponding to various diseases or other possible causes of death and that by examin
ing statistics for death rates he could discover underlying causes? Given his remark 
in commenting on Huygens’s treatment of the numerators and denominators of 
expressions for expectation as if they referred to numbers of cases, I conclude that 
Bernoulli thought that the ratios found by experience might not represent funda
mental cases or causes in the external world, but that they would represent the 
result of complex interactions of such cases or causes. In the proof of the law of 
large numbers, at first the cases are simple successes and failures, but once one 
has observed nt trials, then the cases become not just the r  cases for success and s
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cases for failure in a single trial, but instead the case of nt successes, the cases of 
n t - 1 successes combined with one failure, etc., up through the case of nt failures. 
When Bernoulli talks about diseases or the weather, he sometimes talks as if the 
diseases would be the cases, but twice (in a letter to Leibniz and in The A r t o f  
Conjecturing) he chooses the word “tinder” (fomitem ), which seems to be a pur
posefully vague or multivalent word with some connotations like “seed” or “germ”30.

The one work in which Bernoulli did apply his method to a concrete situation 
was his L etter to  a F riend  on the game of tennis, published together with the A rs  
Conjectandi in 1713. His idea was that it would be possible to take the ratios of 
points or games that players won when playing against each other and to use these 
ratios to predict, for instance, the likelihood of victory when such individuals 
played as parts of doubles teams. The sorts of factors that Bernoulli then consid
ered were, for instance, whether the opponents would consistently try to hit to the 
weaker player, whether the player who has to hit more balls will become tired 
sooner, etc., such things meaning that the strength of a team could not be sup
posed to be simply equal to the strength of the better player, nor simply the aver
age between the two players.

In the introduction to the L etter to a Friend, Bernoulli writes as if he were 
cognizant of our question about the physical meaning of the concept of “cases.” 
Bernoulli writes that his friend has seen a thesis of his concerning the game of 
tennis and:

“[...] you ask me if these propositions contain some reality that can be demonstrated or if they are 
only founded on pure conjectures made in the air and which have nothing solid about them. Ac
cording to what you say, you cannot conceive that the forces of players can be measured by num
bers, much less that one can draw the conclusions from them that I have drawn.”31 (ibid., new 
numeration, 1)

After referring to games of chance in which the numbers of cases are known a  
p rio ri, he discusses games of skill in which they are not:

“[...] it is not the same with games that depend only or in part on the genius, the industry, or the 
application of the players, such as tennis, chess, and most card games. It is very clear that one 
could not know how to determine by their causes ora  priori, as one says, how much one person is 
more knowledgeable than another, more skillful, or more able, unless one had a perfect knowl
edge of the nature of the soul and of the disposition of the organs of the human body, which the 
thousand hidden causes that interact make absolutely impossible. But this does not prevent one 
from knowing this almost as certainly a  posteriori, by the observation of the outcome many times 
repeated, doing what can be done even in games of pure chance when one does not know the 
number of cases that can occur."n (ibid., new numeration, 2)

Bernoulli then goes on to describe the drawing of tickets from an urn without 
knowing the number of tickets of each kind that it contains. If, he says, he drew 
out a black ticket a hundred times and a white ticket two hundred times, he would 
not hesitate to conclude that the number of white tickets was about double the

JACOB BERNOULLI ON ANALYSIS AND SYNTHESIS 93

number of black tickets. Having referred to his proof of the law of large numbers, 
Bernoulli then says that the same reasoning can be applied to games of skill. If, he 
says, he observed two men playing tennis and one man won 200 or 300 points 
while the other won 100, then he would judge with sufficient certainty that the 
first man was a two or three times better player than the second. The first player 
would have, so to speak, two or three times as many cases or causes making him 
win as the other33. Thus in the one concrete application that we have, Bernoulli 
makes no claims of knowing what in the real world corresponds to his cases or 
causes, only that the observed ratio of outcomes can be used as a ratio of cases in 
making judgments or predictions. If he knew what percentage of the time player A 
had beaten player B  over a long series of games in the past, this did not mean that 
Bernoulli knew what it was that made one player more or less likely to win, but 
only that he thought he could predict the future reliably or with probability.

VI Algebra and the Law of Large Numbers

With this discussion about the meaning of “casus” or “cases” in hand, let me 
return to an examination of Bernoulli’s proof of the law of large numbers. What
ever else “cases” or, for that matter “chances” were, they were always countable, 
or represented by integers. One always has some number of cases or chances for 
some outcome, never a fractional amount. The fact that Bernoulli’s intuitive un
derstanding of the “cases” is, to use modem terminology, digital rather than ana
log, may explain why, even though the infinitesimal calculus was in development 
by this time, he did not think to try proving the law of large numbers using calcu
lus or even geometry, but instead used algebra34. Once Bernoulli began to think of 
his law of large numbers in algebraic terms, the mathematics itself may have 
become for him a model of the processes he was dealing with. The fact is that in 
the algebraic part of Bernoulli’s proof of the law of large numbers, that is in the 
lemmas which are “pure mathematics” and which, indeed, contain the whole proof 
aside from its “application” or interpretation in terms of possible outcomes or 
expectations, there is no “prior” or “posterior,” but everything is, so to speak, at 
the same cognitive level. One considers, as if laid out together in an array, all the 
possible outcomes of nt trials. This is not like the analysis of a game in which one 
round of the game precedes the next and in which the ratios of cases or chances 
may change depending upon the outcomes of the various rounds. Time is not a 
factor (nor is “sampling” from a larger population). The mathematics takes a 
“God’s eye” point of view, in which every possibility is present and on an equal 
footing. On the other hand, each “snapshot” of the situation is for some nt number 
of observations. One chooses the level of risk one is willing to take (or the probability 
of being correct that one requires) and then determines how many observations 
are necessary to keep the risk that low (or the probability of being correct that
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high). As the number of trials is never infinite, the risk is never zero (or the 
probability never one). One may always be wrong. As long as nt is not infinite, it 
is always possible to observe a ratio of frequencies that does not reflect the under
lying law of nature. All the law of large numbers tells you is what the chances are 
that you are wrong or the probability that you are right or very nearly so. What the 
art of conjecturing then provides as a mathematical instrument for decision mak
ing is knowledge of how to maximize your expectations before the fact and how to 
measure the chances that you may be wrong. If, after acting on the basis of the art 
of conjecturing, you lose, you nevertheless have the consolation of knowing you 
followed prudent strategy35.

VII Summary

In this paper, I have made the following points. Jacob Bernoulli had notions of 
mathematical analysis and synthesis that were not atypical of his times. For him, 
a mathematical synthesis moves from what is prior and better known, while a 
mathematical analysis may move in any direction, sometimes deducing what is 
mathematically prior or better known from what is mathematically posterior. Like 
many others of his time, even those who, like himself, were in the process of 
developing infinite or infinitesimal analysis, Jacob Bernoulli when he used the 
word “analysis” frequently meant nothing more than algebra. Previous historians 
of probability theory, and in particular Ian Hacking, have questioned Bernoulli’s 
intended interpretation of his law of large numbers, because his proof of the theo
rem presupposes that there are a p r io r i ratios of cases and yet the theorem is 
supposed to justify discovering these ratios a posteriori. Bernoulli’s world view, 
like that of De Moivre, indeed assumes that the universe displays design and that 
this design is incorporated in laws of nature that undergird observed frequencies. 
To God, Bernoulli says, all things are known and certain in the past and present 
and in the future as well. The law of large numbers shows that, despite temporary 
fluctuations, in the long run the structure of the world will manifest itself. The 
lemmas of Bernoulli’s proof of the law of large numbers, that is the algebraic parts 
of the proof or the analysis, mirror this “God’s eye” perspective on the universe in 
the sense that there is nothing prior or posterior, but all is equally present and 
evident. They are pure mathematics and self-contained. All that is required to 
apply them to prove the law of large numbers is to interpret them to apply to the 
outcomes of experiments. Thus, both Bernoulli’s world view and the way in which 
he used algebra to prove his lemmas explain why he saw no problem in assuming 
the existence of a p r io r i ratios of cases when he was proving the law of large 
numbers—and then boasting that the proof of the law of large numbers shows 
why one can reliably discover ratios of cases a posteriori. The ratios of cases so 
discovered were not necessarily ratios of fundamental underlying causes, but rath
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er ratios of cases that could be prudently used, with the rest of the art of conjectur
ing, to make decisions in civic, moral, and economic situations.

N orth C arolina State U niversity 
D epartm ent o f  H istory

Notes

1 The translations of the Ars Conjectandi for this paper are my own, part of a joint project with Glenn 
Shafer to publish an English translation of The Art o f Conjecturing with supporting materials. I shall 
quote in notes the original texts.

“ Verum enimvero alia hie nobis via suppetit, qua quaesitum obtineamus; & quod a priori elicere 
non datur, saltern a posteriori, hoc est, ex eventu in similibus exemplis multoties observato eruere 
licebit; quandoquidem praesumi debet, tot casibus unumquodque posthac contingere & non 
contingere posse, quoties id antehac in simili rerum statu contigisse & non contigisse fuerit 
deprehensum.”

2 Nicholas Bernoulli was familiar with his uncle Jacob Bernoulli’s work in mathematical probability long 
before the work was published. In 1709 Nicholas defended a mathematical-legal thesis De Usu Artis 
Conjectandi in Jure, that made use of his uncle’s ideas, and throughout the period just before the 
publication of Jacob Bernoulli’s Ars Conjectandi, Nicholas collaborated with Montmort in their work 
on probability theory, culminating in the publication of a number of letters from Nicholas to Montmort 
in the second edition of Montmort’s Essai d’analyse sur les jewc de hazard (1713). These letters included 
an alternative approach to proving a law of large numbers. De Moivre’s first publication in probability 
theory was his De mensura sortis seu de probabilitate eventuum in ludis a casu fortuito pendentibus 
in Philosophical Transactions (1711). This was followed in 1718 by his The Doctrine o f Chances: or, 
A Method o f Calculating the Probability o f Events in Play (1718). De Moivre first dealt with Bernoulli’s 
proof of the law of large numbers in his Miscellanea Analytica de Seriebus et Quadraturis (1730). In 
the first edition of his Doctrine o f Chances, he only said, at the end of the preface:

“Before I make an end of this Discourse, I think myself obliged to take Notice, that some years 
after my specimen was printed, there came out a Tract upon the Subject of Chances, being a 
Posthumous Work of Mr. James Bemoully, wherein the Author has shown a great deal of Skill and 
Judgment, and perfectly answered the Character and great Reputation he hath so justly obtained

The tone was set for all these later works by Christiaan Huygens, De Ratiociniis in Ludo Aleae as it 
appeared in Latin translation in F. Van Schooten, Exercitationum mathematicarum (1657). In 1692 
John Arbuthnot published an English translation of much of Huygens’s book (Arbuthnot 1692). Montmort 
said, in the first edition of Essay d’analyse sur les jeux de hazard (1708, iii-vi) that he was motivated to 
attempt to calculate expectations in games of chance by the reports about the manuscript of Jacob 
Bernoulli’s Ars Conjectandi, made in the iloges at the time of Jacob’s death.

3 Here what he writes (1975, ch. 17,154-165):
“Chapter 5 of Part IV of Ars conjectandi proves the first limit theorem of probability theory. The 

intended interpretation of this result is still a matter of controversy, but there is no dispute about 
what Bernoulli actually proved [...]. Bernoulli proves what is now called the weak law of large 
numbers [...]. Bernoulli’s proof is chiefly a consequence of his earlier investigation of combinatorics, 
for it proceeds by summing the middle terms in the binomial expansion. Notice that this result is a 
theorem of pure probability theory, and holds under any interpretation of the calculus [...]. Bernoulli’s 
exposition has a basic difficulty that has led to repeated misinterpretation. It is still a matter of
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controversy [...]. Bernoulli plainly wants to estimate an unknown parameterp. His favourite ex
ample is the proportion of white pebbles in an um. An estimator is a function F from data to 
possible parameter values, in this case, possible values oip. Bernoulli uses an interval estimator 
which maps given data onto a set of possible values ofp, ‘bounded by two limits’ [...]. Inevitably 
[...] we come to consider his problem as one of estimating an unknown aleatory probability, or 
chance. Moreover, we wonder if he wanted to know the epistemic probability that a given estimate 
of chance was correct [...]. We are [...] confident that Bernoulli did not make any simply fallacious 
‘inverse’ use of his theorem [...]. He thought [his theorem] had application to inverse inference, 
but does not make clear exactly why.”

Stephen Stigler (1986,66), also brings into question the correct interpretation of the significance of 
Bernoulli’s theorem: “This modem synopsis is inaccurate in several respects, however, as is the occasional 
claim that Bernoulli presented the first example of an interval estimate of probability.” Lorraine Daston 
(1988,188-190), chides Hacking more generally for anachronism in his interpretation of Bernoulli’s 
ideas:

“In Ian Hacking’s thoughtful discussion of theory conjectandi, for example, Bernoulli emerges 
as both more prescient and more quaint than a less anachronistic reading would warrant. On the 
one hand, Hacking credits Bernoulli with anticipating a frequentist ‘security level’ for inductive 
inference [corr. ex influence] [...] and on the other, he saddles Bernoulli with a ‘useful equivoca
tion’ between de re andde dicto senses of possibility and corresponding epistemic and physical 
senses of probability.”

On Bernoulli’s inverse use of his law, cf. also ibid., 234ff. A general corrective to Hacking’s history of 
the emergence of probability is to be found in Garber and Zabell (1978). The process of translating 
Bernoulli has made it clear to me that Bernoulli’s use of the term “probabilitas” is always epistemic— 
the word is never used by Huygens or by Bernoulli in the first three parts of theAry Conjectandi dealing 
with games of chance.

4 Cf. Bernoulli (W, vol. Ill, 88; from Bernoulli’s notebook Meditationes, p. 91): “NB. Hoc inventum 
pluris facio quam si ipsam circuli quadraturam dedissem, quod si maximS reperiretur, exigui usfls esset.”

5 “Quoniam enim omnes istae sortes differentes sunt et incognitae, earumque praecedens quaelibet a sequente 
et postrema vicissim a prima dependet, uti ex subjuncta operatione constabit, non poterit Problema istud 
Auctoris saltern methodo, perea quae ad Propos. ulL annotata sunt, aliter quam mediante analysi algebraica 
expediri.”

6 “Auctor in hoc Problemate primum adhibere cogitur analysin algebraicam, cum in praecedentibus sola 
synthesi usus fuisset: cuius differentiae ratio est, quod in illis omnibus expectatio quaesita fluebat ex aliis 
expectationibus vel in totum cognitis et datis, vel incognitis quidem, at natura prioribus ac simplicioribus, 
et quae ab hac vicissim non dependebant; quapropter incipiendo ab omnium simplicissimis earum ope 
gradatim pergere poterat ad enodandos alios casus magis magisque compositos absque analysi ulla. 
Secus vero se hie res habet; nam expectationem meam, quam possideo cum collusorem ordo jaciendi 
tangit, Auctoris more aestimare non possum, nisi cognitam habuero sortem, quam acquire ubi vices 
jaciendi ad me devolvuntur: sed et hanc cognoscere nequeo, nisi priorem illam compertam habeam, quae 
tamen ea ipsa est quam quaerere intendo; unde cum utraque sit incognita, et altera ab altera vicissim 
dependeat, non possunt Auctoris vestigiis insistendo aliter quam analyseos ope ex se mutuo elici: id 
quod operae pretium est observasse, ut utriusque methodi discrimen, et quando haec illave in usum 
vertenda sit, perspicuo aliquo exemplo pateret.”

7 “Dixi, Auctoris vestigiis insistendo non posse; datur enim adhuc alia peculiaris via, qua quaesitum 
consequi possum citra analysin ullam, et quam in sequentibus quoque utiliter adhibere licet. Fingamus 
loco duorum altematim ludentium infinitos Collusores, quibus singulis ordine uni post alterum singuli 
tantum concedantur jactus [...].”
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“Methodus porro nobis familiaris etiam in praesente hypothesi locum habet; neque enim hanc magis 
respuunt eae quaestiones, quae communiter sola synthesi solvuntur, quam quae analysi opus habent.”

8 Huygens’s Preface addressed to Franciscus Schooten (1657,519) begins,

“Cum in editione elegantissimorum ingenii Tbi monumentorum, quam prae manibus nunc habes,
Vir aarissim e, id inter coetera Te spec tare sciam, ut varietate remm, quarum tractationem instituisti, 
ostendas quam late se protendat divina Analytices scientia, facile intelligo [...].”

And in ending (ibid., 520) Huygens says,

“Horum Problematum nonnulla in fine operis addidisse me invenies, omissa tamen analysi, cum 
quod prolixam nimis operam poscebant, si perspicue omnia exequi voluissem, turn quod 
relinquendum aliquid videbatur exercitationi nostrorum, si qui erunt, Lectorum.”

Bernoulli then echoes Huygens’s reference to the working out of solutions to problems as “analysis” 
(1713,49): “Coronidis loco Auctor Tractatui suo subjunxit sequentia quinque Problemata, sed omissa 
analysi vel demonstratione, quam Lectori eruendum reliquit.”

9 “Si porro sensus Problematis sit, ut assumpti in commune calculi 12 non reponantur, postquam ex uma 
exempti fuerint; observandum est, quod per continuam eductionem calculorum nigrorum, primus quidem 
collusor transeat in locum tertii, tertius in locus secundi, secundus in locum primi, non idcirco tamen 
pariter sortes, quas ab initio ludi habuere, invicem permutent, ut factum fuit in praecendente hypothesi, 
sed quod subinde alias novas et a prioribus diversas ob mutatum calculorum numerum acquirant, easque 
tamen simpliciores quo plures calculi nigri educti fuerint, atque ita comparatas, ut tandem desinant in 
sortes omnino cognitas. Quapropter incipiendo consueta Auctoris methodo ab omnium simplicissimis, 
et pergendo retro per omnes intermedias, perveniemus ultimo sola synthesi utendo ad casum in quaestione 
propositum.”

19 c f . Boyer (1968,97-98 (“Perhaps more genuinely significant is the ascription to Plato of the so-called 
analytic method [...]. Plato seems to have pointed out that often it is pedagogically convenient, when a 
chain of reasoning from premises to conclusion is not obvious, to reverse the process. One might begin 
with the proposition that is to be proved and from it deduce a conclusion that is known to hold.”); 210 
(“Pappus describes analysis as ‘a method of taking that which is sought as though it were admitted and 
passing from it through its consequences in order to something which is admitted as a result of synthesis. ’ 
That is, he recognized analysis as a ‘reverse solution,’ the steps of which must be retraced in opposite 
order to constitute a valid demonstration.”); 352 (“Viete had been one of the first to use the word ‘analysis’ 
as a synonym for algebra”); 418-419 (“One who has read our chapters on Greece will see that Wallis 
was far better as a mathematician than as a historian, for he equates algebra (or the analytics of Vidte) 
with the ancient geometrical analysis.”)).

11 “Nam si ex. gr. facto olim experimento in tercentis hominibus ejusdem, cujus nunc Titius est, aetatis & 
complexionis, observaveris ducentos eorum ante exactum decennium mortem oppetiisse, reliquos ultra 
vitam protraxisse, satis tuto colligere poteris, duplo plures casus esse, quibus & Titio intra decennium 
proximum naturae debitum solvendum sit, quam quibus terminum hunc transgredi possit. Ita si quis a 
plurimis retro annis ad coeli tempestatem attenderit, notaveritque, quoties ea serena aut pluvia extiterit: 
aut si quis duobus ludentibus saepissime adstiterit, videritque quoties hie aut ille ludi victor evaserit, eo 
ipso rationem detexerit, quam probabiliter habent inter se numeri casuum, quibus iidem eventus praeviis 
similibus circumstantiis & posthac contingere ac non contingere possunt.”

1 2 “Atque hie modus empiricus determinandi numeros casuum per experimenta neque novus est neque 
insolitus; nam et Celeb. Auctor Artis cogitandi magni acuminis et ingenii Vir Cap. 12 et seqq. postremae 
Partis haud dissimilem praescribit, et omnes in quotidiana praxi eundem constanter observant. Deinde 
nec illud quenquam latere potest, quod ad judicandum hoc modo de quopiam eventu non sufficiat sumsisse
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unum alterumque experimentum, sed quod magna experimentorum requiratur copia; quando et 
stupidissimus quisque nescio quo naturae instinctu per se et nulla praevia institutione (quod sane mirabile 
est) compertum habet, quo plures ejusmodi captae fuerint observationes, eo minus a scopo aberrandi 
periculum fore. Quanquam autem hoc naturaliter omnibus notus sit, demonstratio, qua id ex artis principiis 
evincitur, minime vulgaris est, et proin nobis hie loci tradenda incumbit

13 “Ubi tamen parum me praestiturum existimarem, si in hoc uno, quod nemo ignorat, demonstrando 
subsisterem. Ulterius aliquid hie contemplandum superest, quod nemini fortassis vel cogitando adhuedum 
incidit. Inquirendum nimirum restat, an aucto sic observationum numero ita continuo augeatur probabilitas 
assequendae genuinae rationis inter numeros casuum, quibus eventus aliquid contingere et quibus non 
contingere potest, ut probabilitas haec tandem datum quemvis certitudinis gradum superet: an vero 
Problema, ut sic dicam, suam habeat Asymptoton, hoc est an detur quidam certitudinis gradus quern 
nunquam excedere liceat, utcunque multiplicentur observationes, puta, ut nunquam ultra semissem, aut 
2/3, aut 3/4 certitudinis partes certi fieri possumus, nos veram casuum rationem detexisse.”

141 make this point because of Hacking’s discussion of Bernoulli and the law of large numbers. Cf. Hacking 
(1975 as quoted above, note 3, and 159):

“Remember, however, that at the time Bernoulli wrote, the problem of induction had not yet been 
stated as a central problem of philosophy [...]. One thing Bernoulli was not trying to do was to 
solve some publicized problem of induction, for when he wrote there was none.”

15 Cf. Bernoulli (1713,236):

“Propos. Princip. Sequitur tandem Propositio ipsa, cujus gratia haec omnia dicta sunt, sed cujus 
demonstrationem sola Lemmatum praemissorum applicatio ad praesens institutum absolvet.”

Cf. also (ibid., 228):

“Ut prolixae rem demonstrationis qua licet brevitate et perspicuitate expediam, conabor omnia 
reducere ad abstractam Mathesin, depromendo ex ilia sequentia Lemmata, quibus ostensis caetera 
in nuda applicatione consistent.”

1 6 He says, e.g., at the start of his demonstration of lemma 3 (ibid., 229): “ Nota res est inter Geometras, 
quod potestas nt binomii r+s, hoc est (r+s)nl hac serie exprimitur [...].” Cf. also his use of “abstractam 
Mathesin” in the quotation at the preceding note (15).

1 ̂  “It may be objected against Lemmas 4 and 5, by those who are not accustomed to speculations about the 
infinite, that even if, in the case of an infinite number n, the factors in the expressions for the ratiosA//L 
and Ml A, namely nr±nml, 2 ,3, etc [...]. I cannot reply to this uneasiness better than by showing how to 
assign an actually finite number to n, or a finite power to the binomial, so that the sum of the terms within 
the bounds L and A will have to the sum of terms outside a ratio larger than a given ratio however large 
[...]. When this has been shown, it will be seen that the objection necessarily also collapses.”

18 Cf. (ibid., 229):

“Every integral power of a binomial r+s is expressed by one more term than the number of units 
in the index of the power. Thus a square is composed of 3 terms, a cube of 4, a biquadrate of 5, and 
so forth, as is known.”

19 “Dem. Ponatur numerus capiendarum observationum nt, & quaeratur, quanta sit expectatio, seu quanta 
probabilitas, ut omnes existant foecundae, exceptis primo nulla, dein una, duabus, 3 ,4  &c. sterilibus. 
Quandoquidem autem in qualibet observatione praesto sunt ex hyp. t casus, eorumque r foecundi &s 
steriles, & singuli casus unius observations cum singulis alterius combinari, combinatique rursus cum 
singulis tertiae, 4 tae &c. conjungi possunt, facile patet, huic negotio quadrate Regulam Annotationibus 
Prop. XIII. [sic, should be XII] primae Part, in fine subnexam, & ejus Corollarium secundum, quod

JACOB BERNOULLI ON ANALYSIS AND SYNTHESIS 99

universalem formulam continet, cujus ope cognoscitur, quod expectatio ad nullam observationem sterilem

nt nt ,srt r : t , ad unam nt- 1 »— r s : t
1

ad duas steriles
n t ( n t - 1) nt- 2  nt
------------- r ss : t

1-2
, ad tres

n t( n t- \ ) ( n t - 2 )  w_3 3
------------------------r  5

1-2-3
t m & sic deinceps; adeoque (rejecto communi nomine t"9 quod gradus

probabilitatum seu numeri casuum, quibus contingere potest, ut omnia experimenta sint foecunda, vel 
omnia praeter unum sterile, vel omnia praeter duo, 3, 4 &c. sterilia, ordine exprimantur per

■ nt n t ( n t - l )  nt_2 nt(nt -  l)(nt -  2) „,_3 3 „ . . . ,
, —  r  5 ,------------- r  ss,------------------------ r s , &c. ip sissim os nem pe term inos

1 1-2 1- 2- 3
potestatis nt binomii r+s, in Lemmatis modo nostris excussae: unde jam caetera omnia oppido manifesta 
sunt. Patet enim ex progressionis natura, quod numerus casuum, qui cum ns sterilibus experimentis nr 
foecunda adducunt, sit ipse terminus maximus potestatis M, utpote quern ns termini praecedunt, & nr 
sequuntur, per Lemm. 3.”

20 “Omnia, quae sub Sole sunt vel fiunt, praeterita, praesentia sive futura, in se & objective summam 
semper certitudinem habent. De praesentibus et praeteritis constat; quoniam eo ipso, quo sunt vel fuerunt, 
non possunt non esse vel fuisse: nec de futuris ambigendum, quae pari ter etsi non fati alicujus inevitabili 
necessitate, tamen ratione turn praescientiae turn praedeterminationis divinae non possunt non fore; nisi 
enim certo eveniant quaecunque futura sunt, non apparet, quo pacto summo Creatori omniscientiae & 
omnipotentiae laus illibata constare queat.”

21 “Objiciunt primo, aliam esse rationem calculorum aliam morborum aut mutationum aeris; illorum 
numerum determinatum esse, horum indeterminatum & vagum. Ad quod respondeo, utrumque respectu 
cognitionis nostrae aeque poni incertum & indeterminatum; sed quicquam in se & sua natura tale esse, 
non magis a nobis posse concipi, quam concipi potest, idem simul ab Auctore naturae creatum esse & 
non creatum: quaecunque enim Deus fecit, eo ipso dum fecit, etiam determinavit.”

22 While I do not agree with every part of Daston’s analysis, her basic point is soundly established, namely 
that there is no real chance in Jacob Bernoulli’s universe.

23 Cf. (ibid., 211), immediately following the passage quoted at note 19: “Let others dispute how this 
certainty of future occurrences may coexist with the contingency and freedom of secondary causes; we 
do not wish to deal with matters extraneous to our goal.”

24 “Unde tandem hoc singulare sequi videtur, quod si eventuum omnium observationes per totam 
aetemitatem continuarentur, (probabilitate ultimo in perfectam certitudinem abeunte) omnia in mundo 
certis rationibus & constanti vicissitudinis lege contingere deprehenderentur; adeo ut etiam in maxime 
casualibus atque fortuitis quandam quasi necessitatem, &, ut dicam, fatalitatem agnoscere teneamur; 
quam nescio annon ipse jam Plato intendere voluerit, suo de universali rerum apocatastasi dogmate, 
secundum quod omnia post innumerabilium seculorum decursum in pristinum reversura statum praedixit”

25 For Latin see note 1 above.

26 On the um model, cf. Daston (1988,237 ff.)

22 Cf. Bernoulli (1686,238): “ Animadverto, subducto calculo, peritias Colllusorum esse incommensurabiles 
inter se, id est, veram illorum rationem nullo numero posse exprimi, tametsi id fierit prope verum possit.” 
This incommensurability would follow if it was assumed that one player could concede the other a 
certain number of points in a fair game and then asked how much better the first player must be than the 
second if this concession of points makes their chances of winning the game equal.
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28 Cf. Leibniz (GM, III, 1,78; letter of Bernoulli to Leibniz, October 3,1703):

“Unde jam determinate possum, quot observations instituendae, ut centies, millies, decies millies 
etc. verisimilius (adeoque tandem ut moraliter certum) sit, rationem inter numeros casuum, quam 
hoc pacto obtineo, legitimam et genuinam esse.”

In (1713, 227), Bernoulli uses the word “inventam,” or “found.” Earlier (225), he uses the word 
“detexerit,” and (226), he uses the word “determinare.”

29 Cf. Stigler (1986), 66:

“Bernoulli [...] dealt only with the case where the numbers of fertile cases (r) and sterile cases (s)

r
were integers, not with the modem situation in which the proportion------- is allowed to range

r + s
over all real numbers in the interval [0,1]. His aim was to show that, in essence, the exact ratio 

r
------- could be recovered with ‘moral certainty’ for a sufficiently largeN  [...]. He did view the
r + j

ra tio ------- as possibly an approximation to the real state of affairs, and he knew thatr and s were
r + s

not identifiable ( r ’ = lO rands’ = 1 Os would give the same ratio as r ands). But up to the order of 
approximation determined by a given r+s he sought to determine the ratio exactly, as his state
ments and examples make clear.”

Hacking, (1975,158) assumes that Bernoulli uses the observed ratio of cases after some number of trials 
plus or minus some small error term as an “estimator” of the a priori probability of the outcome, and he 
is concerned that Bernoulli, not having a notation for conditional probability, has confused the probability 
that the a priori probability p  falls within a small range around the observed ratio given that prior 
probabilityp, with the probability that thep  falls within that same small range around the observed ratio 
given that observed ratio. When he quotes the passage in Bernoulli’s letter to Leibniz quoted in the 
previous note, (163), reads his interpretation into the text by translating: “that the ratio between the 
number of cases which I estimate is legitimate and genuine [i.e. within some allowed error].” While 
Leibniz and Bernoulli in their letters (April 1703, October 1703) do write of estimating probabilities 
(“doctrina deprobabilitatibus aestimandis"), they are thinking of epistemic probabilities rather than 
directly of frequencies. The Emergence o f Probability has been very influential, but here and elsewhere 
Hacking reads later issues back into earlier authors in a way that creates rather than solves problems of 
understanding what the historical actors intended.

30 Cf, Bernoulli (1713, 226): “Si loco umae substituamus aerem, ex. gr. sive corpus humanum, quae 
fomitem variarum mutationum atque morborum intra se, velut uma calculos, continent [...].” Cf. Leibniz, 
(GM, III, 1, 88). So the diseases could be the cases, but apparently Bernoulli is thinking that some 
diseases are more common than others, so that some would count for more cases.

31 “ Vous me demandez, si ces Propositions renferment quelque realite qui puisse etre demontree, ou si elles 
ne sont fondles que sur de pures conjectures faites en l’air, et qui n ’ont rien de solide; ne pouvant pas 
concevoir, & ce que vous dites, que l’on puisse mesurer les forces desjoudurs par nombres, et encore 
moins en tirer toutes les conclusions, que j ’en ay tirees.”

32 “Qu’il n ’en est pas de mSme des jeux, qui dependent uniquement, ou en partie, du genie, de l’industrie 
ou de l ’adresse des joueurs, tels que sont les jeux de la paume, des dchecs, & la pluspart des jeux de 
cartes; 6tant bien visible, que Ton ne sauroit determiner par les causes, ou d priori, comme Ton parle, de 
combien un homme est plus savant, plus adroit ou plus habile qu’un autre, sans avoir une parfaite
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connoissance de la nature de l’ame, & et la disposition des organes du corps humain, laquelle mille 
causes occultes, qui y concourent, rendent absolument impossible. Mais cela n ’empgche pas, qu'on ne 
puisse le s?avoir presque aussi certainement, dposteriori, par l ’observation de l ’6v6nement plusieurs 
fois reiter£e, en faisant ce qui se peut pratiquer dans les jeux meme de pur hazard, lors qu’on ne s^ait pas 
le nombre des cas, qui peuvent arriver.”

33 Cf. Bernoulli (1713, new numeration, 3):

“Je juge par 1&, avec assez de certitude, que le premier est deux ou trois fois meilleur jou&ur que 
1’autre, ayant pour ainsi dire deux ou trois parties d ’adresse, comme autant de cas ou de causes qui 
luy font gagner la bale, IS oil l’autre n ’en a qu’une.”

34 Cf. Hald (1990, 263):

“His proof was worked out at the latest in 1690. It must have seemed rather unsatisfactory, to 
Bernoulli himself as well, when he included it in the manuscript 15 years later in view of the fact 
that the integral calculus had been developed in the meantime. In 1705 it would have been natural 
to evaluate the areas (sums) by means of integrals instead of limiting ordinates [...]. The need for 
a revision of the proof may have been another reason for Bernoulli’s hesitation to publish.”

I know of no evidence that Bernoulli thought his proof unsatisfactory.

35 John Arbuthnot, in his (1692), a work incorporating an English translation of large parts of Huygens’s 
De ratiociniis in ludo aleae, makes this point in his Preface:

“All a wise Man can do in such a Case is, to lay his Business on such Events, as have the most or 
most powerful second Causes, and this is true both in the great Events of the World, and in ordi
nary Games [...] that only which is left to me, is to wager where there are the greatest number of 
Chances, and consequently the greatest probability to gain [...] and tho it is possible, if there are 
any Chances against him at all, that he may lose, yet when he chuseth the safest side, he may part 
with this Money with more content (if there can be any at all) in such a Case.”
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CARLOS ALVAREZ JIMENEZ

MATHEMATICAL ANALYSIS AND ANALYTICAL SCIENCE*

I Introduction

The development of physical sciences during the eighteenth century is inconceiv
able without also taking into account a major development in mathematical anal
ysis itself. The birth of a new analytical mechanics, of a new physical theory of 
sound, of a new capillarity theory or, at the beginning of nineteenth century, of the 
theories of heat and elasticity, all follow nearly the same procedure consisting in 
the definition of variables and equations to describe the phenomenon. This treat
ment of physical sciences, that took a long way from purely descriptive approach
es, or even of geometrical models, has been qualified as “analytical”. This style 
can be found in the great scientific treatises of eighteenth century as a kind of 
“method” of approaching natural phenomena.

At first glance it can be said that a physical science becomes “analytical” as 
soon as mathematical analysis is used to express the equations describing the 
physical phenomenon. This way of mathematisation contrasts with a previous 
one, where the description was done by geometry, for example, as was the case in 
the first science of movement by Galileo or even with Newton’s Principia whose 
underlying mathematical style can be considered as a sort of “geometry of limit 
positions”(De Gant 1986). But the role played by mathematical analysis in the 
new physical theories is more than just a way for expressing physical concepts 
that were previously defined; the algorithms through which this new style of math
ematisation is realized become also the means for the constitution of the concepts 
for an analytical science. The role played by mathematical analysis, as the privi
leged mathematical mean to describe a wide scope of physical phenomena, in
cludes the first descriptions in mechanics up to those of heat theory. In the preface 
of his Theorie Analytique de la Chaleur, Fourier describes this wide application 
of mathematical analysis:

“Les Equations analytiques, ig n o res  des anciens g6om6tres, que Descartes a introduites le pre
mier dans 1 ’6tude des courbes et des surfaces, ne sont pas restreintes aux propri6t6s des figures, et 
& celles qui sont l ’objet de la mdcanique rationnelle; elles s ’6tend k tous les ph6nom£nes gdndraux.
II ne peut y avoir de langage plus universel et plus simple, plus digne d ’exprimer les rapports 
in variables des Stres naturels.
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Consid6r6e sous ce point de vue, 1’analyse math^matique est aussi 6tendue que la nature elle- 
m6me; elle d6finit tous les rapports sensibles, mesure les temps, les espaces, les forces, les 
temperatures; cette science difficile se forme avec lenteur, mais elle conserve tous les principes 
qu ’elle a une fois acquis; elle s ’accroit et s ’affermit sans cesse au milieu de tant de variations et 
d ’erreurs de l’esprit humain”. (Fourier 1822, xiij-xiv)

But even if the so called analytical sciences, such as mechanics, probability 
theory or heat theory, come closer to a model where mathematical analysis plays 
the central role, it must be said that its particular status—concerning the model 
that it follows or the model that it imposes—and also the history of its birth and 
the history of its radical separation from the previous models of explanation, can
not fit into a general explanatory framework.

Let us take the example of mechanics. Since the Newtonian synthesis between 
celestial mechanics and terrestrial mechanics, it can be said that the two main 
scientific texts on mechanics from the eighteenth century, J. L. Lagrange’s Meca- 
nique Analytique (1788) and P. S. Laplace’s Mecanique Celeste (1799-1725), 
represent the highest expression of that theoretical movement introduced by New
ton in his Philosophiae Naturalis Principia Mathematica (1687). With this in 
mind it could be said that a common point of view ought to be shared by Lagrange 
and Laplace concerning their approach towards dynamics and its analytical treat
ment. But we find in Laplace one hypothesis that runs through his Mecanique 
Celeste, and also through other fields, such as capillarity, heat or light, that could 
hardly be found in Lagrange’s texts: it is the hypothesis establishing that these 
phenomena are the result of the action through distance of certain attractive and 
repulsive forces between molecules. This model of explanation is clearly expressed 
in his historical notice of the XII book of his Mecanique Celeste:

“Au moyen de ces suppositions, les phdnomdnes de l ’expansion de la chaleur et des vibrations 
des gaz sont ramen6s & des forces attractives et r6pulsives qui ne sont sensibles qu’&des distances 
imperceptibles. Dans ma thdorie de Taction capillaire, j ’ai ramend & semblables forces les effets de 
la capillarity. Tous les ph6nomdnes terrestres ddpendent de ce genre de forces comme les ph6nomdnes 
cdlestes dependent de la gravitation universelle. Leur considdration me parait devoir Stre maintenant 
le principal objet de la philosophic mathdmatique.” (Laplace, 1799-1825, V 99)

With Lagrange, on the other hand, the analytical treatment of phenomena 
seems to go against any hypothesis concerning any physical approach for them. 
Lagrange’s Mecanique Analitique is a text where the formal expression of the 
main concepts, and the role they play therein, make possible the wide scope of 
applications they have. A remarkable example is given by the principle of “virtual 
velocities”, treated as a kind of axiom of mechanics, which states that a system of 
forces is in equilibrium if these forces are in an inverse ratio to their virtual speed. 
Lagrange’s general formulation of this principle states

“Si un systdme quelconque de tant de corps ou points que 1 ’on veut tirds, chacun par des puissances 
quelconques, est en dquilibre, et qu’on donne & ce systdme un petit mouvement quelconque, en
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vertu duquel chaque point parcoure un espace infiniment petit qui exprimera sa vitesse virtuelle, 
la some des puissances, multiplides chacune par l’espace que le point oft elle est appliqude parcourt 
suivant la direction de cette mdme puissance, sera toujours dgale £ zero, en regardant comme 
positifs les petits espaces parcourus dans le sens des puissances, et comme ndgatifs les espaces 
parcourus dans un sens opposd.” (Lagrange 1788,11-12)

This principle is immediately expressed through a differential form:

Pdp + Qdq+Rdr + ... = 0

where P, Q, R, ... are forces acting on different bodies and dp, dq, dr, ... are the 
differentials of the quantities p ,q , r , ... which represent the line distances from the 
bodies where the forces act, to their centers of mass.

The great advantage of this formal expression for the principle of virtual ve
locities, is that in this way it might be used to solve all the problems that might 
appear towards equilibrium of forces. In this sense the principle plays the role of 
principle of unification of the, at least, static of solid bodies and the static of 
fluids. This unification will make use of a formal calculus particularly well adapt
ed for this purpose, the calculus of variations, that will make possible the reduc
tion of mechanics to analysis, before making the reduction of analysis to algebra. 
This theoretical reduction is already announced in the preface of the Mecanique 
Analytique:

“On a ddj& plusieurs T ra ils  de Mdcanique, mais le plan de celui-ci est entidrement neuf [...]. Les 
m6thodes que j ’y expose ne demandent ni constructions, ni raisonnements gdomdtriques ou 
mdchaniques, mais seulement des operations algdbriques, assujetties & une marche rdgulidre et 
uniforme.” (Lagrange 1788, v-vi)

And he states also that

“Ceux qui aiment T Analyse verront avec plaisir la Mdchanique en devenir une nouvelle branche 
et ne sauront grd d ’en avoir dtendu ainsi le domaine.” (Lagrange 1788, vi)

This way of understanding the analytic methods underlying mechanics as a 
sort of translation into algebraic means, could be identified with the synthesis 
which Descartes made between algebra and geometry.

At first glance it could be said that the analytical method can be declared as 
the inheritor of Cartesian thought: the subordination of geometry to algebra, a 
procedure well justified by le Discours de la Methode and la Geometrie, states 
that the knowledge of geometric properties of bodies is obtained by an ascension 
in the order of magnitudes that, just as the order of reasons, follows a way moving 
from the complex to the simplest one. In this way algebra carries out the role of 
“reason” in its investigation of spatial “extension”, and it also carries out a means 
of expression which, more than a mere description for phenomena, becomes the 
means for rational comprehension. By recognizing the origin of this tradition in
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Descartes it is possible to say that the analytic methods all live in the theoretical 
frame of modernity created by him1.

This treatment and diffusion of formal procedures within calculus, and therein 
through physical sciences, becomes an ideal which is more than a simple proce
dure to generalize certain properties; it is considered the most important means to 
propagate knowledge. A typical example for this is Condillac who conceived that 
“analytical” procedures were the most appropriate ones to guarantee an accord 
and fidelity with regards to the nature and methods of verification of ideas. But for 
the success of this project, a particular language able to transmit the research 
procedures as well as conceptual changes and transformations, was needed. This 
language is algebra, since, for Condillac, it is the only well-formed language where 
nothing is arbitrary (Dhombres 1982-1983).

We think that Laplace shares this point of view concerning the support that 
analytical-algebraic procedures give to the constitution of knowledge, as well. In 
his seventh lesson given at the Ecole Normale, and maybe because of the great 
influence that Condillac’s thought had therein, Laplace states that

“Pour bien connaitre les propridtds des corps, on a d ’abord fait abstraction de leurs propridtds, et 
l ’on n ’a vu en eux qu’une dtendue figurde, mobile et impdndtrable. On a fait encore abstraction de 
ces deux demidres propridtds gdndrales en considdrant l ’dtendue simple comme figurde. Les 
nombreux rapports qu’elle prdsente sous ce point de vue sont l ’objet de la g6om6trie. Enfin, par 
une abstraction encore plus grande, on n ’a envisage dans l’dtendue qu’une quantitd susceptible 
d ’accroissement et de diminution; c ’est l ’objet de la science des grandeurs en gdndral, ou de 
l ’arithmdtique universelle, [...]. Ensuite on a restitud successivement aux corps les propridtds dont 
on les avait ddpouillds; l ’observation et l’expdrience en ont fait connaitre de nouvelles, et l ’on a 
ddtermind les nouveaux rapports qui naissaient de ces additions successives, en s ’aidant toujours 
des rapports prdcddemment ddcouverts. Ainsi, la mdcanique, l ’astronomie, l ’optique, et 
gdndralement toutes les sciences qui s ’appuient & la fois sur l ’observation et le calcul, ont dtd 
crddes et p e rfe c tio n 's . Vous voyes par Id que ces sciences diverses s ’enchainent les unes aux 
autres, et qu’elles ont une source commune dans la science des grandeurs dont 1’utile influence 
s ’dtend sur toute la philosophic naturelle. Cette mdthode de decomposer les objets et de les 
recomposer pour en saisir parfaitement les rapports, se nomme analyse. L’esprit humain lui est 
redevable de tout ce qu’il sait avec precision sur la nature des choses.” (Laplace LEN, 87)

So far we have talked only about those changes that took place within mechan
ics and its transformation into an analytical science, but what can be said about 
other analytic sciences? A quick look at Fourier’s Theorie Analytique de la Cha- 
leur shows clearly that the sense of what “analytic” means here— in what sense is 
the theory of heat an “analytic theory”—has partially changed. In Fourier’s theo
ry of heat there is no attempt to reduce the explanation of heat phenomena to 
algebraic deductions. Certainly the preface to the Theorie Analytique gives a clear 
idea of the role that mathematical analysis played in the general constitution of 
the theory, but it is also clear that in this treatise, mathematical analysis is by no 
means just a subset of algebraic methods. His approach to heat phenomena states 
that they are not reduced to mechanical theories, since they are not related with
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the question of movement and of equilibrium of bodies, nor are they related with 
attractive or repulsive forces between bodies or molecules. This point of view, 
clearly different from “Laplacian molecularism” opens new horizons to mathe
matical physics: his main purpose is to give the mathematical description for the 
problem of diffusion of heat into a solid body, the question of transmission of heat 
from one body to another, the question of heat loss. In this sense the analytic 
questions to be solved are those of finding the correct expression of the “tempera
ture function” v at each point of a solid body when a source of heat is applied at 
one point o of the body, the question of finding the heat flow after a time t, and the 
problem of the heat loss, after a time t, at each point of the body, when this source 
is no longer in contact and ceases its action over the body.

Considering that the value v of the temperature at each point of a body is given 
through a function/(x, y, z, t) of the variables x, y, z which give the position of the 
point, and of the variable t which gives the time that a heat source has been in 
contact with one extreme of the body, the heat flow is given through the differen
tial equation

dv _ K rd 2v d 2v d 2v >
~dt~~CD[^c2 +

Where K  gives the specific conductibility of heat of the body—the heat content 
transmitted through the body in a unity of time— C is the specific heat capacity— 
the necessary heat content needed to raise the temperature of a unity of the mass 
body from the temperature 0, the temperature of the melting ice, to temperature 1, 
the temperature of boiling water—and D is the density of the body. Now, consid
ering that the heat flow is to be found using this equation, whose particular condi
tions justify the general solution given through a trigonometric (convergent) series, 
and considering Fourier’s proof that not only this particular function of heat flow, 
but “any function” can be developed into a trigonometric series, it seems clear that 
the “mathematical analysis” working in this treatise is not to be identified with a 
branch of mathematics whose main advantage is its possible reduction to algebra. 
Already in the introduction to his Theorie Analytique, Fourier remarks that new 
methods, and not only “algebraic deductions4*, are needed in his treatise:

“Les dquations du mouvement de la chaleur, comme celles qui expriment les vibrations des corps 
sonores, ou les demidres oscillations des liquides, appartiennent d une des branches de la science 
du calcul les plus rdcemment ddcouvertes, et qu’il importait beaucoup de perfectionner. Aprds 
avoir dtabli ces dquations diffdrentielles, il fallait en obtenir les intdgrales; ce qui consiste d passer 
d ’une expression commune, & une solution propre assujettie & toutes les conditions donndes. Cette 
recherche difficile exigeait une analyse spdciale, fondde sur des thdordmes nouveaux dont nous ne 
pourrions ici faiie connaitre 1’objeL La mdthode qui en ddrive ne laisse rien de vague et d ’inddtermind 
dans les solutions; elle les conduit jusqu’aux demidres applications numdriques, condition
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ndccessaire de toute recherche, et sans Iaquelle on n ’arriverait qu’d des transformations inutiles.”
(Fourier 1822, xij)

It seems clear to us that between the two analytic treatises by Lagrange and 
Fourier respectively, the meaning, the role and the scope of “mathematical analy
sis” have changed. This change is not only related to any particular style of math- 
ematisation, but it concerns the mathematical theory that constitutes the base and 
the possibility for all those analytical projects. In other words, we think that there 
have been some transformations in mathematical analysis, just like there have 
been some transformations in physical sciences.

In this text we will analyze some of the changes that took place in mathemat
ical analysis in the period between these two analytic treatises, Lagrange’s Meca- 
nique Analytique and Fourier’s Theorie Analytique de la Chaleur. However, we 
have to point out that we will not refer to the “underlying mathematics” of these 
two treatises; we will not refer to the Calculus o f  Variations nor to Fourier's 
Series or Fourier's Analysis. The problem we want to analyze is rather that of the 
emergence of some concepts of mathematical analysis, mainly those of “continu
ity” (of functions) and of “convergence” (of series), which determined the devel
opment of this branch of mathematics during the nineteenth century. We think 
that it is the emergence of these concepts which makes possible the dissolution of 
a link between “algebra” and “analysis”, a link that is conceived, and valued by 
Lagrange, as a relation of “subordination” of the latter to the former. After the 
dissolution of this particular link, a new shape was given to mathematical analy
sis, creating a new branch of mathematics, valued “in itself’ by Fourier.

The emergence and use of those new concepts will be followed through the 
evolution of mathematical analysis and the theory of functions, and it could be 
said that after their appearance algebra itself will not be able to overlook the new 
“analytic methods”2.

II The Algebraic Foundation of Mathematical Analysis

Regarding the main transformations within mathematical analysis, it seems that 
the first great change in the eighteenth century was introduced by Euler, who 
made the concept of “function” the central one. The reorganization given by his 
Introductio in Analysin Infinitorum (1748) introduced a new attitude towards the 
field of “quantities”. Up to that moment mathematical analysis had been con
ceived as a kind of algebra of infinitely small or vanishing quantities, out of which 
the mechanical or geometrical problems could be solved. Euler’s Introductio gives 
a new treatment for quantities—constant, variable, infinitely small or infinitely 
large— through those “calculus expressions” which are “functions”. The field of 
quantities is conceived as being formed out of constant and variable quantities—
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which are “like the gender or the species towards the individual” (ibid., I, 4). 
With a variable quantity it is possible to define another variable quantity through 
“an analytical expression made out of this quantity and other constant quantities” 
(ibid). The variable quantity obtained by this procedure is a “function” of the first 
variable quantity, and functions are classified according to the analytical proce
dures used to define them. The Introductio is above all a treatise that intends to 
give a complete classification for functions, and through them a classification of 
curve lines. It is in this general scope that algebra becomes the privileged mean to 
express a function and to develop the theory of functions itself. This algebraic 
treatment of functions, that constitutes a new branch of mathematical analysis 
namely “algebraic analysis”, became a necessary background that preceded infin
itesimal calculus.

Now, even if the main trends for Euler’s mathematical analysis are to be found 
in the algebraic treatment of functions, it must be pointed out that the algebraic 
form is above all the way through which a variable quantity is transformed in 
order to define a function, and so a function is more than just an equation through 
which an unknown quantity is to be found. As a variable quantity, a function runs 
through different values, depending on the values given to the variable quantity. 
A function Z of the variable z might be “algebraic” or “transcendent”.

“The first ones are obtained through variable quantities that are combined among them by using
only the common algebraic operations; the second ones depend on other operations [...].” (ibid., I,
5-6)

Algebraic functions might be “irrational” or “rational”, according to whether 
the variable z is submitted to root operations or is free of them. Another distinc
tion between functions is given after the first one: “rational” functions are always 
“uniform”—only one value for the function is obtained for each value given to the 
variable quantity—while “irrational” functions are always “multiform”—many 
different values for Z might be obtained for each value given to the variable quan
tity. Now the way in which the quantity Z  takes different values, as the variable z 
runs through different values, is given precisely through an algebraic, analytic, 
expression. If the algebraic expression is such that Z is a “multiform” function, it 
might happen not only that for some values of z, Z takes two or more different 
values, but also that for some values of z, Z might be no longer a real but an 
imaginary quantity. In this case, the way in which the quantity Z takes its corre
sponding different (possibly manifold) values might not follow a “continuous 
course” in the domain of quantities. But for uniform functions, Euler considers 
valid, because of its algebraic form, the following property: if a uniform function 
Z(z) takes, for z -  a, the value Z = A, and for z - b ,  the value Z -  B, then while the 
variable quantity z runs through the values between a and b, the function Z must 
take, at least ones, each value between A and B. Euler’s argument states that
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“Since Z is a uniform function of z, for every real value of z, the functionZ takes also a real value, 
and if the quantity Z, in the first case, when z -  a, takes the value A, and in the second case, when 
z -  b, the value fi; thenZ  could not run from A to 5  without passing through all the intermediate 
values. Then if  the equation Z -A  -  0 and the equationZ -fi -  0, have a real root, the equationZ - 
C -  0 will have also one w heneverC lies between A andfi.” (ibid., 1,20)

With this general property for uniform functions, Euler proves that for a uni
form function Z of z, whose highest exponent is an odd number 2n+1, the func
tion Z has at least one real simple factor. In his proof, besides the intermediate 
value property, he uses a formal calculus for infinite quantities as if they were any 
real and finite quantities:

If the function Z is of the form

2n+l , 2n , __2n-l , 2 ,z + pz +qz +rz +...
when z -  all the terms disappear in relation to the first one, and the function 
takes the form Z -  (oo)2«+1 = oo; but when z = -°°, the function takes the form 
Z = (~oo)2n+1 = -oo. Now for any real value C, since C lies between and °°, the 
theorem states that Z cannot run from -°o to °o without passing through C. That 
means that the equation Z -C  -  0 has a real root. If C -  0 the conclusion is that the 
function Z has a real simple factor (z - c ), where c lies between and °°.

Before giving the intermediate value property, Euler stated the two following 
properties for an entire function:

1. The function given through an algebraic expression of the form

z" + pz"-1 +qzn~2 + rz"-3+... 

is equal to the product of n simple (linear) factors3.
2. The simple factors might be real or imaginary, but the imaginary simple factors 
are always in even number.

Clearly these two properties were sufficient to proof that an entire function 
whose highest exponent is an odd number has at least one real root, but as we have 
seen, Euler used the intermediate value property, as if some hidden reason, not 
explained in his Introductio, made the conclusion without this argument illegiti
mate.

Concerning properties 1 and 2, the first one is obtained directly from the state
ment that any equation of nth degree has n roots; the second one establishes that 
imaginary roots are always in even number. For the second property Euler gave 
no general proof, nevertheless he realized that in some sense this property was 
closely related with the fact that a polynomial is equal to the product of simple or 
double real factors. The only argument given by him to support this statement 
goes as follows: first he assures that if a function/(* ) has two simple imaginary
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factors, then the product of these two factors is a real double factor: without any 
hypothesis concerning the nature of imaginary roots4, Euler states that if P(x) 
denotes the product of the simple real factors of/(jc)—and so P(x) is real of degree

f (x)
(n -2)— , the product of the two imaginary factors is - which is a real double

P ( x )
factor. After this he assures that if a function is the product of four simple imagi
nary factors, then it can be given as the product of two double real factors; to prove 
this fact he takes as imaginary quantities those of the form a + b 4 - I  . Once this 
property for functions that are the product of four imaginary factors is proven, 
Euler makes a generalization: for a function Z of the variable z it is always possi
ble to combine in couples the imaginary factors to obtain a (double) real factor5, 
For this argument Euler states simply that

“If there are only two imaginary factors, it is clear that their product will be real, and if  there are 
four imaginary factors their product, as we have seen, can be given as the product of two double 
real factors of the foun fz2+gz+h. Even if the same proof is not valid for higher powers, it seems 
clear enough that this property holds for any number o f  factors, so that instead o f 2n simple 
imaginary factors, there will be rt double real factors. So any entire function of the variable z is 
equal to the product of simple or double real factors. If the truth of this proposition is not proved 
here completely, it will soon become stronger.”6 (ibid., 1 ,19)

After this argument, which cannot be considered as a proof for the general 
case, Euler shows, using the two facts: that a polynomial of odd degree has at least 
a real root, and that those polynomials which are equal to the product of four 
imaginary factors are equal to the product of two double real factors, that the 
polynomials

a + bzn + cz2n + dz3n

a + bzn + cz2" + dzin + ez4"

a + bzn + cz2*1 + dzin + ez4" + f z 5n

accept the same factorisation by real or double simple factors. These cases con
firm the hypothesis that any entire function—any polynomial—is equal to the 
product of simple or double real factors7.

“So if there were still some doubts concerning the factorisation of any entire function, they should 
vanish almost completely.” (ibid., 1,117)

In any case, as it will be clearly admitted by Lagrange (1798, note 1 ,111-113), 
the proof about the factorization of any polynomial in real factors, the hypothesis 
about the even number of the imaginary roots, and therefore the nature of the 
imaginary roots8, is based on the property that any equation of an odd degree has
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a real root. Euler considered that the purely algebraic conclusion from the equal
ity in number of roots and the degree of the equation, and of the fact that imagi
nary roots are always in an even number, could not be used as an argument to 
prove that an equation of odd degree has a real root. For Euler, the intermediate 
value property appears already as one which algebra could not ignore.

The intermediate value property which Euler proves for uniform-rational func
tions explicitly rests on the assumption that once the variable quantity Z has reached 
two different (real) values, it should run through all the values between them. 
Two facts of different kind are involved here; first the fact that Z is a uniform- 
rational function: because of the algebraic nature of the function Z—no roots for 
the variable z appear—while z runs through all the real values, Z takes only real 
values and no “jumps” might occur in this case, since the only possibility for a 
jump is when an irrational or multiform function takes imaginary values. Consid
ering the general algebraic form for a multiform function Z of z:

Z n + PZn~l + QZn l  + R Zn~3+...= 0 (1)

where P, Q, R, ... are uniform functions of z, the different values of Z  are given 
through the different n roots of the polynomial, but in this case each “root” of the 
equation is a function of z that might take only real values, or is a function that 
might take imaginary values for some values of z. Euler gives the example of a 
“biforme” function Z 2-2PZ+Q  «= 0 (where P and Q are uniform functions of z), 
where for each value of z the two values of Z are given, the first one by 
Zj (z) = P + y]p2 - Q  , and the second one by Z2 (z) = P -  yjP2 - Q  . So if the 
uniform function P is such that for every value of z P 2 > Q, the two values of Z are 
always real; but for those z where P 2 < Q, the values of Z will be imaginary. And 
he asserts, again from the intermediate value property, that when both conditions 
hold and there are some values of z such that P 2 > Q, and some other values of z 
such that P 2 <Q , then there must exist at least one value of z between them, such 
that P 2 = Q. In this case the two values of Z coincide and are given through the 
function P. From the algebraic theory of equations Euler assures that if n is an 
odd number, at least one of the root-functions is a uniform real function, and 
whenever a value of z gives an imaginary value for one of the root-functions, this 
same value of z will give imaginary values for at least another (always in even 
number) root-function. So if Z(a) -  A and Z(b) -  B, but Z does not take the value 
C which lies between A and B, it is because while the variable z runs from a to b, 
Z  takes imaginary values.

The second fact related with the intermediate value property deals with the 
nature of “variable quantities”: since they are magnitudes which include all deter
mined quantities, it is in their nature to take all values between two fixed ones.
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That is why in geometry a variable quantity is representated correctly by a straight 
line, and a function can be represented by a curved line: a line all of whose points 
take as abscissa a value of z, and as ordinate the corresponding value(s) of Z. The 
remarkable fact in Euler’s geometric interpretation of functions (when for each 
value of z the corresponding value of Z is given, then by taking the first one as 
abscissa and the second as ordinate, a line is obtained) is that a (curved or straight) 
line is obtained here with “all” the points out of which it is assembled; this makes 
possible to study geometric curves independent of the idea of “mouvement” or 
“fluxion” of a point. With this approach even “mechanical curves” might be stud
ied as formed by functions.

“Even if  we can describe mechanically many curve lines by the continuous mouvement o f a 
point which presents the whole curve to our sight, we will consider them as obtained by functions.
This approach is more analytic, more general and appropriate to calculation. In this way any 
function of z will give some straight or curve line and, conversly, any curve line will be related to 
a function.” (Euler 1748, II, 6)

When the function Z is uniform, the curve representing it, will be produced 
continuously and indefinitely, and at any point of the horizontal axis representing 
the values of the variable z, a perpendicular line will cut the curve exactly at one 
point. When the function is multiform, and is given by a polynomial of the previ
ous general form, the curve representing it might be intercepted by a perpendicu
lar straight line in n, n -2 , n -4 , ... points; making certain that if n is an odd 
number, any perpendicular will intercept this curve at least once; but when n is an 
even number, it may happen that at some points of the horizontal axis a perpen
dicular line does not intercept the curve representing the function at all, making 
clear that the intermediate value property “might” fail in this case.

Euler is certain that the intermediate value property depends only on the alge
braic nature of the function: if the property fails it is because function Z takes also 
imaginary values. Besides, “continuity” for functions and for “curves” is con
ceived by him as a property related with the permanence of the analytic expres
sion: no matter how the curve that represents it looks like, a function (and the 
curve) is continuous whenever it is obtained through a single analytic expression. 
That means that “continuity” is a property that is ruled by “analysis”—through 
the analytic expression—and not by geometry9. For a multiform function, even if 
the curve related to it might be formed by different branches and the intermediate 
value property does not hold, it is considered by him as a continuous curve (gen
erated by one analytic expression). On the other hand, “discontinuous” curves are 
for him “mixed” curve, obtained with two or more different functions.

For Euler the way in which a variable quantity runs between two fixed values 
needs no further description to guarantee the fact that it does it “continuously”. 
Considered as a variable quantity, the variable z bears no “jump” nor any “gap” in
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the domain of real quantities; and the same happens with the function Z, as long 
as it remains in the domain of real quantities. For Euler there is no need to state 
that if the variable z runs “continuously”, the analytic law which defines Z also 
makes it follow a “continuous” path through the values it takes10.

The continuity of functions—in Euler’s sense— is a question that cannot be 
generally answered just by stating that a function is a variable quantity obtained 
from another (variable) quantity through an analytic expression; the analytic form 
has to be given in such a way that the permanence of the analytic expression could 
be identified without any doubt. Considering the classification given by Euler at 
the beginning of his Introduction it seems that for algebraic-rational functions 
there is no problem at all: the polynomial form becomes the mean to express 
them. For algebraic irrational functions and for transcendent functions the gener
alization from polynomials to infinite power series becomes a necessary step to be 
given. Through the infinite power series it might be said that the difference be
tween algebraic and transcendent functions almost vanishes: the possibility to 
reduce those functions which require the transcendental operations (mainly the 
logarithmic and the exponential functions) to power series makes them appear as 
“continuous” (always in Euler’s sense) functions, too.

After having analyzed some features of Euler’s continuity o f  functions, let us 
look closely at the expression of a transcendent function in power series. Two 
general hypotheses concerning the nature of real quantities, are made to justify 
the development of the logarithmic function in power series: first a formal calcu
lus for infinitely small and infinitely large quantities is used as a generalization of 
the calculus for finite quantities; secondly a general hypothesis about finite quan
tities: the assumption that they all can be obtained as the product of an infinitely 
small and an infinitely large quantity. For the calculation of the power series for 
the logarithmic function another main algebraic principle is used by Euler: New
ton’s binomial formula for the case where the exponent is any real quantity. This 
formula, admitted without proof11, is here justified as the result of a formal proce
dure that is already valid in the case of a positive integer exponent.

The series for the logarithmic function will be calculated also by Lagrange and 
Cauchy, and we will analyze the solutions given by them as a paradigmatic exam
ple that will help us to better understand the changes that took place within alge
braic analysis from Euler’s Introductio to Cauchy’s Cours d’Analyse.

Starting from an arbitrary quantity a and an infinitely small quantity to, since 
a" is > 1 if a > 1, then a03 = 1 + yr, where y/ is another infinitely small quantity. It is 
possible to write the last one as a function of the first one: yr=ka) and aa -  1+kco. 
If L denotes the characteristic for logarithms of base a, then co-L(l+ka)) and 
i(o- Lil+ka))1, and since “it is clear that when the number i increases, the value 
(1+£g>)' goes beyond the value of the unity (ibid., I, 88)”, then (1+ka>)1- (1+x) 
and I © - L ( l  + k6))'« L(l+x).  Starting from (1+k(o)i -  (1+x), Euler states
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(1 + £g> )-(1  + x)^ , and then, by a sim ple algebraic substitu tion , 

i6) - —|(l + x )‘ — 1J. By developing the term inside the parenthesis through New

ton’s formula

L ( l  +  X) =  16) =  -j£-|(l +  x )^  - 1 |  =

( i - l ) x z  ̂ (i -  l)(2i -1 ) at ( i - l ) ( 2 i - l ) ( 3 i - l ) x  |
i i • 2 i i • 2 i • 31 i • 2 i • 3i • 4i

-1

When i becomes an infinitely large quantity, Euler establishes that a quotient of 

the form — —^  , becomes equal to -  and so he finally gets
(n + l)z n + 1

L(l + x) = — 
k

(  2 3 4 ^X X X
X ~2 3 ” T

( 1 )

From the equality aw -  l+kyr Euler gets a ib> = (l+&6))‘ for any value i; and 
from Newton’s binomial formula this one is equal to

1+ik(0 + t  V  + -  M b ?) k W  + <(< - 1)(i - M z  3>_ t  w - h . .
2 2-3 2-3-4

Euler takes a finite number z and makes i = ^ ; so that number i be infinitely
. (  z \

large. From this am -  (1 + k(o)1 = 1 + k — . And again from Newton’s formula

f  z ^  
l + k -

V i )
= 1 + kz + ̂ — ^ - k 2z2 +

2 i
(i -  l)(i - 2 )  k 3 ^ 3  + ( i - l ) ( i - 2 ) ( i - 3 ) /:4_4 +

2i • 3/ 2 i • 3 i • 4i
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Since i is an infinitely large quantity, the value of a quotient ---------  becomes
(n + l)i

equal to —-— , so the series takes the value

uo 1 , , , * V  , k 3z 3 , k 4z4 ,
2 2-3 2-3-4

When io) -  1, the expression

a — 1 + k  H------ 1------- 1---------
2 2-3 2-3-4

+... (2)

gives the relation between the values a and k. With relation (2) it is possible to 
state that a -  ek, and so k = ln(a). The series expansion (1) for the logarithmic

1 /  2 3 4 A1 X X X
function is then equal to L( 1 + *) = ------  x ------H--------------K.. .

4 ln (a )[  2 3 4 J

Euler’s proof is a good example of what a formal procedure, given under the 
general frame of analytic thought, looks like: the series development for the loga
rithmic function is obtained through a purely algebraic calculus where the rules 
for the infinitely small and infinitely large quantities, and also a purely formal 
justification for Newton’s formula, completely fill any conceptual gap that might 
appear.

Lagrange’s point of view concerning algebraic analysis is close to Euler’s 
ideas about the role that algebra has to play in the development of the theory of 
functions. The intermediate value property will play an important role in relation 
with the nature of the roots of algebraic equations; but it will play a central role 
also in the calculation of the remainder of an infinite series, out of which this 
series could be replaced by a finite polynomial. Besides these facts, the continuity 
property plays an important role in the proof of the binomial formula as a special 
case of the Taylor series.

In his Discours sur Vobjet de la theorie des fonctions (Lagrange 1799), a 
short but deep manifesto for algebraic analysis, he states that the foundations of 
mathematical analysis are to be given by the new discipline defined through its 
relation with algebra: theory of functions. In a sense, Lagrange states that algebra 
is precisely a theory of functions, since those quantities algebra deals with appear 
as functions of other quantities. Through this theory of functions differential cal-
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cuius becomes a particular branch that will no longer need to consider infinitely 
small quantities, vanishing quantities or fluxions: the methods introduced through 
the calculus of these infinitely small quantities just try to find out the first terms of 
the infinite power series development for the function.

“II est [...] plus natural et plus simple de consid6rer imm6diatement la formation des premiers 
termes du d6veloppement des fonctions, sans employer le circuit mdtaphysique des infiniments 
petits ou des limites; et c ’est ramener le Calcul diff6rentiel & une origine purement algdbrique, que 
de le faire d6pendre uniquement de ce d6veloppement.” (ibid. 1799,234)

This algebraic style rules not only over the power series development of func
tions, but introduces, above all, a “canonical form’’ that resumes in itself the re
duction of mathematical analysis to algebra. In his Theorie des Fonctions 
Analytiques, all the possible applications of the analytic theory of functions are 
already contained in the canonical expression for a function given by its Taylor 
series: it is possible to proceed from the formal expression to the geometrical and 
mechanical domains. It is also through its formal nature that the theory of analyt
ic functions includes all possible kinds of calculus; not only differential calculus, 
but also the calculus of variations, “this type of calculus which does not require a 
new analysis but only a special application of the theory of functions” (Lagrange 
1797, 200-201).

Using this approach, Lagrange’s theory of functions completes a theoretical 
program that includes mechanics and the calculus of variations as two moments 
to give a reduction of mechanics to a purely algebraic reasoning12.

From the developm ent in power series for the function f ( x + i ): 
f(x + i)  = f(x)+ ip(x)+ i2q(x) + i3r(x)+... 13, Lagrange obtains the canonical devel
opment given through the derived functions14

•2 -3
f<,x + i) = f ( x )  + i fX x ) + l— f" ( x )  + j ^ f  (3)

It is through this canonical form that Lagrange calculates the series develop
ment for the binomial formula and for the exponential and the logarithmic func
tion L(l+;t). In order to give a proof for the binomial formula, Lagrange tries to 
give the development of (1+*)'" with a power series as an application of the ca
nonical form for the power function f ( x )  = x m .since then f ( x  + i) = (x + i)m. In 
this way, “by the simple rules of arithmetic or the first operations of algebra” 
(ibid., 15) it is possible to show that the first two terms of (x + i )m are x m + mixm~l ,

so clearly, by equating with the series (3), f ' ( x )  = mxm~x, and he obtains15:
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(x + i)m = x m+imxm~l + — rn(rn-\)xm-2 +

i 3 t
l)(m - 2)jc 3+...

(4)

In this way Newton’s binomial formula (4) is obtained through the “canonical 
form” for the power function. Once “the first operation of algebra” led him to the 
first derived function, the series (3) justifies all the rest; there is no need to fall 
back on the principles of differential calculus for a justification of this formula.

Lagrange considers that formula (4) is valid for every rational number m, but 
in order to consider it valid when the exponent is any real number, two implicit 
assumptions are made: first an assumption about the “dense” distribution of ra
tional numbers, secondly the assumption that considering the exponent as a vari
able, the power function behaves as a continuous function16:

“Comme tout nombre irrationnel peut Stre renfermd entre des limites rationnelles aussi resserr6es 
que l ’on veut, on en pourrait conclure tout de suite la v6rit6 du r6sultat pr6c6dent pour une valeur 
quelconque irrationelle dem, puis qu’on peut, en resserrant les limites, diminuer l’erreur a volont£.” 
(Lagrange 1806,16)

Once this binomial formula is proved, the series for the exponential and the 
logarithm ic functions can be obtained. For the function f ( x ) = ax, 
f ( x  + i) = ax+i= a x a ‘, the problem is now to find the first two terms of the series 
for a \  By putting a -  1 + b, and by the binomial series, Lagrange gets:

a‘ = (1+b)‘ = l + ,fc+ M ^  + ‘(‘ - W - 2 ) bi 
2 2-3

+ . . .

So after developing the products and rearranging the series for the increasing 
powers of i, it is easy to see that

a1 = (l+ bY  = l + i b4 )b ------+ ----------- + ... +.
v 2 3 4

With these two first terms, Lagrange states that ax+i= a x-a‘ = a x(l+iA+...),

b 2 b 3 bA
where A = b ------+ -------- so by the development (3), he gets f '(x )  -  Aax,

2 3 4
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and the algorithm to find the derived functions gives f" (x )  -  A2ax\ / '"(* ) -  A3a x; 
with these functions, the complete series can be obtained:

f ( x  + i) = a x+t = a x
(  ;2 .-3 \

1 + Ai + A 2 —  + A3-----+.
2 3 ' 2

From this equality, after dividing by ax and changing i for jc he obtains

r 2 r 3
qx = 1 + Ax + A2 -----1- A3------ K..

2 3-2 (5)

A2 A3When x  = 1, the value for a is given by a = 1 + A 4- - y  + j y +...

For the value x = — a A = 1 + 1 + -—H— -— I---------- h.. which is the number e;
A 2 3-2 4-3-2

_L i
a A = e or a -  eA. Clearly — = L(e) and A = ln(a); so a = eA = eha . When f(x )

A

2  3JC JC
= ex the series (5) gives e -  1 + jcH----- 1------- +.. since in this case the value

2 3-2
A = \n(e) = 1.

By introducing now as a new function f ( x )  -  L(x), then x = a ^ x\  and 

f(x + i) = L(x+ i), so x  + i = a ^ x+l^. Again, the series development is solved once

the derived functions are found; in this case Lagrange finds17 f ' ( x )  = —  . By
xA

putting this last function in the form f ' ( x )  = — x , the algorithm already found
A

1 - 2  1for the derivation of a function of this form, gives f " ( x ) -  — ~ x ~ — —  ̂ ;
Ax'

2 2
f ' ”(x) -  — x~3 = — - ......The development (3) gives:

A Ajc
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i t’2 / 3
L(x + i) = L(x) + ------------- -  + ■

Ax 2 A x2 3 A x3 

By making x  = 1 and putting x  instead of i he finally gets:

L(l + * )=  — 
A

f  2 3 4 AX X X
2 3 4v z J * y

1
ln(fl)

/■ 2 3 4 A_ X _ + X__ x
2 3 4V £ j  L\ j

since A -  ln(ct). This is the same series development already given by Euler.
With this series, Lagrange tries to find the logarithm of any real quantity y. By 

making y -  1 + x, the series for the logarithm gives

L(y) = 1
ln(<z)

(y -1 ) ( y - D 2 , ( y - 1 ) 3 ( y - i ) 4 '
(6)

which is a convergent series only for those values of y  “which are close to the 
unity” (Lagrange 1797, 20). So Lagrange now comes to the problem of finding 
the logarithm of any quantity y, even if it is not so close to the unity; that means, 
even if the series (6) does not converge. Since it is always possible to find another 
quantity r, big enough, so that z = yfy is close to the unity, a new convergent 
series can be find to calculate the logarithm, no matter how big the quantity y  
might be. The series for this quantity z is

L(z) =
ln(<z)

(z-1)2 . <z-l)3 (z-1)4 ^

so that

i.(z) = i.O 07 = —  '
r ln(a)

(z -1 )2 . ( z -1 )3 (z~  1)4 A
(z-1 ) - ^ — ^ -  +

V

and from this Lagrange gets
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L(y) =
ln(a)

(7)

Clearly Lagrange’s aim is to make possible the transit from the formal expres
sion of a series, obtained from the general development (3), to the numerical value 
of a function18. But the question raised goes farther and becomes a question about 
the series development (3). Since this series is obtained by substituting (x+ i) for at 
in/(jc), at each step a new function appears:

f ( x  + i) = f(x ) + iP{x,i)
P(x,i) = p(x) + iQ(x,i)
Q(x,i) = q(x) + iR(x,i) ...

Each function iP, iQ, iR , ... is zero when i = 0, but when i is a very small 
quantity, these functions take also very small values. Already in the first step, 
when Lagrange affirms that if i -  0 then f ( x  + i) = f ( x ), he suggests at the same 
time that when i is a very small quantity—the term “infinitely small quantity” has 
been explicitly proscribed from the Theorie des Fonctions Analytiques— the re
minder iP  becomes also a very small quantity and so is the difference between 
f(x + i)  and f ( x ) 19. To make clear the behavior of these functions, Lagrange con
siders the curve whose abscissa is equal to i and whose ordinate is given by one of 
these functions. This curve has a continuous path, so:

“[...] le course de la couibe s ’approchera peu i  peu de l ’axe avant de le couper et s’en approchera, 
par cons6quent, d’une quantity moindre qu ’aucune quantit6 donn6e, de sorte qu’on pourra toujours 
trouver une abscisse i correspondant a une ordonn6e moindre qu’une quantit6 donn6e, et alors 
toute valeur plus petite de i rdpondra aussi a des ordonndes moindres que la quantitd donn6e.” 
( ib id . ,  12)

This property is in fact a fundamental principle for the whole theory of func
tions, and it has been always assumed implicitly in the differential calculus and in 
the calculus of fluxions. With this property a bound for the reminder functions iP , 
iQ, iR, ... can be given so that more than their specific values, it is possible to 
have a clear idea of the error, when only a finite number of terms of series I are 
considered.

Series (3) gives the value of f ( x  + i), in order to obtain a series development for 
/(*), Lagrange takes x - i  in the place of x  in (3) and he obtains
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i2 i 3
/  (*) = f ( x  -  i) + if' (x - i )  + —  f  "(x -  i) + —  /  " \x  -  i)+...

and by making xz  = i

f  U ) = f i x  -  xz) + xzf '(x  -  xz) +

f " ( x -  xz) + y y  /  '"(* -  xz)+...
(8)

clearly if z = 0 this series reduces to the equality f ix )  = /(*), and for z -  1 it 
becomes20

/ W  = / (0 )+ ^ f '( 0 )  + | - / " ( 0 )  + ̂ - / " '( 0 ) + . . .  . (9)
z  3*2

Through this transformation Lagrange’s aim is not only to give a series devel
opment for fix ) , but to obtain the value of f ix )  only with a finite number of terms 
of the series. The series (8) and (9) suggest that it is possible to obtain a value 
which will come closer and closer to f ix )  as more and more terms of the series are 
added; but the “meaning” of the equality sign in the series (3), (8) or (9) should 
be, Lagrange thinks, the same as in any equation where both terms are considered 
to represent exactly the same quantity—out of which the equality sign can be used 
to link them—, and so equations (3), (8) and (9) are exact only when “all” the 
terms of the series are really added. But to obtain the value of the function for a 
specific value of x, the quest for the reminder that could help to avoid the infinite 
series becomes necessary

“Tant que ce d6veloppment ne sert qu’£la  g6n6ration des fonctions d6riv6es, il est indifferent que 
la s£rie aille & l’infini ou non; il est aussi lorsqu’on ne considdre le d6v61oppement que comme une 
simple transformation analytique de la fonction; mais, si on veut l ’employer pour avoir la valeur 
de la fonction dans les cas particuliers, comme offrant une expression d ’une forme plus simple & 
raison de la quantity i qui se trouve d£gag£e de dessous la fonction, alors, ne pouvant tenir compte 
que d ’un certain nombre plus ou moins grand de terms, il est important d ’avoir un moyen d ’6valuer 
le reste de la s6rie qu’on n£glige, ou du moins de trouver des limites de l ’erreur qu’on commet en 
ndgligeant ce reste.” (Lagrange 1806)

Faced with this problem, Lagrange looks for the value of a “remainder” that 
helps to find the exact value for/(jt) with just a finite number of terms.

From the series development (8) it is possible to write

f ix )  = fix -xz)+ xP iz)
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Where P(0) = 0. In the case z = 0, the development reduces to the equality 
f ix ) = fix). By deriving the two members of this equation with respect to the 
variable z, the following equality is obtained

f 'ix -x z )  = P'iz) (10)

So the reminder P is obtained by looking for a function of the variable z whose 
derivative regarding this variable is equal to f 'ix -xz), and is such that P(0) = 0. 
Once this condition for the reminder P is given, and if z = 1, the equality

/ ( * ) = / ( 0 ) + jcP (1)

is obtained.
By following to the next term of the series (8) it is possible to write

f ix )  = fix-xz)+ xzf'ix-xz)+ x2Qiz)

where £)(0) = 0. By repeating the process of derivation in both members of the 
equation, a value for Q' is obtained

Q' = zf"ix-xz)  (11)

Again, when z * 1 Lagrange obtains now 

/ ( * )  = / ( 0 ) + jc/ ' ( 0 ) + x 2Q(1)

Repeating the process again for the expression

2 2
f ( x )  = f i x _ xz) + xzf>ix _ xz) + f » i x _ xz) + x^Riz) 

the value for the reminder R is given through

R ' -  z *2 f " ' i x - x z )

and for z * 1, the value

f *> = /  (0) + xf '(0) + ~  f  "(0) + x3Ri 1)

( 12)
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Since the new functions P(z), Qiz), R iz ) , ... are known through their deriva
tives—from the relations a, b, c, ...—Lagrange gives upper and lower bounds for 
them: by defining first a function F(z) such that F '(z)  = zmZ(z), where Z(z) is 
another function such that N  < Z{z) < M  when a < z<  b, and if f iz )  is another

function such that f ' ( z )  = zm( M - Z ) ,  then f ( b ) > / ( a ) 21. Since

M zm+X
f ' ( z ) = z mM  -  F '(z), then f ( z )  = ----------- F iz) and the following inequality

m + 1
holds

Mbm+l x Ma' x
--------—  F{b) = f{b )  > f i a )  = --------—  F(a)

m+1 m+1

from this inequality it is possible to write

m+1

F(b) < F(a) +
m + 1

In a completely similar way, by taking now f \ z )  = z miZ  -  AO, the following 
inequality is obtained

Fib) > F ia) +
JV(fcm+1-<2m+1)

m+1

giving finally

N (bm" - a m*1) M (bm*l - a m+1)
F ( o )  + — ---------:-------’-<F(b)<F(a)+ ----------

m+1 m + i
(13)

This is applied to the functions Piz), Qiz), Riz), ... First by assuming that 
P = Fiz), it follows that P ' = F \z )  = f'(x -xz), and since it has been assumed that 
F Xz) = z mZiz), by making m = 0, then Z(z) = fX x -x z)  • Whenever a -  0 and b -  1, 
P(0) -  0 -  Fia) and F(6) -  P (l) . In the case that N  < f\x -x z )  < M  whenever
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0 < z <  1, it is possible to obtain from the inequality (13) the inequality: 
N < F ib ) - P i \ ) <  M.

In a similar way Lagrange obtains for the function Qiz), by making m -  1, that

N  M
if N x < f 'X x - x z )  ^ A fj, then — k < Fib) = Qi 1) < . And for the function

R (z), by making m = 2, that if / " ' ( * - x£> then
2 2 2

? f < F ( b )  = R(

If in the variable quantity u = x -x z , the variable z runs through the interval 
[0,1], then u runs through [0,*], Lagrange concludes then, with the help of the 
intermediate value theorem, that N  < f ' i x - x z )  = f ' i u )  < M  , and so any value

between Af and Mean be given as/"(u) for some u in [0,x]. So the valueP(l) takes

this form. For the same reason there are values of u such that Qil) = — /  "(w) and
1 2 

Ril) = -^—̂ f " ' iu )  . From these facts his conclusion is the following theorem:

“En designant par u une quantite inconnue mais renfermee entre les limites 0 et x, 
on peut developper successivement toute fonction de x  et d ’autres quantites quel- 
conques suivant les puissances de x  de cette maniere

f i x )  = fiO )-h x f'iu )

x 2f i x )  = f i0 )  + x f'i0 )  + ^ r f" iu )

x 2 x 3
f i x )  = fiO ) + jf'iO ) + —  f"iO ) + —  f'" iu)+ ... (Lagrange 1797, 49)

So the canonical form (3) and the formal series (9) might be replaced by a 
finite polynomial, but this substitution does not mean an “error” in the calculus of 
the value for f i x + i) or fix ) .

Two levels in Lagrange’s theory of functions become clear: first a purely for
mal representation for functions where the canonical form (3) carries the reduc
tion of all the theory to the algebraic scope, as well as the application of this 
theory of functions to geometry and mechanics. The second level is given when 
the effective calculation is wanted; the fact that the “remainder” of the series
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exists and takes the general form x  f  M , reduces the canonical form to a finite 
and effective process. n *

But as we have seen, Lagrange’s arguments are strongly supported by a simple 
assumption that is hardly justified within the frame of this algebraic function 
theory: all functions are supposed to behave as “continuous” functions. This as
sumption was made in relation with the theorem concerning the possibility to 
bound the reminder functions iPy iQ, iR,... It was made also concerning the inter
mediate value property of the derived functions.

The property of continuity, treated up to now as an evident truth through a 
geometric image, is a main tool to justify the passage from the formal representa
tion to the effective calculation. But the need for this property shows, as it was 
already the case with Euler’s algebraic analysis, that a theory of functions can no 
longer ignore it. Even more, making now a deeper gap between the analytical 
ideal, identified as an algebraic foundation for function theory, and the means to 
carry out this ideal, the fundamental proposition for algebra is also involved and 
needs this continuity property.

The relation between the coefficients of an equation, the degree of this equa
tion and the number of its roots, is a problem that goes back to the algebra of 
Cardano and Viete. In his De aequationum recognitione et amendatione (1615) 
Viete shows the possibility to write a general equation of third and fourth degree 
as a product of linear factors. Concerning the relation between the maximum 
number of roots for an equation and its degree, an important background is given 
in Girard’s Invention nouvelle en I’alg&bre (1629) and in Descartes’ Gtometrie 
(1637), related to fact that a polynomial of degree n has n roots and also that it can 
be divided by each one of the n linear factors formed by these roots.

So, behind the classical form for the fundamental theorem of algebra, stating 
that a polynomial of degree n with real coefficient has n roots, several problems 
are involved. Among them the most important are:

1. The problem related with “existence” of the roots for a polynomial.
2. The description of the “form” that these roots may have.
3. The “number” of roots that might exist for a polynomial.
4. To find the roots of the polynomial through the linear factors that divide 

this polynomial.
Historically the first problem to appear is the one related to the number of 

roots for an equation. This problem, treated in some sense by Girard and Des
cartes, also involves the fourth problem: if the nth degree polynomial P(x) is

equal to the product (x- * 1)(;c- jc2)...(jc- jc|), it is because the polynomial admits as
n

many roots as its degree. The equality P(x) = J J  (x -  xf) ,  states not only that we
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can divide P(x) by any of the factors (x -x ), and so each quantity x. is a root for 
P(x); but also that P(x) can be divided by (x-x.) whenever x. is a root22.

Now, when the problem is not to “prove the existence” of the roots, but to
n

justify the equality P(x) = J J  (x -  x ,), then it is necessary to establish which val-
i=i

ues make the equality possible. As we know, Descartes states that in order to
assure that any polynomial P(x) of degree n is equal to a product of linear factors, 
it might be necessary to “imagine” some of these quantities that make possible the 
factorization. All through 17th and 18th centuries, the controversy about the na
ture of these “imaginary quantities” was at the center of all the questions concern
ing algebraic equations and their roots, until D ’Alembert’s proof (1746), that 
these quantities can only have the form x  + yV-1 . An immediate consequence is 
then that the number of imaginary roots is even23. When the degree of the polyno
mial is odd, the only possibility to admit this fact, and the one stating that the 
number of roots is equal to the degree of the equation, is that in this case the 
equation must have at least one real root.

At the beginning of his Traite de la resolution des equations numeriques de 
tous les degres, Lagrange gave two theorems where “the foundation for the theory 
of equations is given” and for which the continuity becomes necessary:

“Si 1 ’on a une Equation quelconque, et que 1 ’on connaisse deux nombres tels qu’6tant substitute 
seccessivement & la place de l ’inconnue de cette 6quation, ils donnent des r6sultats des signes 
contraires, l ’6quation aura ndcessairement au moins une racine r611e dont la valeur sera entre ces 
deux nombres.

Si, dans une 6quation qui a une ou plusieurs racines rtelles et in6gales, on substitue successivement 
& la place de Pinconnue deux nombres, dont Pun soit plus grand et l’autre soit plus petit que Pune 
de ces racines, et qui different en mSme temps Pun de 1’autre d ’une quantit6 moindre que la 
difference entre cette racine et chacune des autres racines rdelles de Pequation, ces deux substitu
tions donneront necessairement deux resultats de signes contraires.” (Lagrange 1798,6)

For the proof of the first theorem Lagrange proceeds as follows: if it is possible 
to write the equation P(x) as the product of linear factors of the form (x-a.),

where a. is a real or imaginary root, and if by substituting two values p  and q in the
n

place of x in the product (x -  a , ) ,  P(a) and P(b) take different signs, then at
i=i

least one of the factors (x-a.) changes its sign when substituting x by a and b. But
n

in the product (x -  a , ) ,  whenever one of the roots a. has the form a + b 4 - i  ,
i=i

then another root takes the form a - b 4 - 1 . Since the product of the two linear
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factors [ x - a -  byf-Y ^x  - a  + b 4 - 1] is always positive for any value of x, if there 
is a change in the sign of P(x), this change is produced in a linear factor (x-a .) 
where a. is real. But Lagrange recognizes that there is a circular argument: the 
theorem about the nature of the imaginary roots, and the form of the linear fac
tors, depend in some way on the first theorem that was to be proven.

Because of this circular argument Lagrange uses a cinematic image which was 
also used in his lessons at the Ecole Normale (LEN), before becoming a “rigor
ous” proof given in the first note in his 1798 treatise on numerical equations. This 
new argument is considered a rigorous one since it follows “from the nature of the 
equation, independently of any of its properties” (Lagrange 1798, note I, 111): by 
dividing the equation into two parts P and Q, each one of them representing the 
sum of positive and negative terms, when the value of the variable x  is augmented 
“by insensible degrees” the values P  and Q also change by “insensible degrees”. 
By doing this between two values of the variable x  which give, the first one P -  
Q < 0, and the second one P -Q >  0, then between these two values there must 
exist at least one value that makes P = Q,

“ [..Jcom me deux mobiles qu’on suppose parcourir une mSme ligne dans le mfime sens, et qui, 
partant & la fois de deux points difT6rents, arrivent en mfime temps & deux autres points, mais de 
manidre que celui qui 6tait d ’abord en arridre se trouve ensuite plus avanc6 que l ’autre, doivent 
ndcessairement se rencontrer dans leur chemin.” (ibid., note 1, 112)

The fact that a mechanical or geometrical image is used, shows that algebra is 
unable to introduce and give a theoretical place to this notion itself. This limita
tion will show exactly how mathematical analysis finds its own and specific scope. 
The revolution in mathematical analysis caused by Bolzano and Cauchy concerns 
the reorganization of mathematical analysis on the basis of those concepts that 
Lagrange already considered as necessary, but that were not clearly conceivable 
within the frame of a purely algebraic foundation for analysis: the concepts of 
“convergence” (of series) and of “continuity” (of functions). The introduction of 
these concepts will not only show a new stage for mathematical analysis, but also 
a new relation of analysis towards algebra.

in Convergence and Continuity as the Trends of the New Analysis

The introduction of a new concept in mathematics realizes the definition of a new 
kind of objects. In this case, the new changes in mathematical analysis at the turn 
of the nineteenth century could be characterized as the transformations that took 
place within the theory of functions when the new objects known as “continuous 
functions” and “convergent series” were introduced. To see how the introduction 
of these new concepts and objects gave a new structure to mathematical analysis, 
we will look closely at some aspects of the mutual relation between the already
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existing concepts and the new ones. If mathematical analysis reaches a new “mo
dernity” with the concepts of “convergence” and “continuity”, it is because it 
takes on a new structure once these concepts have been introduced.

The new structure given to mathematical analysis by these new concepts of 
continuity and convergence emerges from the fact that they introduce a new ap
proach towards the domain of real quantities. The theory of curve lines, as given 
by Euler in the second part of his Introduction assumes, as we have seen, that the 
course of values which the function runs through is, as well as the one which the 
variable runs through, a “continuous” path. This property was automatically as
sumed from the “analytic nature” (in Euler’s terms) of the function; mechanical 
or geometrical curves could all be seen as the “graph” of an appropriate analytic 
function. In his theory of curve lines, and in the proof of the intermediate value 
property—a property which could be deduced from the algebraic nature of func
tions—there is no special approach towards the “values” that the function takes, 
as the variable runs through different values. The assumption that an extreme 
value could not be reached by a function without reaching before all the interme
diate values, is enough to deduce the properties related with continuity. Contrary 
to this style, a new approach towards real quantities, considered as the main con
dition to articulate the new trends of mathematical analysis, is introduced by the 
works of Bolzano and Cauchy. Bolzano’s Rein Analytischer Beweis (1817), and 
Cauchy’s Cours d’Analyse (1821) state the basis of this new approach, and with 
this new approach they give a new sense to what the “analytical style” ought to be.

We think, for example, that the main point of the “purely analytical proof’ for 
the intermediate value property, given by Bolzano, is the proof of the existence of 
a certain quantity: the “real root” of an equation that takes values of different sign. 
We want to underline that when Bolzano argues that a purely analytical proof for 
this theorem is needed, it is not because of some misleading fact about geometry 
or mechanics, but rather because they are unable to support an argument that is, 
or should be, a “fundamental” one. Geometry or mechanics could only support a 
plausible argument, whereas it is necessary to give a foundation for the “truth” of 
the proposition. In Bolzano’s words a proof should not be only a “confirmation” 
but rather a “justification [BegriindungenT (Bolzano 1817, preface, 160). The 
property to be proved, equivalent to the fact that a function “never reaches a high
er value without first going through all lower values” (ibid., preface, 162), is a 
property of “continuous functions”, even if it can be more immediately “seen” as 
a property of continuous curves. After the radical changes that Euler introduced, 
and that we have already analyzed, curve lines should be considered as emerging 
from functions and so the property has to be proved in the scope of (continuous) 
functions. Even more, since this property has always been admitted as an evident 
fact of “continuity”, the concepts of “continuity” and of “continuous function”
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have never been explicitly given. Bolzano introduces the concept of continuous 
function; with this concept he introduces a new objet into mathematical analysis:

“A function /(* )  varies according to the law of continuity for all values of x  inside or outside 
certain limits [...] if [...] the differencef(x+ (o)-f(x) can be made smaller than any given quantity 
provided<ucan be taken as small as we please.” (ibid., preface, 162)

The property holding for algebraic equation, as describes by Euler or Lagrange, 
is a result of the following schema of argumentation; which is the correct way to 
prove that for any equation P(x) taking values of different sign for two values a 
and b of the variable x , a real root exists:

[1.] If two functions of the variable*, f(x)  andg(*), vary according to the law of continuity either 
for all values o f*  or only for those which lie between a  and >3, and \ig(a) > f ( a ) andf(ff) > g(fi), 
then there is always a certain value of*  between a  and fi for which/(* ) -  g(x). (ibid., § 15,177)

[2.] Every function of the form

[P(x) =] a+bxm+cxn+...+pxr

in which m ,«,..., r, designate whole positive exponents, varies according to the law o f continuity 
for all values o f*  (ibid., §17,180).

[3.] If a function o f the form

[P(x) =] x?+ax"-l+bxr-2+...+px+q

in w hichn denotes a whole positive number, is positive for * -  a  and negative fo r*  -  f}, then the 
equation

x"+ax^l+bxn-2+...+px+q = 0

has at least one real root lying between a  and fi. (ibid., §18,181)

The purely analytical proof is based on the following auxiliary theorem, which 
states the existence of the least upper bound for an (upper) bounded set, and which 
also establishes the necessary relation between the property of “continuity” for 
function and the property of “continuity” for the domain of real quantities:

“If a property M  does not belong to all values of a variable *, but does belong to all values which 
are less than a certain u, then there is always a quantity U which is the greatest of those of which it 
can be asserted that all smaller* have property M.” (ibid., §12,174)

By taking as M  the property of all those values of x  for which / ( x) < g(x) (if 
a< p and f ( a ) < g(a)), then for the quantity U, whose existence is guaranteed by 
the theorem, the continuity of the functions /a n d  g will m ake/(t/) -  g(U). For if 
f(U ) < g(U), since / and g are continuous functions, it could be possible to show 
the existence of a real quantity s, such that/(£ /+ s)< g(U + 5 ), and so U would not 
meet the condition established by the theorem. By reasoning in a similar way, if
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f{U ) > g(U) it would be possible to show that f (U -s )  > g (U -s ) and the same 
conclusion is obtained about U.

The proof of the auxiliary theorem, which shows the “existence” of the quan
tity U, goes as follows: if the property M  is satisfied for all the values x  < u, but 
not for all the values of the variable x, then there exists one number D > 0 such 
that M  is not satisfied for all x < V = u+D. By considering now the following 
sequence of values

Vn\Vn =u +
_D
2n

with n an increasing number, and V = VQ> Vx> V2>...> Vn >..., Since M  is not 
satisfied for every x  < V0, it is possible to ask if there is some Vn such thatM  holds 
for every x < Vn; if there is no such quantity Vn, then U « u and the theorem is 
proved. But if there exists a number n such that the property M  is satisfied for all 
x  < Vn, but not for every jc < V (n is the first number with this property) the 
procedure starts again. Considering now the sequence

W W = V +r r m> rrm v n ^
D

with an increasing number m, and W0-  Vn l—since Vn_{ = V n + ~  n 2"
Now M  does

not hold for every x < WQ. Since WQ > Wl >...Wm>...> Vn, if there is no integer 
number m such that M  holds for every x < W , then U = V and the theorem is 
proved; but if there is a number m with the desired property (and again it might be 
assumed that m is the first one), then M  is satisfied for every x < W m, but not for 
every x < W r In this case the procedure is repeated again. If it happens that after 
a finite number of steps the property M  holds for every

x < Z r
D D D

u + -----1--------- K..+------------2n 2n+m 2n+m+-+r ’ but there is no positive integer number s

such that M  holds for every x < u + —  + —̂ +.. .-1------- —------ , then U = Z . If,
J 2n 2n+m 2n+m+-+r+s

on the other hand, it is not possible to find such a value, then the sequence of 
values

D D D D
«,«H----- ,u+  + ,. ..,m-i— — +

2" ’ 2n 2 2”
D D
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represents a sequence whose terms increase while the difference between two con
secutive terms decreases in a reason that is less than a geometric progression. The 
quantity U is in this case the “limit” of this sequence. Bolzano assures that:

“If a sequence of quantities 

F lt o , F 2(x),f',C*)......F  (*).......FnJ x ) , ...

has the property that the difference between its n-th term /^O ) and every later term Fn+r(x), how
ever far from the former, remains smaller than any given quantity if n has been taken large enough, 
then there is always a certain constant quantity, and indeed only one, which the terms of the 
sequence approach, and to which they can come as close as desired if the sequence is continued far 
enough.”24{ibid., §7,171)

Since the sequence u, Vn, Wm, ... Zr,... has this property, the existence of the 
quantity U the limit of this sequence, is guaranteed by the last statement.

As we said before, a main point in Bolzano’s argument is the proof of the 
existence of a certain quantity. The existence of the quantity U, which becomes 
the root for the equation, is given through the auxiliary theorem—stating the 
existence of the “least upper bound” for a bounded subset of numbers— , whose 
proof rests upon the convergence of a sequence having the so called Cauchy prop
erty25. For Bolzano a proof for this last property is possible, and his argument for 
the existence of a limit for a “Cauchy sequence” is that the assumption of the 
existence of such limit bears no contradiction:

“The assumption of an invariable quantity with this property of proximity to the terms o f our 
series is not impossible because with this assumption it is possible to determine the quantity as 
accurately as desired.” {ibid.)

This means that the existence of the limit quantity can be asserted since its 
value can be approached as accurately as desired through the successive values of 
the sequence. The value of the limit of the sequence might not be known, but it is 
possible to approach this value through the sequence, and this possibility is the 
main reason to assure the existence of the limit. Otherwise, if there was no real 
quantity the sequence approaches, the terms of the sequence would not approach 
each other as they increase; “for anyone who has a correct concept of “quantity” 
the idea of this value is the idea of a real, i.e., “actual”, quantity”. Clearly Bol
zano’s conclusion would not be valid if the domain of real quantities had a “gap”; 
but he considers that when a sequence behaves as the theorem says, then it is 
convergent, since for a non convergent sequence the “non approaching behavior” 
is essential. It is possible to accept the existence of a quantity, being the limit of 
the series, and then to consider this hypothesis among the rest of “truths” of anal
ysis26.

But if the existence of the limit of the sequence might be concluded, the prop
erty out of which this is deduced, the so called Cauchy property, is far from con
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taining the existence of a limit. In other words, in a Kantian sense, the proposition 
“any sequence or series having the Cauchy property has a limit” is not “analyti
cal” but “synthetical”. Since in the statement “for any positive quantity, no matter 
how small this might be, there exists a positive number n such that the difference, 
in absolute value, between the term an and any other term an+r of the sequence, is 
smaller than the given quantity”, there is nothing involving the “existence of a 
limit value”; and that is why the existence o f the limit must be proved.

With regards to this point Cauchy’s procedure is different. First he works with

limits of functions: he proofs that if for the increasing values of the variable x, the
f i x )

difference f ( x + 1 ) - f (x )  “converges” to a limit k, then the function ------  con

verges to the same limit. In the proof of this statement, Cauchy makes clear the 
meaning of the sentence “the difference f(x+  1 )-/(* )  converges to a limit

“On pourra donner au nombre h une valeur assez consid6rable pour que.x 6tant 6gale ou sup6rieur 
& h, la difference dont il s’agit soit constamment entre les limitesJfc-e etfc+e. (si eest un nombre 
possitif aussi petit que l ’on voudra).” (Cauchy 1821,54)

For any function, or any sequence which is to be considered as a function/(l), 
/(2 ), ... , it converges to a limit k if, given any positive value e no matter how 
small it might be, there is a positive number h such that if n> h, the term /(n) lies 
between the limits k - e  and k+e. After this explanation of the concept of conver

gence for sequences, Cauchy explains the convergence of series in detail: for a
__  n

series ^<3, , let sn = ^<3, be the sum of the first n terms, if the terms of the form
i=i

sn form a convergent sequence whose limit is s, the series is convergent and its
oo

limit is s (and so it might be written s = y^ q, ). Now for a series to be convergent
i=l

it is necessary that it satisfies the “Cauchy condition”: for any positive quantity,
no matter how small this might be, there exists a positive number n such that the 
sum of the terms an+...+an+r of a series £a., is smaller than the given quantity. But 
for the converse property Cauchy simply states that “when this condition is filled, 
it can be assured the convergence of the series” (ibid., 126). So he finally consid
ers that concerning the question which was “proved” by Bolzano, really there is 
nothing to prove.

The relation between convergent sequences and series and continuous func
tions is a basic one, since whenever the variable quantity x has X  as a limit, and 
f(x )  is a continuous function, f(x )  becomes a variable quantity whose limit is f(X). 
That means:
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l im / ( * )  = / ( * )
x-*X (14)

With this basic relation Cauchy proves the intermediate value property: if the 
function f ( x ) remains continuous between the two limits x  = x0, x  = X, and if the 
two valuesf (x 0) and f(X )  have different signs, then it is possible to find a solution 
for the equation/(x) = 0, at least with one real value of the variable x  between xQ 
and X.

If x0< X, h = X - x 0, and m > 1 is an integer number, since the two quantities 
f (x Q) andf(X )  have different signs, it is possible to compare two consecutive terms 
of die sequence

f ( x 0X f
h

x0 + — 
m / 1

A') x0 +2 — , 
m ̂ . / , f ( X )

m

and there must exist at least two consecutive terms f ( x {) and f(X ')  having different

signs. Clearly x  < x. < X ' < X , and X ' -  x x = — = — (X  -  x0) .
m m

Once these consecutive terms x { and X ' have been found, it is possible to find 
two values between them, x2 and X ", giving values f ( x 2) and f (X " )  of different 
signs, and holding the conditions xx < x2< X "  < X ', and

X " - x 2 = - ( X ' - x l ) = \ ( X - x 0) 
m m

By continuing in this way two sequences are given: an increasing sequence of 
values

*o ’ * xr  -  (15)

and a decreasing sequence

X , X ' , X " , . . .  (16)

The terms of sequence (16) are all greater than those of sequence (15), and the 
difference between two respective terms of these sequences decreases: X -*0«= h,
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It must be concluded that the terms of the sequences (15) and (16) will con
verge to a common limit a. Since f(x )  is a continuous function, the terms of the 
sequences

f{xQ) ,f{ x x) , f( x 2), ... a m //(X )./(X 0 ,/(* * ) , ... 

converge also towards the lim it/(a) which must be equal to zero.

Nevertheless, Cauchy states another relation between convergence and conti-
n

nuity. When speaking of a convergent series, since the partial sums sn =
i=l

indefinitely approach a certain limit s, the difference between the limit s and the
partial sum decreases as the number n increases. This difference, the “reminder” 
of the series, is a variable quantity whose limit is zero27. The fact that the terms of 
the series are constant or variable quantities does not change this property of the 
reminder: to be an infinitely small quantity. Now, when the terms of the conver
gent series are all continuous functions—each term is a function for which an 
infinitely small variation for the variable produces an infinitely small variation in 
the value of the function itself—the variations for the value of the limit function, 
when infinitely small variations takes place for the variable, are proportional to 
the variation for the reminder itself, but this last variation must be infinitely small 
since the reminder itself is already an infinitely small quantity. From this argu
ment Cauchy concludes that:

“Theorem I: Lorsque les differents terms de la serie sont des fonctions d ’une meme variable x, 
continues par rapport & cette variable dans le voisinage d ’une valeur particuli&re pour Iaquelle la 
s6rie est convergente, la somme s de la s6rie est aussi, dans le voisinage de cette valeur particuliSre, 
fonction continue d e x .” ( ib id .,  131-132)

The conclusion is obtained by stating the properties of a “fixed” object, the 
limit of the series, from the behavior of a “mobile” object, the reminder of the 
series; but the properties that can be stated about the reminder are obtained from 
the existence of the limit: it is the existence of the limit which determines that the 
reminder must be an infinitely small quantity, and this property is enough, in 
Cauchy’s view, to state that the limit function is continuous when the terms of the 
series are all continuous functions.

Many articles and texts have been written around this famous “wrong theo
rem” proved by Cauchy. Some of them have pointed out “why” it is a wrong 
statement (since Cauchy does not give the precise condition on the way in which 
the series converges; i.e. that the series should be a “uniformly convergent” se
ries); others have tried to point out in which sense Cauchy’s argument could be 
read as a correct statement. But very few have remarked on the “place” that this
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statement takes in the whole text of 1821: it is used to justify a crucial step in the 
proof of the binomial formula.

As we said before, the introduction of a new concept is not reduced to the 
statement of a new definition, the role of continuous functions does not stop with 
the intermediate value property or with the relation between continuity and con
vergence. Besides Newton’s binomial formula, another outstanding and well-known 
statement gets a new foundation through the concept of a continuous function: the 
fundamental theorem of algebra (FTA). And it is precisely through these two 
propositions that it could hardly be said, that mathematical analysis gets its foun
dation through algebra. Contrary to this, it will be algebra—and precisely its fun
damental theorem—which will find a new proof, and so a new foundation as 
Bolzano affirmed, through mathematical analysis.

Cauchy’s proof of the binomial formula, and the development of the logarith
mic series, are given in the scope of the solution of functional equations. The 
problem is to find the continuous functions that satisfy the following conditions:

1. <t>(x+y) = 0(x)x0(y)
2. 0(xy) = 0(x) + 0(y)
The solutions given by Cauchy for these equations are:
1. 0(x) = Ax, with A a positive constant value.
2. 0(x) = aL(x), with a a constant quantity and L the characteristic of the 

logarithmic function.
For the solution of these equations the assumption that they should be contin

uous functions is necessary. As to the first one, Cauchy remarks that the function 
takes only positive values: from the equality 0(x + y) = 0(x)-0(y), he gets

0(2x) -  [0(jc)]2; and by taking ^  x in the place of x  he gets now <f>(x) = K H f -

By taking a positive number a  and a positive integer m, it follows from equation 1 

that <f>(ma) = [0(a)]m. If now 0 = ^Ja, from the two equalities <p(ma) = [<j>(a)]m

and ma -  n0, it follows 0(0) = 0(^-a) = [0 (a)]" • By the “density” of the rational

numbers, and from the property of continuity of the function 0, Cauchy gets final

ly 0(jua) = [0 (a )]^ . The case - a  -  1 gives = [0(1)]^ , and by taking the limit 

when n->Q> 0(0) = 1. From the initial condition it follow s that 

0(-/z) = = [0(l)] **, which proofs that for any positive or negative value of
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the variable x, the equality 0(x) = [0 (1)]* holds. If A = 0(1), Cauchy gets the 
solution 0(x) -  Ax.

To find the proof of Newton’s binomial formula, a problem related with the 
convergence of a series has to be solved: the only “legitimate” way to prove that 
the equality

( i+ * y , = i+ # » +
K 1 2 2-3

holds (for every real number n), is that the infinite series which is the right mem
ber of the equality—which is infinite unless fi represents a positive integer—
“converges” to the value of the left member. The “root” tests for the convergence

00

of series, when the terms of the series ^  are functions of the form u.(x) = ax', 

takes the form: ,-°

Let A be the lim sup . The series converges for every value x between the
n—

limits x = —j  and x = + - j ; the series diverges for every x outside these limits 
A  A

(the value A defines the “radius of convergence” of the power series).

For power series, Cauchy proves also the algebraic closure related to the sum
00 00

and the product: if the two series ^ a nx n, ^ b nx n are convergent for some value
n=0 n=0

of the variable x, and if their respective sums are s and s', the power series
00

+bn)xn is also convergent and its sum is s+s'. Under the same conditions,
W—0 00

if each one of the series is absolutely convergent, the series with
n=0

Cn = -bt , is a new convergent series whose sum is ss'.
k+l=n

By taking as a general coefficients for the two series

M(M ~ 1)(m -  2)... (ji -  n + 1)
and

n\
- n  + l)

nl

(17)
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where m and m ' are two arbitrary quantities, if - 1  < jc < 1, by the root test states 
they are (“absolutely”) “convergent”, and the general term of the “product series” 
is

(M + MXm + M-1Xm + M-2)...(M + M - w + 1) (18)

Cauchy writes <p(fi) = ^ a nx n , and when the coefficients take the values given 
«=o

in (17), it satisfies the equality

, x , MM- 1) 2 MM -  1)(jU -  2) 3 
= 1 + fJx H------—---- x  -)--------- 2~~3------- X +••• (19)

Now for the sum of the second series, Cauchy writes 0'(/z) = ^  bnx n and it satis
fies n=o

0(M ) = 1+ fl'x + m (m - d  2 , i i ' i n ' - w - D *
X +

2-3
jr+ .. (19*)

Clearly 0(/z + M) = ^ cnx n , when the coefficients cn take the form (3); in this
n=0

way the function f(jn) satisfies the equation

0(/z)-0(M) = <f>(n+nl (20)

From equation (19), and by taking -1 < * < 1, theorem I assures thatjim) is a 
continuous function for the variable m that satisfies the functional equation (20)

and so 0(ju) = [0(1)]^ = (l + x Y . That means,

( l  +  ;c )M =  1 +  fJX + H (H -l) 2 , M M -lX /^ -2 ) 3x  +
2-3

x  +. (21)

whenever -1 < x  < 1 for any real value of n. Newton’s binomial formula is com
pletely proven.

As an immediate consequence of this formula, Cauchy gives the series devel
opments for the exponential function for the natural logarithmic function ln(l +*)
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and for the logarithmic function of any base a, L(1+jc). First by putting in the

equation (21) /i = — and substituting x with ax then 
a

(1+^ =1 + X + M X2 + M 1 Z M X3+...
v '  2 2-3

if —1< ax < 1—or < x  < — • Taking the limit when a—>0 the series
a  a

1 2 3
lim (l+cec)a = l + x + 4 -  + ̂ —+... 
a-> o 2 3*2

is convergent for — < x < <». When x — 1, the series

-  1 1
lim (l + a ) a =1 + 1 + — + -----+... defines the number e, and
a-»o 2 3*2

_L 2 3
ex = lim(l + a* )a = 1 + * + ̂ -  + ̂ —+... 

a-* o 2 3*2
(22)

By subtracting 1 to each member of equation (21), and then dividing by and 
taking the limit when ju—>0, he gets

(1 + jc)m- 1  x2 x3 A------L------ -- x ------+ ------ ...
2 3lim

li—>o M
(23)

and since (l + jc) = e/(1+JC),

(l + x Y  = = M(l + x) t /x2[i(i + *)]2 t /n3[l(l + x )?  |
'  '  1 2 2-3

and

(l + x f - l  Z(1 + jc) m[*(1 + *)] M2 [*(! + *)]-------------- = ---------- -1----------------- 1-----------------
M 1 2 2-3

(24)
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From (23) and (24) he gets

lim
fl-4 0

(l + x ) '* -! = 1(1 +x) = (25)

whenever -1 < x  < 1.
For the function L( 1 -hx)—the logarithms of base a—Cauchy uses the well-

known equality ^ ( \  + x) _ 1(1 +x) ^  from (22) it follows that 
L(a) 1(a)

L(l + x) (26)

Two conditions play a fundamental role in the developments of these func
tions and also in the proof of Newton’s formula: the series must converge, and the 
functions represented through the series are continuous— the function 

= UK l)f  = (1 + x )M is a continuous function for the real variable jx because 
of theorem I, the “wrong theorem’’. Those theorems and series developments that 
were proved before by Euler and Lagrange are here submitted to these conditions; 
from now on, mathematical analysis and “analytical style” will be related with 
them. Mathematical analysis was a branch of mathematics that under the concep
tual basis given by Euler, became mainly a theory of functions, and made the 
natural means to develop functions out of polynomials and infinite series. With 
Lagrange, the development of functions by a Taylor series achieved the reduction 
of theory of functions to algebra. In the new scope of mathematical analysis given 
by Bolzano and Cauchy, the concepts of continuity and convergence rule the ex
tent of the “algebraic generalizations” —the possibility to develop a function 
through an infinite series is necessarily submitted to the fact that the variable of 
the function should vary within the radius of convergence of the series.

The proof given by Cauchy for the binomial formula states another feature for 
the new analytic style: it is possible to finish with the vicious circle—already 
detected by Euler—, between the binomial formula and Taylor’s series for a func
tion. In Lagrange’s algebraic theory of functions, the binomial formula appeared 
as a particular case of the Taylor series for f(x )  = V, although for the justification 
of the Taylor series development, a proof for the relation f'(x)  = nxn~] is needed. 
This relation is proved precisely by using the binomial formula. For Cauchy two 
facts are clearly stated: the binomial formula is based on the principles of purely 
“algebraic analysis”—which in the tradition opened by Euler states that there is
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no need to call for any principle of differential or integral calculus—and, because 
of that, it needs no other justification than those coming from basic concepts of 
continuity and convergence, as we have already seen.

As for the upcoming relation between algebraic analysis and infinitesimal cal
culus, these concepts state how algebraic analysis should precede infinitesimal 
calculus: let us just point out that without them it is not possible to define the two 
main concepts of calculus: in Cauchy’s lessons on infinitesimal calculus (1823), 
and since then, the derivative and the integral of a function are defined as a “lim
it” (of a quotient or a series). The “definite integral” for a function, with this 
definition, becomes independent of the derivative of a function. This makes possi
ble and necessary the proof of the fundamental theorem of the calculus.

The core of Cauchy’s analytical ideal, as given through his Analyse Alge- 
brique, is not only to introduce the concepts that will give the new foundation to 
infinitesimal calculus. We think that Cauchy’s aim is, contrary to Euler and La
grange, to present algebra as founded by analysis. This aim is finally reached with 
his proof of the fundamental theorem of algebra (FTA):

“Theorem 1. For any real or imaginary values for the constantsa0, av, av an l, an, the equation

a0x n + a, x"~l +...+an_lx + an = 0 (27)

where n is an integer positive number >  1 , has always real or imaginary roots.”

With this general theorem the following ones are also given

“Theorem 2. For any real or imaginary values for the constants a0, a [t a2, a n l, an, the polyno
mial

a0x"+ a lx n~'+...+an_lx  + an = f ( x )  (28)

is equal to the product of the constant a0 and n linear factor o f the form x - a -  f t y f - l .

“Theorem 3. For any real or imaginary values for the constants a0, at, a2, a nl,an, the equation 

a0x" + alx n~'+.. •+a„.lx  + an=0 (29)
has always n real or imaginary roots, and it could not have more.” {ibid., 343)

According to (28), f(x ) is a real or imaginary, but always “entire” function. 

With this notation, equation (27) states that/(x) «= 0. By taking x = u + vV-T and

by substituting this value inf (x ), then f [ u  + vV -I) = 0(«,v) + i//'(w,v)V-l , where 

now <t>(u,v) and yr(u,v) are real functions of the real variables u and v. Under this
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new form equation (27) becomes </>(u,v)+yf(u,v)yf-i = 0 ; and this is satisfied 
only when the two equations

<f>(u,v) = 0 
y/(u,v) = 0

(30)

are satisfied  at the same tim e, or when the equation
F(u> v) = [0(«, v)]2 + [y/(u, v)]2 = 0 holds. So the proof for FTA becomes the proof 
of the existence of two real values, u and v, that satisfy the equation F(u,v) = 0. 
Two main properties of the function F(u,v) are obtained: first that this function is 
not bounded when one of the two values w, v increases more and more

“La fonction F(u,v) ne peut conserver une valeur finie qu ’autant que les deux quantit6s u, v 
resoivent elles-m6mes des valeurs de cede espfice, et devient infiniment grande dds que l ’une des 
deux quantity  croit ind6finiment.” (Cauchy 1821,334)

The second property for F(u,v) is that it is also a continuous function of the 
variables u and v. Now, since F(u,v) > 0, the two properties for this function, 
being continuous and becoming infinite whenever u or v become infinite, allow 
Cauchy to conclude that the function reaches its lower limit with finite values of u 
and v.

uF(u,v), variant [avec les variables w,v] par degr6s insensibles, et ne pouvant s ’abaisser au-dessous 
de z6ro, atteindra une ou plusieurs fois une certaine limite inferieure qu ’elle ne d^passera jamais. ” 
(ibid., 334-335)

By calling A this lower limit and (u0,v0) one couple of values such that 
F ( uq,vq)  -  A, Cauchy proves that A -  0. Clearly the main point here is the state
ment that the lower limit A is reached by the continuous function F(u,v)— out of 
which the “existence” of the couple (w0,v0) is obtained, and by this the existence of 
the root of the equation. Once again, as it happened with Bolzano, the goal is the 
proof of the existence of a quantity (which now could be not only real but also 
imaginary), and this existence is obtained through a property that the function 
F(u,v) should hold as a continuous function: this function reaches its lower bound 
since whenever u or v —» » ,  F(u,v) —> oo28.

At the end of seventeenth century Mathematical Analysis was not a well-rec
ognized mathematical theory. Certainly a new approach towards quantities, re
quiring the study of entire and infinitely small quantities, became the main attribute 
of a new style of working the algebra of quantities; the need for this new algebra 
was already justified by the works of Descartes and Leibniz. But as we said before, 
at the beginning of nineteenth century Mathematical Analysis was considered the 
core of the mathematical expression of physical phenomena. As Fourier stated in
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the Introduction to his Thcorie Analytique de la Chaleur, it is not only a well- 
recognized mathematical theory, but even the “heart” of all mathematics; the great 
development of this theory in the nineteenth century in some sense confirmed 
Fourier’s vision. But as we have seen, the methods, the content, and the concepts 
of Euler or Lagrange that articulate this theory are not the same as in Cauchy or 
Riemann. Certainly the development of mathematical analysis after Cauchy is not 
conceivable without the concepts of “continuity” and “convergence”, even if wid
er classes of functions were discussed after Riemann—the class of “integrable 
functions” which includes “continuous functions” as a particular subclass, the 
class of measurable functions, the “Baire” functions, etc.

The birth of a new physics in the eighteenth century happened because of an 
“analytical ideal” that made possible their treatment out of the purely descriptive 
explanations. Now, it seems to us that the main consequence the “analytical ide
al” had for mathematical analysis itself was precisely the need for the production 
of the concepts of continuity and convergence, that support the theoretical struc
ture for the new analysis and their distinction from purely “algebraic generaliza
tions”.
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Notes
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1 As J. Sebestik says “Since Descartes up to the beginning of 19th century, modem science has lived under 
the regime of analytical theories”. (Sebestik 1992,25).

2 In her profound work, Hourya Sinaceur (1991) points out the differences between Lagrange and Fourier, 
with regard to the question of the resolution of algebraic equations, starting from their different conceptions 
of what the analytic methods ought to be.

3 “The simple factors of an entire function Z of z are found by equating the function to zero and by looking 
for the roots of this equation; since they give one a simple factor for the function Z. ” (Euler 1748,17)

4 In 1746 JeanleR ondd’Alembert(1746)provedthatany imaginary quantity is of the form a + b 4 - 1 
In 1749 Euler gave a proof of the same fact in his “Recherches sur les racines imaginaires des Equations” 
(1749), although he had presented a previous version of his memoir in 1746. Concerning this proof 
given by Euler and d ’Alembert cf. Gilain (1991).

5 Clearly if the imaginary quantities are supposed to be complex quantities of the form a + b^l-l , the 

conclusion comes out immediately: if a + by[-1 is a root of the equation, then a -  6 -/-1  is also a root, 

and the product of the two imaginary factors [a + b-J-l j  [a -  b-J-1 j  is a real double factor.

6 “Quod quamvis non summo rigore sit demonstratum, tamen eius veritas in sequentibus magis 
corroborabitur”.



144 CARLOS ALVAREZ JIMENEZ

7  The proposition that any entire function is equal to the product of double or simple real factors implies 
both properties: that any equation of odd degree has a real root, and that imaginary roots are always 
“complex” quantities.

8 In chapter IX o f his Introductio (1748,108), Euler says that

“It is sometimes difficult to find the imaginary factors [...] but if the nature o f imaginary factors 
is such that the product of two of them is real, it is then possible to find all o f them by looking for 
the double factors that are real, but whose simple factors are imaginary; since it is clear that ones 
we know all the double factors o f the formp-qz+rzI 2 included in the function a+bz+gz2+dz3+ ... , 
we will have then all the imaginary factors”.

9 This is one of the main differences between algebraic analysis in the scope o f E uler’s Introductio and 
that o f Cauchy’s Cours d’Analyse. Euler is certain that his definition of continuity is “analytic”, and 
Cauchy thinks exactly the same about his definition.

This last condition towards the property o f  “continuity” o f functions, which will be clearly given by 
Bolzano and Cauchy, cannot be stated in the algebraic frame for mathematical analysis given by Euler.

11 Euler’s attempts to prove Newton’s formula in the case of a non integer exponent are given later. Cf. 
Dhombres(1987).

12 As is clearly stated by Amy Dahan (1992,186):

“Ce que Lagrange veut accomplir dans la Mecanique Analytique [...] c ’est un mouvement de 
double reduction: de la m6canique & 1 ’analyse et de 1 ’analyse & 1 ’algdbre. Si la premiere partie du 
programme y est fealis6e gr&ce au calcul des variations, la deuxidme rdduction est £ l ’oeuvre dans 
la Theorie des Fonctions Analytiques",

13 Obtained, as it is well known, from the idea that when substituting the variable* for the variablex+i, 
f(x+i) takes the place of/(*), with the obvious condition that they must be equal whenever i -  0. In the 
expression forf(x+i) , it should be possible to separate those terms that do not depend on i, from those 
that are equal to zero when/ -  0. That means that it is possible to write/(x+/) = f(x)+iP, where P  -  P(x,i) 
is an expression depending on both* and /. By repeating his reasoning Lagrange states that also for the 
function P(x,i) it is possible to separate that part which depends only on the variable* from another part 
which also depends on / and must be equal to zero when / -  0, that means P(x,i) -  p(x)+iQ, so 
/ (* + /)=  /(*)+/p(*) + /2(2- C o n tin u in g  in th is  way a d e v e lo p m en t o f  the  form  
/(* + /)  = f(x)+ip(x)+flq(x)+Pr(x)+... is obtained.

1^ W here each “derived function”/ ' (* ),/" (* ),... is obtained from the previous one and coincides with a

differential quotient: f ' ( x ) = -1 ^ 1 .  f / " ( * )  = ^  ^  
dx dx

1^ Clearly Lagrange takes for granted that if /  '(*) = rn*m_1, when / ( * )  = x m , then the algorithm will 

give for the second derived function / " ( x )  = m ( /n - l)x w~2 ; for the th ird  derived function  
/  " '(*) = m(m - 1  )(m -  2)xm~3 , and so on.

16 Two assumptions that become explicit and clear in Cauchy’s proof for Newton’s binomial formula.

I7 If x + i = a/ix)+° = a flx) -a°, by writing 0 = » / '(* )+ y / " ( * )  + j - j / '" (* )+ ...  and substituting this

1 + Ao + A —  + A y ^ -+ .. .  | . D iv id in g  by * he  g e tsvalue in (5), x + i = a f(x)-a° =a f M
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— = Ao+ A2 — + + . . .  . Dividing then by /, replacing then the value of o, and rearranging according 
* 2 3-2

to the increasing powers o f 1, leads to the expression:

7  = A f \ x )  + ^[A f"(x)+ A ^fH x)]+ ...

All the terms that are multiplied by i disappear, since / is an indeterminate value which does not appear 

in the quotient — , and so — = A f' (*) .

18 In his Legons sur le Calcul des Fonctions, he goes one step further and states that no matter how big the 
number y might be, a number r can be found so that the value of L(y) lies between two values:

W a)[l~ ^ \ < L{y) < l ^ a j ( ^ ~ l) .

19 This fact would give the prove of the continuity of/(x).

20 This development takes the form / ( * )  = A + Bx + Cx2 + Dx3+... already known from the general theory 

of equations and, given in particular by Euler. Lagrange says that on the basis of the theory of derived 
functions from the development / ( * )  = A + B x+ C x2 + Dx3+... itiseasy tosay that/(0 ) = A ,f \  0) = B, 
/" (0 )  = 2 C ,...

21 Lagrange uses the theorem as a main tool stating that

“Si une fonction prime de* telle que/'(x) est toujours positive pour toutes les valeurs de* depuis 
* = a jusqu’d * = b, b 6tant > a, la difference des fonctions primitives qui fepodent & ces deux 
valeurs de*, savoirfQ>)-j{a), sera n6cessairement une quantife positive.” (Lagrange 1797,45)

(This theorem says that a function/(* ) such that/'(x ) > 0 is always increasing).

22 This problem, the converse of the first one, is treated by Cauchy in relation with the “interpolation” 
problem, the problem to determine completely an entire function once a certain numbers of values are 
given.

23 Since whenever *  + y-J-l is a root of an equation, then so does the quantity * - y V ^ T .

24 This theorems affirms that a sequence of numbers having the so called “Cauchy property” is convergent.

25 These two propositions are, as it is well known, equivalent and they both characterize the continuity 
property for the set of real numbers.

26 Here we agree with Philip Kitcher (1975) when he assures that for Bolzano the hypothesis stating the 
existence of the limit for a Cauchy sequence is completely compatible with the “fundamental laws” of 
analytical quantities.

27 “An infinitely small quantity” , according to the sense given to this notion in his Cours d’Analyse.

28 The only possibility that the continuous function F(u,v) not reach its lower limit would be that this lower 
lim it be reached “at infinity”, i.e., that whenever u or v -»  °°, F(u,v) —> A.
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THE ANALYSIS OF THE SYNTHESIS OF THE ANALYSIS... 

TWO MOMENTS OF A CHIASMUS: VIETE AND FOURIER

I Introduction

Old as it is, the debate over analysis versus synthesis is not a foundational one in 
mathematics. By indistinctly referring to Plato and Theon or more precisely to 
book VII of the Mathematical Collections of Pappus—a text dating from the 4th 
century AD—most commentators assign a secondary position to the debate, even 
if they only do so in a rhetorical way1. Such a position mainly proves that the 
conscious surge of analysis, either as a rival to synthesis or a complement to it, is 
first of all a criticism of mathematical reasoning and its practice. In other words, 
it is as a historical move that the couple analysis/synthesis finds its way in episte
mology and no further explanation is necessary. Yet very little would have been 
said, had we not simultaneously stated the strong evolution through centuries of 
the very acceptance of the two words. They even switch their parts, in a similar 
fashion to mask-plays in Elizabethan theatre. Paradoxically, in the same way as in 
this theatre Oberon acts in a timeless world, assigning the debate there is a risk of 
putting aside time. And therefore there is a risk of excluding history under the 
pretext that the opposition analysis/synthesis would just be a form taken by the 
eternal problem of what logically comes first and what comes second, but could 
arguably come first as well. Unfortunately this circuit is made all too easily by 
restricting this opposition to a philosophical one between induction and deduc
tion, or even between empiricism and rationalism. The timeless nature of this 
opposition may therefore be due to the intellectual question of equivalences or, to 
use a less anachronistic expression, to the mathematical back and forth motion2. If 
this motion will be my principal object here, I do not wish to forget its historical 
insertion, precisely in order to reach its scientific meaning.

At least one should easily recognise, like Titiana under the influence of the 
philtre that generated the transformations, that the opposition between analysis 
and synthesis also depends on the tradition of teaching mathematics. Therefore, it 
depends on the way mathematics takes its grasp on societies, each one organizing 
the transmission of knowledge in its own way and therefore according a meaning
ful logic to the teaching of a science for which an added value is provided for what
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could remain a pure technique (as was, for example, the case in classical Chinese 
culture). Is not mathematics the oldest object of teaching in the Western world? 
From Boethius proposing the first book of Euclid’s Elements as a model for school 
exercises to Antoine Amauld’s ruling through a Geometrie the Petites Ecoles of 
Port-Royal3; from the Jesuit fathers’ great expectations for the exemplary Colle- 
gio Romano4 to the enthusiastic adepts of modem mathematics during the sixties5 
of our century, how many personalities have neglected mathematics for the sole 
benefit of its presupposed effects? If didactics at a given period is scarcely read as 
serving the description and the structure of a science, it unavoidably serves a 
culture. Then it makes history run. And, as a consequence, looking for history in 
our search concerning the analysis/synthesis debate, we may be tempted to restrict 
ourselves to text-books and to teaching methods. When a study of analysis and 
synthesis is intended to be historical, not one but many projectors must be used in 
order for it to be efficient; many questions have then to be selected and pursued. It 
may even form a structure. Then one must be aware that this structural multiplic
ity ipso facto overthrows the historical localization; each cause having its own 
particular historical rhythm. The teaching of mathematics does not have the same 
historical rhythm as mathematics! This is the reason why I decided to reduce 
observations strictly to two mathematical texts only.

Indeed, I do think that historians of mathematics—and sometimes mathemati
cians may play that role—contributed more to keeping alive the opposition be
tween analysis and synthesis than to the individual meanings successively attributed 
to the two terms. It could be more interesting to shed light on the stability of the 
opposition built by an “historical” line of thought than to follow the commentaries 
of mathematicians themselves or of philosophers. One way would be to decon
struct some classical histories of mathematics. We only quote certain names to 
recall a long line of thought; Etienne Montucla, Abraham Gotthelf Kastner, Charles 
Bossut, Maximilien Marie, Moritz Cantor or Gino Loria, etc.6 We do not intend to 
proceed in this analytical manner through historiography here, but at least we 
may recognize that the mobility of meanings of the two terms in the analysis/ 
synthesis couple is the other side of the historical stability of the opposition. The 
paradox does not lie in the fact that the “mathematical” back and forth motion 
generates a “historical” back and forth explanation in mathematics, but that in the 
long term only one antagonistic couple was fixed by historians. I would like to 
argue that this perennial opposition finds its mathematical value via the inver
sions it generates. As this is the value I am looking for, the times of inversion 
must be privileged.

In spite of the different meanings, determinations and causalities linked with 
various historical and social contexts, and transient as it may be, the pure episte
mological question of analysis and synthesis does not lose any of its dialectical 
interest. It can easily be seen in a universal way, with many historical concretiza-
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tions. Without yielding to a facile mise en abime—the analysis of the synthesis of 
the analysis...—we may suppose some depth to the couple in its game of transfor
mations. And hence in its efficiency as a representation. The philosopher Maurice 
Blondel, who remarkably perceived the general role played by analysis and syn
thesis in the sciences— an abstract generality and a linking by way of necessity in 
one instance and for the other one a synthetic and quantitative individualized 
intuition—explains that this duality cannot be solved. At least, it cannot be solved 
through the sciences alone:

“In their continuous work of integration, [the sciences] constantly appeal to a synthetic process; 
it is the only one able to provide a material which could be said to be a formal one. But even this 
initiative o f the thought escapes the sciences; they are alien to themselves [...]. As for what they 
know, they do not know it the way they know it. ” 7 (B londel 1893,61)

By deciding to illuminate some moments precisely where meanings turn up, that 
is when analysis becomes synthesis and when synthesis constructs analysis as 
well, we try to specify the back and forth motion of mathematics; we reach the 
crossings of what we metaphorically call a chiasmus. Thus we may localize the 
strong thought of Maurice Blondel in order to show it is just an artefact.

In order to act on the analysis/synthesis opposition within the conditions of a 
historical view I tried to circumscribe in the preamble, my display of the moments 
of a chiasmus requires a temporal determination of at least two periods. But two 
moments already require a lot. Thus, I will speak of the end of the 16th century 
using Fran5 ois Viete’s work, and of the early 19th century using Joseph Fourier’s 
contribution. Two names, but as already stated two texts only and each treating 
quite different subjects: we look at a style and at a method, and less at specific 
objects. In order to examine two cases when analysis and synthesis exchange their 
meanings, the comparison is none too pleasant, as two different languages are at 
work. There is the pompous Latin of a Renaissance already influenced by the 
baroque, and there is the severe French style of mathematical physics looking for 
a style somewhere between the analytical description derived from the Enlighten
ment and the rigorous style of convergent series of the positivist period. We have 
to win over the heterogeneity of the two texts in order to build a meaning: its 
validity and its soundness should be measured by a critical appraisal which may 
give back their own fragrances to the two periods.

II Viete or Analysis Seen as an Appeal for a Constructive Synthesis

In a printed text of 1593, Viete works out the sum of all terms of an infinite 
geometric progression (1593, ch. XVII). Even though it is the first occurrence of 
such a formula, Viete wishes his explanation to be a very short one:
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“The whole science o f geometric progression almost reduces to one theorem only, for which four 
relations among the datas are naturally deduced.” (ibid., 28)

He then abruptly asserts:

“When magnitudes are in a continued proportion, the largest term o f the ratio is to the smallest as 
the sum o f all terms is to this sum to which the largest term has been subtracted.” i (ibid.)

A proposition which, as Viete is its author, we immediately have to try to read 
using notations. By setting a first term as D, which is necessarily “the largest” of 
the progression9, then its second term B, and the sum F, we write

F D
F - D  ~ B

It therefore comes as a surprise that in the specificative transcription of the theo
rem in letters, Viete introduces a supplementary notation, someX which is a some
what restive “smallest term” of the progression as a whole. Its presence has the 
advantage to build a well-balanced proportion which can be visualized in a mod
em way by a formula and was appreciated by Viete’s contemporary readers from 
the rhetorical expression:

F - X  D 
F - D  ~ B

A  quite simple interpretation can be given, at least if we restrict ourselves to a 
progression with only a finite number of terms. In fact, in more modem terms,

choosing an integer n (> 1) and letting the general term be xn = x^rn~x (D then
k=n

corresponds to n -  1, or to and B to x2) the sum Fn = ^ x k for a geometric
k=\Xi

progression of ratio r — —  (in the modem sense) can be written as10 
x2

Fn~X n = *1 
Fn - x 1 x2

And it is easy to go to infinity by replacing Fn by F  and therefore xn by x j

F - x ^  _ x {
F - x j x2
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What is simple for us was as simple to Viete’s readers in their time because they 
had read Euclid". In this respect, the emphasis of this author writing the “small
est term” is surprising. In other words, it solicits some reflexion, for as he does not 
even provide proof of the theorem-in the expression of which we have to recall 
that the term X  does not appear. Here lies our major observation. From a literary 
form to a literal one, something more is made apparent which is something less in 
terms of mathematical efficiency.

Unfolding a beautiful analytical process, Viete deduces some other formula
tions in his form using X, admitted for the duly accepted theorem. Precisely four 
formulations as there are four quantities being displayed, F, D, B and X. The last 
X  from which we cannot escape is set up at the same level as the others. Four ways 
of expressing any one of the quantities in terms of the three other quantities. It is 
a display of analysis first referred to by means of a classification but Viete explic- 
itely refers to analysis at the end: “Vf hcec in Analyticis abunde demonstrata, & 
exemplificata sunt"12 (ibid., 29). He organizes his material according to an alge
braical script13 and, moreover, he introduces the required formula by the word 
“6e66|ievov” each time. In the literary play of Renaissance texts, this is an allusion 
to Euclid’s Data (AeSopsva); a typical text of analysis, for which some elements of 
a drawing are determined from other elements which are postulated as given. In 
short, Viete clearly proclaims analysis, and for our purpose we have no need to 
examine it in more detail.

The text does not stop here. Surprisingly—and the effect is deliberate—here 
there is a question in Viete’s exposition: “Shouldn’t we say that X will go down to 
nothing when magnitudes are in a continued proportion to infinity” (ibid.). If this 
is the first time that infinity is mentioned in the text, it was present ineluctably 
from the early lines. It was hidden in the literary expression used for the theorem: 
as it only mentions three things, the theorem cannot make any sense to any reader 
if conceived for a progression with a finite number of terms14. On the opposite 
side, using the game played by X from which infinity is revealed (“smallest term”), 
the literal transcription makes sense in both finite and infinite cases. Finally, with 
the notation X, a name is given to what provides an additional meaning to the 
literary form of the theorem. Then, abruptly, there is a change in the stylistic 
register of Viete’s text. An opinion is given, as in any good scholastic text: “And 
Mechanists15 will assure us that it vanishes as the smallest quantity subsides in the 
intellect only” (ibid.). In short, the reader is aware of what is suggested. In its 
literary form, the theorem sounds true for the reason that is suffices to make the 
smallest term of the literal form equal to zero. A form which can be said to be the 
indefinite writing of the sum of a geometric progression (n as a integer, the number 
of terms, is not specified and might as well be infinite). Isn’t this the added value 
of algebra?
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Viete’s analysis could therefore end here with only the well regulated game of 
a computation: reduce to 0 an infinitely small quantity and obtain a formula quite 
close to the one we usually adopt when we reach for the sum of a convergent 
geometric progression,16

X \ _  x \ ~  x 2 

F x,

The scholastic parenthesis might then just have been a stylistic effect. And analy
sis will have remained the main tool.

Indeed, the text proceeds further and from now on analysis recedes to give 
place to synthesis. A synthesis in the sense that there is a construction which 
answers the question: shouldn’t we say that... The question is really about the 
maintenance of analysis. Synthesis symptomatically begins by a definition; in this 
case an original definition of an increment (cremento): “what the difference of 
[any] term of the ratio is to the [immediately] inferior term of the ratio, the small
est [magnitude] is to the increment” (ibid., 29). For a progression with a finite

number of terms, the increment A possesses a unequivocal definition —!------ = —  .
*2 A

But it obviously depends on the integer n, a parameter in a way too talkative in the 
literal form, and excluded by the literary one. We could better denote An, and write 
Fn as well, for the finite sum with n terms. In the case of an infinite progression,

the definition of the increment can be read as —— — = — , or better said in the
x 2 A

manner of proportions using then A^. Unfortunately, the second ratio is a quotient 
of two quantities, each one equal to zero (according to the “Mechanist” opinion); 
the quotient is therefore a non-assignable quantity. Equipped with such a defini
tion, the result of a synthesis may however appear:

“As the difference of [any] term of the ratio is to the [immediately] superior term of the ratio, so 
is the largest magnitude to the one composed of all terms plus the increment.” (ibid.)

In algebraic notation,

*1 ~*2 _ *1 
Xj F + A
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To see this better, it is possible to rewrite it as:

The increment A corresponds to a failure; it measures what fails to an infinite sum 
when one stops after a finite number of terms. Nothing will fail once the infinite is 
reached. From a finite n to an infinite, from the literary meaning to the literal one, 
a continuity of meaning is restored, by means of a synthesis.

Proceeding further in this line of reasoning consists in establishing the need to 
put the so-defined increment to zero. At this step however, Viete is no longer 
looking for a complete reasoning: it seems enough for him to refer to a result 
which Archimedes splendidly and synthetically explained—“and there is a fact”— 
in the Quadrature o f the Parabola (proposition XXIII; Archimedes OO, II, 310):

“Let there be continuously proportional magnitudes to infinity17, with an under-quadruple ratio, 
and let 3 be the largest o f all. The composed magnitude will be 4. And there is a fact18; to these in 
continuous under-quadruple ratio magnitudes, the largest being 3, nothing as small as possible 
can be added without the composed magnitude being larger than 4.” (Vi&te 1593,29)

The allusive style is unequivocal: it is by a double reductio ad absurdum typical of 
the method of exhaustion that the increment can be verified to be zero. The only 
short way is to use the particular case of the Archimedean progression as if it were 
the general case. Continuity is restored on an historical order as well.

Viete still does not stop here. He went from analysis to synthesis; but he raised 
a question rather than having solved one. The reference to the tradition of the 
method of exhaustion of which Archimedes is the most celebrated artist, is in no 
way an authoritative argument. Viete does not even criticise this tradition; he 
merely states that it contains a type of satisfactory proof for which no sequence 
can be provided. Moreover, it seems impossible to follow an algebraical path, or 
rather, a filiation to the tradition would denature the algebraical way. Indeed, 
using an algebraical relation, Viete associates the smallest term of a progression 
to the increment. But there is no link with the double reasoning by contradiction 
alluded to, which would be enough to validate the theorem on the sum of an 
infinite progression. Then Viete essentially shows the requirement of a “new al
gebra”. This algebra does not appear as a natural one. It has to deal with indefinite 
quantities like A or xm, for which a correct writing is available only in the case of 
a finite term progression.The new quantities can be combined in some algebraical 
way as their possible ratio is equal to a well defined ratio of finite quantities. And
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equating these quantities to zero according to the formula of likelihood, some
thing true is obtained. Viete’s is a testimony of this essential experience.

He then concluded by refusing an end and this is undeniably an appeal for a 
sequel. Vidte explicitly says of the reduction to zero: “But Platonicians will agree 
with difficulty, as the whole of Geometry essentially lies in the intellect” {ibid.). 
Will the sequel be an analysis or a synthesis? Wavering has the value of erasing 
the differences. For our purpose, it is enough to have shown that in Viete’s case 
the passage from one style to another in the direction of a necessary future, served 
to make us aware of the uselessness of a motion back and therefore helped to 
suspend the back and forth move. We recognize a suspended analysis in this text.

I ll Fourier or the Synthesis Appearing as an Analytical Necessity

With the appearance of the Theorie analytique de la chaleur (1822), the localiza
tion in analysis seems indisputable. Fourier at least displays the banner of an 
analysis, by using the specific adjective in the title of his book. Therefore, as there 
is no apparent ambiguity, we are compelled to present our study in a manner 
different from the one used for Viete’s text. We first have to question the validity 
of the analytical reference. Using this title, couldn’t Fourier mainly be displaying 
a stylistic filiation to Lagrange’s Mecanique Analytique (1788). Published in 
1811-1815, the second edition of this book, corrected by the famous author, was 
considered as the example of a mathematization of the real world. In fact, classi
fying the content of Fourier’s book at an epistemological level, the analogy with 
Lagrange appears less deep than the title may at first suggest. It was Auguste 
Comte, a thorough reader of Fourier whom he was persistently inviting to attend 
his first course in positive philosophy during the year 1829, who understood that 
Fourier was competing with Newton’s Principia (1687). For even if there are 
some traces of analysis, Newton’s book openly maintains the genre of a synthetic 
composition which resulted in some stylistic obscurity as has so often been ob
served19. By endowing heat theory with its phenomenological and mathematical 
concept, the flux20 (which is the analogous concept to velocity in mechanics, and 
even its exact mathematical counterpart as a derivative) and by using the tech
nique of a thermal balance implying an invariance, Fourier succeeded in estab
lishing a partial differential equation governing temperature. Thus is the so-called 
heat equation to which commentators usually reduce the Fourier’s achievement 
from the point of view of physics21. In his turn and for the specific physics of heat, 
he thus realized the Newtonian program which had been exemplified by the der
ivation of differential equations of motion from universal laws of attraction.

“I do not fear to pronounce, as if I were ten centuries from now, that since gravitation theory, no
mathematical creation was more valuable than this one for the general progress of natural philoso
phy.” 22 (Comte 1830-1842,1. 31, II, 592)
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Thus Auguste Comte speaks of Fourier’s achievements. And to increase the weight 
of this judgement, he adds something which is not far from the important distinc
tion between a metaphysical era—Newton—and a positivist one:

“even so, by seriously scrutinizing the history of those two great thoughts, we could find that the 
foundation of mathematical thermology by Fourier was less made ready than the foundation of 
celestial mechanics by Newton.” (ibid.)

Such a judgement ipso facto states that Fourier’s theory composes a synthesis: 
apparently it comes from nowhere and it is totally built and “positively” explained; 
it has therefore definitively acquired the status of a scientific and perennial work:

‘T h e  new theories which are explained in our work are for ever united to the mathematical 
sciences and, like them, they rest on invariable foundations; they will preserve all the elements 
which they now possess, and will continuously grow in extention.” (Fourier OD, I, xxviii)23

Thus Fourier did not hesitate to proclaim his achievements and he was taking 
advantage of a language which had been dominant for centuries, namely the lan
guage surrounding Euclid’s Elements, always an admired model for synthetic pres
entation of the science of magnitudes24.

Let us then give up the reference to Lagrange. The analytical way is perhaps 
not yet Analysis! This latter would then appear in the text of Fourier, not as a style 
subordinate to the explanation, but far better as a whole new branch of Mathemat
ics. It is clearly during the 19th century that any specific denomination for Anal
ysis was abandoned25: it is no longer in Analysin infinitorum as it used to be with 
Euler (1748), but forcibly without any adjective in Cauchy’s Cours d ’Analyse 
(1821). And this is more visible as the first part of the course accounts only for 
algebraical analysis. A contemporary of Cauchy, could not Fourier be the instiga
tor of Analysis as well? For more than fifteen years, he had been refining the 
various aspects of his Theory: it is sufficient to read any page of the Theorie 
analytique at random to notice his chiselled wordings. A consultation of the long 
table of contents at the end of the book, where classification in the finest detail 
takes care of the very connections of the reasoning itself26, would convince any 
reader that the literary structure of the text was deliberately chosen to adapt as 
close as possible both to the reasoning and to the part of the real which is investi
gated. “Looked from this point of view, mathematical analysis has an extension as 
large as Nature herself” (Fourier OD, I, xxiii), so he claims in his preliminary 
discourse to the Theory. If the word Analysis receives then a privilege, it stays in 
the book without any further definition. Darboux, later editing the Theorie analy
tique for the Complete Works of Fourier, will find himself obliged, in printing this 
sentence, to add a capital “A” to Analysis.

However, the organization of our quest would be upset if we were to pursue the 
building of Analysis on this path. We had far better go to the conclusion to his
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work provided by Fourier himself. There, he feels the need to explain that even 
though it is the main object of his Theorie, he has not chosen to derive in a unique 
form the various integrals found for the heat equation belonging to the various 
situations met within different kinds of solids subject to heat propagation. He 
claims that such “transformations require long computation and they suppose al
most every time that the form of the results is known in advance” (Fourier OD, I, 
525, n° 428). He thus affirms that he could not have purely followed an analysis, 
even in the sense Pappus acknowledged where analysis has to start from what has 
to be reached.

If we were to adopt the qualification of “historical” for Fourier’s presentation 
we might avoid choosing between analysis and synthesis and reach some kind of 
equilibrium. This seems to be a valid statement to start with27. Using the word 
“historical” requires us to play with the double meaning this word usually takes 
in the sciences. It certainly means a narration, with its chronological and critical 
unrolling of a thought concerning an object of science, but it also means the 
account of a systematic look at the real world. This last meaning is precisely the 
one in “natural history”, a familiar expression used throughout during the 18th 
century and early 19th century. Fourier is first of all an original thinker (or 
scientist) because while allowing to read history of his thought, he turns it into a 
history of Nature herself28. Individually neither an analysis nor a synthesis, but a 
history of the real to which reason belongs as well.

A history of thinking and a history of objects; this double function is an old 
one in the construction of science. The swinging implied by these meanings is 
certainly one of the major ambiguities of history of science as such, at least as an 
intellectual mode. And this explains why we are aiming at the stylistic swinging 
of a chiasmus. The Theorie analytique appears to be accomplished in the same 
way as any historical account which is always told using a past time; as any syn
thesis, the Theorie keeps no trace of a past and bears no error before a future. If the 
Theorie has to be an analytical discourse, it is because so is Nature herself; not 
only in the interpretations given of the efforts made to analyse it, but in the very 
way those natural effects are produced. At the end of a section “the object of which 
almost entirely belongs to Analysis”, when he evokes the structure of a differen
tial equation, Fourier aptly qualifies it as the equation of the phenomenon, be
cause this equation represents “in the most distinct manner the natural effect. 
This is the principal condition we always had in view”29 (ibid., I, 525, n° 428). 
The equation is not a model, or a reduction. For Fourier, there exists no middle 
locus between a mathematical thought and the real; fiction is not a resource which, 
even through the assumed risk of a logical fault, might account for the adequation 
of a thought.

Could we say then that we have a synthesis of the analysis! Such a genitive 
case is used too rashly. In order that the expression might have a meaning which
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convenes to Fourier’s work, we should have to consider, as at any cross-road with 
no sight-of-crossing sign, that the order of the two words, analysis and synthesis, 
is indifferent. If Fourier calls the motion which animates his Theory ‘analysis’, in 
fine  he summarizes what explicitly is a synthesis30. He turns up the older defini
tions of the two names; he locates himself at the crossing of the chiasmus.

As a question, the adequation of the analytical style to the synthetic content 
makes the purpose of our inquiry. We have to understand why analysis only, by 
sheer accumulation of deductive signs, could not have been sufficient in Fourier’s 
eyes to build the Theorie. It could have achieved the status of synthesis only once 
it was entirely accomplished, that is once ended. Synthesis would have been the 
result of the unrolling of analysis. However, Fourier himself prevents us from 
adopting such a compromise which would provide an orientation for the branches 
of the crossing by explicitly naming each one. His exposition of facts, so he claims, 
coincides with the discovery of the facts; it is an invention as such and therefore 
his account cannot be smelt into a synthesis, the unrolling of which necessarily 
requires some axiomatic method. Even a man like David Hilbert would never 
state that the axioms precede thought in an inquisitive mind: they have to become 
the frame for intuition as a construction of the mind. Nevertheless, it is a history 
of the inquisitive mind of a natural philosopher which is the true account of Fou
rier, and he claims that it is the account of Nature herself. Analysis and synthesis 
are unequivocally mixed.

Analysis and synthesis are combined in the fate of Fourier’s work. Those two 
words intervene directly in his intellectual and objectal filiation, and they are to 
be simultaneously written. They are endowed with a precise meaning, and fortu
nately there is no questioning about it: it is simply decomposition and recomposi
tion. It is after Fourier, in a way rather a long time after him but in an explicit 
reference to his work, that everybody spoke of the harmonic analysis of a function 
and of its synthesis31. In the same manner as for the adjectivation of Analysis, 
even the word function had to disappear when a branch of mathematics was final
ly organized—Harmonic analysis—but this is no restriction but a metonymy as 
this branch contains harmonic synthesis as well. The maintenance of the expres
sion “Harmonic analysis” is a rare phenomenon in mathematics, a science which 
is generally chary of distinctions among its various enterprises; the expression of 
Fourier Analysis is less common, but with the same metonymy that implies syn
thesis as well. The last expression follows from the fact that elementary functions 
are necessarily associated with the very idea of a periodic function: they can be 
called “simple” modes32, the obtaining of which for a given function comes from 
a computation of integral coefficients, the so-called Fourier coefficients33. Such is 
analysis. Once the coefficients associated to the modes are known, according to an 
infinite addition naturally induced by a numbering by integers—this is the num
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bering of simple modes—a function is entirely found again or reconstructed: this 
is its synthesis34.

Even if we positively follow the mathematical practice of the domain launched 
by Fourier, we have not yet reached a clear and distinct explanation concerning an 
analysis which should be followed by a synthesis, in the sense that, historically 
and epistemologically, we cannot use for long the apparently nice but “frivolous” 
distinction made by Condillac who places a “before” and an “after” in order to 
point up the link between the two operations of decomposition and recomposition. 
Fourier’s operations show this clearly. First obtained from a laborious algebraical 
technique proceeding through the elimination of variables, a computation of Fou
rier’s coefficients acquires a rational transparency only once orthogonal relations 
intervene35. These orthogonality relations exhibit such properties of simple modes 
that each one may reach an independent existence; each one is taking advantage 
of the freedom and therefore of the status of a dimension in geometry. These 
relations provide analysis with its own legitimacy and shape analysis as an inde
pendant moment of the reasoning, i.e. of the proof. However, as efficient opera
tions, such orthogonality relations are available at the very moment of the synthesis 
of a function only; and practically as well as formally they can be omitted from 
what could be seen as the pure moment of the analysis. In short, orthogonality 
relations cannot be metaphorically viewed as the knuckle-joint linking in this 
order analysis and synthesis. But curiously we have to ascertain that analysis does 
offer an explanation in its own right only once synthesis is concluded36. Contrary 
to what has so often been said with good reason by classical epistemologists for 
whom roads without crossings are the best warrant for a scientific construction— 
it is the no noise syndrome— , synthesis is not the justification for analysis. Syn
thesis is certainly not the occurrence of a formalization according to an accepted 
mathematical canon, from which we can absolve those scientists who are not 
looking for rigour37. In fact, it happens as a crucial experience, and possibly as the 
main mathematical activity, that the computation yielding Fourier’s coefficients 
works correctly even if, at the moment of synthesis, we were to “forget” certain 
simple modes38. As the conclusive example requires some technical preparation, 
it will be given somewhat later. Fourier proceeds in the same way, giving it at the 
very end of his book (this is a supplementary proof, if such is required, that his 
display is not a linear one; we already used the qualification of enveloping dis
play). Before proving, we go to the consequences. Analysis has its own independ
ence; but it is not automatically conducive to truth. Synthesis is not a conclusion 
which functions as a validation; it is an interpretation of an earlier analysis which, 
in this very process, changes for a new meaning: a cycle begins.

Fourier has not underestimated the aporetic conclusion which confuses the 
order for intellectual operations, analysis/synthesis. He even cancels the opposi
tion. An aporia, which etymologically is what prevents an idea from providing a
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path, conspicuously gave him the possibility of creating a theory: he had to erase 
the opposition, or the parallelism and lack of a meeting point of analysis and 
synthesis. This seemed necessary to turn “simple” modes into “proper” modes. 
The adjective has a value of reality. The path followed by Fourier is a thought in 
itself. The chiasmus analysis/synthesis is no longer the algebraical effect of a 
presentation: it is part of the work of science.

Such modes, so Fourier explains, are intrinsically linked with a periodic func
tion conceived as a mathematical object; the reason being that Nature so con
structs them. The study is that of heat propagation in solids. Ineluctably, at least 
from an analytical study, periodic functions do appear in the case of heat.There 
exist “waves” of heat. Mathematically, a “wave” is a mixing of a periodic oscilla
tion and of a decreasing exponential in the variable describing the distance from 
the heating source. Therefore, analysis reveals a phenomenal property in its own 
right. Proper modes make their appearance from physics analytically pursued, 
and they go far beyond periodic functions; they are appearing under the inventive 
pen of Fourier in many other circumstances, for example with the so-called Bessel 
functions if we wish to point out only one other example39. We find the essential 
fact which instaures a generality: proper modes are present in all phenomena of 
heat propagation, and this is why the word “proper” is physically valid. But they 
“properly” too happen with the harmonics in sound propagation or in the expla
nation of tides. Both are quite distinct physical phenomenoms. If Harmonic Anal
ysis becomes a mathematical theory, it is because of its universality. But this brings 
no loss of a “proper” property: the simple character of a mode is not changed into 
proper by the technical play of the mathematical game which is unable to confer 
such a quality to its objects. Even by folding analysis into synthesis. Fourier has 
eliminated any “middle”, even mathematics, between a thought—his thought— 
and the world.

The nature of these modes has to be the object of a proof, for which we are at 
the active cross between analysis and synthesis. However, if the chiasmus is not 
yet discemable, it is because we have not sufficiently enveloped it with mathemat
ics. Fourier is not providing a rhetorical discourse; he intends to speak like Nature 
herself.

In which sense, in fact, could one prove the “proper” property of an object 
which is deduced or built from an analysis? As a form has been exhibited, there 
can be no doubt about the very existence of proper modes; synthesis does not play 
the somewhat restrictive part of an ontology. By the way, in the case of periodic 
functions, such modes are reduced to the brave functions sine and cosine for inte
gral multiples of the variable and are quite elementary functions. Clearly, by lead
ing to a reconstruction of a function from its proper modes, synthesis gives credit 
to modes in their status of proper modes. It is not sufficient enough as a proof. 
Here synthesis appears for what it is etymologically, just an addition. It is not
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sufficient for a good reason: in its own proof, synthesis shares the defect of analy
sis. It works, but it does not help the understanding. A scandalous situation, a 
contradiction indeed to the purpose of providing a proof of a “proper” property.

To get rid of the contradiction, the first way chosen by Fourier is just a bias in 
order to prove synthesis, i.e. the sum of a function developed into a trigonometric 
series (Fourier’s series). It relies on the development of the function in power 
series. He then uses what was more or less called Taylor series, manipulated all 
through the 18th century, but certainly not rigorously proved, and eventually made 
the very basis of Analysis by Lagrange in his Theorie des fonctions analytiques 
(1797). Long as it is, with even a strange formal play on a typical constant like n 
used as a variable for differentiation—a game no longer authorized by acceptable 
science during the early nineteenth century—Fourier’s proof sufficiently shows 
that he conferred on his manipulation no more value than a linking one. Fourier 
just helps to join his new mathematics with already known mathematics40. His 
bearing is a normal one for someone introducing an invention when one does not 
locate it as a revolution. The intention of this proof is not to mathematically fix 
what “proper” means; but this is the purpose of the theory!

There is no difficulty in proving or ascertaining the adjective “simple” for a 
mode. For the partial differential equation which governs heat propagation, a 
simple mode appears as a solution whose variables are separated: it has to be the 
product of a function of one of the variable by a function of another variable. This 
is, by the way, how from a computational point of view, such modes are obtained. 
It is a pleasant and efficient analytical characterization which the first year stu
dents usually are compelled to undertake. However, this characterization is a for
mal one; it cannot “prove” anything “proper”; it is a trick to reach such modes. 
Guile cannot provide a proof of what “proper” is!

There is another way which tempted Fourier, but it led him to nowhere. This 
failure is rather surprising to our modem eyes, in that the way is the one which 
will lead to proper vectors and proper values. Here the usual language adopted in 
English is unfortunately improper, and we have to think of the original German 
meaning of Eigen in Eigen-vectors or Eigen values. At least in French or in Ger
man, the maintenance of the adjective ‘proper’ or ‘eigen’ in linear algebra as well 
as in linear analysis, has a historical meaning. Fourier, effectively, shows some 
stability, and this stability is no longer a formal situation like the one where ‘sim
plicity’ just meant separation of variables. To explain this, we have now to enter 
some mathematics and at least a drawing, even if Fourier, as a presumed analyst, 
is rather parsimonious of such graphic representations.

We consider an infinite rectangular lamina: thus we have a two-dimension 
problem, with two space variables x, y and a physical mind may fancy that the 
lamina has an indeterminate depth. The two long lateral sides of the lamina are at 
a fixed temperature, melting water being a good choice in order to suggest the
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idea of a muffler isolating the lamina at the sides, isolating it to the point of 
suppressing even the unavoidable dilatation which the lamina has to undergo. At 
the bottom of the lamina freedom reigns for the fancy of the experimentalist math
ematician. He may impose a constant temperature—and this is how first Fourier 
began an analytic computation41—or he may impose any function. That is, he may 
decide any ordering of values of temperature along the internal DE, but only on 
this real interval where a real variable y is running: in other words, a free function 
f ( y )  is available (variable x  runs on the oriented median edge of the lamina). As 
we are at an intermediate moment of the analysis, time is no longer playing a role.

k
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F(x,y)

temperature 0

X

C

temperature 0

E
- n!2 + 71/2

temperature f{x)

It is presupposed that the regime of heat is a permanent one, temperature is sta
tionary as an equilibrium has been achieved between the lateral muffler and the 
given and generous source of heat at the base. Temperature at every point of the 
lamina is a function F  of the space variables * and y only.

Fourier establishes a connection between the two functions,/(y) at the bottom 
of the lamina—the given function—and F(x,y) which is the sought for tempera
ture in the lamina. Physically speaking, the connection seems obvious: only one 
regime of temperature is obtained. Fourier takes the opportunity to prove this 
uniqueness from the physics of the flux he has launched. Mathematically speak
ing, there is also a connection, and this is original as well. Function F is altogeth-
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er a solution of a partial differential equation of the second order: the Laplacian of 
F is equal to zero

d 2F d 2F 
dx2 + dy2

=  0

and it satisfies three more conditions:

F
f

= F K
= 0

F(0, y) = fly)

Lim F(x, y) = 0 for all y  in
_ n  n
~ J ’ 2 where Lim x  = OO

The indissoluble association of boundary conditions to the very partial differential 
equation is an innovation due to Fourier: it helped him to understand the corre
spondence between /  and F, even at a moment when the concept of function was 
the prey of transformations to which the work of Fourier was to contribute42. It 
happens that proper modes are such that, if such a mode is an input at the bottom 
of the lamina, in the form of some function /  any trace of F  at any horizontal 
segment of the lamina is equal to the given/(up to a constant multiplying factor). 
As an exam ple43, if f ( y )  = c o s ( l ly ) , then F( x, y)  = A /(y) = A cos(lly ),

where X = 1 • From this remarkable stability, which we call to-day a prop
er property in a mathematical sense, Fourier deduces no mathematical action; he 
let it stay as a physical determination. In other words, he does not try to character
ize “proper” modes functionnally as the invariants of the correspondance from /to 
F (up to a multiplying factor which we learned nowadays to call an eigen-value). 
The lamina remains as an intermediate object of the correspondance: it has not 
been identified through a relation. For Fourier, the proper character is not yet 
proven.

In a sense, we have not to regret Fourier’s failure to detect the “proper” math
ematical character in the invariance of a direction in a functional space. The irre
pressible need of the determination led him to where what he brought is formidable: 
he affirms that synthesis of a function from the addition of its proper modes covers 
all thinkable functions. What prevails is the “arbitrary” character of the function; 
the adjective is thoroughly used by Fourier and associated with the expression
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fonction generate. Sure enough, a combined mathematical and historical criti
cism may eventually say that this character was brought about by the pure analyt
ical computation of Fourier’s coefficients, in the sense that, for this computation, 
just the integral of a function operates, if we multiply the function by a proper 
mode44. In Fourier’s time an integral was conceived as an area, therefore any 
“arbitrary” function possessed an area. However, our account of Fourier’s display 
would not be sufficient if we were to restrict ourselves indicating a necessity due 
to the form of the computation; or, as could be said using an other description, we 
are too sensitive to the architecture of Analysis as it becomes independant of Ge
ometry. Historically we think in terms of the building of Analysis. The possibility 
of the arbitrariness of a function, independently of the computational technique, 
is precisely for Fourier where the foundation of a mode as a proper mode lies.

We should less emphatically say that Fourier had the capacity to link two 
concepts, the one of proper mode and the one of arbitrary function. But this is not 
the knot of the whole situation.

In order finally to justify our description, the proof (which we consider now in 
order to show from what defect synthesis is suffering), is more remarkable be
cause it plays with oblivion. Let us suppose that a “proper” mode, or better “sim
ple” mode has been forgotten, for instance some sin (nkx) for a certain integer nk. 
Nothing would have been changed concerning the analytical computation of all 
other coefficients: we already said that the first part of analysis was independent 
of any synthesis. Strong as he is thanks to the orthogonal relations, Fourier how
ever takes notice that any function synthetized with all the other proper modes 
would at least be orthogonal to this, willingly forgotten, mode. Forgotten, but still 
perpetuated by a sign

in
J  f ( x )  sin (nkx)dx = 0

The fact that an integral is zero is really a condition imposed on the function /. 
Therefore/is in no way an arbitrary function. Synthesis forgetting a mode is then 
a false synthesis. To give warrant to the arbitrariness of the temperature function 
at the bottom of the lamina is the way to offer to modes their “proper” property. 
“Proper” properly means an unavoidable property and thus it is an intrinsic prop
erty. Nature, which governs heat, cannot avoid proper modes: it is Nature who 
compels the mathematician, or better the natural philosopher, to think the ab
straction of an arbitrary function, a function upon which no condition can be 
imposed. Obtained via analysis, the nullity of an integral helps to understand why 
forgetting some mode makes synthesis wrong: but this understanding comes only 
once synthesis is viewed as working for an arbitrary function. This condition of
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the arbitrariness—I dare call it that way— ipso facto intervenes for the practise of 
analysis itself. We were to eager to find a knuckle-joint between two styles and in 
fact we have found arbitrary functions as a general condition for both styles; we 
have acknowledged the shift from one style to the other. This is precisely what 
orders the Theory as constructed by Fourier; and it is the localization of a chias
mus.

In this move, the whole construction of the Theorie Analytique is at stake. To 
ensure the arbitrary character of the functions used or to avoid using just a name, 
Fourier has to exhaust all possible cases. He undertakes a systematical journey 
through different cases of heat propagation in quite different solids. Totality of the 
journey is necessary to fill the freedom provided by the arbitrariness of functions. 
From to-day, the word “total” precisely refers to the concept ruling mathematical
ly proper modes, at least once some functional spaces are specified. A system of 
modes is total when there exists no function outside the zero function which may 
be orthogonal to all modes. Fourier did not have this ingredient at his disposal 
and was therefore obliged to verify the exhaustivity of proper modes by totalizing 
all possible cases. Analysis could provide a convincing proof of the proper charac
ter of a mode, only once all cases are synthetized. Each case, individually, is then 
a renewed analysis, and not simply a reproduced one. The risk of a chiasmus is 
not a unique risk in the theory: its very moment is therefore a scientific creation. 
With each case the theory can be falsified; the synthesis of one case helps the 
analysis of its successor. It also renews the analysis of the previous ones.

No redundancy at all45! Fourier organises its presentation according to an or
dering of successive solid forms where heat propagates—lamina, prismatic beams, 
cylinders, armillas, or cubes—and each case provides, not only a confirmation, 
but its contribution to an understanding of propagation. This is an unavoidable 
proof that analysis alone is insufficient. Here is the answer to our original ques
tion. By specifying for each body a particular form, heat draws its proper geome
try. This is this “reality”, which has to be drawn for each case, and analyzed to 
each occurrence, from which at the end a structure —thermogeometry—is found. 
Each case has to be recomposed and informs the analysis of the previous case, 
thus modifying the meaning of analysis already made. Solved case by case, 
Fourier’s thermogeometry is not the result of a synthesis: it is, in its ordered mul
tiplicity, a direction for an analysis always reformed by synthesis.

As in any analysis properly done, there is the problem of the end of the theory, 
that is the moment where the back and forth move has to be stopped. It is here 
signalled by pure repetition, when any new case only brings computations but no 
renewed analysis. Fourier does not theorize, perhaps because he judges repetition
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as not being sufficiently objective. And he was right, as his intellectually richest 
experience came long after he had thought his Theory ended.

IV Fourier’s Transform: an Erasing of Synthesis

The most remarkable example of the efficiency of this style is provided by Fouri
e r’s transform, for which we first of all have to recall the extraordinary success in 
contemporary sciences, from solid-state physics to pseudo-differential operators, 
from wavelets and magnetic nuclear resonance, to a spectacular spread out in 
chemistry or medicine. It is the last case considered by Fourier in his quest for 
mere heat propagation46, a case which he considered only in his text of 1822 
almost without manuscript preparation. It is moreover a case for which the geom
etry is the flattest, just presenting an indescemible diffusion of “heat motion in an 
homogenous solid mass whose dimensions are all infinite” (ibid., I, 387, n° 342)47. 
A case which would not be the possible focus of an analysis had not previous 
results shown the role of proper modes. The indiscernible geometry of the space 
can now be structured into a thermogeometry and therefore made analyzable: by a 
feed-back, in this process the mirror effect from the apparently dull geometry 
helps in turn to better “see” previous analyses of more particular cases.

By separation of variables, proper modes are easily found for the general “spa
tial” case which can be summarized by a partial differential equation (for which 
there exist a constant k, obviously a positive one which reflects physical parame
ters). This equation rules temperature allocation T(x,t) where jc runs through all 
real values—this is spatial freedom—and time t runs through real positive values 
only48.

dT _ d 2T
dt “  dx2

Right away, the case is a functional one as Fourier allocates an initial distribution 
of temperature—he writes F(x)—and makes clear, in his rigorous manner, that 
this function has to be an arbitrary one, under the specification that the function is 
defined over an (arbitrary) segment. A purely mathematical analogy is thus pre
pared with the case of the lamina for which the bottom temperature— involving a 
repartition on another segment—was also thought of as an arbitrary function on a 
given segment. Such a situation gave place to Fourier series (developed in a co
sine series). Strong as he is from this result, Fourier may now begin by imposing 
a symmetry property to function F: it will be an even function (F(x) -  F(-x)) as is 
the cosine function and the definition segment will have the origin as its middle 
point. But this is pure commodity.
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Proper modes are many, e"*?2* c o s ^ , with a positive real parameter q, and the 
trick for the computation is just to look for “simple” modes: Fourier no longer 
tries to prove their “property”; it has been seen in the lamina case, in the armilla 
case, etc. The passage from the discrete situation—that is all previous cases with 
a enumerable numbering of proper modes—to the continuous situation of the new 
geometry imposed by the freedom offered to parameter q, presents no difficulty; 
neither to Fourier nor to any mathematician of his time49. All have learned how to 
manage the passage by precisely using Calculus and by replacing a discrete sum 
by an integral. Without batting an eye, and by sheer analogy with the formula 
obtained in the lamina case, Fourier writes for the temperature T at point x and 
time t

T (x,t) = J Q(q)e kq ' cos qxdq ,
o

where Q is a function of the only variable q, the integral being extended to the 
whole domain of q, that is from 0 to °°. This domain is not a fiction invented by 
the mathematician: it really is the space of what is “proper” and it does not depend 
upon the nature of function F or of the segment where it is defined. In the same 
way as with the lamina where one was compelled to suitably compute coefficients 
relative to the discrete family of proper modes, here “the difficulty lies in suitably 
determining function Q” (ibid., I, 390, n° 345). The initial condition (t = 0) in
deed yields a functional equation for Q.

F(x)  = j Q(q)cosqxdq 
o

In this equation, function F  is known and function Q is the unknown. In other 
words, analysis has its object. But this is not the last aspect. In its turn, synthesis 
will change the object in order to present a new object to analysis: this will be the 
Fourier transform. But everything in its own order. In a suggestive fashion, 
Fourier speaks of an “inverse problem” as he is confronted to what, after I. Fred
holm and D. Hilbert, we call an integral equation of the first class. He is conscious 
of the novelty and the interest of this “singular problem” (ibid., I, 391, n° 346). In 
order to solve it, he reinterprets the result obtained in the lamina case: such a back 
and forth move is the main component of his method. For the lamina, the n-th 
order Fourier coefficient of the even function is obtained through an integration 
by summing the product of the temperature allocation by function cos nx. Then, 
multiplying this computed coefficient once more by function cos nx, and summing
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this time over all integers n, the original allocation /  is found once again. Such is 
the lesson given by an investigation of the formula for even and 2tc-periodic func
tion. In order to avoid the exception of the coefficient of zero order, and precisely 
to avoid putting the analogy to come at a disadvantage, Fourier uses all integers, 
positive and negative, to exhibit a formula for the lamina case:

In

d n ~  2n J f (x )C O & n x d x  

0

and

n=+oo
f ( x )  = ^ a n cosnx

n = - o o

Thus, in the new case Q where the “proper” domain for q is no longer the set of 
integers but the interval of all real numbers from 0 to °°, Q has to be obtained by 
an inversion

Q(q) = ijF(x)cosqxdq

Symmetry of the roles played by F and Q is now apparent: up to a constant, the 
same formula links the two. Judiciously, Cauchy (1817) speaks of “reciprocal func
tion”. An explicit involutive relation is available. This is equation (E) as Fourier 
calls it (OD, I, 408, n° 36) in order to magnify its importance51.

F(x) =  j  j F(a) da J cos q(x-a)dq ^
-o° 0

The straightforward meaning of (E) is an absurd one: an interpretation. But 
this task appears to Fourier more as the duty of his posterity than his own51. To 
award the merit of the invention of (E) possibly to Cauchy does not in fact modify 
Fourier’s office. Not only was his part to provide a unique meaning to the word 
“sum” appearing in two occurrences in the lamina case— integration and discrete 
summation—but also to show that the two opposite functional operations of har
monic analysis and of harmonic synthesis were the same operation of a “sum” 
after a multiplication by a proper mode. Summation in the sense of integration in 
one occurence, summation in the sense of series in the other: the difference is a 
technical one, not a basic difference. This is what function Q brought to attention,
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and what the “spatial” case of heat propagation brought back to all other cases: Q 
is obtained from F  by an “inverse” operation of the one which yields F  from Q. An 
inverse operation, but as well a similar operation. Analysis and synthesis in this 
sense are formally identical operations. We already underlined the back and forth 
motion from analysis to synthesis; their formal identification, in some way, is the 
final result of the philosophical quest of Fourier.

He knows that the process he followed cannot replace a satisfactory mathemat
ical proof: an analogy is no proof. But nevertheless the formula gives the general 
allocation of temperature. Fourier is eager to give an integral which, due to an 
exponential term, obviously converges:

T(x,t)  = F( a ) d a j e  ^  1 (cosqx)(cosqa) dq
o o

Such a representation, without any doubt, is the aim of the Theorie, as the 
concrete numerical computation is never forgotten: it is the only way to get a 
verification. However, this concretization does not hid the main idea, a functional 
one, which is the “equivalence” between functions F  and Q. This very idea moulds 
a second one, the idea of a transformation: so occurs the Fourier transform52. A 
transform for which, after what may be called experimental computations for spe
cial and elementary functions53, Fourier individualizes a property. It is the transfer 
of a derivation or an integration operating on a function into a multiplication of 
the transformed function by a power of the variable, either positive or negative. 
This transfer is directly linked to the arbitrariness of the functions in order to fix 
a regulating principle:

“By this transform, a function in some way acquires all the properties of trigonometric quanti
ties; differentiations, integrations, summations of series are as well performed on general functions 
in the same way as they apply to trigonometric or exponential functions.” {ibid., 1,505, n° 419)

This is the use of such a principle which gives its value to distribution theory, a 
large and powerful generalization of the concept of function which was organized 
in the 20th century by Sobolev and Laurent Schwartz. The direction which has to 
be taken by posterity appears therefore as obvious for Fourier: “the use of such a 
proposition gives at once solutions of partial differential equations with constant 
coefficients” ({%/.)• The solutions are precisely obtained using the method of “prop
er modes”; in the instance of these equations they are exponentials on which it is 
now possible to work inasmuch as “theorems of which we speak give to general 
and arbitrary functions the qualities of exponentials” (ibid.). “Representation” is 
thus an extraordinary tool for the “expression of complete solutions”. Nowadays, 
it makes the kernel of pseudo-differential operators, an expression which wonder
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fully adheres to the idea of Fourier “representing” as well differentiation and gen
eralizing it54.

If technically speaking, for trigonometric series as well as for integrals, Fouri
er has shown that the analogy between analysis and synthesis lies in their being 
reciprocal, at the same time he justified the necessity of the back and forth motion 
followed in the Theorie analytique de la chaleur. His theory is altogether an anal
ysis and a synthesis.

V The Scientific Sufficiency of a Chiasmus

In the two historical cases we investigated—Viete, Fourier—the passage from 
analysis to synthesis is no stylish pride of the author: it seems a required one, due 
to the nature of the mathematical objects and to the project of the inventor. There
fore it may be appraised as a scientific style. Moreover, in both cases, de facto 
there is a calling into question of what analysis is. But in both cases we find no 
soothing substitutions through synthesis. A synthesis may certainly be sought for 
by Viete, but he has not achieved it, which is an acknowledgement in itself. For 
Fourier, synthesis is viewed as impossible, or better not useful. In both cases, a 
criticism is dispatched in the mathematical way, that is on the edge of a problem, 
and not for itself. This is precisely the in concreto which Kant judiciously as
signed to mathematics.

As such a mathematics is a culture, the question immediately arises of the 
relation between such criticism and more general thought. At the time when Fou
rier wrote, simultaneously a particularly severe criticism of the analytical way had 
been made by Kant and the scientific world itself was questioning its efficiency55. 
Kant invented the synthetic judgment a priori in order to maintain the idea of a 
progress, a progress which professionals themselves were no longer seeing as an 
inexorable chase56. One might think that this was the end of an era, and this was 
thought by contemporary thinkers57. In the time of Mete, the questioning was no 
less active; but it was in a context of analysis perceived as a new way, a way which 
may then stumble over tradition.

A suspensed analysis with Viete, a synthesis by analytical exhaustion by Fou
rier, the dissolution of differences between analysis and synthesis is striking in the 
two texts we have chosen. And the dissolution is independant of the particular 
meanings the concepts of analysis and synthesis may have had. What makes his
tory then, is that in order to solve a problem—and I take the word in its general 
epistemological meaning—no appeal was made in either cases to some other in
tellectual resource. It thus ascertained that science is self-sufficient. The judge
ment which Blondel gave about the imposssibility of science to know itself is not
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always justified by the history of mathematics. It may be a valid judgment of the 
value of science in some times of restlessness, but not of all times of restlessness. 
Centre F. Viete o f  the History and Philosophy o f  Sciences,
University o f  Nantes

Notes

1 The constant reference to Pappus as an origin for the meaning o f the analysis/synthesis opposition, is 
certainly fascinating. We may think that F ra n c is  Vidte has some responsibility for this reference in 
modem times (using perhaps the recent Latin edition o f Pappus by F. Commandino (1588)):

“II y a une voye aux Math6matiques pour enquerir et rechercher la verity, laquelle est dite avoir 
6st6 premidrement trouv6e par Platon, et par Theon appellee Analyse; et d ’icelles d6finies 
l ’Assumption du requis comme conced6, paries consequences au vray concede.” (Vidte IV, 13)

However, one should not neglect the following, also historical, fact: ViSte explicitly refers to the Ancients 
in his Isagoge in artem analyticam (1591 a) in order to offer a new kind of analysis o f epistemological 
thought. He coins a specific name for this new analysis (exegetics). Therefore, Vi£te interprets past 
mathematics in order to justify the advent of a new approach. Mutatis mutandis, we could say the same 
for Pappus: by exploring analysis he was obliged to locate it opposite to synthesis and he also claims his 
novelty. Isn’t it true that mathematics is an action?

2 To qualify the opposition between analysis and synthesis as part of a back and forth motion seems a 
natural conclusion once the usual reference to Pappus has been stated. We use a translation from the 
French version of Ver Eecke in order to emphasize Pappus’ choice (“that is called the domain of analysis, 
as I conceive it...”):

“Now analysis is the path from what one is seeking, as if it were admitted, through its conse
quences to something that is admitted in synthesis. That is to say, in analysis we suppose what is 
sought as if it had been achieved, we look for the thing from which it follows and again from what 
comes before that, until by regressing in this way we come upon some of the things that are already 
known, or that occupy the rank of a first principle; and we call this kind of method ‘analysis’, as if 
to say a reduction backwards.” (Pappus VE, II, 477)

3 More Cartesian than it was possible to be, in his Elemens de Geometrie (1667) Antoine Amauld imposes 
a “natural order” to the display for the various objects of mathematics; he was, paradoxically, aiming at 
shaping a “natural” thought. Cf. Gardies (1984, ch. 4) and Dhombres (fc a).

4 A general feature o f mathematics as it was fervently taught in the first Jesuit colleges was to develop 
reasoning according to Euclidean synthesis. But no effort was made to render synthesis as an objective of 
the teaching. Cf. Dhombres (1996a).

5 In his thesis, P. Trabal (1995) tries to describe the move around modem mathematics using a sociological 
approach. He gives perhaps too much credit to the novelty of an event without inserting it into the long 
history of teaching mathematics.

6 By contrast, one could underline the weak part played by analysis/synthesis opposition in histories of 
mathematics which emphasize technical aspects. An example is provided by the. Elements d’histoire des 
mathematiques, according to Nicolas Bourbaki (1974). Cf. Dhombres (fc&). 2

2 It may be useful here to add a quotation from I. Kant, which Blondel certainly refers to, but he refutes the 
idea it implies:
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“[...] all the steps that Newton had to take from the first elements of geometry to his greatest and 
most profound discoveries were such as he could make intuitively evident and plain to follow, not 
only for himself but for every one else.” (Kant 1790, § 47, quoted from Kant (CJM))

8 “Si fuerint magnitudines continue proportionales, Erit vt terminus rationis maior ad terminum rationis 
minorem, ita composita ex omnibus ad differentiam com posite ex omnibus & maximae”.

As I do not intend to enter here upon philological explanations, I will not explain why the word ‘ratio’ 
does not denote here the quotient of two successive terms o f the progression, but, by metonymy, the 
progression itself.

9 That the progression is convergent to provide a sum is guaranteed by the decrease o f the successive 
terms.

10 For a mind o f the Renaissance, the intervention of Fn in a proportion is the equivalent of an exact 
equality providing Fn.

11 A possible reference is proposition VII, 12 of Euclid’s Elements.

12 Vi&te’s bibliographical reference is unfortunately obscure to us inasmuch as we find no identical 
algebraical computation in an earlier book of Vidte (1591a). But some works of Vifcte are lost; cf. Grisard 
(w.d.).

13 In his use o f letters, at least in geometry, Vidte makes a distinction between vowels used for known 
quantities and consonants used for the unknown ones. In the text under scrutiny, only consonants appear. 
It must be understood that each quantity, in its own turn, is an unknown to be computed from the three 
others. One of the relations fixes the value ofX and states “On the contrary if,D, B, F  are given,X will be 
given. In fact it is certain

B times F 
+D square 
- D  times F

B

will be equal to X ” (1593,29).

x  F ‘V td—x F
In modem notation, this reduces to x<x> = —----- 1— -— .

*2
14 If there is such a sophisticated literary composition, it means that V o te ’s reader is considered by him as 

his equal. Such a reader cannot fail to notice that in its litteral form the theorem uses only three imputs 
and this is contradicted by its transcription through four relations.

1^ That is the way we chose to translate “mechanici”. (“Et euanescere afferent Mechanici...”)

1 6  This is the usual form of this result during the 17th century which is equivalent to our modem formula

n = o o

Y a x " - 1 = -------. Apparently three traditions exist for the proof and in each one it is proved that
«=i x

something goes to 0. One tradition, a logistic one, is Vtete’s way which will be used by Fermat; a second 
one, a geometrical approach which inscribes computation in a drawing was founded by Gregory of 
Saint-Vincent; the last one, using a mechanical device, is chosen by Isaac Barrow (Dhombres 1995).
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17  In Greek in the original (eosq Arteipov). Archimedes ’ sums 3 + — + —  + and for this he establishes
4 4 2

3 3 3 1 3 f 3 )the formula for the remainder 3 + — + — +...+-----h------- = 3 — . A double reasoning by contradiction
4 42 4" 3 4" U J

3 3 3
yields 3 + — + — + ...=  4 . On this example, Vidte’s notations can be interpreted with F  -  4 and

4 42 4”

^  “Composita ex omnibus fiet 4—Neque enim magnitudinibus

* 9 Roger Cotes is explicit in his preface to the second edition of the Principia (1687; 2nd ed. 1713), when 
he describes the third class among those who cultivate natural philosophy:

“They proceed therefore in a twofold method, synthetical and analytical. From some select phe
nomena they deduce by analysis the forces of Nature and the more simple laws o f forces; and from 
thence by synthesis show the constitution of the rest.” (quoted from Motte-Cajori translation)

20 The name with its meaning is due to Fourier.

2 1 Wither, C  andD being constants having a physicical meaning, heat equation in written in the form:

dr K ( d 2T d 2T d 2T 1 

dt ~ CD { dx2 + dy2 + dz2 J

where T (x,y , z, t)  is the temperature at point (x,y, z) and at time t. This equation is the kernel of the 
Theory. Analysis can then be described as all that has to be developped in order to make use of this 
equation. In the Mecanique analytique, Lagrange was putting to test a different ambition: he tried to 
interpret the whole science of motion from a unique abstract theorem, the so-called principe o f  virtual 
velocities. For sure, he found both Newton’s law and velocity in its mathematical acception, but these 
two notions were not coming first. There is therefore a great temptation to attribute to Lagrange the 
organization of the analytical way, which has to be distinguished from Analysis.

22 An edition of Comte’s Cours, unfortunately a critical one, was prepared by M. Serres, F. Dagognet, H. 
Sinaceur (Comte SDS).

23 References to the Theorie will be quoted from the edition o f  (Euvres de Fourier (OD), edited by 
G. Darboux. We add a numbering due to Fourier himself, in order to help references to the original book 
or to the English translation by A. Freeman.

24 To make a comparison with the perennial quality o f  the Elements does not imply that Fourier adopted 
an axiomatic method. In the Theorie analytique de la chaleur, we have no unfolding from propositions 
to propositions and from common notions to definitions. The construction is of a very different kind, for 
which the qualification of an enveloping movement is far better. We can but evoke this construction here, 
at least in the aspect which may concern analysis and synthesis.

25 To answer such a question, or rather to see its meaning, we should have to go back to the old debate on 
mathematical rigor. It is historically and mathematically well known that the qualification of rigor was 
given to Cauchy, for his Analysis (1821), but refused to Fourier for his Theorie (1822). Is it possible to 
conceive any kind of rigor if  no construction project is at stake?
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26 The table of contents takes twenty one pages o f the Theorie in the edition o f the Complete works o f 
Fourier, for a text totalling five hundred and sixty three pages. Sometimes, this table shows more than 
what is explicitly proved in the corresponding article; as if Fourier had written his table in the manner of 
a programme to be completed and, later, would have had to reduce his ambitions. One would, at least, 
admit that such an ambivalence leads us to the trail o f an analysis corrected by some kind of synthesis. 
But we will have to take a far longer path in our study of analysis and synthesis as organized by Fourier.

27 We cannot properly justify here such a description o f the work done by Fourier. Many authors have 
thoroughly described the Theorie analytique de la chaleur, first o f all Auguste Comte whom we already 
quoted. There is also Gaston Bachelard (1928). Among historians, we may quote I. Grattan-Guinness 
(1972) and J. Herivel (1975) and, with the ambition to deal simultaneously with the biography and the 
scientific work, J. Dhombres and J.B. Robert (1996).

28 Properly speaking, history of science, i.e. history of what was done before Fourier, almost never intervenes 
in his Theorie. Probably this refusal of a past is based on the fear that it may bring a kind o f contingency 
to the construction; it may generate unjustified images contradicting the objective o f unrolling a proof 
which pretends to be as close to Nature as possible. In other words, anything concerning a past history 
will appear under Fourier’s pen as a counterpoint. It thus has two purposes; one is to measure the progress 
made by Fourier himself and the second is to make past errors conspicuous, in order to avoid them. In a 
very concrete way, we find here the attitude of Auguste Comte about the positive interest of history of 
science. And this is precisely where he mentions analysis and synthesis:

“Various sects of metaphysical philosophers so abused, for a century, of those two expressions, 
using such a variety of logical and deeply different acceptions, that any righteous mind to-day 
should loath to introduce them in the discourse, at least when the circumstances of their use do not 
specify in a natural way their positive meaning.” (1830-1842,1.35, vol. Ill, 33)

29 Perhaps we should linked this with an expression which Newton used, “the nature o f things”.

30 Although commentators frequently overlook its meaning, the synthetic aspect is very strong in the 
remarkable Remarques generates sur la methode qui a servi a resoudre les questions analytiques de 
la chaleur (General remarks on the method which has been used in order to solve the analytical 
questions o f  hear, Fourier OD, 1 ,524-531, n° 428). We cannot avoid noticing that the method itself is 
not stated as being an analytical one: the qualification is only used for the questions which the Theorie 
arouses.

31 The history of the expression “harmonic analysis” is a curious one: it started from the domain of 
mathematical instrumentation during the 19th century (Harmonische Analysatoren) to the theory during 
the 20th century (as in the title Harmonic Analysis used by Norbert Wiener (1930 and 1938)).

32 For a 2^-periodic function, if we add the unit function, those simple modes are cos nx and sinnx where 
the integer n runs from unity.

33 To do the harmonic analysis of a 2 ̂ -periodic function is to associate to this function its Fourier coefficients

 ̂ 2 n j 2n j lit
a„ = — [ / ( * )  cosnxdx  and bn = — f f(x )s in n x d x  for n >  lan d  a0 = —  \ f ( x ) d x  

K 1 n J 2 n J
0 0  0

Fourier was obliged to explicitly state the boundaries of a definite integral: his notation is so 
instrumentalized that the integral becomes an operator. In order to explain Fourier’s integrals, he later 
will use an for negative integers n.
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34 The synthesis o f a 2^-periodic function is, using its Fourier coefficients, to reconstruct /  from the infinite

oo

sum ^  (an cosn x + bn sin nx).
n-0

2k

35 Such orthogonality relations are o f the form J  cos n x  cos wrote =  0 fo r« * m . J .B .P 6cot( 1992) provides
o

an excellent historical and epistemological presentation of these relations over two centuries.

3 6 1 am not pretending to reconstruct the genesis of invention in the case of Fourier in a few lines; I am not 
trying to confirm or to refute what he himself claims. I already said that the genesis he describes is 
presented by Fourier as a part of his Theorie', both as a tale and as an account: therefore I mainly keep the 
order he has given. Whatever is the computation leading to Fourier’s coefficients, in the precise case of 
orthogonality relations obtaining them is always a second move. Even if such relations were unconsciously 
copied by Fourier from Euler, Fourier first presented analytical computation for the coefficients, both in 
his early manuscripts as well as after he has had time to synthetically polish his Thiorie analytique de la 
chaleur. The book issued in 1822 is the last form of many earlier manuscripts, a first and complete one 
finished in 1807, a second in 1811, part of which was published by the Academy o f sciences (Fourier 
1819-1820) later after obtaining a “Grand Prix” in January 1812.

37 if  i willingly omitted to stipulate as a preamble that Fourier’s work was inscribed in physics, it was to 
avoid, at least for a modem mind, the anachronistic opposition between pure and applied mathematics. I 
wanted to avoid a too easily thought prejudive of a weaker kind of rigor for a mathematician working on 
real objects and on the real world, for whom the distinction between analysis and synthesis could have 
been minimal, distinctions seemingly relevant to the pure world of mathematics only.

38 The example of the so-called Bessel’s function is an important one for Fourier. The reason of the emphasis 
is that it helps him universalizing his method by removing it from the too restrictive category of 
trigonometric series. Orthogonality of the Bessel functions, which is certainly not an obvious result as in 
the case of trigonometric functions, becomes therefore both a tool and an explanation. This orthogonality 
interprets the orthogonality of trigonometric functions: it is not only viewed as a generalization but, as an 
understanding.

39 Once more, we have to rely on what the reader knows of Fourier’s mathematics (see bibliographical 
list); we are in no way attempting to describe the originality of his treatment o f the so-called Fourier 
series, Bessel functions or of the Fourier integrals.

40 Both in physics and in mathematics, Fourier’s theory is literally unchanged; it has been the subject of a 
considerable formalization by the practise of teaching. Therefore, the objective of the proof for a “proper” 
character no longer appears as essential: it seems already known. This is often the result of the conjugate 
weight of history and objectivity: this is also the main difficulty in any history of objectivity.

41 With a functionf (y)  -  1, Fourier was compelled to express 1 as a trigonometric expansion:

------ cos(2n + l)y
2« +  l

It gave him the way to express temperature F(x, y ) at any point (x, y) of the lamina.

A OO f
F(x, y) = -  y  (-1)" — eH2n+l)x cos(2 n +1 )y

*7o 2n + l
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42 This transformation of the function concept is certainly one important part of the constitution of Analysis 
as a domain. The fact that Fourier is linked with it is not just a chance. It is part of his project: the 
Discours preliminaire of his Theory is explicit.

43 In general, for fly )  -  cos (2n+ l)y , F(x, y) -  kf(y)  w ith A =  — ( - I n — -— L-<2n+1>Jt.
n 2n +1)

44 in the twenties of the 19th century, Cauchy has ended this conception by defining a definite integral from 
“Riemann’s sums”. In the process, area becomes a property but not a universal one. Thus, a continuous 
function possesses an area, but not necessarily an arbitrary function. Fourier took no notice of this change.

45 Contrary to what has been claimed by some positivist commentators, even like G. Bachelard: they regret 
that Fourier renews his analysis in each case, and therefore forget the “proof’ by exhaustion provided by 
Fourier. In other words, they take for granted the claim of Fourier’s adequation to the world, whereas the 
author makes efforts to prove it. In this sense, scientific positivism is not a defect o f Fourier!

46 Sumptuously entitled “On diffusion of heat”, the last chapter of the Theorie analytique signals that no 
particular geometrical body overtightens the spread o f heat.

47 The ordering of cases where heat propagation is to be studied is an important part of the construction of 
the theory; it is neither an organization issued directly from the empirical world; nor an organization 
ruled by the criterium of Cartesian simplicity as the simplest case, the purely spatial one, is the last. The 
ordering has as its objective to let analysis and synthesis interact.

48 For reasons of symmetry, the three space variables are reduced to one only. As usual with Fourier, even 
with a final case, a first step begins by an analysis and therefore by a reduction of the problem. This 
simplified model has many possible interpretations: one is the diffusion of heat in the space when the 
temperature is known in a band (portion between parallel planes) and constant on each intermediate 
plane.

49 is it necessary to recall here that, concerning sizes, there is no difference made during the time of Fourier, 
between an enumerable infinite and a continuous one. Cantor will exhibit the difference in the 1870’s, 
opening a new era for mathematics as a whole, and for analysis in particular.

50 Equation (E) is written in the general case and F  is no longer required to be an even function; this 
explains only cos qx cos qd’s replaced by cos q(x-a)

51 Posterity will work as Fourier predicted: it only took far more years than we expected and in the process 
the memory of Fourier as a decent mathematician will suffer. We have attempted to “tell the story” in the 
last chapter of Dhombres and Robert (1996).

52 Let us give a standard definition of Fourier’s transform.

33 Thus, he computes the Fourier transform for power functions and is led to

Many other formulae are given, a sort of first dictionary for Fourier transform.

54 The main difference between to-day’s attitude and Fourier’s way is that he realizes the transform as 
describing the operations duly made by Nature. On the contrary, the modem point of view is a formalist 
one: it is just the adaptation of a theory, using an analytical form subjected to algebraical handlings, in 
order to find solutions to partial differential equations.
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55 b . Timmermans (1995) remarkably pointed this philosophical inquiry, and doubt, about analysis at the 
end o f the 18 th century.

56 To recall the existence o f a restlessness, it is enough to mention some sentences of Evariste Galois. He, 
around 1830, proposed to jum p over computations, as analytical deductions were no longer inventive 
tools.

57 in  a collective way, as it represents the opinion o f the members o f the First Class o f the Institute, the 
impression of having to create the conditions of a new era can be seen in Delambre (1810).

MORITZ EPPLE

STYLES OF ARGUMENTATION 

IN LATE 19TH CENTURY GEOMETRY 

AND THE STRUCTURE OF MATHEMATICAL MODERNITY

I Introduction

In this paper, the distinction between analysis and synthesis in mathematics will 
be related to a second distinction, that between concrete and abstract forms of 
mathematical argumentation or, more generally, of mathematical practice.

As discussed in other contributions to this volume, the distinction between 
analysis and synthesis in mathematics has a long history, involving topics of a 
rather different nature. There is the proof-theoretical aspect, which appeared first 
in the ancient Greek uses of the term. There is the aspect of epistemology, which 
played a central role in Descartes’ Discours de la methode and Kant’s Kritik der 
reinen Vernunft, bearing on central issues in the philosophy of mathematics; and 
there is the aspect of two different research styles in geometry, made possible by 
the merging of geometry and algebra in early modem times and which evolved 
into a great controversy in 19th century projective geometry.

The situation with regard to the distinction between concrete and abstract con
cepts, knowledge, or argumentations is similar. Again, this distinction has a long 
history, including its connections with mathematics. Suffice it here to say that 
Aristotle used the Greek counterparts of abstraction (dcpaiQEOiq and xwpicrpoq) to 
describe the ontological status of the objects of mathematical knowledge as well 
as the epistemic perspective which mathematicians make their own in looking at 
real (that is for him: concrete) objects as mathematicians'. And even more than is 
the case with the terms ‘analytic’ and ‘synthetic,’ the expressions ‘concrete’ and 
‘abstract’ have often been used in a rather intuitive way, without explicitly intro
ducing them as notions with a clear meaning. (Even though there is at least one 
technical sense to which one could refer: namely the technique of defining math
ematical terms “by abstraction”, i.e., by means of invariance under an equiva
lence relation2.)

Here I will not try to give a comprehensive history or philosophy of the role of 
this distinction in mathematics or even in modem mathematics. Instead, I want to
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begin my discussion with a rather limited historical question, namely: what be
came of the controversy between the analytic and the synthetic style of geometry 
towards the end of the 19th century? If one uses the term ‘mathematical moderni
ty’ for the period after the great changes in 19th century mathematics (as I shall 
do), then the controversy about analytic and synthetic geometry seems to be a 
premodern affair. Later there arose a new, modern difference in geometrical style, 
exemplified by the geometric writings of Felix Klein on the one hand, and David 
Hilbert on the other. It is a difference of this latter type which I want to describe in 
the following, using the distinction between a concrete and an abstract style of 
mathematical reasoning.

After a few remarks on the historical developments in question, I will try to 
make my use of the terms ‘concrete’ and ‘abstract’ a little more precise philoso
phically. It will turn out that, as in the case of the analysis-synthesis distinction, 
the difference between an abstract and a concrete mathematical argumentation is 
not confined to geometry, but represents a rather general difference in the style of 
mathematical reasoning. Finally, I want to relate this difference to the historical 
reconstruction of mathematical modernity due to Herbert Mehrtens. My proposal 
will be to use the distinction between abstract and concrete mathematical styles 
as an internal criterion to judge the modernity o f a piece o f mathematical re
search. In the course of the discussion, a historical example—the invention of the 
braid group—will be discussed in some detail in order to bring out how this crite
rion could work in historiographical practice.

II From Synthesis and Analysis to Concrete and Abstract Styles of 
Mathematical Argumentation

H.1 Concerning the development of geometric argumentation during the 19th 
century, I shall restrict myself to some rather general remarks, most of which are 
due to the historical writings of Felix Klein. Certainly, they do not really capture 
the complexity of the historical development. However, they may serve the pur
pose of setting the stage for the discussion that follows. Let me begin by recalling 
some aspects of the controversy between synthetic and analytic geometers in the 
early 19th century.

It is well known that a revival of a “pure” approach to geometry was advocated 
by important pupils of the French mathematician Gaspard Monge3. This approach 
avoided the algebraic formulation of geometric relations which had proved so 
successful since the appearance of Descartes’ Geometrie (1637). Instead, a re
search program gradually evolved which aimed at finding and using purely geo
metrical techniques to investigate properties of various geometrical objects in the 
plane or in space. A typical example was Poncelet’s use of the machinery of the 
polar correspondence between points and lines with respect to a given conic sec
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tion in order to translate theorems about point configurations into theorems about 
lines and vice versa. This research program, which eventually also found support
ers in Germany, was particularly successful in the investigation of projective prop
erties of geometric figures. For instance, Jacob Steiner had shown in 1832 how to 
generate conic sections and certain surfaces by means of projective corresponden
ces between pencils of lines or planes4.

On the other hand, some French and German mathematicians immediately 
realized that the projective properties which had become the focus of geometrical 
research could equally well be treated by means of algebraic equations. The main 
step in this direction was the introduction of adequate systems of coordinates by 
Mobius and Plucker in the late twenties of the last century. The relation between 
pole and polar with respect to a given conic thus appeared, for instance, as a 
simple consequence of a bilinear equation in homogeneous coordinates. It did not 
take long before mathematicians like Plucker and Hesse handled the formulas of 
projective geometry quite masterfully and could use them to establish astonishing 
facts like the configuration of inflection points of a general curve of third order. 
Their achievements contributed essentially to the rise of the new field of algebraic 
geometry.

synthetic analytic

C : f ( x , y , z )  =  0 
P : ( x ' , y ' , z ' )

df
dy

l - .^ -x ' + ^ y '  + ^ - z '  = 0 
dx

sL
dz

1: Pole-polar correspondence

II.2 It soon became clear that most parts of projective geometry could be formu
lated either synthetically or analytically, and both parties competed in re-proving 
results of the other party in their respective idioms. Thus it is obvious that these 
were not two different branches of mathematical knowledge but rather two differ
ent modes of presenting, acquiring and justifying this knowledge. Modem theo-
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ries of scientific knowledge have furnished us with a number of concepts to de
scribe such differences. Ludwig Fleck’s notion of a thought style or Gerald Hol
ton’s notion of a pair of methodological themata would apply here (Fleck 1980 
and Holton 1978).

This view was expressed already by Klein in his Elementary mathematics 
from a higher standpoint of 1908:

“Synthetic geometry is that which studies figures as such, without recourse to formulas, whereas 
analytic geometry consistently makes use of such formulas as can be written down after the adop
tion of an appropriate system of coordinates. Righdy understood, there exists only adifference of 
gradation between these two kinds of geometry, according as one gives more prominence to the 
figures or to the formulas. [—] In mathematics, however, as everywhere else, men are inclined to 
form parties, so that there arose schools of pure synthesists and schools of pure analysts, who 
placed chief emphasis upon absolute ‘purity of method.’” (Klein 1908-1909, II, 55)

To show that the controversy lay in fact on this level, we may look at the 
critical objections of the synthetic geometers against analytical arguments. One 
such objection ran as follows: In a sequence of algebraic manipulations of a for
mula, it may be impossible to keep track of a sequence of geometric steps to which 
the formal manipulations should correspond. Therefore, we arrive in the end at a 
geometrical statement without knowing what its place in the system of geometric 
truths is. As Chasles put this argument: “Is it then sufficient in a philosophic and 
basic study of a science to know that something is true if one does not know why 
it is so and what place it should take in the series of truths to which it belongs?”5 
Obviously, Chasles refused to consider an analytic derivation as a adequate justi
fication of geometric knowledge, even though he allowed for the correctness of 
the result of such a derivation.

Synthetic geometry thus appeared as a form of methodological purism. A par
ticular argumentative context was specified—for example, the geometry of sys
tems of projection rays6—and criteria were given which singled out the accepted 
types of questions and arguments relative to that context. The same was true for 
geometers with strong analytic commitments: here the argumentative context was 
the manipulation of algebraic equations in the space of homogeneous coordinates7.

11,3 In the second half of the 19th century, the most fruitful lines of geometrical 
research were no longer structured by the research programs of analytic and syn
thetic geometry. These lines were, first, the one leading to the development of 
algebraic and differential geometry, and, second, the line leading to a strictly ax
iomatic approach to geometry. Klein’s later geometrical writings were intended to 
convey to the reader some main ideas of the first line, ideas which were due to 
people like Clebsch, Riemann, or Lie. To Moritz Pasch and David Hilbert we owe 
the classics of the second line8. Let me briefly illustrate this reorientation with
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some remarks pertaining to Klein’s Vorlesungen iiber hohere Geometrie (1893) 
and Pasch’s Vorlesungen iiber neuere Geometrie (1882).

Felix Klein had been one of the first to make clear that the opposition between 
analytic and synthetic geometry had lost its importance. In a note to his Erlanger 
Programm he had written in 1872: “The difference between recent synthesis and 
recent analytic geometry has no longer to be considered as an essential one, since 
the ways of reasoning on both sides have gradually evolved into quite similar 
forms.” (Klein 1872, 74) Later he spoke of a “certain petrifaction” in geometry, 
due to the exaggeration of purist orientations9.

Klein himself avoided a commitment to one of the sides. Early in his Vorlesun
gen iiber hohere Geometrie he said: “We pronounce it already here as a principle 
that we shall always combine the analytic and the geometric treatment of our 
problems and will not take a one-sided point of view.” (1893, 26) In fact, Klein 
himself built both aspects simultaneously into his own unifying conception of 
geometry. If he proposed to study geometric properties in terms of invariants un
der a group of transformations, he also combined new algebraic notions with typ
ical synthetic questions. For the topics presented in his Lectures on Higher 
Geometry, he favoured the name “algebraic geometry,” making explicit his inter
est in the geometric properties of algebraic objects, from zero sets of polynomials 
to differential equations. The list of topics mentioned is—as with most of his 
writings—impressive. It includes, besides traditional material of analytic and syn
thetic geometry, multilinear equations and determinants, quadratic forms, ration
al and algebraic functions, algebraic curves and surfaces, Gaussian differential 
geometry, differential equations, invariant theory, group theory, Riemann surfac
es, and some of Lie’s ideas. But also he hinted at subjects like graphical statics or 
the theory of cogwheel profiles.

II.4 Like Klein, Moritz Pasch acknowledged the importance of synthetic as well 
as analytic points of view. In the Preface to Pasch’s Lectures of 1882, we find the 
remark: “Analytic geometry has learned from synthetic geometry, and in case of a 
further fusion, there may emerge a higher geometry of a unified nature.” (1882,2) 
Perhaps, Pasch would have accepted Lie’s or Klein’s geometrical writings as a 
candidate for that higher, unified geometry. However, his own conception of geo
metry was directed at different aims. As is well known, he strove for a “pure,” 
axiomatic development of elementary geometry, making it a rigorous mathemati
cal theory by establishing its theorems on the basis of the smallest possible set of 
“core notions” and “core propositions” (ibid., 4 and 15). His basic notions and 
propositions are synthetic notions like points, planes, and incidence, and Pasch 
even placed his work in the tradition of synthetic geometry (ibid., 1). Only at the 
end of the book do we find a discussion of coordinates and of the continuum of 
real numbers, by which, as he says, analytic geometry is made available for the
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field of projective geometry (ibid., 179). However, it is quite clear that Pasch’s 
central aim was not intuitive, but conceptual, logical clearity. This comes out in 
his extension of the use of the basic notions, e.g. the use of “point” for a “bundle 
of rays” which reduces the number of necessary basic propositions, or his famous 
criticism of the logical gaps in Euclid’s Elements.

In Pasch’s book, we find again a consciously cultivated purity of method. We 
do not, on the other hand, find the wealth of connections to other mathematical 
disciplines present in Klein’s lectures. Neither do we see Pasch switching con
stantly between algebraic, geometric or even intuitive arguments. He remains strictly 
within the conceptual framework set out at the beginning of his presentation.

In this methodological respect, there is but a small step to Hilbert’s Grundla- 
gen der Geometrie (1899)10. Certainly, in Hilbert’s text the interpretation of the 
axiomatic method is rather different from Pasch’s view. (For the latter, geometry 
is still to be considered as part of “natural science” (ibid., 3); the basic notions 
and propositions encode empirical evidence (ibid., 16).) Moreover, the mathemat
ical treatment is complete in a quite different sense. But the style of Hilbert’s text, 
the strict adherence to a well-defined argumentative context and method, is quite 
close to Pasch’s and indeed very far from Klein’s.

II.5 The difference between the two lines of geometrical thinking connected to 
the names of Klein (or Riemann or Lie) on the one hand and Pasch or Hilbert on 
the other is not merely a difference in style but also a difference in the topics 
investigated. The inquiry into the relations between curves, surfaces and algebraic 
function theory leads to different mathematical questions than those concerned 
with the relations between the different groups of geometrical axioms. However, it 
is obvious that there is still an important difference in style between Klein’s Lec
tures on Higher Geometry and Pasch’s Lectures on Recent Geometry. It is a dif
ference in style of this kind which may be understood as replacing the issue of a 
synthetic or an analytic treatment of geometry in the context of mathematical 
modernity11. In order to mark this shift, let me propose to use the distinction 
between a “concrete” and an “abstract” style of geometrical argumentation. For 
the moment these are but two names. I want to explain my choice in the following, 
making the notions of a concrete and an abstract argumentative style more precise 
at the same time.

Let me begin by noting two rather obvious features of the shift from the anal
ysis-synthesis opposition to that of the concrete and the abstract, i) While the 
beginning of the century had seen a controversy between two competing, more or 
less purist methodologies, the interesting opposition by the end of the century is 
better described as one about methodological purity vs. methodological diversity. 
Pasch and Hilbert made a deliberate choice of methodological purism. Klein, on 
the other hand, explicitly favoured the use of different methods, and most of his
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mathematical achievements are closely related to this diversity of methods, ii) The 
second feature is a very different view of the generality of a piece of mathematics. 
The axiomatic style of Pasch and Hilbert sought to guarantee the general applica
bility of its results by reducing the argumentative context to its uttermost mini
mum. (It is only implicitly encoded in the axiomatic basis of a mathematical theory.) 
In Klein’s style, on the contrary, it was precisely the density of the argumentative 
context, the rich variety of topics and points of view discussed, which was intend
ed to show the general relevance of the ideas presented.

I ll A Philosophical Analysis of Concrete and Abstract Arguments

III.1 At this point I would like to sketch a philosophical analysis of the relation
ship and differences between an abstract and a concrete style of argumentation. 
Thus I leave history aside for a moment and make a digression into the philo
sophy of mathematics.

It seems that a more precise description of abstract and concrete arguments 
can start from two premises. The first is that mathematical arguments are pieces 
of mathematical practice, i.e., we have to deal with a question of the pragmatics of 
mathematics. The second premise is that one should begin with a consideration of 
the relation in question from a local point of view. That is to say, one should look 
at a small piece of argumentative practice and try to explain the difference there.

I take the practice of mathematical argumentation to be a complex of actions, 
such as defining, conjecturing, proving, etc.12 (These mathematical actions are 
immersed in communicative and social actions like publishing, giving talks, ap
plying for positions, organizing meetings, and the like.) Argumentative practice 
is organized in smaller units, which I shall call ‘mathematical games', using a 
notion for complexes of actions going back to Wittgenstein13. In the first half of 
the 19th century, synthetic geometry was guided by a set of methodological con
straints that defined a certain mathematical game, and similarly, analytic geome
try may be viewed as another, though related, argumentation game. Such games 
may be described by specifying the possible situations belonging to the game and 
the rules guiding possible actions in these situations. A part of the rules is deter
mined by, or rather, determines the mathematical subject of the game (e.g. geome
trical objects), and another part fixes the techniques, types of arguments etc. 
considered legitimate. Thus the games of analytic and synthetic geometry show a 
partial, but not a complete correspondence of action-rules. For instance, the pole- 
polar correspondence could be used in both games to derive dual theorems. (A 
closer look shows, however, that we have in fact two rules here: a purely geomet
ric construction, on the one hand, and a correspondence determined by a bilinear 
equation, on the other14.)
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We can immediately translate the two features of an abstract and a concrete 
mathematical style noted above into this language. A domain of mathematical 
argumentation is methodologically pure if it belongs to a single, well-defined ar
gumentation game. Diversity on the other hand means playing more than one 
game at a time, or switching frequently between different argumentative con
texts15. Whether a context of argumentation is (relatively) “poor” or “rich” may 
be judged by the degree of detail of the descriptions of situations and rules of the 
game(s) in question. Still, this may not be clear enough. Let me thus turn to my 
example, by means of which I can complete the local description of the distinction 
between an abstract and a concrete argument.

ffl.2 The example was included by Wilhelm Blaschke in the third edition of 
Klein’s Lectures on Higher Geometry, published posthumously in 1926, as one of 
five topics under the heading “Examples of geometric research of the last dec
ades” (Klein 1893). In fact, it is a topological example, namely Artin’s Theory o f 
braids, which had appeared in 1925 in the Hamburger Abhandlungen (Artin 1925- 
1926). The inclusion of this example into Klein’s book is revealing for several 
reasons. First, it shows how broad the conception of geometry was which Blas
chke ascribed to Klein, and in fact I think he was essentially correct. Second, 
Artin’s work on braids was rooted in Klein’s favourite subject, the geometric the
ory of algebraic functions. (For details concerning the history, of the next §IV.6.) 
Third, it was one of the few topological problems which could in some sense be 
solved completely by group-theoretic methods at the time. This last feature makes 
the example particularly suited for my purposes.

Artin defined his braids as follows:

“By a braidZ of n-th order we understand the following topological object: Let a rectangle with 
opposite sidesg,, g2 and hr h2 (the ‘frame’ of Z) be given in space. Letn points A,, Ar . . An and 
B{, Bv . . Bn be given on each of the sides g, and g2, counting from h , to hr  With every point A . 
we associate uniquely a pointBr(0 with which it is connected by a curve without double points 
and without intersections with any other curve mk. Let the curve m. be oriented from A. to Br([).” 
{ibid., 47; see fig. 2.)

In addition, Artin required that every curve cuts a plane orthogonal to hx and h2 at 
most once.

Two such braids are considered “equal” (says Artin), if they can be deformed 
into each other without self-intersection. Obviously, Artin introduces here an equiv
alence relation between braids without being too explicit about that, as was still 
common practice at this time. (In fact, definitions by abstraction had been ana
lyzed logically only some 20 years earlier, by Peano (1901) and Weyl (1910 and 
1913)16.) Further on, he sometimes speaks of the topological objects as braids, and 
sometimes of the equivalence classes under isotopy. Only in his second, more
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rigorous attempt to deal with braids in the late 1940’s Artin did draw a clear 
distinction between “weaving patterns” and “braids,” which are equivalence classes

A j A 2 A 3 A 4

Figure 2: A braid o f 4th order

of weaving patterns (Artin 1947, 101-126 and Artin 1950, 112-119). Let me call 
the weaving patterns “concrete” braids, and equivalence classes of weaving pat
terns “abstract” braids.

By joining two concrete braids and removing the joining line, we get a third 
braid (cf. fig. 3).

C, C2 c 3 c 4

Figure 3: Joining braids
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This makes abstract braids into digroup. Artin’s first step is to “arithmetize” braids, 
i.e. to give a symbolic presentation of the group of abstract braids. This is achieved 
by looking at the elementary braids in which only the i-th curve crosses the (j'+l )-th 
(cf. fig. 4 below). These braids generate the whole group. In this way, Artin finds 
a new definition of the group in question (in fact it would be more precise to say: 
of an isomorphic group): It is the group with symbolic generators ov ov ... o ^x 
and relations

A i

OjOj = a  j o i ,for |i -  j| > 2,

GiGi+\Gi = Gi+\GiGi+\-

Figure 4: The elementary braid a.

By this argumentative move, Artin had related the topological problem of classi
fying isotopy classes of concrete braids to problems of combinatorial group theory. 
In fact it turned out that the topological problem is equivalent to the word problem 
in the braid group, and Artin’s main theorem presents a solution of the latter.

III.3 Now what is really going on here (and in the wealth of similar examples)? 
At first sight, we have a situation very much similar to the situation in early 19th 
century projective geometry. We may compare the topological point of view to the 
synthetic approach, and the group-theoretical standpoint to the analytic approach. 
In the language introduced above, we have two mathematical games, the game of 
weaving patterns, and the game of the symbolically defined group. However, what 
really matters for a description of Artin’s argumentative practice is not the differ
ence between these two mathematical games but the way they are related. What 
Artin showed is that the group-theoretical game may be embedded, as I shall say, 
into the topological one. I.e., we can redescribe certain situations, rules and moves 
of the topological argumentation game in such a way that they appear as situa
tions, rules and moves of the group-theoretical game. (This I take as a definition 
of the notion of embedding of games17.) This embedding of group theory into 
topology allows Artin to change his perspective during his arguments from one to 
the other. In particular, and this seems to me the essential point, he has two ways
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at his disposal to deal with the braid group. Either he can deal with it as a purely 
symbolically defined object, disregarding its topological interpretation. Or he can 
look at the group elements as equivalence classes of concrete braids and use the 
whole topological context to make arguments (provided he does not violate the 
necessary invariance under isotopy)18.

Now there is clearly a significant difference between the two possibilities. The 
first involves only a single game. In this sense, arguments restricted to it are 
(relatively) abstract: they are methodologically pure, and their argumentative con
text is (relatively) poor. Arguments of the second alternative, however, are (rela
tively) concrete: they use the methods of two mathematical games, and thus also 
the argumentative context is (relatively) rich.

Let me give you examples of an abstract and a concrete argument about the 
braid group.

a) By a sequence of symbolic calculations, we may deduce that the braid group 
is generated by the two elements and a := oJo2 ... on l .

Figure 5: A braid equation

b) The same fact may be learned from the fig. 5. Iterating the idea of this 
figure we understand that ako la~k = ok+l holds. Therefore, a and o  generate the 
braid group. (Here we face a typical situation: The concrete arguments seem to be 
intuitive. This is interesting from the pragmatical point of view, but not logically 
essential: Imagine the argument formulated in a rigorous language, say of piece- 
wise linear topology. Hence it is more adequate to say: By the game change from
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combinatorial group theory to topology, more intuitions are made accessible which 
may eventually be turned into rigorous arguments.)

III.4 The situation which we encountered in the example (the embedding of an 
abstract game into a concrete one) is the elementary, local situation in which the 
difference between an abstract and a concrete argument, as I propose to use it, may 
be illustrated. Before I proceed to extend my description to a more global level, let 
me add some remarks concerning the explanations given so far.

i) It is now possible to relate the names chosen for my distinction to the formal 
notion of abstraction. The embedding of the example depended on a definition by 
abstraction in the technical sense of the term. In fact, definitions by abstraction 
always lead to an embedding of an abstract mathematical game into a concrete 
one, so that the distinction introduced above may be applied. However, this situa
tion is only a special case of the relation between mathematical games which I 
called “embedding”.

ii) Certainly, the above example is mathematically rather simple. Neverthe
less, modem mathematical experience tells us that similar examples abound -  on 
the elementary as well as on more advanced levels. The possibility of embeddings 
of mathematical games has, in fact, itself become a subject of modem mathemat
ical research. This shows that there is no difference in rigor between an abstract 
and a concrete argument insofar as my present analysis is concerned. Thus it is 
clear that the question of using abstract or concrete arguments may again be (as in 
the case of an analytic or synthetic treatment of geometry) a question of style, of 
methodology, and not a question of substantively different mathematics.

iii) Finally, it should be emphasized that the distinction introduced above turns 
out to be a relative one. In the elementary situation of the example, concreteness 
comes about by means of a relation between two games. Only relative to these two 
games (or a more complex interrelation of mathematical games) is it reasonable 
to distinguish between an abstract and a concrete approach to the same questions.

IH.5 I am now in a position to sketch a reconstruction of the global difference 
between an abstract and a concrete argumentative style. It is clear that modem 
mathematics consists of a whole network of mathematical games. The mutual 
embeddings provide, so to speak, the links between these games. An author like 
Klein seeks systematically to exhibit such embeddings, and he does not hesitate 
to change the game continually in order to form a convincing argument (like in 
the concrete argument of the example). A text like Pasch’s or Hilbert’s, on the 
other hand, restricts itself as far as possible to a single, mathematically well- 
defined game (in the extreme case: a single axiomatic system) and argues strictly 
within the context thus defined. On this level, an abstract orientation produces 
with great probability theorems of a rather different type than those that arise
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from a concrete orientation. The search for algebraic invariants of topological 
objects was motivated by the wish to enrich the argumentative context available 
for the treatment of topological (and algebraical) problems. The proof of the inde
pendence of a specific axiom with respect to a given system of axioms, on the 
other hand, is motivated by the intention to clarify the logical structure of a single, 
restricted mathematical game.

One may even go one step further towards a global picture of the abstract and 
the concrete mathematical styles. The games of mathematical argumentations are 
not only linked by internal embeddings. They are also embedded into external, 
non-mathematical domains of scientific and social practice. In the light of such 
embeddings, there is also a scale of concreteness ranging from the pure to the 
applied. (Think of Klein’s discussion of graphical statics and of cogwheel pro
files.)

III.6 Are there other mathematical disciplines in which the distinction between 
an abstract and a concrete argumentative style played a role in late nineteenth and 
early twentieth century mathematics? I think there are. I have discussed a topo
logical example above. In fact, the development of algebraic topology provides a 
wealth of examples which could be analyzed in terms of abstract and concrete 
argumentative styles. Another field of mathematics where the distinction seems to 
have been relevant is number theory. Dirichlet and Riemann had shown how to 
embed number theory into complex analysis (by means of Dirichlet series and 
Riemann’s ^-function). Thus the argumentative context of number theory became 
richer, and Hadamard’s and de la Vallee-Poussin’s success in proving Gauss’s 
conjecture on the asymptotic distribution of primes motivated a whole generation 
of number theorists to employ the concrete style of analytic number theory. On the 
other hand, an elementary, abstract approach finally succeeded in proving the 
prime number theorem, too (Erdos and Selberg). A revival of elementary number 
theory was the consequence (Echeverria 1992,249ff.). As in the case of geometry 
it seems to be the analytical side which tends to methodological diversity, while 
the synthetical, elementary side is committed to methodological purism.

It is an interesting question whether the shift which I described in the develop
ment of geometry could be related to the shift in the philosophical conceptions of 
mathematics from Kant to the end of the 19th century. Whereas Kant’s philoso
phy of mathematics was centered on the analysis-synthesis distinction, two of the 
most important thinkers in philosophy of mathematics of the end of the century, 
namely Frege and Husserl, tried hard to make clear the second distinction as 
applied to mathematics.
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IV The Role of Concrete and Abstract Argumentative Styles in 
Mathematical Modernity

IV.l It seems that the shift from the controversy about analytic and synthetic 
geometry to that between a concrete and an abstract style of geometrical argumen
tation described in the first part of this paper is related to the formation of what 
has been called “mathematical modernity”. Let me now turn to explaining briefly 
how the distinction introduced above could contribute to a better understanding of 
the modernity of modem mathematics.

Herbert Mehrtens has drawn an impressive and detailed picture of the process 
of mathematical modernization in his book, Moderne-Sprache-Mathematik 
(1990). Mehrtens tries to show that there are two fundamentally different types of 
reactions to the changes in 19th century mathematics. The first, in an emphatic 
sense modem reaction, was to fully accept the new autonomy and to pursue math
ematics as a free, creative enterprise, with no bounds on mathematical production 
other than internal coherence and success. Among the modernists, Mehrtens points 
to pure mathematicians like Cantor, Hausdorff, and Hilbert as the “general direc
tor.” On the other hand, there is a second type of reaction which tries to re-estab
lish the threatened ontological basis and epistemic certainty of mathematical 
knowledge and the links of mathematics to science under the new conditions. A 
typical representative of this counter-modem type of reaction is Felix Klein, who 
was engaged in reforming mathematics at technical universities, and who favoured 
applied mathematics while constantly emphasizing the role of intuition as a basic 
pre-requisite for doing mathematics.

Mehrtens’ thesis is that the modem and the counter-modem attitudes together 
provided a framework for mathematicians’ sense of self-identity at the beginning 
of the twentieth century. These attitudes helped to justify mathematical research, 
and played a role in the fight for positions and prestige. The professional politics 
of the two Gottingen leaders, Hilbert and Klein, was determined by the difference 
between modem and counter-modem attitudes as well as the later Grundlagen- 
krise between “formalists” and “intuitionists.” While in the case of Hilbert and 
Klein, their different attitudes did not preclude the possibility of “forging of an 
intellectual alliance” between the two in the fight for Gottingen mathematics (Rowe 
1989, 195 ff.), after the take-over by the German National “Socialists,” there ap
peared, according to Mehrtens, a fatal connection between radical counter-mod
ernists and the fascist ideology.

IV.2 In order to draw his picture, Mehrtens needs criteria which allow him to 
place his actors on the modem/counter-modem scale. In fact, his historical narra
tive tries to exhibit such criteria along the way. The autonomy of modem mathe
matics is best described, so he claims, by viewing mathematics as the production
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of a language, the meaning and uses of which are not determined beforehand. 
(“That, by which the discipline of mathematics identifies itself, is the self-referen- 
tial language Mathematics in the products of the mathematicians, i.e. the texts.” 
(Mehrtens 1990, 404)) Consequently, the difference between the modem and the 
counter-modem attitude must be expressible in terms of the attitude towards mathe
matical language. Mehrtens uses the linguistic distinction between “signifying” 
and “signified” to describe this difference. He writes: “The modem and the coun
ter-modem conception give rise to different conceptions of the realm of mathe
matical language. Modernity is oriented in the Hilbertian formalism at the signifiers 
which it interprets as the empirically treatable signs on the paper. Counter-mo
dernity resorts to an a-priori psychology by postulating a unifying subjectivity 
with the gift of an original intuition, in which all mathematicians partake” {ibid., 
414). And due to this C/r-intuition, there is a guarantee of access to that which is 
“signified.”

The main criterion for being a modem is thus, in Mehrtens’ view, whether one 
is prepared to dispense with an explanation of what the meaning of mathematical 
language is, be it the meaning of mathematical expressions like “point”, “line”, 
“field” etc., or even the cultural meaning of mathematical discourse as a whole. A 
counter-modem, on the contrary, would insist on precisely that. Mehrtens illus
trates this criterion with Hilbert’s Foundations o f Geometry, which in fact does 
without an explanation of the meaning of the basic notions like point, line, etc. 
From this standpoint, Frege’s critique of Hilbert’s axiomatic definitions may be 
the philosophically most self-conscious counter-modem attack on modernism. It 
revealed that not only questions of the semantics of mathematical language are 
concerned but also questions of mathematical truth and questions pertaining to 
what mathematics is really about.

IV.3 Mehrtens’ book is an example of a very elaborated kind of external histori
ography. His sources are mainly the programmatic declarations of the mathe
maticians involved and the documents of their institutional activities. Mehrtens 
does not attempt to analyze some of the more advanced productions of modernist 
or counter-modernist mathematicians, and, in fact, he makes no claims about the 
internal construction of modem mathematics. Thus we are left in a somewhat 
unclear position if we accept his narrative. Was the struggle between modems and 
counter-modems only a meta-mathematical drama, staged for reasons of self-inter
pretation and disciplinary politics? Or does the conflict also manifest itself in the 
“regular discourse of mathematics,” as Mehrtens described it, i.e., in the research 
activities and programs, in the mathematical writings of the period under consid
eration? Apart from some rather general remarks on the semiotic structure of 
modem mathematical texts {ibid., ch. 6.3), Mehrtens leaves this question entirely 
open.
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In any case, Mehrtens’ thesis would lose much of its attractiveness, if it could 
not be complemented by an analysis of the modernity or counter-modernity of 
pieces of mathematical research. Thus we may ask: is there a difference between 
Hilbert’s and Klein’s, or between Landau’s and Bieberbach’s mathematics? That 
is, between the styles of their mathematical texts, the mathematical games they 
played? As Mehrtens is silent on this point, we are free to look for our own an
swers to these questions.

IV.4 Evidently, there is a difference between a text such as Klein’s Lectures on 
Higher Geometry and Hilbert’s Foundations o f Geometry. I have tried to describe 
this difference in the second part of this article and I ventured at a philosophical 
analysis of its core in the third. Thus the question arises whether we could rea
sonably use the distinction between an abstract and a concrete argumentative style 
as an internal criterion for the degree of modernity of a mathematical text. A 
typical modem piece of mathematics should then argue in a strictly abstract fash
ion, while counter-modem texts should be written with a concrete style of argu
mentation. For the two texts of Klein and Hilbert, the statement holds.

In fact there is some evidence in favour of such a proposal. The form of math
ematical texts and the type of mathematical questions discussed in the first dec
ades of the twentieth century show strong variations on the scale concrete/abstract. 
To mention two other names: Henri Poincare, a counter-modem according to Me
hrtens’ classification, introduced the fundamental group and the homology groups 
of a manifold. In this way, he established a far-reaching embedding of the games 
of group theory into those of geometry, or rather, topology. Felix Hausdorff, placed 
among the modems, became famous for his axiomatization of the game of set- 
theoretical topology.

Let me add immediately that a schematic thesis of the type: “Modems only 
wrote abstract texts, counter-modems only concrete ones” seems very problematic. 
Counterexamples are too obvious. Frege’s Fundamental Laws o f Arithmetics (1893- 
1903) are evidently abstract in the sense introduced here, and hence should be 
called a modem text according to my criterion. On the opposite side, one could 
mention Hausdorff’s very concrete proof that there exist non-measurable subsets 
of the circle and the sphere (Hausdorff 1914, 428-433), not to speak of much of 
Hilbert’s mathematical work. Rather, the use of this criterion to judge the moder
nity of a piece of mathematics will lead to modifications of Mehrtens’ picture. A 
grey scale will appear between the white modems and the black counter-modems. 
And I think it will also become clear that (and how) concrete and abstract argu
mentative styles stimulated each other.

IV.5 Nevertheless, differences in mathematical style existed, and often they cor
responded to the metamathematical views of the authors. This correlation would
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find a partial explanation if we could relate Mehrtens’ semantic criterion for be
ing a modernist to the internal criterion of an abstract argumentative style.

In order to establish such a relation we have to ask whether the use of abstract 
or of concrete arguments leads, or may lead, to different attitudes toward the mean
ing of mathematical language. Let us go back to the example of the braid group. 
In fact the difference between viewing the group elements a) as words in the 
symbolic generators <x, or b) as isotopy classes of weaving patterns, can be de
scribed as a difference in semantics. Disregarding the topological game means 
considering braid words as uninterpreted strings of symbols. The only possibility 
of ascribing meaning to them is to explain the rules governing their use in the 
argumentation game we play. If we connect the group theoretical game to the 
topological game, we open up the possibility of an interpretation of the group 
symbols: we may call the “isotopy class of concrete braids with one positive twist 
between the first two threads” the meaning of the symbol a ,19. Thus the passage 
from an abstract to a concrete perspective on a mathematical game creates mean
ing, while the converse passage suspends it.

In this way, we have found, on the local level, a counterpart to Mehrtens’ 
criterion of meaning. The language of abstract arguments is, relative to the given 
embedding of mathematical games, devoid of that element of meaning which a 
concrete argument exploits to enable game changes. It seems quite probable that 
mathematicians who strove for axiomatizations developed a distaste for the vari
eties of meaning alluded to in concrete argumentations. These meanings occupied 
the mathematical mind, tending to obscure the logical structure of an argument or 
a theory. Authors like Klein or Weyl, on the other hand, must have been fond of 
every new facet of meaning which they could exhibit in mathematical language.

The relativization of Mehrtens’ criterion of meaning to an embedding of math
ematical games even allows one to reconstruct some of Mehrtens’ statements about 
the attitude of mathematicians towards the cultural meaning of mathematical dis
course. If mathematical argumentation moves in a complex network of mathema
tical games, the outer ends of which are embedded into non-mathematical practice, 
then a concrete argumentative style in the outer parts of the net creates meaning 
outside the cultural system called ‘mathematics’. Klein’s love for concrete argu
ments goes a long way toward embeddings of mathematical argumentations into 
non-mathematical contexts. (Again I come back to the cogwheels.) The least one 
can say is that this corresponds to his conviction that mathematics had a meaning 
for physicists, or for engineers.

IV.6 To finish, I want to discuss once again Artin’s braids, but now from a histor
ical point of view. This is meant to illustrate the use of the concrete-abstract dis
tinction as a criterion for the modernity of mathematical argumentations in 
historiographical practice.
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The original context for the topological objects called 'braids’ by Artin was 
the theory of Riemann surfaces, viewed as branched coverings of the complex 
plane. After some earlier results on two-sheeted surfaces, Hurwitz investigated in 
1891 n-sheeted Riemann surfaces with a finite number k of branch points. In 
particular, he counted the number of inequivalent surfaces for low n and k which 
had only simple branch points, i.e. points where exactly two sheets of the branched 
covering meet. Hurwitz’ text is certainly concrete in my sense: he defined the 
surfaces by the then usual cutting and pasting techniques, thus aiming at a topo
logical definition of Riemann surfaces (without explicit reference to complex func
tion theory). In the next step, he translated the problem of classifying these surfaces 
into a group-theoretical problem. (To every surface, there corresponds a transitive 
subgroup of permutations of the sheets, generated by the permutations arising at 
branch points. The associated presentation of this group determines the surface.) 
Thus he established an embedding of mathematical games.

In the course of his arguments, he came to consider the following situation: 
Suppose that, for a given surface, we move the branch points in the basis of the 
covering in such a way that they never meet, but reach a permutation of the orig
inal point configuration in the end. By continuously deforming the surface along 
the way, we arrive at a new surface with the same number of branch points and 
sheets in the end. Viewing time as a third dimension, we see that the movement of 
the branch points in the base plane forms a braid! (Imagine the branch points 
originally on a line; cf. fig. 6.) In fact, Hurwitz showed that (isotopy classes of) 
these movements form a group, and that they induce a transitive action of this 
group (to be called braid group only later) on the set of Riemann surfaces with n 
sheets and k simple branch points.

Figure 6: Moving branch points o f Riemann surfaces

Thus, the original context of the study of braids is a typical, rich context of 
argumentation, involving geometric, complex analytic, and group-theoretic ide

STYLES OF ARGUMENTATION IN LATE 19TH CENTURY GEOMETRY 195

as20. This rich argumentative context almost completely disappeared in Artin’s 
definition of the braid group in 1925. There are few doubts that Artin was aware 
of Hurwitz’s work and that it was his deliberate decision not to mention it. (Rath
er, he placed his braids into a more recent context, namely the problem of classi
fying knots.) Artin’s move even led to a quite common opinion that he had actually 
invented the braid group.

Artin not only restricted his argumentative context by cutting off the connec
tion to Riemann surfaces and function theory, but originally he even aimed at a 
purely abstract argumentation on the local level described in III. 2. He hoped to 
solve the classification problem for braids by solving the word problem of the 
braid group using only methods of the group-theoretical game. This hope is doc
umented in his acknowledgements to his colleague Schreien “My special thanks 
are due to Mr. Otto Schreier, who forcefully supported me in the writing of this 
paper, in particular with the complicated calculations by means of which we first 
hoped to get through” (Artin 1925-1926, 47). Thus the argumentative strategy 
seemed clear enough: i) define braids topologically, ii) “arithmetize” braids, i.e. 
introduce the argumentation game of group theory, and then iii) solve the classi
fication problem exclusively in the latter. It is even possible that the main inten
tion of the paper was not to contribute to knot theory by classifying topological 
braids, but rather to find an interesting example of a group presentation with a 
non-trivial, but solvable word problem21.

The tendency toward abstract argumentation makes Artin’s paper on braids a 
modem piece of mathematics. This is in agreement with his general position in 
German mathematics in the twenties. His lectures on algebra were one of the 
sources of the strictly axiomatic approach of van der Waerden’s Modern Algebra 
(1930-1931); the other being Emmy Noether’s work, of course. From 1926 to 
1937, when he was dismissed by the Nazis, he held one of the chairs at the Mathe
matical Seminar at the University of Hamburg, which certainly was one of the 
liveliest centers of mathematical modernity in Germany during the decade before 
33. (The other chairs were held by Blaschke and Hecke. The activities of the 
seminar are documented in the very successful journal of the seminar, the Ham
burger Abhandlungen.)

However, the abstract strategy of solving the word problem of the braid group 
did not quite work. The symbolic calculations which Artin and Schreier under
took turned out to be tedious, and the solution which Artin gave in the paper rests 
essentially on topological arguments and on frequent changes between the group- 
theoretic and the topological argumentation game. A close analysis of the proof 
even shows a certain “return of the repressed”: the topological methods employed 
have a strong connection to the methods which had been used earlier in the con
text of complex function theory. (In particular, this holds for the method of calcu
lating the fundamental group of a closed braid, which was essential for Artin’s
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argument. The method was due to Wilhelm Wirtinger, a Viennese mathematician 
who specialized in algebraic function theory.) Hence, counter to his original in
tention, Artin was forced into a concrete argumentative style.

In later years, Artin was completely dissatisfied with the argument he gave in 
1925. He felt it was too intuitive, and the proof of the main theorem was, as he 
said, “not even convincing” (Artin 1947, 101). Again we see the abstract impulse 
of modernity. Nevertheless, even the second attack on the braid group did not 
achieve a purely group-theoretical treatment. Instead, concrete braids were de
fined more cautiously in order to make rigorous topological arguments available. 
When Artin wrote a popular article on braids in 1950, he emphasized that “the 
theory of braids shows the interplay of two disciplines of pure mathematics— 
topology, used in the definition of braids, and the theory of groups, used in their 
treatment” (Artin 1950, 112).

Perhaps these remarks mirror some general features of the fate of the abstract 
style in mathematical modernity. The tendency towards abstract reasoning proba
bly revealed more about the hopes of committed modernists than it did the struc
ture of the actual arguments at the cutting edge of mathematical research. The 
rigorous axiomatization of mathematical theories even made it possible to clarify 
the relations between different mathematical games in such a way that concrete 
arguments lost the flavour of being intuitive and imprecise, as was the case in the 
braid example. Some of the deepest research of modem mathematics concerned 
the relations between different mathematical games (or structures, if you wish), 
but there are few examples where a single mathematical game was carried on for 
a long time without being related to other ones.

Of the two modem lines of geometry at least, the strictly abstract approach of 
Pasch and Hilbert seems soon to have lost its fertility, while the branches of differ
ential and algebraic geometry lead to exciting results and open questions up to the 
present day. Not only the strict adherence to the methodological purism of analyt
ic or synthetic geometry, but also the adherence to the methodological purism of 
abstract argumentations led, as Klein had said, to a “certain petrifaction”.
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Notes

1 Cf. e.g. Aristotle, Metaphysics, 1029a, 1061b; Second Analytics, 92b.

2 Cf. the survey by Thiel (1988). See also below, III.4.

3 On Monge, compare Glas (1985).
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4 For general historical information about the development of projective geometry, see e.g. Kline, (1972, 
ch 35). A wealth of information is contained in Felix Klein’s Vorlesungen iiber die Entwicklung der 
Mathematik in 19. Jahrhundert (1926-1927).

5 Cited after Kline (1972,836).

^ This characterization eventually evolved in a modem mathematical notion of projective space: the 
projective space of a vector space is the set of its one-dimensional linear subspaces.

7 Two “purist” classics of 19th century geometry are mentioned in Klein’s Lectures on Higher Geometry 
of 1893 (to be discussed below): “Hesse (1861) purely analytic; Reye (1866-1867) (purely synthetic). 
Both methodically one-sided, but in their treatment very elegant.” (Klein 1893,5).

8 Certainly, the discovery of the non-Euclidean geometries contributed essentially to the need for a 
clarification of the logical foundations of geometry. However this can hardly be the “only” reason for 
axiomatic thinking in geometry (which was then a common trend in other parts of mathematics as well).

9 Klein (1908-1909, II, 55 f.):
“The analytic geometricians often lost themselves in blind calculations, devoid of any geometric 

representation. The synthesists, on the other hand, saw salvation in an artificial avoidance of all 
formulas, and thus they accomplished nothing more, finally, than to develop their own peculiar 
language formulas, different from ordinary formulas. Such exaggeration of the essential funda
mental principles into scientific schools leads to a certain petrifaction; when this occurs, stimula
tion to renewed progress in the science comes principally from ‘outsiders’.”

10 For the relations between Pasch’s and Hilbert’s work, see Toepell (1986, in particular 51 ff.).

11 Certainly, it may be objected that Klein’s Lectures on Higher Geometry represented a rather singular 
way of treating geometry. However, I hope it will become clear in the following that the stylistic differences 
on which I focus here are characteristic not only for texts like Klein’s and Pasch’s.

12 Unfortunately, questions of mathematical pragmatics are still rather unexplored in recent philosophy of 
mathematics. This is partly due to the fact that the Fiegean tradition has focused on parts of mathematics 
which are far from actual mathematical practice (such as elementary arithmetic). With the revival of 
methodological and epistemological questions (Lakatos, Benacerraf, Kitcher), the situation has changed 
to some extent. There seem to be quite a number of valuable ideas still waiting to be unearthed in the non- 
logicist classics of twentieth century philosophy of mathematics as, e.g., Husserl or Wittgenstein.

13 For an account of the history of the comparison between mathematical practice and games, see my 
(1994). David Bloor has developed an “anthropological” perspective on mathematics as a system of 
language games in his (1983). Although I doubt that my view of mathematical games coincides with his 
notion of language games, some of the remarks below might contribute to his perspective.

14 It seems possible to formalize the notion of a mathematical game: one would then be led to a pragmatic 
interpretation of the formal systems which Hilbert introduced in his metamathematical work. However, 
a rigid notion of mathematical games certainly would restrict the range of phenomena in mathematical 
practice to which it could be applied in an instructive way.

15 Bloor speaks of a “superposition of language games” (1983, llOff).

16 Cf. Thiel (1988).

12 Or of “superposition”, cf. note 15. Whether or how this definition applies to the embedding of mathematical 
into social games—the situation which interests Bloor most—will be left open here. Also Lakatos stresses 
the importance of embeddings of contexts of argumentation into each other, cf. e.g. (1976, ch. 1, section 
2) .
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18 in fact, we have three ways to play a braid game (that is, to investigate braids): 1) We may only look at 
the topological definitions, disregarding the embedded group structure. This we could call the “synthetic 
braid game”. 2) We may only look at the group presentation, disregarding the topological context. The 
“analytic braid game”. 3) We may interpret the group sometimes topologically, sometimes symbolically, 
using both methods as it suits in studying braids. The “mixed braid game.” Only in the last two cases, the 
object of argumentation is really the braid group. Thus the alternative above.

We are not compelled to interpret this type of meaning as reference. We may equally view it from the 
standpoint of a “use” theory of meaning: by embedding the group-theoretical game into topology, we can 
make a different use of the symbol than without. It is this extension of its possible use which gives a 
new “meaning” to the symbol, not necessarily its connection to an object.

20 To Hurwitz’ ideas, one must still add the connection between braids and the mapping class group of the 
complex plane withn points removed, which appeared in Fricke and Klein (1897-1912,1). Cf. Magnus 
(1974).

2 1 Combinatorial group theory was still in its beginnings, and there was considerable need for good examples. 
Cf. Magnus (1974), and Chandler and Magnus (1982).

II. Philosophy
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PETRI MAENPAA

FROM BACKWARD REDUCTION 

TO CONFIGURATIONAL ANALYSIS

I Introduction

Ancient Greek geometers devised the method of analysis and synthesis for solving 
construction problems. According to Pappus (ca. 300 AD), it was also used for 
proving theorems, the other class of propositions conceived by the Greeks. He 
gave the only extensive ancient methodological account of analysis that survives. 
The term “analysis” has a variety of usages, but only this mathematical one is 
studied here.

Pappus described analysis as the reduction of a proposition to be solved or 
proved successively backward to its antecedents until arriving at a proposition 
whose solution or proof is known (Section II). This is the “directional interpreta
tion” of analysis.

Modem studies of analysis in terms of the directional interpretation have fo
cused on its logical character. The question has been whether the analysis of the 
ancients is deduction or reduction, which is not deductive in general. Hintikka 
and Remes (1974), notably, try to read the latter interpretation into Pappus’s de
scription. This is forced, because almost all examples of analysis in the Greek 
mathematical corpus are in fact deductions. Of course, these deductions are also 
reductions, because they are to be convertible into syntheses, but there is little 
evidence of non-deductively reductive analyses. I shall call such analyses “purely 
reductive”.

The few examples of Greek purely reductive analyses were devised by com
mentators rather than mathematicians with original contributions (Knorr 1986, 
ch. 8). The first purely reductive directional interpretation of analysis in a meth
odological description that I know of is by Duhamel (1865, ch. X and XI). He goes 
so far as to regard the deductive analysis of the ancients as defective, because it 
ignores concerns of convertibility of an analysis into a synthesis. He says further 
that modem analysis, which is (purely) reductive, does not suffer from this defect. 
It is trivially convertible.

But purely reductive analysis appears in mathematical practice much earlier: 
Galileo’s manuscripts on mechanics contain a purely reductive analysis (Maenpaa
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1993, section 7.2). Nevertheless, it doesn’t seem to appear in the methodological 
discussions of the 1600’s. Analysis was discussed extensively then, notably by 
Descartes and Newton. Their conception of analysis is deductive in methodologi
cal accounts as well as in mathematical practice.

Mathematical language and method changed decisively around 1600 in the 
hands of Viete and Descartes. They introduced a new kind of algebra, explicitly 
based on the ancient Greek method of analysis (Section III). The main innovation 
of their algebraic language was the introduction of variable symbols for all given 
and unknown quantities. The Greeks used no variable symbols before Diophantus 
introduced one in his Arithmetic in ca 250 AD. (The present account deals with 
Descartes only, see Maenpaa 1993, ch. 5-7 for Diophantus, Viete, and Newton.)

At the same time, Descartes’s methodological description of his algebraic 
method of analysis introduced an important novelty with respect to Pappus’s de
scription. Descartes said that analysis serves to determine how the unknown quan
tities of a problem depend on the given ones. Instead of seeking a deductive 
connection between the proposition to be solved or proved and propositions whose 
solution or proof was known, Descartes sought to determine the dependencies of 
the unknown quantities on the given ones. This is the “configurational interpreta
tion” of analysis.

On the face of it, the configurational interpretation is a simple specification of 
the directional one. The analyst works backwards by reduction from the sought 
conclusion to given premisses (Pappus). More specifically, he thereby establishes 
a dependency of the sought quantities on the given ones (Descartes).

But this specification has deeper methodological and logical significance. It 
shifts the focus of the analytical method from the analysis of a deductive connec
tion to the analysis of what is in more modem terms a “functional” connection. 
Analysis is, according to the configurational interpretation, a study of the func
tional dependencies in a mathematical configuration with known as well as un
known constituents.

In the Greeks’ twin method of analysis and synthesis, synthesis served to put 
together the sought objects from the given ones, making use of their functional 
dependencies uncovered in analysis. This concerns problems. In the case of theo
rems, the task of synthesis was to convert the analysis into a demonstration of the 
proposition to be proved from ones known to be true.

This informal description gives the impression that the configurational inter
pretation suits problem solving better, while the directional interpretation suits 
theorem proving. To get a more precise and deeper understanding of the situation, 
we shall describe the analytical method in formal terms. This is intended as a 
theoretical explanation of the configurational and directional interpretations. It 
aims at finding a theoretical structure behind the phenomena, so to say, of the 
examples of analysis in the mathematical literature and of informal methodolog
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ical accounts. Devising such a theoretical explanation is quite clearly a task that 
calls for a logical formalism as a conceptual tool. The resulting reconciliation of 
the two interpretations of analysis serves to spell out in relevant theoretical (logi
cal) terms what they are and how they relate to one another.

The question of how the analysis of problems relates to the analysis of theo
rems is also a logical question. This is why it is answered in the most satisfactory 
way, from the systematic point of view, in terms of a logical formalism. In partic
ular, the formalism must describe adequately functional dependencies between 
configurations (-constructions) as well as deductive connections between propo
sitions.

Descartes’s algebraic analysis has had a remarkable success due to its prob
lem-solving power. It soon became the lingua franca of the exact sciences, and 
that it remains today. What is more, it has served as a standard system of forms of 
understanding ancient historical materials in mathematics beginning from Zeu- 
then in the late 1800’s (cf. e.g. Zeuthen 1893). Yet the reduction of ancient histor
ical materials to Cartesian algebra does not preserve mathematical content. One 
possibility of dealing with this difficulty is to refrain from using anachronistic 
concepts as forms of historical understanding. Another possibility, which is made 
use of here, is to employ a system of concepts that is general enough to preserve 
mathematical content in full.

We shall then be in a position to see, for instance, the precise difference in 
meaning between the informal expressions

“deduction of a construction”,
“deduction of a proposition”

current in modem studies of ancient mathematics. This has not been possible 
before, because there has been no conceptual system for relating the notion of 
construction to the notions of deduction and proposition in a satisfactory way 
before constructive type theory (from now on: type theory), which we shall em
ploy here (Section IV). Type theory (Martin-Lof 1984) is one of the main current 
approaches to the foundations of mathematics and computing science.

This formal system of concepts helps us to understand the systematic source of 
the heuristic usefulness or problem-solving power of analysis. Furthermore, it lets 
us see new things in historical and informal mathematical materials, using the 
new forms of understanding.

Hintikka and Remes (1974 and 1976) brought the configurational interpreta
tion into recent methodological discussion, and coined the names of the two inter
pretations. They described analysis in terms of predicate logic, both the 
configurational and the directional interpretation. They also refuted conclusively
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Mahoney’s (1968) claim that the analysis of problems is not a method that can be 
described in logical terms, in contrast to the analysis of theorems.

Analysis is, in their configurational interpretation, a study of the functional 
dependencies among the constituents of a definite mathematical configuration. In 
the case of geometry, for example, the configuration is a geometrical figure. They 
also introduced the term “constructional interpretation” as a synonym for config
urational interpretation, and “propositional interpretation” as a synonym for di
rectional interpretation.

Besides bringing the modem methodological study of analysis to a new, theo
retical level of precision, by employing modem logical concepts, they identified 
the crucial heuristic role of “auxiliary constructions” in analysis. Taking apart a 
definite configuration into its constituents is routine compared to inventing the 
auxiliary constructions that are needed to amplify the configuration in order to 
find the solution to nontrivial problems (Section V). Auxiliary constructions are 
in fact indispensable also in finding the proof of nontrivial theorems, and this is 
one important logical connection between the analysis of problems and of theo
rems. Hintikka and Remes describe also auxiliary constructions in terms of pred
icate logic.

Now it has turned out that the logical tools used by Hintikka and Remes do not 
suffice for a natural logical description of the configurational interpretation and 
of auxiliary constructions (Maenpaa 1993). The systematic reason for this is that 
predicate logic does not recognize constructions. In its stead, I use type theory, 
which enriches predicate logic with a functional hierarchy that exactly captures 
on the formal level the informal notion of synthesis as functional composition of 
constructions of various types, like points, circles, and line segments in geometry, 
and of analysis as its inverse operation, functional decomposition of a construc
tion into its constituents.

Despite its introduction of quantifiers and individuals, predicate logic is still 
too close to propositional logic in order to serve as a formal tool for describing the 
analysis and synthesis of constructions adequately, which the configurational in
terpretation of analysis requires. Propositional and predicate logic suit the direc
tional interpretation better. It turns out that predicate logic fails, for instance, to 
describe geometrical construction postulates, which are used in solving geometri
cal problems.

Auxiliary constructions receive a logical description that is eminently natural 
in view of the informal way of understanding them as constructions that are not 
constituents of the configuration originally subjected to analysis (Section VI). 
That is, auxiliary constructions are constructions that are constituents of neither 
the given nor the sought objects.
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II The Directional Interpretation of Analysis: Pappus’s Description

The directional interpretation of analysis runs as follows in Pappus’s classical 
description in the seventh book of his Mathematical Collection (the English trans
lation is from Jones’s edition of Pappus (CJ, 82-85); I have added the Greek terms 
in square brackets). Part of the description may originate in older sources, proba
bly in Euclid (Knorr 1986, 354-360).

“That which is called the Domain of Analysis, my son Hermodorus, is, taken as a whole, a 
special resource that was prepared, after the composition of the Common Elements, for those who 
want to acquire a power in geometry that is capable of solving problems set to them; and it is 
useful for this alone. It was written by three men: Euclid the Elementarist, Apollonius of Perge, 
and Aristaeus the elder, and its approach is by analysis and synthesis.

Now analysis is the path from what one is seeking [zetoumenori], as if it were established, by 
way of its consequences [akobutha], to something that is established by synthesis. That is to say, 
in analysis we assume what is sought [zetoumenon] as if it has been achieved, and look for the 
thing from which it follows, and again what comes before that, until by regressing in this way we 
come upon some one of the things that are already known, or that occupy the rank of a first 
principle. We call this kind of method ‘analysis’, as if to say anapalin lysis (reduction backward).

In synthesis, by reversal, we assume what was obtained last in analysis to have been achieved 
already, and, setting now in natural order, as precedents, what before were following, and fitting 
them to each other, we attain the end of the construction of what was sought [zetoumenon]. This 
is what we call ‘synthesis’.

There are two kinds of analysis: one of them seeks after the truth, and is called ‘theorematic’; 
while the other tries to find what was demanded, and is called ‘problematic’. In the case of the 
theorematic kind, we assume what is sought [zetoumenon] as a fact and true, then, advancing 
through its consequences [akoloutha], as if they are true facts according to the hypothesis, to 
something established, if this thing that has been established is a truth, then that which was sought 
[zetoumenon] will also be true, and its proof [apodeixis] the reverse of the analysis; but if we 
should meet with something established to be false, then the thing that was sought [zetoumenon] 
too will be false. In the case of the problematic kind, we assume the proposition as something we 
know, then, proceeding through its consequences [akoloutha], as if true, to something established, 
if the established thing is possible and obtainable, which is what mathematicians call ‘given’, the 
required thing [protathen] will also be possible, and again the proof [apodeixis] will be the re
verse of analysis; but should we meet with something established to be impossible, then the prob
lem too will be impossible. Diorism is the preliminary distinction of when, how, and in how many 
ways the problem will be possible. So much, then, concerning analysis and synthesis.”

The translation of certain Greek terms deserves comment. Issues of transla
tion depend on how the logical character of analysis is understood.

Pappus calls analysis as applied to theorem proving “theorematic’ and as ap
plied to problem solving “problematic” in Jones’s translation. I use the terms 
“theoretical” and “problematical” instead, because they have become standard, 
although Jones’s terms avoid the ambiguity inherent in “theoretical” between the 
terms “theorem” and “theory”.

Jones translates “anapalin lysis” as “reduction backward”, whereas Heath (in 
his translation of Euclid’s Elements, I, 138-139) translates it as “backward solu



tion”. Hintikka and Remes (1974, 8-10) follow Heath. I find Jones’s translation 
preferable, because Pappus describes analysis as a method that applies also to 
theorem proving, not only to problem solving. Note however that Pappus does not 
use the technical term “apagoge” for reduction here. The term “lysis” is nontech
nical (Knorr 1986, ch. 8). Knorr translates “lysis” as “resolution”, but I prefer not 
to do so, because I shall use resolution as a technical term for the second part to be 
distinguished in analysis.

In sum, Pappus says that if the end-point of analysis is an impossible problem 
(or absurd theorem), then synthesis is not needed, and the original problem is also 
impossible (or the original theorem absurd). That is, analysis constitutes a reduc- 
tio ad absurdum. This is quite conclusive evidence for the interpretation that Pap
pus conceives analysis as deductive, because a purely reductive analysis could not 
constitute a reductio ad absurdum.

If analysis leads to a problem whose solution is known (or a theorem whose 
proof is known), a synthesis is needed. The synthesis reverses the analysis and 
yields a solution to the original problem (or a proof of the original theorem). 
Pappus’s description of synthesis as complementing analysis would be pointless if 
he regarded analysis as purely reductive, because this would make synthesis trivi
al and superfluous.

Strangely enough, Pappus does not have anything to say about the nontrivial
ity of this reversal. He does mention that the analyst must in general determine 
the conditions of solvability of a problem, the “diorisms [diorismos]”. They are 
part of establishing reversibility, because they are conditions under which an anal
ysis is reversible.

Hintikka and Remes translate “akoloutha” as “concomitants” in order to leave 
room for their interpretation of analysis as a purely reductive procedure. Previous
ly “akoloutha” had been translated as “consequences”. The evidence provided by 
the Greek mathematical corpus renders Hintikka and Remes’s translation implau
sible, because the extant Greek analyses are deductive, with the few exceptions 
devised by commentators. It is hardly conceivable that Pappus, in describing the 
analytical works of the corpus, should have described analysis in a way that is not 
consistent with those works.

On the other hand, an important precursor of analysis was the method of re
duction (apagoge), which was not deductive (Knorr 1986, 23-24). A well-known 
application of apagoge is Hippocrates’s (pre-Euclidean) reduction of the problem 
of duplicating a cube to the problem of finding two mean proportionals between 
two given line segments. Proclus, who flourished in the fifth centrury AD, says in 
his commentary of Euclid’s Elements (PEEL, 212-213) that

“ ‘Reduction [apagoge] ’ is a transition from a problem or a theorem to another which, if known
or constructed will make the original proposition evident. For example, to solve the problem of
doubling the cube geometers shifted [metethesari] their inquiry to another on which this depends,
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namely, the finding of two mean proportionals; and thenceforth they devoted their efforts to dis
covering how to find two means in continuous proportion between two given straight lines. They 
say that the first to effect reduction of difficult constructions was Hippocrates of Chios, who also 
squared the lune and made many other discoveries in geometry, being a man of genius when it 
came to constructions, if there ever was one.”

(I have inserted some Greek terms in square brackets from Friedlein’s edi
tion.) Neither Pappus nor anyone else of the ancients seems to relate analysis to 
apagoge methodologically. The only testimony we have is their mathematical 
practice. Judging from that, analysis and apagoge seem to have been distinct 
methods, and the modem purely reductive interpretation of analysis applies to 
apagoge rather than to analysis in Greek mathematics.

I ll The Configurational Interpretation of Analysis: Descartes’s 
Description

Descartes introduced his algebra as a new tool for solving mathematical prob
lems. It turned out so powerful that those problem domains that it applies to were 
studied in great depth, while those falling outside its scope received less attention 
after Descartes. Its application in geometry, in particular, required that geometry, 
as practised in the tradition established by Euclid and his contemporaries, be ab
stracted to algebra.

The non-algebraic aspects of geometry gradually fell out of the scope of what 
is now known as analytic geometry. A case in point is an elementary construction 
problem like the first proposition in Euclid’s Elements, to construct an equilateral 
triangle on a given line segment. This is why Descartes’s method of algebraic 
analysis is not a general mathematical method. To study analysis in all its gener
ality requires a system of concepts that does not reduce mathematical content. 
This requirement concerns the systematic as well as the historical point of view. 
Cartesian algebra has been widely used as a system of concepts for studying an
cient geometry historically, but this approach falls short of describing the histori
cal materials in full, because it abstracts the geometrical materials to algebraic 
forms.

Here is how Descartes describes his analytical algebraic method. Rule Seven
teen of his Rules for the Direction o f the Mind (ROP) reads as follows (quoted 
from Descartes PW, I, 70-71).

“We should make a direct survey of the problem to be solved, disregarding the fact that some of 
its terms are known and others unknown, and intuiting, through a train of sound reasoning, the 
dependence of one term on another.

[...] the trick here is to treat the unknown ones as if they were known. This may enable us to adopt 
the easy and direct method of inquiry even in the most complicated of problems. There is no 
reason why we should not always do this, since from the outset of this part of the treatise our 
assumption has been that we know that the unknown terms in the problem are so dependent on the
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known ones that they are wholly determined by them. Accordingly, we shall be carrying out eve
rything this Rule prescribes if, recognizing that the unknown is determined by the known, we 
reflect on the terms which occur to us first and count the unknown ones among the known, so that 
by reasoning soundly step by step we may deduce from these all the rest, even the known terms as 
if they were unknown.”

And in his Geometry (1637), Descartes says in his classical description of 
analytical algebraic problem solving (quoted from Descartes GSL, 6-9) that:

“If, then, we wish to solve any problem, we first suppose the solution already effected, and give 
names to all the lines that seem needful for its construction,— to those that are unknown as well as 
to those that are known. Then, making no distinction between known and unknown lines, we must 
unravel the difficulty in any way that shows most naturally the relations between these lines, until 
we find it possible to express a single quantity in two ways. This will constitute an equation, since 
the terms of one of these two expressions are together equal to the terms of the other. We must find 
as many such equations as there are supposed to be unknown lines; but if, after considering every
thing involved, so many cannot be found, it is evident that the question is not entirely determined.
In such a case we may choose arbitrarily lines of known length for each unknown line to which 
there corresponds no equation. If there are several equations, we must use each in order, either 
considering it alone or comparing with the others, so as to obtain a value for each of the unknown 
lines; and so we must combine them until there remains a single unknown line which is equal to 
some known line [...].”

Descartes shifts the focus of analysis from the deductive connection between 
propositions known to be true and the proposition to be proved to the dependen
cies, that is, the functional connections, between the known and unknown terms 
of a problem. Notice also the shift in terminology: where Pappus connects “some
thing established” or “known” or “given” to “what is sought”, Descartes connects 
“known terms” to “unknown terms”, the “terms” now obviously referring to quan
tities, not propositions.

Descartes is concerned with problem solving exclusively. Pappus, on the other 
hand, uses the word “zetoumenon” for what is sought neutrally with respect to 
theoretical and problematical analysis.

In introducing the configurational interpretation into modem methodological 
discussion, Hintikka and Remes don’t seem to have been aware that it was intro
duced by Descartes. They even say that “Descartes insists on discussing methodo
logical matters in propositional terms or at least in terms of sequences of steps of 
thought” (Hintikka and Remes 1974, 103).

IV Logical Form in Analysis

Consider the elementary geometric construction of a circle from a point and a line 
segment, by a compass as it were, using the point as the centre of the circle and the 
line segment as its radius. This is the third construction postulate of Euclid’s
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Elements, with the slight generalization that Euclid uses one end-point of the 
given line segment as the centre of the circle rather than any given point.

In the formalism of type theory, this can be represented as the rule

a : Point b : LineSegment

c(a,b): Circle

Progressing here from premisses to conclusion by deduction, we synthesize the 
circle c(a,b) in the conclusion from the point a and the line segment b given in the 
premisses. This rule establishes at the same time a deductive connection from the 
premisses to the conclusion and a functional dependency from the constructions 
in the premisses to the construction in the conclusion.

Suppose we seek the construction of a circle. We thus have a variable y: Circle. 
Now if we match this with the conclusion of the type-theoretical rule, and reduce 
the conclusion to the premisses, we get to know that the unknown circle y can be 
composed from a point a and a line segment b, that is, that

y  = c(a,b) :  Circle 

in the formal terms of type theory.
In predicate logic, the same construction postulate could be represented as the 

rule

|— Pointia) |— LineSegment(b)

|— Circle(c(a,b))

This does codify the same informal step of construction, but the forms of expres
sion of predicate logic do not allow systematizing rules of construction in a natu
ral way, in contrast to type theory. A type-theoretical rule like the one above simply 
composes a sought construction functionally in synthesis or decomposes it func
tionally in analysis. Thus a circle c(a,b) decomposes into a point a and a line 
segment b. This reconciles the configurational and the directional interpretations 
of analysis on the level of a single step of construction.

The predicate-logical rule, on the other hand, infers properties of individuals 
from other properties in a way that lacks this natural compositionality, which is at 
the heart of the informal conception of analysis. There is no natural way to ana
lyze the predication Circle (c(a,b)) into the predications Point {a) and Line- 
Segmentijb).
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Another approach in terms of predicate logic is presented by Mueller (1981, 
1-3) in his formal rendering of Hilbert’s axioms for Euclidean geometry. He de
notes lines by upper case letters and points by lower case ones instead of distigu- 
ishing them by predicates.

There is no way to formalize geometric construction postulates like the one 
above for circles. Predicate logic thus reduces geometry to theorem proving, be
cause problem solving requires construction postulates.

The only way to reason about constructions in this predicate-logical approach 
is to lay down existence axioms and then infer existence theorems from them. In 
the tradition of geometry established by ancient Greeks, on the other hand, con
structions are more primitive than existence propositions. Constructions can be 
used for proving existence propositions, but the former do not reduce to the latter, 
as in this predicate-logical codification. Thus, it is not adequate.

Indeed, Hilbert’s notion of abstract axiomatization, as exemplified in his Grund- 
lagen der Geometrie (1899), reduced geometry to theorem proving by reducing 
the existence of mathematical objects to the consistency of the axiomatic system 
that defines them implicitly. In the tradition of the Greeks, in contrast, mathemat
ical objects were defined explicitly by construction postulates, as in type theory. 
Hilbert’s model has spread throughout mathematics in this century, reducing it to 
theorem proving. Problem solving, which was the primary concern of Greek math
ematicians (Knorr 1986, ch. 8), has been ruled out.

One can conclude, then, that predicate logic is a logic of theorem proving. It 
serves to describe the directional interpretation of analysis but not the configura
tional one. To describe the configurational interpretation and problem solving 
adequately requires a richer system of logical concepts.

Already Kolmogorov (1932) proposed developing a logic of problem solving 
and applying it to geometric construction problems. He saw that this requires 
constructive logic, but no one seemed to have taken up the task before my (1993). 
This is surely because an expressive enough logical language, type theory, was 
conceived only in the 1970’s. Kolmogorov gave a problem interpretation for con
structive propositional logic.

In natural deduction terms, the above rule of type theory is an introduction 
rule for the set of circles. So introduction rules of natural deduction in type theory 
serve to analyze a sought construction into its immediate constituents, by regress
ing from conclusion to premisses. Elimination rules, correlatively, serve to ana
lyze a given construction into its immediate constituents. Introduction rules are 
used for defining a set by telling how its elements are constructed. They represent 
formally the construction postulates of Greek mathematicians.
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We have employed the two type-theoretical forms of judgement

a : A 

a=* b: A

that represent, respectively, the informal judgements

a is an element of the set A

a and b are equal elements of the set A

Let us now consider judgements and inferences where constructions have no 
intrinsic interest. In case the construction a has no intrinsic interest, the form of 
judgement

a : A

can be abbreviated to the form

M
The distinction between these two forms of judgement is already present in 

ancient Greek mathematics in the distinction between problems and theorems. 
The solution to a problem consists of a construction of the sought objects from the 
given ones and a proof that the construction satisfies the condition of the problem. 
The proof of a theorem, on the other hand, is just a proof that the given objects 
satisfy the condition of the theorem. Solutions to problems thus contain a con
struction with intrinsic interest and a proof that has no intrinsic interest. A proof 
of a theorem is just the latter, thus without intrinsic interest as a construction (cf. 
Maenpaa 1993, ch. 3 for further information).

Zeuthen (1896) identified problems in ancient Greek geometry with existence 
propositions, proved by constructions. Knorr (1983 and 1986, ch. 8) refutes this 
by displaying and discussing Greek theorems that have explicit existential form. 
In them, existence was not proved by construction, and on the other hand, prob
lems were understood quite simply as tasks of construction rather than as existen
tial propositions. Hintikka and Remes (1974 and 1976), in the same vein as Zeuthen, 
distinguish between problems and theorems in terms of existential form. Prob
lems are for them propositions that have existential form.

Type theory allows us to distinguish problems formally from theorems in a 
more satisfactory way. This requires enriching the forms of judgement of predi
cate logic. Recall that the form of judgement a : A can be used to express that a is 
an element of the set A. More generally, it expresses that a is a construction of 
type A.
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Another particular case of a construction besides an element of a set is a proof 
of a proposition. The above form of judgment can be used to express also that a is 
a proof of the proposition A. In case the proof a has no intrinsic interest as a 
construction, the form of judgement can be abbreviated to the form |-  A by sup
pressing a. This abbreviated form expresses that the proposition A is true. It can 
be used when we are not intrinsically interested in how A is proved, that is, in 
what construction proves it, but only in its truth.

The form of judgement a : A can now be used to formalize the “deduction of 
the construction” a, and the form (- A to formalize the “deduction of the proposi
tion” A.

Thus, the two forms of judgement a : A and a = b : A can also represent the 
informal judgements

a is a proof of the proposition A,

a and b are equal proofs of the proposition A.

Proof here is to be understood in the sense of construction, as employed in 
constructive logic. For example, the conjunction introduction rule

M  \-B

| -  A&B

of propositional logic in natural deduction formulation is seen in type theory as an 
abbreviation of the rule

a : A b : B

(a,b) :  A&B

where the proof (a,b) of the conjunction proposition A&B in the conclusion is a 
pair composed of the the proofs a and b of the propositions A and B, respectively, 
in the premisses.

From the point of view of the traditional distinction between problems and 
theorems, we can now see the abbreviated rule as a rule for theorems and the full 
type-theoretical rule as a rule for problems, because the latter rule displays con
structions.
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Corresponding to the usual natural deduction rules of conjunction elimination 

[- A&B f- A&B

b A b b

type theory has the rules

c : A&B c : A&B

p(c) : A q(c): B

that take apart the proof c of the conjunction in the premiss into the left projection 
p(c) and the right projection q(c), which prove the left conjunct A and the right 
conjunct B, respectively.

The values of expressions obtained by applying elimination rules are deter
mined by “computation rules” of type theory. Each proposition and set has its 
rules of computation. There is nothing corresponding to them in predicate logic. 
Conjunction, for instance, has the following computation rules that determine 
how to evaluate effectively left and right projections:

a . A b : B a: A b: B

p{(a,b)) = a: A q((a,b)) = b :B

Constructions may thus have intrinsic interest already on the level of proposi
tional logic. Representing them as individuals of predicate logic is an artificial 
codification. This strengthens the conception that predicate logic is suitable for a 
logic of theorem proving but not for a logic of problem solving.

Proofs in this type-theoretical sense of constructions are formal functional rep
resentations of proof trees. They are brought into the formal language as objects 
that can be reasoned about like any other objects. This is why they are also called 
“proof objects”.

Each step of constructing a proof tree is at the same time a step of constructing 
a proof object. There is nothing restrictive from the point of view of classical logic 
in this formal procedure, because classical logic uses proof trees just like con
structive logic. Proof trees of classical and constructive logic have representations 
on a par as proof objects in type theory. Type theory just enriches predicate logic 
by bringing proofs into the formalism as objects. Trees that form elements of sets,
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generated by rules like the introduction rule for circles above, are treated on a par 
with proof trees.

Type theory and predicate logic differ in the formalization of sets, like those of 
points, line segments, and circles. The type theorist represents them directly as 
sets, whereas the predicate logician represents them indirectly by codifying them 
as predicates over the single domain of individuals. Correlatively, the terms a, b, 
and c(a,b) are formalized as individuals of the single domain in predicate logic, 
but as elements of the sets Point, LineSegment, and Circle, respectively, in type 
theory. This is because type theory enriches predicate logic so that instead of the 
one domain of individuals, each set is a domain of individuals in type theory.

This account of sets in predicate logic followed our first formalization above. 
In the second formalization above, that presented by Mueller, sets are distinguished 
from each other only by representing their elements by different variable symbols. 
There is thus no real distinction, on the formal level, between a point and a line, 
for instance. Nothing prevents forming meaningless predications like 
Intersects (A,a), where A is a point and a is a line.

To conclude, predicate logic does not recognize constructions and cannot for
malize them naturally, although they can be artificially codified in terms of pred
icates over the single domain of individuals. It is not an adequate system of concepts 
for relating the configurational to the directional interpretation of analysis in for
mal terms. Hintikka and Remes (1974 and 1976) understand the analysis of a 
configuration formally as taking apart propositions into their constituents (by 
making use of the subformula property of natural deduction systems), although 
they describe it informally as taking apart a construction into its constituents.

Now let us consider the parts of a proposition in the Greek sense. A problem 
has “given” objects, “sought” objects, and a “condition” that relates them. A the
orem, on the other hand, has only given objects and a condition on them. There 
are no things sought. A theorem is thus the limiting case of a problem with no 
sought objects. This distinction of the parts of a proposition is introduced by me 
(Maenpaa 1993, ch. 3) in order to discuss analysis in precise logical terms—it 
was not made explicitly by the Greeks. Their zetoumenon was the combination of 
what is here called the sought for objects and the condition. Thus for theorems it 
was just what is here called the condition.

An example of a problem is the first proposition of Euclid’s Elements, to con
struct an equilateral triangle on a given line segment. Here the given object is a 
line segment, the sought object is a triangle, and the condition is that the triangle 
must be equilateral and constructed on the line segment.

An example of a theorem is proposition 32 of the first book of Euclid’s Ele
ments. It states that the angle sum of a triangle equals two right angles. Here the 
given object is a triangle, and the condition is that the sum of its angles is equal to 
two right angles.
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In type-theoretical terms, we can represent the given objects, the sought ob
jects, and the condition schematically as

x : A 

y : B(x) 

b  C(x,y)

respectively. Here x and y are (possibly empty) vectors of objects, because there 
may be any number of given and sought objects. For theorems the vector y is 
empty, so the scheme reduces to

x : A 

\-C (x)

A  problem or a theorem need not even have a condition, as in propositional 
logic, where predicates cannot be used. The existential form of proposition 
(3y : B(x))C(x,y) in the context jc : A can be used to represent a problem that has 
a condition. However, problems are not to be identified with existential proposi
tions, because problems that lack a condition are not be represented as existential 
propositions. And on the other hand, a theorem may be just as well be an existen
tial proposition. This is the case when the condition of the theorem is an existen
tial proposition.

Now analysis can be conceived of as a succession of two parts, “transforma
tion” and “resolution”, following Hankel (1874). Using our distinction between 
the given objects, the sought objects, and the condition, we can refine Hankel’s 
proposal with type-theoretical form. First, transformation reduces the condition 
C{x,y) to a transformed condition T(x,y) that the analyst knows how to satisfy. 
The transformed condition of a problem must also determine some constituent of 
the sought objects y : B(x) in terms of the given objects x : A. Then, resolution 
determines all of the sought objects in terms of the given ones. As theorems have 
no sought objects, their analysis has no resolution.

Synthesis has two corresponding successive parts, already distinguished by 
the Greeks, “construction [kataskeue]” and “demonstration [apodeixis]”. Con
struction corresponds to resolution, because it constructs the sought objects 
f i x ) : B(x) from the given ones x : A. Demonstration corresponds to transforma
tion, as it deduces the condition C(x,f(x)) from the transformed condition T(x,f(x)). 
The synthesis of a theorem has no construction, because there are no sought ob
jects. Schematically, analysis and synthesis have the following form.
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resolution
x :A

Analysis

transformation 
|-  T(xy)

T

y:B(x)
T

f- C(x,y)

construction 
x : A

Synthesis

demonstration
I-7 W W )

i A

1
f i x ) : B(x)

i
|- c ( x M )

In case there is no condition, analysis reduces to resolution and synthesis to 
construction. Analysis uncovers the functional dependency

y =/(■*): B(x)

of the sought objects on the given ones, and synthesis then constructs the sought 
objects from the given ones, using this knowledge.

Downward arrows in the scheme indicate deduction, and upward ones reduc
tion. No direction is indicated for resolution, because it does not have any fixed 
direction. It may proceed either deductively from the given objects to the sought 
ones or reductively in the converse direction (cf. Maenpaa 1993 for further infor
mation).
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Ancient Greek mathematicians deduced the sought objects from the given ones 
in resolution, beginning with the dependency of a constituent of a sought object 
on the given objects that was uncovered in the transformed condition. Thus Pap
pus’s account only describes the transformation part of analysis.

In Greek mathematics transformation was a deductive reduction, that is, a 
chain of equivalent conditions. In synthesis, the transformation was converted 
into a demonstration.

No ancient methodological account seems to exist that discusses the restric
tions that ensue from the limitation to deductive transformations in analysis. Quite 
evidently a large class of propositions admit only a successful analysis whose 
transformation is not deductive. This may be one reason why some Greek mathe
matical works were exposed only synthetically. If analysis is restricted to deduc
tive transformations, its universality as a mathematical method of discovery is 
considerably restricted.

In the case of theorems, the scheme for problems reduces to the following 
special case.

Analysis
transformation

Synthesis
demonstration

|- n * )

T l

T i

|— C(jc) l-  C(x)

V The Heuristic Role of Auxiliary Constructions

The configurational interpretation construes analysis as a study of the functional 
dependencies in a definite configuration. This configuration consists of the given 
and the sought objects, assumed to relate to one another as specified by the condi
tion.

There is one proviso to this description. Determining the sought objects in 
terms of the given ones will not in general succeed by analysing just this definite 
configuration. It must be amplified by auxiliary constructions in the course of
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analysis. This is the heuristically crucial and unpredictable factor of analysis, as 
Hintikka and Remes (1974 and 1976) pointed out forcefully.

Descartes ignores auxiliary constructions in the account of analysis in his Ge
ometry cited above. All he has to say is that in solving a problem the analyst is to 
“give names to all the lines that seem needful for its construction,—to those that 
are unknown as well as to those that are known.”

To understand the systematic role of auxiliary constructions in analysis, Hin
tikka and Remes described their introduction in terms of quantifier instantiation 
rules of predicate logic. They contrast such instantiation steps to other steps of 
analysis, which take apart a proposition into its constituents as prescribed by the 
subformula principle of natural deduction systems of predicate logic.

However, as we have seen, analysing a configuration is more naturally formal
ized as the functional decomposition of a construction in type theory. Introduction 
rules decompose sought objects into their constituents, and elimination rules de
compose given objects.

Let us look informally at a few examples of how auxiliary constructions func
tion in solving problems and proving theorems of Euclidean elementary geome
try. First, consider the proposition I, 1 of the Elements, which is the problem of 
constructing a sought triangle on a given line segment satisfying the condition 
that the triangle is equilateral and constructed on the line segment.

C

Euclid gives only the synthesis of the solution. In its construction part, he 
constructs two circles on the given line segment AB, one centered on point A and 
the other on point B, using AB as the radius. These steps apply his third construc
tion postulate, for circles. Then he connects the points A and B to C, which is one 
of the two intersection points of the circles. These steps apply his first construc
tion postulate, which allows constructing a line segment connecting two given 
points.

A well-known deficiency of the Elements from the point of view of modem 
standards of axiomatic systems is that Euclid does not justify the construction of a
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point by means of two intersecting lines, like point C here, by any construction 
postulate. Rather, he takes it for granted that one may construct a point by letting 
two lines intersect, whether two straight lines or two circles or one of each.

In the demonstration part of his synthesis, Euclid shows that the condition of 
the problem holds by appealing to the definition of a circle. As AC and AB are 
radii of the same circle, they are equal in length. The same goes for BC and BA. 
By his axiom that “things that are equal to the same thing are also equal to one 
another”, the first “common notion” of the Elements, CA is equal to CB and hence 
the sought triangle ABC is equilateral. It is also constructed on the given line 
segment AB, as required.

This solution required the auxiliary constructions of the two circles, carried 
out in the construction part of the solution. Without them, Euclid could not have 
determined the sought triangle in terms of the given line segment, because the 
vertex C of the triangle was constructed from the line segment AB by intersecting 
the circles.

Now consider the proof of a theorem, proposition I, 32 of Euclid’s Elements, 
which states that the angle sum of a given triangle equals two right angles (this 
proof is in fact a version handed down by Eudemus).

C

First Euclid draws a straight line DCE through the vertex C of the given trian
gle ABC parallel to its base AB. Then he argues that ZACD is equal to its alternate 
angle ZA, and likewise ZBCE  equal to ZB, so the angle sum of the given triangle 
ABC equals the sum of ZACD , ZACB, and ZBCE, that is, two right angles.

The auxiliary construction of the line DCE is the heuristically crucial part of 
this proof. Without it, the proof would not succeed. This shows that even though 
theorems have no construction part in their synthesis, auxiliary constructions are 
in general needed in order for their proofs to succeed.

Auxiliary constructions serve to bring forth new relations among the constitu
ents of the configuration that is analysed, so that new propositions can be applied
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in the proof or solution. In the synthesis of theorems, auxiliary constructions are 
performed in the demonstration part, because there is no construction part.

In the present case, the auxiliary construction DCE allows mobilizing the the
orem that a line intersecting two parallels makes the ensuing alternate angles 
equal to one another. This is proposition I, 29 of the first book of Euclid’s Ele
ments.

Now to gain a more general understanding of the significance of auxiliary 
constructions in mathematics, consider the elementary algebraic problem

a2x 4 + abx2 = c

for reals, assuming we know the standard solution to a quadratic equation. Alge
braic equations are equality propositions, to be distinguished from definitional 
equalities, which are represented in type theory as judgements of the forma = b: a. 
This problem has the following parts.

given a,b,c : R
sought x : R
condition (- a2x 4 + abx2 = c

The solution by analysis starts with a transformation. First, substitute the fresh 
variable y for ax2 in the condition. This reduces the condition to the equivalent 
one

\- y 2+ by = c

Then transform this into the equivalent condition

|- y2 + by -  c -  0

We have now hit upon the transformed condition, because this equation is solved 
by the known general solution to a quadratic equation.

The resolution first applies this known solution, which yields the value

y = R.

There is a condition of solvability for y, a diorism in Greek terms, that
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In the second step of resolution, we determine the original thing sought x  in 
terms of y as

-b

x = ± |

bL---- 1-c
4 :R

by means of the known solution for j c  in terms of y from the equation y = ax2: R 
corresponding to the substitution. (Any value of j c  is a solution if a = c = 0 : R.) 
Here, too, we have diorisms,

b
-b  v b2—  ± Ai — + c
2 V 4

a
b a *  0

As algebraic equations of this Cartesian kind are more formal than the above 
propositions of geometry, this example shows more clearly in formal terms how 
auxiliary constructions enter into the a solution or a proof by analysis. They are 
introduced by substitution. We substituted the fresh variable y for the expression 
ax2 in order to find a solution for j c  in terms of a, b, and c.

VI The Logical Role of Auxiliary Constructions

As auxiliary constructions are so central heuristically in analysis, let us discern 
their role in logical terms. Hintikka and Remes characterize them in terms of 
quantifier instantiation, but type theory allows us to represent them logically in a 
way that preserves their informal character faithfully.

In informal mathematics, auxiliary constructions are brought into analytical 
proofs and solutions by substitution. Our algebraic example, for instance, showed 
no trace of quantifier instantiations in bringing in the auxiliary construction. Re
call their other informal characterization, as constructions that are constituents of 
neither the given nor the sought objects.
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The substitution rule of type theory

(x: A)

b : B a :A

b(a/x) : B(a/x)

can be seen reductively as a generalization of the usual cut rule of natural deduction 
systems (Maenpaa 1993, ch. 2). Its first premise means that b : B in the context 
x : A, that is, the premise b : B may depend on the hypothesis j c  : A. Proceeding 
deductively from premisses to conclusion, the rule allows substituting a for j c  in b 
and B.

In analysis, this rule can be used reductively for introducing the auxiliary 
construction x  of type A into the problem of proving some specified proposition C. 
The point is, heuristically, to see C as a substitution instance B(a/x) of a more 
general proposition B that is defined in terms of the auxiliary construction j c  : A. 
Proving the proposition C, that is B(a/x), reduces then to proving the proposition 
B in terms of j c  : A and to constructing an object a of type A.

In our algebraic example the proposition C was the equation a2j c 4  + abx2 = c 
whose solution, the value of x  in terms of a, b, and c, we sought. The heuristically 
crucial step in the analysis was the first step of transformation, where we saw this 
problem as a substitution instance of the problem y 2 + by = c by applying the 
above cut rule reductively. This introduced the auxiliary construction y, which 
matches x  in the rule. Furthermore, the object a in the rule matches the expression 
ax2 in our example.

This rule of cut or reductive substitution has a special role in our logical de
scription of configurational analysis. As introduction rules serve to analyze sought 
objects and elimination rules given objects, there must be some rule for introduc
ing auxiliary constructions, because they do not arise from analysing the given 
and sought objects. This is what the cut rule is for.

In Hintikka and Remes’s logical characterization of analysis in terms of pred
icate logic, the cut rule violates the rules of analysis. They forbid its use altogeth
er, because it does not enjoy the subformula property of predicate logic. Instead, 
they see auxiliary constructions as entering by quantifier instantiation. This con
ception is the only reasonable one in predicate logic, where the cut rule is less 
general than in type theory. It has nothing to do with substitution, because it does 
not deal with individuals at all. In fact, predicate logic has no rule of substitution. 
Substitution operations of informal mathematics are artificially codified by means 
of quantifier rules. This is why predicate logic does not allow representing the

FROM BACKWARD REDUCTION TO CONFIGURATIONAL ANALYSIS 223

introduction of auxiliary constructions in a way that is faithful to informal math
ematical practice.

Let us now enrich the schemes for analysis and synthesis by taking auxiliary 
constructions into account.

resolution

Analysis

transformation

j c  : A | -  T(x,y,z) 
T

z : G(x) • (g(xy)lz)

y • B(x)

T

h  C(xy)

construction

Synthesis

demonstration

j c  : A \-n*A xM x))M x))

i i

h (x): G(x)

i i
f{x,h(x) ) : B(x) (- C(xJ(x,h(x)))

Analysis introduces the auxiliary constructions z of type G(x) by substituting 
g(jc,y) for them reductively in the transformation (here z and g(jc,y) denote, again, 
vectors of objects). The original configuration that consists of x  and y is thereby 
amplified by z.

Resolution determines the auxiliary constructions z in terms of the given ob
jects j c  alone. This is why the type G ( j c )  must not depend on the given objects x, in 
contrast to the expression g(x,y) substituted for z reductively in transformation
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(for the logical role of auxiliary constructions in analyses where the proposition 
has no condition, cf. Maenpaa 1993, ch. 3; in this case they have to be both intro
duced and determined in terms of the given objects in resolution).

Analysis uncovers the functional dependencies

z -  h (x ): G(x) 

y = f(x,z) = f(x,h(x)) : B(x)

that are constructed in synthesis. The determination of the things sought y  in 
terms of the auxiliary constructions z and the given objects x  in resolution must 
respect the equation

 ̂= g(x,y) :  G(x)

that corresponds to the substitutions in transformation.
For instance, in our algebraic example we introduced the auxiliary construc

tion y  by substituting the expression ax2 reductively for it. This expression de
pends on the given object a as well as the sought object x. Yet in resolution, we 
determined y in terms of the given objects alone. Then we determined the thing 
sought jc in terms of the given objects and the auxiliary construction y so that the 
equation y = ax2: R corresponding to the substitution was respected.

Notice that substitution doesn’t figure in synthesis. This is why we did not 
discern it in the geometric examples of employing auxiliary constructions from 
Euclid’s Elements (for a discussion of the analyses corresponding to these synthe
ses, cf. Maenpaa 1993, ch. 5).

In the case of theorems, we have the following special case of the above scheme.

Analysis
transformation

Synthesis
demonstration

|~T(x,z)

T i

• (g(xVz) •

T i

b a * ) \-C (x)
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Here the auxiliary constructions do not have to be determined in terms of the 
given objects alone, as in the analysis of problems, because there are no sought 
objects that the auxiliary constructions could be made to depend on in transforma
tion. We can thus directly use the same expression g(x) in demonstration that was 
used in transformation.

Nevertheless, this scheme shows how auxiliary constructions figure in the 
analysis of theorems, and not only in the solution of problems. They do not arise 
by taking apart the given constructions. Rather, the given configuration x  must be 
amplified by z.

The source of the heuristic usefulness of analysis is that it gives the possibility 
of making systematic use of the things sought and the condition as well as of the 
given objects. Plain synthesis, without an antecedent analysis, has to proceed from 
the given objects to the sought ones and then demonstrate the condition blindly, so 
to say, without making systematic use of the sought objects and the condition.

Auxiliary constructions, in particular, function in a subtle way. They can be 
based on the sought as well as the given objects in the substitutions performed in 
transformation. In resolution they are then determined in terms of the given ob
jects alone. This functioning is spelled out in precise formal terms in the above 
schemes.

As theorems have no sought objects, analysis is less useful heuristically for 
proving them than for solving problems. In particular, auxiliary constructions 
function in a less subtle way. They are introduced outright in transformation in a 
way that need not be justified in resolution or in synthesis in another way, because 
they can depend only on the given objects. This explains in part why analysis was 
above all a method for solving problems for ancient Greek geometers (compare to 
the account of Knorr 1986, ch. 8).

Let us reconsider the question whether predicate logic is adequte for describ
ing theoretical analysis. As proving theorems requires auxiliary constructions in 
general, it depends on solving construction problems. Auxiliary constructions are, 
after all, solutions to problems. Therefore predicate logic suffices for describing 
theorem proving adequately only in those scarce trivial situations where auxiliary 
constructions are not needed.

Moreover, auxiliary constructions and constructions in general require a con
structive logic for their logical description, because constructions are formed con
structively by definition. In the mathematical tradition established by the Greeks, 
the construction part of synthesis was constructive in terms of modem construc
tivist standards, whereas indirect proofs were allowed in the demonstration to 
prove properties of constructions. As mathematics has reduced to theorem prov
ing during this century, classical predicate logic suffices to describe it, if auxiliary 
constructions are not taken into account.
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In contemporary mathematics, indirect proofs of existence are allowed every
where instead of constructions, which are carried out by means of construction 
postulates. In particular, auxiliary constructions are replaced by objects whose 
existence is proved indirectly. Then classical predicate logic suffices to describe 
them and theorem proving in general.

In another direction, the constructivists of this century have gone further than 
the Greeks—they require constructive reasoning even in demonstrations of the 
properties of constructions, not only in constructions.

As a surprising recapitulation of ancient mathematical history, computing sci
entists have in recent years started to solve problems in exactly the same sense as 
Greek mathematicians. They carry out constructions (computer programs) and 
demonstrate that they satisfy specified conditions. As programs are formal by 
definition, the need for an adequate formalism has been crucial in computing 
science, in contrast to mathematics.

Type theory has become one of the main theoretical approaches in computing 
science, because it is a programming language as well as a logical system (Mar- 
tin-Lof 1982, Nordstrom, Petersson and Smith 1990). Programs are constructed 
by rules of introduction and elimination and evaluated by rules of computation. 
This allows constructing programs and demonstrating their properties in one for
malism, which is a considerable advantage over traditional programming lan
guages. Predicate logic does not suffice for this, nor does classical logic, because 
they don’t recognize constructions.

Programming was until the 1970’s in a pre-theoretical stage in the way math
ematics was before the Greeks made it a science. In the 1970’s the need arose to 
prove that programs satisfy their specified conditions, that is, do what they are 
supposed to do. This is how programming evolved into a science in the sense 
established by the Greeks. Characteristic of mathematics before the Greeks as 
well as programming before the 1970’s was a stage of algorithmic constructions 
with no specifications or demonstrations of conditions of correctness imposed on 
the constructions. The Greek method of geometrical analysis can be generalized 
into a method of solving all kinds of mathematical problems in type theory by 
taking into account inductively defined problems, which are characteristic of pro
gramming. The method known as top-down programming turns out to be a spe
cial case of analysis (Maenpaa 1993, chs. 3 and 8).
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ANALYSIS, HERMENEUTICS, MATHEMATICS

I Introduction

In this article, we would like to study the importance of the concept of analysis for 
mathematics from three points of view:
-  Firstly, we will be attentive to what, since the Greeks, since Pappus if what I 
have learned is correct, is called “analysis”, and which, as a characteristic proce
dure of geometric reasoning, is put forward by Platonic and Aristotelian philoso
phy as a universal model of thought.
-  Secondly, we would like to understand analysis as the regressive method of all 
transcendental inquiry, following Kant’s suggestion, and to reinterpret this tran
scendental inquiry as necessarily hermeneutical.
-  But finally, we will aim to elucidate, starting from these sorts of considerations, 
the unity of meaning of analysis, that contemporary branch of mathematics whose 
prodigious development in modem times is well known.

There is little doubt that a certain degree of failure in such an undertaking is 
likely. The method which will be followed to attain some results despite the scope 
of the questions raised and the unsettling character of the comparisons we wish to 
establish will consist in a straightforwardly personal reconstruction of certain 
elements of the tradition.

Let us therefore begin with Greek analysis.

II Greek Analytical Suspension: Hermeneutics and deliberation

In the Republic (510 b-d), Plato clearly opposes mathematical and philosophic 
approaches: he considers the latter as essentially regressive, consisting in an up
ward move from any given to the “non-hypothetical principle(s)” belonging to the 
purely intelligible realm. The former is essentially suspensive and progressive, 
laying down certain hypotheses, passing through their consequences while break
ing once and for all with any questioning of them. But on the other hand, the 
method of geometers is readily called up as an argumentative model for philoso
phy. Notably in Meno (86fc-87d), when a provisional phase of the research into 
the essence of virtue must be justified, Plato cites a relatively obscure (in the
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words of Plato’s French editor and translator Leon Robin1) example which does 
seem to be a case of classical “analysis”.

We therefore wish to reflect on Greek analysis to know if it is regressive or 
progressive, suspensive or interrogative, philosophical or mathematical.

The discussion may commence not with Greek sources, but with what, in the 
mathematical tradition, has been defined as the method of analysis. In my case, 
analysis was taught to me, more than two thousand years after the Greeks, as the 
first phase in the treatment of a problem of geometric construction. Faced with the 
problem of constructing a figure, a straight line or a point with such and such a 
property with respect to geometric givens—which are in turn simple figures (point, 
straight line, triangle, circle, etc.)—we are advised to begin by “assuming that the 
problem is solved”: by tracing in a tentative and approximate manner a figure in 
which what must be constructed is present and whose construction we assume to 
be correct (generally speaking, moreover, we know how to adjust distances and 
angles intuitively so as to actually experience the construction as correct or slight
ly incorrect). We may then, on inspection of the figure, begin the work of deduc
tion, whose premises are acquired through considering the properties of the entity 
under construction as satisfied. The process of deduction naturally gives up a 
series of properties, certain of which will be the relations of the entity under con
struction—or more generally the constituents of this entity—to the given entities. 
At a certain point, these relations may be able to indicate and prescribe in trans
parent fashion a possible construction. There then remains, in the phase called 
“synthesis”, the task of demonstrating that what has been constructed in the dis
covered procedure indeed satisfies the stipulated properties of the “problem of 
construction”.

Thus, one assumes that the relations to be satisfied are satisfied (the relations 
of the entity to be constructed to the given entities) so as to deduce other relations 
out of which a construction is possible and recommendable.

How must this procedure be described?
First of all it is suspensive, for it consists in a hypothesis; but the hypothesis is 

the elimination of what is at stake, of the aim, of the problematic originary orien
tation. Thus, there is indeed suspension, at least apparently, suspension at a cer
tain level of the drive toward the goal.

The method is obviously progressive as well: one derives conclusions from the 
hypothesis that the problem is solved, instead of working down from the hypoth
esis to its unquestionable sufficient reasons, or attempting such a philosophic 
regression from the encompassing conditions of the problem. Yet these eventual
ities of a philosophic treatment of the geometric problem have a false ring to 
them, because the context of the problem is immediately non-philosophic: the 
regression to nonhypothetical principles referred to by Plato clearly deals with 
lexical indicators of conceptual signification, rather than with those configura
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tions, leading to a decision, that the problems are. Therefore analysis does appear 
suspensive and mathematical, but suspensive in the sense that it is less the evalu
ation of a thesis that is suspended as the tension of a problem, that is to say a sort 
of strategic meta-thesis.

Let us proceed now to the purely logical plane. The procedure of analysis 
begins by laying down a phrase such as:

3xP(a,x)  [there exists an entity x such that it has a relation P to the given 
objects a].

We now move on the logical deduction, finishing with a phrase such as the 
following:

3 xQ(a,x)  [there exists an entity x such that it has a relation Q to the given 
objects a].

One imagines that there must be a way to attest this new phrase “effectively”, 
to construct the entity(ies) mentioned in the phrase existentially. And one imag
ines as well that this construction is in fact, through certain simple mediations, 
the ipso facto construction of entities jc such that P(a,x), which is to say one 
imagines this to be the solution to the original problem.

This procedure of analysis seems circular: one assumes the existence of an x  
satisfying P to be able to demonstrate the existence of an x  satisfying P. This 
circularity has nothing to do with a vicious circle, because the presupposition is 
logico-existential, and because what is achieved at the end is an effective con
struction. Such a construction can be achieved because the existential description 
a la Russell of the object to be constructed has been transformed into that of 
another object, with the property that a constructive counterpart to it is immedi
ately given, and because the passage from the construction of this new object to 
that of the original can be accomplished.

I am led to conclude that analysis, seen in this angle, is a thoughtful elabora
tion allowing for the transition from the logico-predicative precomprehension of 
an entity to practical comprehension. The underlying presupposition is that cer
tain logico-predicative precomprehensions have always contained their practical 
counterparts: this is but to name and to grasp the traditional idea of a “guiding” 
geometric intuition. The geometric intuition consists in there being practical cor
respondents of the constructive order to certain simple, defined descriptions, pro
viding that the constant parameters of these descriptions themselves be given in 
intuition.

In any case, the drift of my argument is now clear: the procedure of analysis in 
the classical, technical sense of the term that it has acquired since the Greeks in 
the field of geometry is closely related to hermeneutics. It must be pointed out in 
passing that this hermeneutics is opposed to the hermeneutics Heidegger adum
brates in section 63 of Sein und Zeit (1927): for Heidegger, the precomprehension 
of being is practical, ante-predicative, and hermeneutical elucidation consists in a
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bringing into view through predicative speech, whereas here, the passage is from 
a saying that articulates the object to be constructed in such and such a way to a 
realisation of the geometric construction which exhibits the object with the same 
determinations.

This line of thought on Greek analysis can be completed with an account of 
the following passage from the Nicomachean Ethics in which Aristotle conceives 
of the reasoning of the practical understanding as stemming from the model of 
analysis:

“We deliberate not about ends but about means. For a doctor does not deliberate whether he shall 
heal, nor an orator whether he shall persuade, nor a statesman whether he shall produce law and 
order, nor does anyone else deliberate about his end. They assume the end and consider how and 
by what means it is to be attained; and if it seems to be produced by several means they consider by 
which it is most easily and best produced, while if it is achieved by one only they consider how it 
will be achieved by this and by what means this will be achieved, till they come to the first cause, 
which in the order of discovery is last. For the person who deliberates seems to investigate and 
analyse in the way described as though he were analysing a geometric construction (not all inves
tigation appears to be deliberation—for instance mathematical investigations—but all delibera
tion is investigation), and what is last in the order of analysis seems to be first in the order of 
becoming.”2 (1112b, 12-25)

Analysis seems here to be characterised by regressive reasoning, which, prima 
facie, is in total contradiction with Plato’s divide between mathematics and phi
losophy. The connection to the traditional notion of analysis in geometry men
tioned earlier is easy to establish; Aristotle perceives that in practical deliberation, 
the problem is assumed solved as in problems of construction. But the delibera
tion is not analogous to progressive research into the conditions of construction, 
for it is in fact regressive: the regression it enacts is at one and the same time 
purely logical and empirical, conditions are introduced as perfectly regular logi
cal premises of the previously considered condition, and the mind remains con
stantly watchful over the possibility of adjusting practically the world to the present 
condition.

A type of extremely simple mathematical reasoning conforming to this model 
can be cited. Moreover, this type of reasoning is of the greatest importance in 
contemporary mathematical analysis, be it real or complex. I refer here to process
es of reasoning adapting a  to e, to attest a property of continuity or limit following 
the definition prevailing since Weierstrass: let us say, for example, that I wish to 
establish the continuity in 1 of the function x  -» x 2; e > 0 is given, and I will seek 
a  > 0 such that the condition lx-11 < a  implies lx2- l  I < e; what is to be obtained is 
in fact Ix-lllx+ll < e, which follows from lx-11 < e/2 and lx+11 < 2, this last 
condition resulting from lx-11 < 1, so that a  -  Min(l,e/2) agrees. It is clear that 
the “deliberation” involved in this proof requires that a “means” be found of a 
prior (double) “means”, therefore the deliberation already possesses a certain depth. 
Those familiar with contemporary real and complex analysis may witness that
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this sort of procedure, with its essential estimative aspect, is omnipresent therein, 
not necessarily as a global scheme of what is accomplished (modem technicity 
having introduced other general modes of mathematical reflection), but quite of
ten as the decisive and necessary local manipulation.

The question here is whether this deliberative regression a la Aristotle makes 
it “philosophic” in the Platonic sense. Once again, it seems that the distinction is 
marked in Platonic regression being semantic and lexical, aiming for the nonhy- 
pothetical principle, while Aristotelian regression is logical and phrastic, aiming 
at the effectuation of the hypothesis. In the case of ethico-practical deliberation, 
this is the pure and simple concrete faculty instituting a state of affairs in the 
world. In the case of Weierstrassian “deliberation”, the effectuation comes about 
in the mediate discovery of a condition of a type set down in advance, ultimately 
implying the condition taken as final theme.

This other type of analysis can no longer be attached to the hermeneutical 
model, as was suggested above in bringing to light the procedure of analysis in the 
solution of a problem of geometric construction. The two relevant orders, that of 
the logical phrase and its implication on the one hand, that of its effectuation on 
the other, are no longer related in such a way that what takes place in one order 
can be considered as satisfying what is anticipated in the other. Moreover, must 
the hermeneutical path not be an uncertain progression, a drift? Is there in fact 
elucidation if one simply strives through accumulative stages toward a point of 
resolution and actuality? Aristotelian analysis has something in common with 
problem-solving , and nothing of the sort with the hermeneutical circle: the “prob
lem is assumed solved”, but this is not to make it a premise, nor to acquire it as a 
pregiven, but quite simply to make it one’s goal at the end of a logico-rationally 
polarised interval. It will become clear by the end of this paper that this logically 
regressive analysis may however be considered, and doubly so, as a hermeneutics. 
But for the moment we lack the means of grasping this possibility.

At this point of our presentation it is difficult not to want to deal with that 
other historically claimed form of analysis: Kantian transcendental regression.

I ll Transcendental Analysis

In the “Methodology of pure reason”, Kant sets up a famous demarcation between 
mathematics and philosophy, the procedure of philosophy being that of knowl
edge gained through concepts, and that of mathematics as knowledge gained 
through the construction of concepts. His essential aim is to explain how the de
duction of the principles of pure understanding, which appears a posteriori as the 
philosophic result of the Critique o f Pure Reason, is not and could not be a part of 
mathematics. The motive of this divide lies in the nature of the concepts worked 
through in the transcendental inquiry: they are strictly discursive concepts, thus
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with no generic instance in intuition (the procedure of “concept construction”, so 
typical a move in mathematics, is in their case impossible). In a logic of auto
justification which is one of the essential stakes of this passage, Kant explains that 
what may be learned about them is limited to their function as “rules” for the 
synthesis of sensible manifolds in excess of them and under the extraneous legis
lation of the pure forms of intuition. But he also says something else, apparently 
gratuitous and intrinsic, about these concepts: that they are present in ordinary 
human usage, in such a form however that their content is not delimited. And he 
names “analysis” the procedure explicating a norm of correct signification for 
such concepts, opposing this procedure to that of mathematical “definition”.

Once again we then meet with the collusion between the mathematico-philo- 
sophic divide and the figure of analysis, and that between the latter and the idea of 
regression, as will be seen more clearly below. Husserl, reading these passages, 
retained the idea that the regressive method was characteristic of the transcenden
tal spirit a la Kant. In order to refute the Kantian transcendental, he retains as its 
positive principle a partially Cartesian formulation: the transcendental thesis con
sists in saying that all knowledge is knowledge of a subject and is only valid as 
knowledge following the certification of the subject—there can be no meaning to 
the idea of knowledge dictated and validated by the object. Husserl attributes this 
thesis to Kant as a major insight and progress for thought, but he parts ways with 
him over how to describe these subjective formations governing all knowledge. 
According to Husserl, Kant obtains his transcendental invariants, the categories, 
space and time with their own constraints “by regressing from de facto discourse”, 
from de facto thought of the subject in general and of the subject of science in 
particular. But his judgement is that Kant’s method issues in opaqueness of the 
resulting transcendental factors. In Husserl’s view, what is discovered by regres
sion, what is identified as the condition of possibility of a de facto exercise, even 
if it never be present in the exercise, has on principle the right not to have either 
intuitive grounds or evidence for its subject, and ultimately it is likely not to have 
any sense. Whereas, for Husserl, what we name the transcendental character of 
what affects our knowledge must appear as such to us in an examination of our 
subjective performance “on the path” of knowledge. The transcendental factors 
must not be merely linked in a logical relation to the experience of knowledge, but 
must themselves be able to be experimented with their functions within that expe
rience. Husserl’s position interests us for its negative lesson on what could be 
called “conceptual analysis”, the regression from a fact not toward Platonic non- 
hypothetical principles, but to guiding notions, conditions of possibilities, a re
gression that always thinks a logico-significant link: this analysis does not conquer 
evidence, but rather leads us to contents whose strangeness is maintained at the 
very moment their guiding quality is acknowledged.
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But let us listen to the expression of such a conceptual analysis in Kant:

“In the second place, it is also true that no concept given a  p r io r i ,  such as substance, cause, right, 
equity, etc., can strictly speaking, be defined. For I can never be certain that the clear representa
tion of a concept, which as given may still be confused, has been completely effected, unless I 
know that it is adequate to its object. But since the concept of it may, as given, include many 
obscure representations, which we overlook in our analysis, although we are constantly making 
use of them in our application of the concept, the completeness of the analysis of my concept is 
always in doubt, and a multiplicity of suitable examples suffices only to make the completeness 
probable, never to make i ta p o d e ic t ic a l ly  certain. Instead of the term, definition, I prefer to use the 
term, e x p o s it io n , as being more guarded term, which the critic can accept as being up to a certain 
point valid, though still entertaining doubts as to the completeness of the analysis.”3 (Kant A, 729;
B, 757)

It is thus clear that the philosophical procedure of analysis starts with a con
cept given in usage, then attempts to decompose it at the level of signification, 
without however being certain of ever having a complete semantic portrait of the 
concept. This procedure is opposed to that of the definition, characterised in the 
following terms:

“There remain, therefore, no concepts which allow of definition, except only those which contain 
an arbitrary synthesis that admits of a  p r io r i  construction. Consequently, mathematics is the only 
science that has definitions. For the object which it thinks it exhibits a  p r io r i  in intuition, and this 
object certainly cannot contain either more or less than the concept, since it is through the defini
tion that the concept of the object is given—and given originally, that is, without its being neces
sary to derive the definition from any other source.” ( ib id . A, 729-730; B, 757-758)

It is then essential to the notion of analysis that it imply the relationship to a 
given, whereas the definition “gives” itself:

“We shall confine ourselves simply to remarking that while philosophical definitions are never 
more than expositions of given concepts, mathematical definitions are constructions of concepts, 
originally framed by the mind itself [...].” ( ib id . A, 758; B, 730)

Kant insists strongly on the provisional, perfectible character of analysis. Thus, 
in a footnote:

“Philosophy is full of faulty definitions, especially of definitions which, while indeed containing 
some of the elements required, are yet not complete. If we could make no use of a concept till we 
had defined it, all philosophy would be in a pitiable plight. But since a good and safe use can still 
be made of the elements obtained by analysis so far as they go, defective definitions, that is, propo
sitions which are properly not definitions, but are yet true, and are therefore approximations to 
definitions, can be employed with great advantage. In mathematics definition belongs ad e ss e , in 
philosophy a d  m e liu s  e s s e . It is desirable to attain an adequate definition, but often very difficult.
The jurists are still without a definition of their concept of right.” ( ib id . A, 731; B, 759)

Therefore I would like to know and ask to what point this figure of analysis is 
a figure of hermeneutics. The word “exposition” appears for the first time in the 
Critique o f Pure Reason in the transcendental aesthetic, where Kant presents a
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“metaphysical exposition”, clear though not detailed, of space. In this case as in 
that above, the exposition sets forth a content in ignorance of that completeness 
which is its aim, to the point of despair of ever being able to reach such a goal. 
With the problem of space, this impossibility has something principled about it, 
since the very infinity of space, revealed by the exposition, is opposed to its com
pleteness. But this is only one of its aspects: the incompleteness is related as well 
to what the exposition sets forth of what is “anticipated” of space, to what of space 
is “prejudged”, to what geometry will systematise, but which is not yet in itself 
formal or exact, thus displaying an essential incompleteness of determination, 
calling for diverse elucidations. The investigation here called “analysis” has com
mon characteristics with the metaphysical exposition. The principle difference 
being that it is nevertheless a “decomposition”: it works on a word of the lan
guage, a word corresponding to a concept, and attempts to elucidate it in what 
would appear to be the only possible way, i.e. through a list purporting to be 
complete of the semantic contents in which the concept exhausts its meaning. But 
this work is open and incomplete, consisting in a dialogue with the given which is 
at one and the same time a way of prescribing this given, as in the case of the 
metaphysical exposition. In that case, the donation is the celebrated intuitive dona
tion, that of the pure forms of the sensibility to the subject, a donation supposed to 
precede de jure all experience, and which is called pure intuition. While in the 
case of analysis of a concept such as “substance”, the given is that of a semanti- 
cism already shared by the circle of the thinking community. Hermeneutics in its 
most classic concept can only apply to this sort of given, which is easily conceived 
as equally “not given”. This is the structure of the “envelopment of meaning”, a 
sort of a priori structure governing the region of meaning, according to which 
everything having meaning withholds additional meaning that, in one way or 
another, has to be explicated or activated. On the other hand it is not self evident 
to conceive of the mathematical theorisation of space, for example, as a herme
neutic: this is nevertheless what I wished to propose as the best epistemological 
scheme of mathematical activity in my U  hermeneutique formelle (1991), whose 
point of departure was indeed the presentation of the relation to space as a relation 
at once of familiarity and of dispossession, a relation to a given-not given of the 
same sort as that to a lexical unit in which meaning is enveloped. My complete 
thesis, whose main argument I have just in part reproduced, is that the relation 
named by Kant “intuition” is a relation of this sort.

But, as for the usage of the word analysis, there is an important distinction to 
be made. Analysis as a procedure of finite and controlled decomposition is the 
hermeneutical method when it has as its object the natural opaqueness of lexical 
meaning. On the other hand, the mathematical interpretation of space does not 
follow the path of analysis, but rather proceeds by axiomatic enunciation, “syn
thetically”, the exact inversion of hermeneutics. Judgements prescribing space
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are made, inscribed and aligned; they are supposedly inspired by our familiarity 
with space but, whatever the case, they set and delimit that space, enabling a 
regulated logical usage of the representations that will implement the knowledge 
of space. The synthetic character resides in the fact that these judgements predi
cate subjects of determinations that do not figure in their concept, in conformity to 
the Kantian definition, but we could take a step further in considering modem 
axiomatic experience, and conclude that axiomatisation is synthetic insofar as it 
establishes, prejudgementally, a world of objects in its coherence and universality. 
Whereas conceptual analysis limits itself to deploying problematically the wealth 
of possibilities of a locus of meaning, of a condensation of thought.

In any case, the mere consideration of analysis as the characteristic method of 
transcendental investigation and of the metaphysical exposition of the transcen
dental aesthetic as both belonging to the hermeneutical attitude suffices to show 
that each factor of the Kantian transcendental structure in fact receives its identity 
as a hermeneutical conquest: space, time, and the categories constrain knowledge 
a priori only as figures of themselves to which access is given in a dispossessive 
familiarity. These figures have the status and the composition of non-given givens, 
objects allowing analytic work in the case of conceptual elements, and, as for 
intuitive elements, permitting mathematical synthesis which is nonetheless herme
neutical.

Can this preliminary two-headed reflection afford insight into the project of 
expressing the essence of contemporary mathematical analysis?

IV The Identity of the Branch Analysis of Contemporary 
Mathematics

How is analysis to be identified today? There is of course J. Dieudonne’s Elements 
o f Analysis (1963-1982), which gives us a sketch of the complex tree of the sub
disciplines of analysis, claiming to expound them one after the other, volume after 
volume. General topology, theory of topological spaces, theory of analytical func
tions, functional analysis, algebraic topology, differential geometry, theory of dy
namical systems, differential topology: all these headings, of different implicit or 
explicit levels, coming together and crossing each other in various ways, compose 
the figure of analysis. At a glance, the unity of these procedures is in the depend
ence of the objects treated on the R  and the C of the Cantorian construction, 
together with the play of the topological element of these structures. Having said 
that, there are certain cases in which the disciplines of analysis confine with alge
bra, for various reasons: in the case of analytic geometry, it is because this branch 
makes use of constructions generally given as algebraic in a geometry itself known 
as algebraic; for the case of differential equations, the motive would be more stra
tegic, because the solution of equations is an algebraic heuristic and, consequent
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ly, despite the topological nature of its objects and situations, many aspects of the 
theory come from algebra.

The discussion undertaken here revolves naturally around the opposition be
tween “analysis” and “algebra”. But this is not the only possible discussion: an
other one is oriented towards the distinction between “analysis” and “geometry”. 
It seems self-evident to me that the theory of topological vectorial spaces should 
belong to analysis, but I would much less spontaneously call this theory “geomet
ric”. Dieudonne seems to classify in analysis everything in which topology plays a 
decisive role, thus evincing a particular conception of the branch. But in the dif
fuse sentiment of contemporary mathematicians, there is also a more restrictive 
idea of analysis, according to which it would be defined as the study of set-theoret
ical complexity—that is, above all, functional complexity—developed on the ba
sis of R  and C, indeed from a topological viewpoint, without ever attaining a 
geometric perspective on these entities. From this point of view, differential ge
ometry would contain numerous aspects outside the field of analysis strictly speak
ing.

As for the concept of “geometry”, it is in a problematic inter-definitional state 
with that of topology: not all study of topological structure is geometric—there is 
another diffuse sentiment according to which geometry begins only when the top
ological structures studied are sufficiently affinitive to classical Euclidean struc
tures. One possible criterion is the presence of a sheaf, that is, that readily 
operational entities be given above the localisations offered up by the topological 
space.

Lastly, the concept of “algebra” is difficult to distinguish from that of “arith
metic”: the classic “algebraic structures”—group, ring, field—have for their sim
plest examples the objects N, Z, and Q, which proceed immediately from N, the 
presumed theme of all mathematics from the constructive point of view. “Arith
metic” may be a word for the designation of the intuitive-constructive base that all 
mathematics ultimately refers to, and from this viewpoint the notion of the algo
rithm becomes the decisive notion of arithmetic. Or else arithmetic concerns an 
interest in the qualitative distribution of integers and for their related operational 
configurations, which generally ushers us into algebra. Arithmetic thus appears 
to be linked in two ways: on one side to discrete constructive mathematics, on the 
other to modem algebra. Research on Fermat’s theorem brilliantly underscores 
the second link. And I recall my teacher Claude Chevalley saying that algebra as 
a whole was a lemma for proving Fermat.

A few words are in order here in response to the characteristic aggravation 
with which mathematicians react to these sorts of considerations. They state that 
it is of no importance to reach an agreement on problems of classification and 
definition of the major “branch names”. One of these mathematicians once said to 
me: here I am considered a geometer, there a topologist, elsewhere an analyst, but
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as this has no incidence on my work it is unimportant. It may in fact be the case 
that these labels are devoid of operational value. It is notably certain that mathe
maticians may put any instrument to work from out of the laboratory of any sub
discipline, and do not in fact hesitate to do so in the context of Bourbakian 
inter-theoreticity. Is that tantamount to concluding that branch identities are no 
longer subject to questioning? I have serious doubts. The enlargement of the mean
ing that geometry has experienced since the nineteenth century has for instance 
clearly functioned as a conquest from which mathematicians have profited: none 
have scruples over introducing, each time they wish to, their procedures as “the 
introduction of geometric considerations”, referring to the new identity of geom
etry, to one or another aspect of what today is classed as geometry but which never 
would have “before”. Mathematicians themselves use branch classification in or
der to measure what is happening in their field, as an instrument of evaluation of 
research events. This can be done providing that the identities which stand behind 
branch names are important, that is “can be called into question”. Conversely, it 
may be held that one of the stakes of mathematical development is the increasing
ly in-depth understanding of branch identities. This is moreover one of the titles 
under which my work published in 1991 established mathematics as a thinking 
discipline, as “hermeneutics”, concerned with enigmas of various levels.

To return to mathematical analysis, we would also like to see what light histor
ical knowledge might shed on what has been understood as “analysis” throughout 
history. From this vantage, it does seem that the word “analysis” and its corre
sponding adjective “analytic” first meant something quite closely attached to what 
today is understood as “algebra”, unless these words designated literal calculus in 
general. Viete’s ars analytica is algebraic calculus, literal symbolism with its pro
cedures. When “analytic geometry” becomes the standard designation for coordi
nate geometry a la Descartes, the adjective once again denotes the symbolic level 
of numeric-literal calculuses, here opposed to that of spatial intuitions. This no
tion of analysis seems to me closely connected philosophically to the sememe 
decomposition. Literal calculus is based on the discrete character of the units of 
language, and the forms gathered within it are gathered on the basis of this pre
supposed analysis which offers the simple constituents. The numeric coding of 
geometry likewise appears as a reduction of the spatial-continuous synthetic na
ture of figures, to those perfectly individualised and mutually distinct determina
tions that numbers are. Even if R ” is, following modem discourse, an interpretation 
of the continuum, the critical vantage sees in this construction a set of ideally 
distinguishable points, which can be manipulated as independent particulars. This 
is an insult to the profound intuition of the solidarity of the continuum with itself, 
mling out any autonomization.

Thus would we naturally retain the idea that analysis is the theory of the local, 
a theory whose intention aims at nameable and separable identities in a place.
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This description would go to explain the large acceptation which assigns to anal
ysis everything essentially turning on topological structures, and also the limited 
acceptation, which only assigns to analysis that which deals with the study of 
numericity and its functional complications in the framework of a topological 
questioning. This description would also be coherent with the originary given of 
an analysis whose meaning is equivalent to that of algebra, and with the special
ization of the adjective “analytic” to the evocation of the coding of space, or more 
generally with the use of “analytic” to designate any numerico-formulary explica
tion.

And therefore contemporary mathematical analysis would have no relation
ship to the hermeneutical part of analysis, if I may use this expression: I am 
referring to the part I began to situate in my commentary on the Greek method of 
analysis, or of the activity of analysis identified by Kant as proper to philosophic 
procedure. There would be no relationship between the fact that analysis—con
sidered from the vantage of that branch of contemporary mathematics—accom
plishes and/or presupposes the hermeneutics of the continuum and the fact that a 
particular logical type of analysis as method—explication, regression, or other 
types—be affinitive to the hermeneutical spirit.

Unless an attempt was made to think the homology of everything that has been 
said to this point, necessarily at a more radical level. We will begin by stating that 
there is a relationship between the theme of the continuum and, for instance, the 
regressive nature of reasoning attesting the property of a limit, of which an exam
ple was given above. Why is this reasoning regressive in exactly the way it is? 
Because we are in a problematic of “control”: the continuum, here carried to the 
power of itself through the taking into account of a function, calls into play an 
excessively infinite profusion of information; thought then adapts itself to this 
excessive situation by concentrating on regions and by reflecting on how one 
aspect of the local information allows it to be controlled by another. To know what 
is in excess is to assign determinations to it, is to analyse it and to understand the 
analysing determinations themselves in their mutual relations. Regression responds 
to the metaphysical pragmatics of willing: an analysing determination of the con
tinuum is a willing, my knowledge of what is in excess is will, to such an extent 
that the systematic thought of these determinations is no longer the progressive 
thought of consequences—a thought that would be adequate to the idea that the 
determinations reflect what is, and that what is “has” consequences, to be taken 
up in turn in new determinations derived from the originals—but rather the re
gressive thought through which the excess becomes known as I acquire the under
standing of what I wanted in it, in terms of what I should have or could have 
desired implying the already desired or what is assumed desired.

At the very least such an image of the mathematics of the continuum makes 
sense, providing that it be corrected and relativised as is required: of course entire
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segments of the reasoning in what is normally called “analysis” today is of anoth
er type, taxonomic, algebraic, calculative, etc., of course excess is in fact involved 
in practically all mathematical procedure, at least in the figure of the so-called 
potential infinite of indefinite enumeration. Therefore the trope of analysis here 
can justifiably intervene. But is that a reason for denying that the branch of anal
ysis has a privilege with respect to logical procedures inspired by the idea of 
control? Is this not what J. Dieudonne suggests in formulating his famous adage 
“increase, decrease, approach” in the preface to his treatise on Infinitesimal cal
culus (1969, 9) (thus in the form of a “maxim for mathematical analysis”)?

But with this we have still to reach the hermeneutical element itself. Is there a 
profound link between thought that decomposes and regresses and the project of 
interpretation of what is the “stance of the question” presented as such by the 
tradition? We would like to succeed in thinking this technique as already interpre
tative in a minimal but radical sense of the term. Analysing what needs to be 
analysed, that is what is itself enveloped, strictly speaking I am not calculating or 
thematising. I am not calculating, for calculus presupposes the dis-implication of 
the individuals that it acts upon, and thus cannot be the operation accomplishing 
this dis-implication. Neither do I thematise, for thematisation presupposes the 
subject of enunciation, whereas the situation requiring analysis is not a situation 
wherein such a subject is available, and it is rather the result of the analytical act 
to have themes appearing: analysis operates on an envelopment but otherwise 
than on a predicate. Likewise, something like the procedure of logical regression 
eliminates the notion of calculus: on the one hand, the simple fact of being on the 
logical plane keeps us under the dependence of phrases as concerns truth, whereas 
calculus is originally and once and for all a manipulation of the etymological 
elements of calculus, that is “pebbles”, thus a treatment of objects (and that, in the 
modem context, phrastic connecting can be considered as calculus or algorithmic 
modalities as texts in logical theories does not seem in my view to change any
thing of importance in this difference, which is principled, and moreover these 
“transgressive” interpretations rely on it); on the other hand, calculus re-elabo- 
rates the objective material that it works upon in an essentially progressive fash
ion; in principle it is a question of reaching another arrangement and not to reach 
behind the arrangement facing the mathematician (although this intention is pos
sible, it is yet symptomatic of the type of relation to symbolic objects that we are 
here calling analysis). Logical regression does not mesh well either with the ap- 
ophantic declaration of the object’s determinations: this declaration is presup
posed by all logics, there would be no logical connections, thinkable or to be 
thought, if determinations had not already been assigned to objects, in order to 
generate phrases. Logical regression is moreover associated—at the onset (Kant 
A, 331; B, 387-388) of the transcendental dialectic—with the movement that 
Kant calls “prosyllogistic”, consisting in the search for an attribution of the deter-
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urinations that condition the one already given, the new attribution remaining 
suspended as for its truth, known only as the condition of the first attribution: this 
is as much as saying that regression denounces the apophantic act by linking it to 
a suspensive condition.

To decompose and to regress are however actual operations belonging to the 
field and to the traditional method of interpretation: as was set out above, to de
compose into a number of sememes is the most classic of acts in the explication of 
lexical contents—the interpretation of texts consists notably in this explication, 
which in truth is the fundamental operation therein. The interpretative tension 
results from the fact that on the one hand the analysis depends on the situation 
and the context, on the other that it is never complete and certain, for “in fact” 
meaning is not additive, but rather enveloped or affecting, it has its being in a 
restraint or a transition which is repugnant to the analytical hunt. Logical regres
sion is also an operation of interpretation: the envelopment of meaning, if it is 
thought at phrase level, is restored as the complete group of phrases implying the 
given phrase. The field of consequences of a phrase is readily considered the 
attestation of the opening of its meaning. But this development is in fact the incre
mental effectuation of meaning, as is well known despite the logical aporia in 
which deduction would be either tautology or loss of information. On the “textu
al” plane—unquestionably the pertinent plane for all questions of meaning—the 
list of axioms of ZFC, for example, does not mean the opened infinite totality of 
mathematical theorems. However, all elucidation of the logical preconditions of a 
logico-linguistic situation is always valid as the explication of its meaning. The 
theories of presupposition in linguistics have highlighted this point.

The conclusion may then be drawn that the modem unity of analysis may be 
understood in light of the congruence between the hermeneutical situation of anal
ysis—as a theory of the continuum it is linked to the ageless question “what is the 
continuum?”—and a certain discursive technique that could be called “analysis” 
which Greek methodological reflection and Kantian thought of a demarcation 
between mathematics and philosophy haye differently described and defined. “Anal
ysis” would essentially be the name of the relation to what is in general enveloped 
in itself, and this relation is necessarily, in the same stroke, one of decomposition 
and interpretative explication. The strange doubling produced in the case of math
ematical analysis is that the “stance of the question”, that which is enveloped in 
itself, is but the presentative concept of, as it were, envelopment as such (the 
continuum). Thus the analysis of the continuum is so to speak a double analysis: it 
is the analysis of the envelopment of the meaning of the enigma of the continuum, 
but also of the continuum itself as a presented coherence. This doubling also means 
that the analysis is part and parcel of an interpretation of the continuum and 
simultaneously, its representative display. In other words, the move of analysis
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explicates the continuum while at the same time symbolically repeating its pres
entation.

At this point of our reflection, we may return to the Greek geometric analysis 
that was characterised, at the beginning of this paper, as a procedure moving from 
the logical precomprehension of an object to its practical comprehension, its con
structive effectuation. Analysis in this sense is clearly the name of a hermeneuti
cal rhythm lodged in the totality of contemporary mathematics, which is throughout 
the anticipation of objects such that their structure is given through logical stipu
lations. This anticipation furnishes a relation to what I have called elsewhere 
“correlative objectivity”. But it is always assumed that within this objectivity there 
will be realisable, presentable objects, participating in what I have called, right
fully so, “constructive objectivity”. Present day mathematics never ceases, repeat
ing the way of Greek analysis, to determine, in the objectivity obtained on the 
correlative way, the constructive objectivity that may be recovered, or to think the 
excess of correlative objectivity over constructive objectivity, by any and all tech
nical means. This is the level at which mathematics as a whole becomes herme
neutical as analysis, and this level must be distinguished from the position and the 
task of analysis according to Dieudonne, which the preceding paragraph was an 
attempt to examine and comprehend.

University o f Lille III 
Department o f Philosophy

Notes

1 Cf. the note on page 1322 of Robin’s French edition of Plato's dialogues: Plato (OC).

2 I quote from Aristotle (WMK).

3 I quote from Kant (CS).
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SCIENCE WITHIN REASON:

IS THERE A CRISIS OF THE MODERN SCIENCES?*

I Introduction

In this paper I shall discuss and defend a position on the nature of scientific rea
son with a view to shedding light on the question of whether there are fundamen
tal crises in the modem sciences. I shall argue that, broadly speaking, it is possible 
to distinguish science within reason from science without reason. I claim that one 
source of the view that there is a crisis of the modem sciences stems from the 
historically recent possibility of practicing science without reason. The phenome
na I discuss can be found across the spectrum of the sciences, from mathematics to 
social science. I invite the reader to think about the argument in connection with 
his or her favorite science. I will not attempt to discuss details about specific 
sciences but I will make several remarks about how the argument should be un
derstood in connection with mathematics.

As I see it, my concern here is related to the analytic-synthetic distinction in 
the following way. According to a central tradition in philosophy, analytic truths 
are truths of (pure) reason. According to this same tradition, reason is distinct 
from intuition or observation. I would like to align this view with the idea that 
analytic truths are true by virtue of meaning alone (which is not, for example, to 
say that they are true by virtue of form alone). On the other hand, synthetic scien
tific truths involve reason but they are not truths of pure reason. They are instead 
to be viewed as truths with respect to which reason is conditioned by experience or 
intuition. I will also say that they are truths in which the “meaning” (Sinn) under 
which we think objects is conditioned by evidence. It is natural to require, in 
particular, that there be evidence for existence claims in order to say that it is 
“known” that those existence claims are true. One might hold, under this condi
tion, that knowledge of the truth of existence claims is synthetic. If we can keep 
the analytic-synthetic distinction at all, then perhaps it can be kept in this guise. I 
shall suggest below how this view can be developed, and I will link it to the 
broader issues with which I shall be concerned throughout the paper.
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II Rationality, Intentionality and Everyday Experience

I will not attempt to present a theory of reason in this paper. I only wish to note 
that the idea that human inquiry can be informed to a greater or lesser extent by 
reason has a long tradition in philosophy. In Aristotle's Posterior Analytics, for 
example, one finds the idea that mere observation does not suffice for scientific 
knowledge, for it gives us mere collections of “facts”, without any order, coher
ence, or purpose. Philosophers like Aristotle and Kant hold that what reason brings 
to the data of sense experience is unity, a kind of universality, and purpose. I will 
to some extent follow this classical line, but first I will focus on what I think is a 
key feature of human reason: intentionality. It is difficult to deny that human 
reason exhibits intentionality. I will explain this claim, and then draw some con
sequences from it.

Some basic structural features of the intentionality of human reason can be 
captured in figure 1.

We can say that a person is directed toward a particular domain of investiga
tion consisting of objects and/or states of affairs by virtue of the contents or “mean
ings” of her acts of reason. These acts of reason may be of different types, e.g., 
believing, knowing, remembering, etc. What they have in common is their “di- 
rectedness” by way of their content. The notion of content can also be thought of 
as the “meaning” associated with the act, in that we simply take it to be the mean
ing of the expression that is substituted for S in the diagram. Once a particular 
expression is substituted for S, a person will automatically be directed toward a 
particular domain of investigation in a more or less determinate way. Content 
plays an important role in the objective, non-arbitrary categorization and identifi
cation of objects, and in the description and explanation of change. It should be 
noted that the diagram picks out structural features of the intentionality of reason. 
The actual contents substituted for S may to some extent be bound to particular 
times, places or cultures.

The object or state of affairs toward which one is directed in an act of reason is 
placed in brackets in the diagram because it is essential to the notion of intention
ality that human subjects may be “directed” toward objects even if those objects 
fail to exist, or if they are not completely or properly understood. The logical 
counterpart to the possibility of nonexistence of the object is found in the failure of 
existential generalization in the context of verbs of propositional attitude.

Consider an example of everyday experience of the type that motivates the 
idea of “bracketing” the object. Suppose it is your intention to clean the attic of a 
house. To reach the attic, you must crawl through a small trap door in the ceiling. 
As you begin to do this, you find yourself face to face with a large, furry, danger
ous-looking spider. As a consequence, you back out of the trap door in order to 
consider your next move. After some time has elapsed, you again approach the
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act type act content or meaning 
---------------------'

Person P believes that 5

refers to
(is directed toward)

l
[object or state of affairs]

Figure 1

trap door, this time with a small net to snag the spider should it be necessary to do 
so. This time, however, you see that it was in reality not a spider that you saw, but 
a tangle of dark thread, shaped in a way that looks like a spider.

At the earlier stage of your experience, say tv you saw a spider and acted 
accordingly. At some later stage, tk, you saw that what you took to be a spider is 
actually a tangle of thread. At tx you saw the object under the content or meaning 
of “spider”, but at tk the meaning under which you see the object shifts to “tangle 
of dark thread”, and this shift is brought on by your further experience with the 
environment in which you are situated. You make a correction or adjustment of 
your belief in light of further experience.

What you take to be the object of your belief will be the thing that stabilizes in 
your experience, that is, the thing that remains invariant through your different 
experiences with it. It will be the thing to which you (and others) can return over 
and over again, and which remains the same through these different acts. What 
the object is taken to be, however, will always be a function of the sequences of 
acts carried out thus far. The future could bring further adjustments or even sur
prises. In the worst case, there just might not be an object. The “bracketing” in the 
diagram is meant to indicate this conditional nature of knowledge of the object.

Suppose that at some further stage of your experience, tn, you come to see that 
it was actually not a tangle of thread you were experiencing but a small, shredded 
piece of black cloth. It is possible that this could happen, but the phenomenon of 
persistent misperception is atypical. Our experience usually settles down into a 
stable state in various ways. We do not persistently misperceive objects. Or, to put 
it another way, consider the conditions under which we persistently misperceived 
objects. This is the kind of situation in which we might begin to raise questions 
about our sanity, especially if it should constantly turn out that there are no objects 
(i.e., that objects are hallucinated).1 What kinds of expectations could we have in
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circumstances like this? What could we hope to predict or control in our experi
ence? It is precisely in these situations that we begin to apply the notion of irra
tionality. This shows us how a form of irrationality (or the absence of reason) is 
associated with the absence of stabilized objects in our experience. Reason and a 
form of “objectivity” appear to be mutual conditions for one another. It appears 
that there can be unity on the side of the subject if and only if there is unity on the 
side of the object. To be more precise, we might say that reason and the possibility 
of objectivity mutually condition one another. The example suggests that objectiv
ity, at least as a regulative ideal (in a Kantian sense), is a condition for rationality.

The description in this simple example has the following consequences. First, 
it shows that we need to be fallibilists about knowledge, or at least about knowl
edge that depends on sensory input. The picture we have presented precludes 
certain “absolutist” or “foundationalist” claims about our knowledge of objects of 
experience. We might find, in further experience, that we were under illusions at 
earlier stages of our experience. Fallibilism, however, need not imply complete 
skepticism. It is common for our experience in many domains to settle into a fixed 
state which serves us well for practical purposes. In any case, we do not doubt 
everything we believe in situations like this, as is shown by actual experience.

Second, the example shows that there is a kind of continuity through the stag
es in our experience of objects. The different stages are not radically discontinu
ous with one another, as if there were no connections between the stages. Indeed, 
if this were so there would be no possibility of making corrections in the experi
ence we portrayed. A particular kind of continuity is, in other words, a condition 
for the possibility of identifying misperceptions and illusions.

This point is closely related to a third consequence we can draw from the 
example: there is a progressive character to the experience. It can be claimed that 
some progress has been made as the person proceeds through the stages of experi
ence envisioned in the example, in contradistinction to the claim that there is 
merely change from one stage to the next. “Mere change” suggests discontinuity 
or incommensurability between the stages, as if at the various stages we had dis
crete, independent, atomic units of information. It would be as if there were no 
memory (or history) from one stage to the next, as if nothing about a past stage 
could be contained in the present stage. The example shows, on the contrary, that 
there is a kind of cumulativity to the experience. At least some of the content that 
was present at the earlier stage must be present at the later stage if there is to be a 
correction in the experience.

I am not arguing that later stages in the temporal sequence always represent 
progress over earlier stages. The point is rather that there has to be an ongoing 
stability of the object and a development of further sequences of acts with respect 
to the particular domain. This is what makes future-oriented thinking possible, 
and helps to fix our expectations. It leads to the possibility of prediction and con

IS THERE A CRISIS OF THE MODERN SCIENCES? 247

trol that would otherwise not be present. The notions of “progress” and “correc
tion” here are not absolute. What is judged to be progress or correction is itself 
relative to what is given in the sequences up to a particular stage in time. In other 
words, the example shows that it is possible to avoid commitment to an absolutist 
notion of progress without redounding to the view that there is mere change from 
stage to stage.

These considerations have direct implications for issues about relativism. Let 
us say that, by definition, “evidence” is acquired in the sequences of acts in time 
that we pictured. “Strong” relativism may be defined as the view that there is no 
evidence that will help us to choose between rival (sets of) propositions. Note that 
in our example “There is a spider behind the trap door”, believed at tv and “There 
is a tangle of dark thread behind the trap door”, believed at tk, are rival proposi
tions. Now is it really true, in our example, that there is no evidence that will help 
us to choose between the propositions? This seems to be patently false. First, it 
seems that in the kind of case we are considering we do not typically “choose” 
what we want to believe. We are forced to some extent to change the content of our 
belief by conditions in the environment. This often happens automatically and 
without any deliberation of the type associated with choice. We cannot just as 
readily believe at tk that the object is a spider as we can that the object is a tangle 
of dark thread, as if this were like flipping a coin. It would be absurd to think that 
we could actually do this sort of thing in our experience. Our experience does not 
work this way, and it is not clear how it could work this way. We would not get on 
in the world and behave as we do were strong relativism true. The upshot is that 
by embedding our rival propositions in the kind of intentional contexts that make 
up our actual experience, we see that strong relativism is baseless. The example 
suggests that strong relativism is a philosopher’s abstraction that has nothing to 
do with actual experience.

Our position may, however, be compatible with forms of weak relativism. This 
follows from the fact that what we know at a given stage is “relative” to the se
quences we have carried out up to that stage, along with the fact that we typically 
do not know everything we could know in these sequences. The future could hold 
surprises, or we may have to make various adjustments and corrections. This kind 
of epistemic relativity holds at various levels for the individual perceiver, groups 
of perceivers, cultures, and for historical periods. Following Edmund Husserl, we 
could say that truth for us at a given stage is always “truth within its horizons” 
(Husserl 1929, section 105). It is compatible with this view, however, to distin
guish truth or objectivity within its horizons from truth or objectivity as it is. 
Indeed, the latter idea appears to operate as a regulative ideal in the kind of exam
ple we have considered. It is by virtue of possessing this ideal that we realize that 
our knowledge at a particular stage is imperfect and can be improved. We really 
do think we are coming to know more about the object. I have no objection to the
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claim that the notion of a perfect identity through difference (in the case of either 
the object or subject) is ultimately to be understood as a norm. Similarly, the idea 
of perfect truth can be understood as a norm. If the notion of intentionality is 
accepted then norms are part of the package. Thus, our weak epistemic relativism 
is qualified by a kind of objectivism.

As I said earlier, it appears that reason and the phenomenon of reference to 
“objects” require one another. On my view, we must think of the content or mean
ing of an act of reasoning as having a regulative function. It directs us toward a 
domain of objects or states of affairs which we can then proceed to investigate in 
sequences of acts in an effort to fill in our knowledge. Reason thus carries within 
itself at least an ideal of “objectivity” in this sense, and this ideal has a regulative 
function in our experience. In other words, if reason exhibits intentionality then it 
also exhibits referentiality. As our diagram indicates, we are directed toward or 
referred to objects in acts of reason. It is not trivial to note this fact about referen
tiality, for I will later contrast the referentiality of reason with what I will call 
“relational” views of scientific thinking.

I ll Scientific Rationality

Scientific rationality, it seems to me, is founded on and has its origins in the kind 
of everyday use of reason we considered in our example (Husserl 1936). The 
example provides a sensible description of how some elements of human experi
ence actually work. Scientific reason is just an extension and development of the 
use of reason that we see in everyday contexts. In this section I would like to 
briefly indicate some elements of this extension and development.

We can carry the model of the intentionality of reason over directly to the case 
of scientific reason. Of course scientific reasoning is more systematic, deliberate 
and reflective, and we may need to distinguish between direct and indirect evi
dence, and so on. Scientific theories are just sets of propositions that are believed, 
as in our diagram, except that they are often believed by groups of people. Groups 
of people come to see problems under the same contents or meanings and pursue 
their research accordingly. They are directed or referred to domains of investiga
tion in this way. There will just be different acts, contents and objects in different 
sciences. Scientists are in the business of finding regularities in these domains, of 
finding identities through difference. Groups of people could be under illusions 
about what they are doing, and are susceptible to misperception. They may need 
to make corrections as research proceeds, and so on. In other words, we are simply 
dealing here with group intentionality.

I am arguing that our experience in science is founded on everyday experi
ence, and that the various consequences we have noted above will therefore also 
apply in the case of scientific rationality. To deny this is to hold that scientific
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rationality and everyday rationality are disanalogous in the relevant respects, but 
I see no grounds for such a claim. It could not be the case that one exhibits inten
tionality and the other does not. Suppose both exhibit intentionality. Then it could 
not be the case that one exhibits continuity and the other does not, that one exhib
its cumulativity and the other does not, and so on. We should therefore be able to 
say that scientific reason exhibits fallibility, continuity, cumulativity, a particular 
form of progress, and a weak relativism tempered by a kind of regulative objectiv
ism. Much more could be said by way of defending and developing these claims, 
but it seems that we cannot give up the basic ideas involved in them without also 
rejecting what appears to be the sensible and innocuous picture presented in our 
example.

We can also note that it will be all the better to make corrections and to more 
closely approximate objectivity if as many voices as possible are heard. The per
ceptions of specific groups of people can be corrected on this basis. Corroboration 
is generally important in matters of knowledge, but it seems that in the pursuit of 
objectivity, rationality demands pluralism about who P in our schema could be. 
True identities will be those that stand out through multiplicities of persons, plac
es and times. They are multi-cultural. They transcend differences in gender. This 
view of reason and “objectivity” implies that we should maximize difference in 
order to obtain true identities. To put it another way, it is not reasonable to monop
olize reason. This is also not to say that it is always unreasonable to place some 
constraints on who or what P could be.

Perhaps there are some principles about which we do not have to be weak 
relativists. For example, the principle of noncontradiction may be a boundary 
condition on scientific rationality, in the sense that there is no S for which we can 
have S a  - i S at a given stage of our experience. We might be able to hold that this 
principle is necessary, relative to our condition on scientific rationality. We can of 
course have S at one stage and -i S at another stage. On the other hand, we can 
have S v —. S at a stage for a particular S. The idea that S v —i S holds for all 5 at 
a stage, however, seems to represent the regulative ideal of the decidability of all 
questions that permit of “yes” or “no” answers. We might take it to represent truth 
at the limit of our research.

Truth or objectivity, understood as a regulative ideal, is arguably what moti
vates the rationalistic optimism about problem solving that characterizes the sci
entific spirit. Consider for a moment the notion of a scientist who is pessimistic 
about solving any scientific problem. Perhaps no one has expressed this rational
istic optimism better than David Hilbert. As Hilbert puts it, mathematicians are 
convinced that every mathematical problem is solvable:

“In fact one of the principal attractions of tackling a mathematical problem is that we always
hear this cry within us: there is the problem, find the answer; you can find it just by thinking, for
there is no ‘ignorabimus’ in mathematics.”(Hilbert, 1926,200)
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Problems in some sciences certainly cannot be solved by thinking alone, but Hilbert 
has nonetheless captured something essential to the scientific spirit here.

What I would like to focus on at the moment is the fact that, as a founded 
structure, science depends upon a variety of additional developments. Everyday 
reasoning is, for example, typically informal. The content of our everyday acts in 
the lifeworld does not involve much by way of formal, structural or mathematical 
elements. We do not spring from the womb thinking in mathematical formulas. 
We learn these things later, if at all. We can and do separate the formal or structur
al elements from the content of our acts as we engage in higher cognitive tasks. It 
is exactly these formal, structural, mathematical and technical elements that are 
involved in many varieties of scientific thinking.

Some features of formal or mathematical thinking are especially striking. To 
take a simple example, consider the following possibility. Suppose I give you a 
particular rule for computing a number, along with some initial values. Here is the 
rule:

P, B\ A ) =P^ ) m )
1 P(A)

The values for P(A 15), 5(5) and 5(A) will be supplied and they will always fall 
between 1 and 0. It is your task to compute 5(5  I A). For example, let 5(A 15) = .33, 
5(5) = .75 and 5(A) = .25. You will simply plug these values into the formula, 
compute, and give me the output. It is clear that you can perform this task without 
knowing anything about what 5 ( 5 1 A) is, what the numbers represent, what the 
rule is, where it came from, what the purpose of this task is, and so on. I will call 
this “relational” thinking.2 This simple procedure might form only a small part of 
a very large procedure, consisting of many input values and many rules, in which 
one obtains some output at the end of the procedure.3 One could operate, or could 
imagine operating in a vast environment of this type.

There are many different kinds of examples of relational thinking and its use 
in the modem sciences. What is characteristic of relational thinking in science is 
that formulas or symbols are related to other formulas or symbols on the basis of 
sets of rules, and there is no need to reflect on or to understand the meaning of the 
formulas or symbols.4 There have been especially striking examples of relational 
thinking in the sciences since the rise of formalism and its development into the 
newer forms of mechanism that are part of computer science. The very idea of 
computation, which is so dominant in our age, is characterized in terms of formal 
manipulations of finite sign-configurations on the basis of finite sets of rules which 
take us from input to output. What makes it generally possible to do scientific 
work in this formal, relational way is the rise of formalization, mechanization,
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technization and a practical instrumentalism. These trends have been accompa
nied by a greater division of labor in and professionalization of the sciences.

The formal, mathematical and technical activities that make up what I am 
calling relational thinking are rigorous, precise, exact. Rigor and exactness are 
old and venerable goals of science, and with them we obtain a kind of clarity and 
distinctness we would otherwise not possess in our knowledge. In fact, it is not 
difficult to see how one might come to believe that only rigorous and exact techni
cal work could count as science, or could count as giving us genuine knowledge. 
If one begins to take this very seriously, then everything else that seems to be a 
part of science or scientific knowledge, more broadly construed, will come to be 
seen as just a prelude to the real thing. That is, it will be a goal of science to bring 
everything into this rigorous, exact, technical form if it is to count as genuine 
knowledge. What is informal, in any context, may then come to be viewed as 
unreliable. One can see this attitude, for example, in the work of Frege, Hilbert 
and Tarski. One might come to think that informal reasoning must always involve 
chance-like guesses or “intuition”. Here we have the seeds of a particular form of 
reductionism that may come to be coupled with eliminativism. It might be argued 
that whatever is not in this form at a particular stage cannot count as knowledge. 
Eliminativism goes even farther. Once a science is regimented in this form, why 
not shed the informal, fuzzy reasoning that led to it? For the hard-nosed scientist 
of this kind, the notion of something like “informal rigor” would be an oxymoron. 
It would follow, on this view, that to really know anything you must be a techni
cian. I will use the term “scientism” for the view that only the formal, exact, 
technical part of our relational thinking can count as genuine knowledge.5

IV The Analytic-Synthetic Distinction

In a relationalist climate it would be natural for analyticity to be thought of in 
terms of form (or formal logic) alone, as if we should understand reason itself in 
purely formal or relationalist terms. The idea, put bluntly, is that there are only 
symbols and there is no real content or meaning toward which we might be direct
ed. Meaning or content drops away. In particular, one might think this is true in 
mathematics. Kurt Godel has noted two different concepts of analyticity that are 
relevant to this point. Analyticity (of proposition), he says, can be defined in the 
“purely formal sense”:

“[...] the terms occurring [in an analytic proposition] can be defined (either explicitly or by rules 
for eliminating them from sentences containing them) in such a way that the axioms and theorems 
become special cases of the law of identity and disprovable propositions become negations of this 
law.” (G6del 1944,150)
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In a second sense, a proposition may be called analytic if it

“ [...] holds ‘owing to the meaning of the concepts occurring in it’, where this meaning may 
perhaps be undefinable (i.e., irreducible to anything more fundamental).” (ibid., 151)

This second definition of analyticity appears to be much broader than the tra
ditional Kantian definition. Indeed, much of mathematics would appear to be 
analytic on this definition.6 It might be possible to explicate this wider notion in 
terms of our diagram of intentionality. We take meaning to be specified in terms of 
our notion of the content (or meaning) of our acts. Analytic truths will be truths in 
which we can proceed from content to content without mediation by experience of 
the objects the contents are about. Analytic reasoning is reasoning without intui
tion of these objects. This would, however, require reflection on or intuition of 
meaning:

► believes that T

1
Person P believes that 5

refers to
(is directed toward)

1
[object or state of affairs]

Figure 2

We are now directed toward meanings, not just meaningless formulas or sym
bols. This notion of analyticity requires that meaning itself be analyzable. It re
quires the notion of informal rigor. In attempting to clarify our understanding of 
meaning in acts of reflection we typically turn to the concepts of S in order to 
clarify them. We may then need, upon reflection, to further clarify the concepts 
used in that effort at clarification, and so on. This is arguably how some parts of 
our knowledge are developed. Godel, for example, thinks that we need to analyze 
the meaning of the general concept of set more deeply in order to solve open 
problems in set theory, like the continuum problem.

It could not be the case, on this view, that only logic is analytic and that all of 
mathematics is synthetic. Instead, what would now distinguish logic from mathe-
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matics is the fact that logic is content-(or topic-)neutral while mathematics is not. 
We would need to distinguish different meaning categories in mathematics, in 
addition to recognizing a form-content distinction.

As I am construing this broad notion of analyticity, it will sometimes be possi
ble to hold that content-to-content links are true or false without needing to have 
evidence for individual objects toward which we may directed by these contents. 
But it is exactly such an appeal to our “experience of objects” that is needed for 
synthetic truths. For synthetic truths, the meaning or intention under which we 
think of an object must be at least partially fulfilled. In other words, the meaning 
or intention needs to be conditioned by evidence for objects. I have argued else
where that we should understand the fulfillment of “mathematical” intentions in 
terms of the general notion of construction (as in constructive mathematics) (Tieszen 
1989, 1995). It is when we possess constructions that we can be said to have 
evidence for the existence of the objects our mathematical intentions are about. It 
follows from these remarks that what is analytic in mathematics will be what is 
believed to be true (owing to the meaning of the terms involved) but which cannot 
(at least at present) be understood as constructive. Some parts of mathematics 
will, accordingly, be analytic (but not content-neutral) and some parts will be 
synthetic. Impredicative set theory, for example, might be construed as analytic in 
this sense.

I am somewhat skeptical about the idea that the analytic-synthetic distinction 
will be important in future philosophical and mathematical work. On the other 
hand, the issue of what the distinction amounts to seems to involve complications 
that are not yet understood very well. The view I have suggested may be worth 
exploring. It is obviously quite far from a relationalist understanding of analytic
ity.

V Crisis?

If only the formal, rigorous and exact scientific work of the relationalist kind is 
taken to constitute genuine science or knowledge then we approach a crisis state 
in science. It follows from what we have said about science within reason that 
scientism is a form of science without reason.7 Why?

We are viewing scientific knowledge as a founded creation and in this founded 
creation we may have purely relational thinking. It is inherent in the formal, 
technical, structural or mathematical thinking we have called relational that we 
need not know what it is about. Formalism is often portrayed as a viewpoint ac
cording to which we are to abstract away from meaning or content. This also 
means that we can or even should forget about the origins of meaning in the 
lifeworld. In relation to our earlier model, if we abstract away from meaning and 
the informal deep background of the meanings in our experience, then the direct-
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edness of our acts drops away or shifts. As I said above, it does not need to be 
denied that we are, in a sense, “directed” in relational thinking. There is, none
theless, a significant shift, and we are certainly not directed in the same way. The 
“objects” toward which we are now directed are symbols or formulas. We are not 
directed toward the objects the formulas are about in a particular context. We are 
not directed toward the objects to which the formulas are being applied. We are in 
a different environment. There may still be a regulative function in this context 
but now the goal or purpose has shifted. For example, the goal may be to simply 
obtain the output of a procedure given the input, quite independently of what the 
procedure is about. All of one’s energies may then go to this end and it is possible 
to become submerged in this kind of work. There can be a complete displacement 
of concern. Consider, for example, how this has actually been used in various top- 
secret projects, such as the atom bomb project at Los Alamos. In this kind of 
situation there is a sufficient division of labor so that many people may work on a 
project while only a few actually know what it is about. Note that it is not the 
division of labor itself which makes this possible. Specialization does not by itself 
preclude the referential model. I am describing a particular alignment of special
ization and relationalism. There are also other differences. The work of specialists 
in the humanities, for example, is not likely to have significant consequences for 
nature or the environment and is therefore unlike the work of specialists in the 
natural sciences.

The extent to which a referential or relational model is adopted determines the 
extent to which various skills and abilities are valued. In a worldview dominated 
by scientism it is more likely to be held that a person does not really know any
thing unless this knowledge takes a technical form. The skills and knowledge of 
technicians will be more highly valued, e.g., the expert’s knack for application of 
technique, or the ability to devise or acquire familiarity with relational systems. 
Understanding and discovery of the type associated with the referential model 
will be valued less than formal elegance and pragmatic success. Once goals are 
understood in a relationist way, it would be natural to see the rise of a kind of 
pragmatic instrumentalism about how to obtain such goals.

In short, there can be a shift to a very different account of reason, meaning, 
directedness, objects, knowing, and the like.8 These concepts, at the level of rela
tionalism, may in fact be reducible to mechanism by way of something like the 
Turing test. It might even be argued that Turing has captured a relationalist no
tion in his well known analysis of computation.9 It is not clear at all, however, 
how we would have thereby captured the referential versions of these notions. On 
the relationalist view, we lose sight of (non-symbolic) objects or objectivity, and so 
we also lose the notion of evidence described above. The structure we pictured in 
our diagram changes considerably if we focus exclusively on the form or structure 
of S, in abstraction from content. What remains in place of 5 at a stage is a formu
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la which we can try to relate to other formulas on the basis of existing or discover
able sets of formal rules.

I maintain that the following claims look all the more plausible from the view
point of relationalism: strong relativism, the claim that there is no progress in 
science, and the claim that different scientific theories are discontinuous and in
commensurable. It is not difficult to see why. If objects drop out of our earlier 
diagram, even as regulative ideals, then we arrive at the position of strong relativ
ism. There are only distinct or rival propositions at different stages of experience 
and we can make no appeal to the notion of evidence to motivate (justify?) the 
adoption of one over the other. It would be natural to hold that there is no notion 
of evidence which could motivate the adoption of one proposition over another. 
On the relationalist model, it will not be claimed that we are constrained or forced 
in some ways by our experience of objects. Once objects are out of the picture, it is 
easy to think that there is mere change from one stage to the next, for then we are 
only entitled to say that there are different propositions or formulas which need 
not have any apparent relation to one another. Even if we keep the content of the 
acts at the different stages of our example, we can ask what spiders have to do 
with tangles of dark thread. These concepts appear to be discontinuous, and the 
networks of propositions of which they respectively form parts are arguably in
commensurable. Different propositions that appear at different stages might now 
look like (logically or semantically) independent and discrete units of informa
tion. On the purely relationalist picture, the propositions that appear at different 
stages of our experience will simply be different. There is difference without 
continuity. No connections between the formulas or even the meanings at the 
stages can be seen because it is not possible to recognize mediation through the 
experience of objects. On the referential model, there is difference with continuity.

I am not claiming that formal, mathematical and technical work is not impor
tant or not needed in science. Quite the contrary. Formal, mathematical and tech
nical work is a necessary condition for science. It should also be apparent from the 
comments above that I am not claiming that mathematics is without reason. One 
can hold that formalization is very important without being a formalist. Similarly, 
it can be held that mathematization and technization are important without re
verting to scientism. I do not think that mathematics is purely formal or relation
al. It does not exist only to serve the other sciences. It is also contentual. I would 
argue that the model of intentionality described above also applies to the (found
ed) science of mathematics. Thus, there are acts, contents and objects appropriate 
to mathematics. We are directed toward mathematical objects through the mean
ings of our mathematical acts. Mathematical objects are distinct from sensory 
objects, and there will clearly be some differences in the ways that we come to 
know about these kinds of objects. The meanings or contents have a regulative 
function in our mathematical experience. It is possible to become more reflective
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about these meanings, and more conscious and systematic about our understand
ing of them. Perhaps the motivation for reflection arises most clearly at the bound
aries of the science of mathematics, where there are difficult open problems. 
Mathematics receives its meaning and direction through its own distinctive con
tent, and not primarily through its applications in or its services to the other sci
ences. In order to know about the objects toward which we are directed, our acts 
have to be at least partially fulfilled. We can certainly say that science within 
reason involves relational thinking, but we do not need to hold that only this kind 
of thinking counts as knowledge or genuine science. It is a matter of balance.

If there have been excesses in the direction of scientism, then there have also 
been excesses in the direction of anti-scientism, to the extent of being anti-scien- 
tific. It has been suggested, for example, that this is the plight of Heidegger’s 
work, and the suggestion could perhaps be extended to much of the post-modern
ist theory that has followed in Heidegger’s wake.10 After all, what has happened to 
the notion of reason in this work? The answer to this question is closely linked to 
what has happened to the notion of intentionality. The notion of intentionality or 
directedness has disappeared or been radically reinterpreted. It is supposed to be a 
virtue of Heidegger’s position, for example, that the act-content-object model is 
undermined and replaced by appeals to practices and skills. There are no objects. 
(It is even a question whether there are any subjects.) Just as one can speak about 
propositions without objects on some of the views we have been considering, so 
one can speak about practices without objects. But if there are no objects, then at 
different stages we have only a motley of distinct or rival practices and we can 
make no appeal to the notion of evidence to motivate (justify?) the adoption of one 
practice over another. It would be natural to be of the opinion that there is no 
notion of evidence which could motivate the adoption of one practice over anoth
er. Once objects are out of the picture, it is easy to think that there is mere change 
between one stage and the next, for then we are only entitled to say that there are 
different practices which need not have any apparent relation to one another. These 
may appear to be discontinuous and incommensurable. Practices that appear at 
different stages of history or in different cultures will simply be different. There is 
difference without continuity. We can see no connections between the practices at 
the stages because, counter to the referential model, there is no mediation through 
the experience of objects. On the referential model, there is difference with conti
nuity. Some post-modernist authors arguably embrace just such a notion of differ
ence without continuity, or of difference without objectivity. In an interesting 
parallel with scientific relationalism, some post-modernist writers suggest that 
everything is symbolic, everything is a text. There are also other variations on this 
theme: everything is just a “language game”, or there are just narratives without 
objects.11
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Thus, I am arguing that strong relativistic claims about meaning, objectivity, 
progress, continuity and the like appear to be more plausible not only from the 
viewpoint of scientism, but from any viewpoint that rejects the notion of the inten
tionality of reason described in section II.

VI (Un-) Intentional Knots

In the account I have presented, scientific activity is taken to be founded on basic 
“lifeworld” activities of human beings. In the founded structure of modem science 
we create a viewpoint which we then turn upon various phenomena in the world. 
Suppose it is held that only the formal, rigorous, technical work that is part of 
relational thinking can count as genuine scientific knowledge. Suppose, in other 
words, that scientism is true. When we turn this viewpoint back around to our
selves it should come as no surprise that reason, meaning, and indeed conscious
ness itself disappear. We live in an age in which it is fashionable to talk about the 
disappearance of these things. We hear this talk everywhere. It is, for example, 
reflected in work in cognitive science, where the concepts of intelligence, thought, 
etc. are understood in a formal, mechanical, and computational way. There is 
nothing more to these phenomena. And to “know” anything about these phenom
ena one has to be a technician. Everything short of technical knowledge in this 
domain is relegated to “folk psychology”.12

I am claiming that in all of this we are interpreting ourselves through a (founded) 
viewpoint that we have created. This viewpoint is itself an interpretation. It is not 
some neutral, theory-free, value-free, “correct” viewpoint. It is itself a “content” 
or “intention” under which groups perceive the world. Some investigators may 
then try to fulfill this intention. They may, for example, try to fulfill the intention 
according to which we are machines, or even the intention according to which 
there are no intentions. But is it possible to fulfill the intention according to 
which there are no intentions? If the analysis above is correct, then we cannot 
pretend to eliminate the semantic notion of an interpretation by appealing to the 
sciences. There are also reasons for believing that it is not necessary to interpret 
ourselves exclusively in this way. Perhaps there is no point of view prior to or 
superior to that of natural science, as is sometimes claimed in efforts to naturalize 
epistemology, but if the argument of this paper is correct then it also does not 
follow that an uncritical natural science can occupy a privileged position.

In the situation of the modem sciences that we have described there is a partic
ular irony that borders on paradox: the extent to which we apply science without 
reason to ourselves is the extent to which we come to believe that reason is not 
intentional and, hence, that science is without reason.
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VII Conclusion

The main argument of this paper can be summarized as follows: the use of reason 
in everyday experience exhibits intentionality. Scientific rationality exhibits in- 
tentionality but it is founded on everyday reasoning and is more complex and 
systematic. Some scientific thinking is relational. Many concepts may come to be 
thought of in a relationalist way, including the concept of analyticity. Now sup
pose, as in scientism, that only relational thinking in science can count as genuine 
science or knowledge, on the grounds that only this kind of thinking is rigorous, 
reliable and exact. It follows from the claim that reason exhibits intentionality 
that relational scientific thinking by itself, as in scientism, is without reason. The 
fact that it is possible to practice science without reason in this sense is one source 
of the view that there is a crisis of the modem sciences. Science within reason 
must involve relational thinking, but it cannot be held that only this kind of think
ing counts as genuine knowledge or science.

San Jose State University 
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1 Since we are on the matter of spiders, consider also whether or to what extent you would take the activity 
of dreaming about spiders to be rational.

2 The points I wish to make about what I call “relational” thinking are similar to some points made by, 
among others, Husserl (1935-1936), Cassirer (1923-1929), and more recently, O ’Neill (1991).

3 Note to those for whom this rule is purely relational: this happens to be a very important rule. It is one of 
Bayes’ rules for computing conditional probabilities.

4 It does not need to be denied that we are “directed” in relational thinking. We can say that we are 
directed, but it is now toward the formulas involved and toward obtaining the output from the given 
input This, is not, however, the same thing as being directed toward the objects the formulas are about in 
a particular context (cf. section V).

5 I argue in unpublished work that scientism or relationalism is closely related to some viewpoints that 
Gddel criticizes in Godel (1961) and other papers. Godel can therefore be seen as making some similar 
points about science without reason. In particular, see his comments on the imbalance of “leftward” 
directions in philosophy and his objections to Hubert’s program and to Carnap’s “syntactical” program. 
In addition, Hao W&ng suggests that Gddel sympathizes with Husserl’s claim that we must consider the 
origins of science in everyday experience (Wang 1987,62,122 and 239).
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6 This idea has been explored to some extent, in relation to Quine and others, in Parsons (1995). It is worth 
noting that Bolzano also recognizes narrower and broader notions of analyticity (Bolzano W, sect. 148).

? An immediate coroUary is that scientific rationality, as described above, is not itself the source of crisis in 
the sciences. I note this consequence because there appear to be views on which it would be denied.

8 One fairly clear example of this can be found in Hilbert’s conception of metamathematics. The objects 
toward which we are supposed to be directed in metamathematics are finite sign configurations. What is 
taken to be meaningful, reliable, and knowable in mathematics is to be understood on this basis. HUbert 
then seems to construe properties like decidability in purely formal or mechanical terms, although some 
of his appeals to Kant’s views about reason obscure elements of his conception of metamathematics. On 
the basis of what we have said above, it is not surprising that Hilbert’s program has been interpreted as a 
form of instrumentalism.

9 See Turing (1936). I discuss some related ideas in section 5 of Tieszen (1994). Could there be a 
“referential” notion of computability? Such a notion would refer to what intentional systems do when 
they are computing and know what the computation is about.

10 It is on this kind of point that Husserl and Heidegger parted ways.

11 This view about narratives is arguably appropriate to literature and fiction, but it is not clear to me that 
it extends to other domains. See the section of Tieszen (1995) entitled “Against Fictionalism”.

12 Compare, for example, the work of Dennett (1991) and Searle (1992) on consciousness.
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MATHEMATICS AS AN ACTIVITY AND THE 

ANALYTIC-SYNTHETIC DISTINCTION

I Intensional and Extensional Theories

Frequently, in modem discussions in philosophy of sciences, science—that is the 
object of the discussion—is intended as a class of (scientific) theories and a (sci
entific) theory is conceived as a linguistic system, or even as a class of proposi
tions. Moreover, scientific theories (in this sense) are intended either as purely 
“intensional theories” or as purely “extensional theories”.

By “intensional theory” (in the previous sense of the term “theory”) we under
stand a theory that, as a set of postulates (or by means of a set of postulates), 
determines the intensions of its terms and in which (if you accept that there are 
extensions, in a proper sense) the extension of each term, that is its referential 
domain, is not only delimitated by its intension, but it is also constitued by it, as a 
sort of logical counterpart of it. The elements which belong to such an extension 
are not given independently of the theory, they are nothing but what the terms of 
the theory denote (if we accept that such terms are denotative terms). As Godel 
says, “the existence of a class” depends “on the content or meaning” of the prop
ositional functions (Godel 1944, 132). Thus, an intensional theory is not really 
open with respect to the growth of knowledge and to the changes of our under
standing of something that is not fully determined by the theory but exists outside 
of it.

In a proper sense it does not realize, as such, any form of knowledge or objec
tive understanding; it is a closed domain, which provides no more than synoptic 
tables or something like that. Even if a some people have conceived empirical 
theories in purely intensional terms, the privileged model of an intensional theory 
is provided by a mathematical axiomatic theory, intended as a purely formal sys
tem. A classical example is provided by the Hilbertian axiomatic reconstruction of 
Euclidean geometry. Here, if the terms “straight line”, “point” or “plane” are 
intended as denotative terms, they denote nothing but the arguments of the condi
tions expressed by the axioms. This idea was expressed by G. G. Granger by 
means of the notion of “formal content”: if the terms of an intensional theory 
denote something, they denote formal contents (Granger 1982).
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Of course a lot of people have denied that the terms of an axiomatic Hilbertian 
theory (or of a formal theory in general) were denotative terms. They simply are, 
it is claimed, symbolic characters in a syntactical game or expressions of concepts 
without objects, as in the conceptualist account of mathematics (for example: Tharp 
1989-1991). Even if in such cases the terms “intensional theory” could be mis
leading, we propose to maintain it, providing the term “intension” with a more 
general meaning than would be required in order to be able to speak of intensions 
as we have done up to now. We will come back to this point later. Let us pass now 
to the notion of “extensional theory”.

By an “extensional theory” (in the previous sense of the term “theory”) we 
understand a theory that speaks about something that is already given otherwise. 
The terms of such a theory have an intension as well as an extension, but neither 
the term “meaning” nor the terms “intension” and “extension” are understood in 
a way that would necessarily depend on the particular theory. Rather, the exten
sions are given by a sort of reality, intended as a system of things (acting upon the 
subject), and intensions are nothing but the means by which such things are intro
duced in the theory. Intensions seem to relate to extensions by grasping their 
“essential” characteristics in an unspecified manner.

The privileged model of an extensional theory is provided by a physical theory 
conceived as a realistic account of the external world. Nevertheless, a lot of peo
ple—the Platonists, as they are generally called—have advanced the idea of also 
interpreting mathematical theories as extensional theories. But in order to do so— 
without abandoning the idea that a mathematical theory is a formal theory—we 
have to accept something like an ideal reality that, in principle, is describable by 
means of a convenient set of definitions or axioms, expressing the “essential” 
characteristics of a domain of things (even if, purely formal things).

II Analytical and Synthetical Judgments

If we understand mathematics as a class of theories and these theories either as 
intensional theories or extensional theories, we are confronted with a number of 
difficulties when trying to make sense of the classical Kantian analytic-synthetic 
distinction. Let us consider this point in some detail.

By considering mathematics as a class of theories in the previous sense, many 
people have understood this distinction as primarily concerning the (logical) prop
erties of mathematical propositions or the (logical) nature of their justification. As 
a consequence of such an understanding, the hard core of the Kantian thesis has 
been located in the assertion of the syntheticity and apriority of mathematical 
judgments, as explained according to the criterion advanced by Kant in the Intro
duction to the first Critique, a subject-predicate judgment is analytical if and only 
if the predicate does not assign to the subject any properties other than those that
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it has to have in order to be just that subject, otherwise it is synthetic (Kant, A, 6; 
B, 10).

In order to apply such a criterion to the judgment “q is P ”, we have to under
stand the subject as something that is q and not simply as something that we call 
“q” : “g” is not a name here, but is already a way of specifying the nature of the 
subject itself. This is the reason why the examples that are generally presented to 
illustrate the Kantian criterion are not of the previous form, “x is F ”, but of the 
form “all G’s are F ”, or, better, in the usual Fregean translation, “for all x, if x  is 
G, then x  is F  ”. In this way, the subject-predicate judgment is interpreted as a way 
of connecting not really a subject to a predicate, but a predicate (that is G) to 
another predicate (that is F). Predicates play two different roles here. The first 
(that is G) specifies the domain to which a generic subject belongs (and in this 
way it specifies the subject, completely or partially) the second assigns to such a 
subject a certain property. It is only if a subject-predicate judgment is intended in 
such a way, that we can apply Kant’s criterion: such a judgment will be analytic if 
and only if F  expresses a sub-specification of the property expressed by G. The 
judgment “all congruent triangles are similar” is analytic—we could say—be
cause the predicate “to be congruent” is a sub-specification of the predicate “to be 
similar” (for a triangle). But, here another presupposition is required. The proper
ties expressed by our predicates have to realize a partial order with respect to a 
meta-relation of inclusion. And, in order to say that a certain judgment “is” ana
lytical or synthetical, we have to assume that the configuration of such a partially 
ordered space of properties is fixed.

From such a point of view, to be something means (or has to be intended as) to 
satisfy a certain property and to satisfy a certain property implies that a certain set 
of other properties is met or fulfilled. Thus, the problem of analyticity or synthe
ticity of a judgment is the problem of connection between different properties : a 
mathematical judgment, as “all Q’s are P ”, or “for all x, if x  is Q, then x  is P ” 
would be synthetic if and only if it was logically possible to satisfy the property Q, 
without fulfilling the property P. But a mathematical judgment has to be proved in 
a mathematical theory (except if it is an axiom or a definition). So, a mathemati
cal judgment would be synthetic only if it was possible to prove that to satisfy the 
property Q means to satisfy (among other) the property P, even if it is logically 
possible to meet the property Q, without meeting the property P.

The problem concerns, of course, the notion of “logically possible”. In the 
previous context this notion refers to the partially ordered space of properties to 
which the properties P and Q belong. Such a possibility takes place if and only if 
the property Q does not include the property P. But how is the configuration of 
such a space fixed?
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II. 1 M athematical Theories as Intensional Theories

If a mathematical theory is intended as an intensional theory, such a configuration 
can not be fixed outside or independently from the theory itself. Outside the theo
ry there is properly speaking nothing concerning the theory itself. Therefore, if a 
judgment is a theorem (an axiom or a proposition) of the theory (that is, if it is a 
proposition of the theory and, thus, a mathematical judgment), it cannot be but 
analytic.

This seems immediately obvious, but we prefer to insist a little bit more on this 
point. In our characterization of an intensional theory we have not really specified 
what kind of things intensions are and this could cause problems in order to un
derstand the point.

What then are intensions? With respect to our problem of deciding whether a 
judgment is analytic or synthetic, we need only answer this question up to rela
tions of difference and equality of intensions (and in fact we can only answer it 
so). Using an informal language of sets and in particular interpreting equality as 
mutual inclusion of sets (and the latter in turn as logical implication) we realize 
immediately that, whatever intensions might be, in an intensional theory all state
ments are analytic, because they just state relationships of inclusion between in
tensions (interpreted as sets here). Therefore, the analytic-synthetic distinction 
makes no sense with respect to a mathematical theory intended as an intensional 
theory.

Perhaps it makes sense as a correlative distinction with respect to the other 
distinction between a mathematical judgment and an empirical one: all mathe
matical judgments being analytic, it could be possible that all empirical judg
ments are synthetic, because empirical theories are not intensional theories, as the 
terms of the theory cannot be complete descriptions of their referents. Otherwise 
for such a theory to have referents would equal its being true and vice versa. Now, 
in conceiving of (mathematical or empirical) theories as intensional theories, one 
negates a fundamental insight of Kant’s Critique, namely that “no general de
scription of existence is possible, which is perhaps the most valuable proposition 
that the Critique contains” (Peirce CP, 1.35). Thus this view amounts to denying 
the essential Kantian idea, namely that synthetic a priori judgments are possible 
and they take place in mathematics (even if not only there). Therefore, even if we 
could make sense of the Kantian distinction, with respect to mathematics (al
though not “within” mathematics1) it would fail its essential aim.

II.2 M athematical Theories as Extensional Theories

It might appear that the situation changes essentially if we conceive mathematics 
as an extensional theory, but this is not really the case. For a long time it has
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generally been accepted that predicates bearing on empirical extensions could be 
connected analytically—providing logical truths, rather than genuine empirical 
judgments—as well as synthetically—providing genuine empirical judgment. 
But—as Quine has shown, in Two dogmas o f empiricism (Quine 1953, 20-37)— 
even if this distinction can be maintained, from the point of view of an extensional 
theory, it does not express anything but our decisions on the internal organization 
of our language.

The arguments and conclusions of Quine are well-known and it is not neces
sary to repeat them. We would only like to insist on one point that seems to be 
connected with our problem concerning mathematical extensional theories. If we 
accept the Kantian criterion of the Introduction to the first Critique, as Quine 
does, essentially, we are compelled to assert, as we have seen, that a (true) subject- 
predicate judgment—let us say “all Q’s are P ”—is synthetic if it is not necessary 
to be P, in order to be Q, even if, contingently, all Q’s are just P. Even though, it 
would seem to be a very natural situation from an extensional point of view, it is 
not.

Let us consider an example. We can aigue, it is not necessary to weigh less that 
200 pounds in order to be a swan, even if, contingently, all swans weigh less than 
200 pounds. But, how are we sure that it is not necessary to weigh less than 200 
pounds in order to be a swan? This is possible only if we have in our hands a 
precise and objective definition of what a swan is and if such a definition does not 
include that a swan weighs less than 200 pounds. Nevertheless, if we intend a 
swan as a “real external object”, that is how it is independently from all possible 
definitions that we could give, it is possible only if our definition grasps what is 
“essential” in a swan, without specifying all properties of a “real swan”, so that 
we can imagine genuine swans different from real ones, for example swans weigh
ing 300 pounds, or even 30.000 pounds. But how do we know what is “essential” 
in a swan? has some God given the required definition? Certainly, in a proper 
sense, we cannot know it, we can only decide it. Thus, it is clear that the the 
analytic-synthetic distinction makes sense for an extensional theory (according to 
the criterion of the Introduction to the first Critique) only if the predicates are 
introduced into the theory by means of a definition which determines their logical 
range, according to a certain decision. This shows that an extensional theory—as 
well as an intensional one—depends on the choice of a perspective. A judgment 
like “all swans weigh less than 200 (or even 30.000) pounds” is then either ana
lytic or synthetic, according not to the “objective extension” of the predicate “to be 
a swan”, but to the perspective that has been chosen in fixing the logical range of 
such a predicate.

In order to make this point clearer, let us assume, provisionally, that properties 
are nothing but (names of) classes of objects. This is exactly the content of what is 
called generally the “axiom of extensionality” (Godel 1944, 137):



266 MICHAEL OTTE AND MARCO PANZA

V0,P{[0 = P] <=> V*[0(*) «=> PM} (1)

Once this axiom is given, let us consider two predicates G and F, such that 
-.(G c  F). A s G is then distinct from F, according to (1) these predicates satisfy 
the condition:

3*{[G(*) a  - ,F ( x) M F ( x) a  - & ( * ) }  (2)

Let us consider now the domain of G and determine the range of the free variable 
x  relatively to it, such that:

WxG(x) (3)

As from (2) and (3) it follows

-,V;c[G(*)=>F(*)] (4)

we have,

—•{—(C7 £  F ] a Vx[G(x) => F(x)]} (5)

Thus, the judgment “all G’s are F ” cannot be synthetic, according to the criterion 
of the Introduction to the first Critique: the distinction between analytic and syn
thetic judgements like “all 0 ’s are F ” makes sense in an extensional theory, ac
cording to such a criterion, only if the space of the predicates occurring in it is 
partially ordered, independently from the partial order of the classes which con
stitute the extension of these predicates.

But, if so, how the partial order of the predicates is fixed? From an extensional 
point of view—different from an intensional one—we can try to answer in a number 
of ways, all of which do not provide however meaning for the Kantian distinction 
(according to the criterion of the Introduction to the first Critique).

First, we can imagine that it is an aim of our theory (or of a part of it, for 
example of the “meaning postulates”, as Carnap proposed (Carnap 1952)) to pro
vide the configuration of such a space. But if this is the case the distinction be
tween analytical and synthetical judgments is nothing but an expression of the 
organization of the theory itself. Second, we can imagine that such a configura
tion is fixed once and for all, as if it were the configuration of the mind of God. In 
such a case, the “real” distinction between analytical and synthetical judgments 
rests on foundations unknown to us and our distinction is nothing but a conjectur
al representation of it2. In the first, as well as in the second case, it seems rather
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arbitrary and open to points of view whether a statement is considered analytic or 
synthetic and the analytic-synthetic distinction does not lead to much.

But there is a third possibility: we can accept the Leibnizian idea according to 
which things are to be distinguished on basis of the sum of all their actual proper
ties, so that it is not possible to be a 0 , without having all the properties that a 0  
has. The configuration of the space of properties is then imposed by the real na
ture of things. All true judgments are analytical in this case.

Someone has imagined that, with respect to mathematical extensional theo
ries, we are necessarily in such a case. From such a point of view formal theories, 
like mathematical theories, are in fact considered as meta-linguistic theories deal
ing with linguistic extensions, for which the “sum” of their actual properties is 
finite, and to be a (mathematical object) 0  is exactly to have all these properties 
and only them. We can justify in such a way the neopositivistic thesis, according 
to which all mathematical judgments are analytic. Thus, the thesis of analyticity 
of mathematics can be defended by intending mathematical theories as intension
al ones as well as by conceiving them as extensional theories. Whatever the choice 
may be, by accepting such a thesis one denies the essential content of Kant’s 
thesis.

If we deny, in contrast, that mathematical extensional theories are meta-lin
guistic theories the situation for such theories is not really different from that for 
empirical extensional theories. Thus Quine’s argument can be applied mutatis 
mutandis.

We may suppose that to be a certain formal thing is to satisfy certain properties 
{0.} (that is, in a more convenient interpretation, certain conditions), expressed 
by certain definitions or axioms, in such a way that without any additional axiom 
it is not possible to prove that the fulfillment of these properties (or conditions) 
entails the satisfaction of certain other properties (or conditions) {P.}. But we can 
introduce some additional axiom (and passing, for example, from absolute geom
etry to Euclidean geometry or from finitary arithmetic concerning numbers {0,1, 
2,..., 100) to infinitary usual arithmetic, or from an algebra without associativity 
for a certain operation to an algebra with associativity for that operation) and then 
prove that to satisfy the properties (or conditions) {0.} entails the fulfillment of 
the properties (or conditions) {P.}. We can interpret such a case in different ways 
and if our reasoning capabilities are strong enough, we may arrive at a justifica
tion of the syntheticity of a certain mathematical judgment. We can even interpret 
in this way the thesis of Poincare according to which arithmetical infinitary judg
ments are synthetic (the additional axiom being the fifth axiom of Peano) or Cas
sirer’s claim, according to which all the usual arithmetical judgments, like 
n+m = v, are synthetic (the additional axioms being the associative law of addi
tion) (Poincare 1894 and Cassirer 1907). But it is clear that there is no possibility 
to show that a certain mathematical judgment is, in such a framework, definitely
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synthetic. In order to make such a claim, we should justify that the real ideal 
things, of which the theory is speaking, are completely described by the first axi
oms only. And, we certainly cannot do that.

I ll Cassirer and Poincare

But, of course, neither Poincare nor Cassirer presented their theses exactly in such 
terms. Rather it seems that, when they state that arithmetical judgments are syn
thetic (and a priori) they do not refer to the Kantian criterion of the Introduction 
to the first Critique. But it is very difficult to say what their criteria for the distinc
tion between the analytic and synthetic really are.

Cassirer (1907, 41) considers the proposition “7+5 = 12”, quoted by Kant in 
the Critique o f Pure Reason, to be synthetic, because its proof contains “a synthet
ic assumption”, namely “the theorem that a+(b+1) = (a+b)+1”. But, what Cas
sirer terms a synthetical assumption here is a special case of the associative law, 
which functions as a definition of the addition on the basis of the successor oper
ation of ordinal numbers in the normal axiomatic characterization. Thus, even if 
we accept that the proposition “7+5 = 12” could be intended as a subject-predicate 
judgment, it would be very difficult to justify that it is possible to intend the sub
ject of this proposition—that is the sum-number 7+5—without characterizing the 
operation of addition by means of the associative law or in a way that entails such 
a law. In case we characterize the operation of sum in terms of the cardinality of 
sets the situation is completely different. The associative law is in fact in such a 
case a consequence of our definition of addition (and not a part of it), and people 
could claim that such a consequence does not follow by a formal proof, but is to be 
observed by experience of concrete sets and their unions ; thus, it is nothing but a 
(quasi-empirical) generalization. If we accept that, we might conclude that the 
judgment expressing this law is synthetic, and the related proposition “7+5 = 12” 
as well. But the question is completely open to points of view. Thus, it is clear 
that, if the criterion of syntheticity of a judgment is that of the Introduction to the 
first Critique, Cassirer fails in asserting that “7+5 -  12” is definitely a synthetical 
judgment. This conclusion depends on our definition of addition and on our point 
of view with respect to the way in which the properties of the operations on sets 
are stated.

The same is true for Poincare. Poincare (like Holder 1924) called (infinitary) 
arithmetic synthetic (anda priori) because arithmetical propositions—being found
ed on the axiom of recursion—are just expressions of the free activity of the hu
man mind, they represent the structure of the subject itself. According to Poincare, 
recursion cannot be reduced to the principle of contradiction: it is “the affirmation 
of a property of the mind itself’ (Poincare 1894,12-13). The fifth axiom of Euclid 
in contrast is nothing but a “definition in disguise” (Poincar6 1891, 50), Poincare
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believes, and it has been chosen only for reasons of our convenience. Thus, ac
cording to Poincare arithmetical propositions are synthetic (and a priori) because 
they are founded on something we can intend as an a priori assumption to which 
the human subject is compelled by its very nature. Let us try to get rid of recursive
ness—Poincare says—and “let us construct a false arithmetic analogous to non- 
Euclidean geometry. We shall not able to do it” (ibid., 49).

Clearly, Poincare, as well as Cassirer, refer here to a different criterion for 
syntheticity than that of Kant’s Introduction to the first Critique. But what is this 
criterion? This is really not very clear. Perhaps, we have to see in this lack of 
clarity one of the reasons for the success of the neopositivistic attitude concerning 
mathematics.

IV Mathematics as an Activity

Thus, we have to conclude that, both from the point of view of an intensional 
theory and from the point of view of an extensional theory, a logical distinction 
between analytical and synthetical judgments, founded on the criterion of the In
troduction to the first Critique, makes no real sense. Do we have to conclude from 
this also, that the Kantian distinction as such, makes no sense logically ? We 
think not. We believe in fact: i) that the Kantian criterion of the Introduction to 
the first Critique is nothing but a bad illustration of a deeper idea; ii) that, in order 
to understand such an idea, we have to abandon the presupposition according to 
which mathematics (and science, in general) is to be understood as a class of 
theories (a theory in turn being a class of propositions); iii) that, by abandoning 
such a presupposition, we could gain a new perspective on the nature of logic, 
usually intended as an inquiry into the formal characters of our knowledge; iv) that, 
by assuming such a perspective, we can get rid of the dichotomy between inten
sional and extensional theories and conceive a scientific theory as something else.

The situation in fact changes radically if a theory is considered in the context 
of its genesis or application, or, in other words, if the notion of theory is trans
formed to incorporate activities that represent the epistemic subject-object rela
tion. Extensions and intensions enter into varying and flexible relations with each 
other and this means that we have to base our considerations on the evolutionary 
process of cognitive activity, rather than on the idea of a theory as a class of 
propostions. Bolzano, among others, had accused Kant of having confounded 
mathematics with its development. Kant was right, although his ideas, with re
spect to the question of “the objectivity of the subjective” were insufficient and 
ahistorical.

From our point of view, mathematics (like science in general) has to be under
stood as a human activity, namely the activity of producing mathematical (or gen
erally scientific) theories (in the previous sense). The aim of logic is not merely to
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study the internal structure of such theories, or even the formal nature of their 
propositions (either taken in isolation or jointly). Rather it implies the study of the 
modalities of human activity that produces them. Such an activity is a concrete 
and historical phenomenon. It is in terms of this phenomenon only that, we be
lieve, it becomes possible to explain all other phenomena or entities. Neverthe
less, logic has not to be confounded in our perspective with psychology. The latter 
treats the human activity producing our knowledge as a particular activity proper 
to each singular subject and tries, if it is possible, to isolate some constant features 
of it. The former treats of the general categories that may be used in describing 
such an activity and tries to understand the way by which it realizes intersubjec
tivity and founds the external world with respect to each subject.

Such a perspective is not to be confounded with a solipsistic point of view. 
Every realism, we believe in fact, has to be a constructive realism. Neither subject 
nor object exist in isolation and activity marks the essence of the subject-object 
relation, that is fundamental with respect to both relata. We do not suppose that 
only the individual subject exists, all the rest being pure appearance, but, to the 
contrary, we think that the notion of existence, or reality, is not a primitive notion, 
but has to be intended in terms of the modalities of the subject’s activity.

Now to describe or explain the activity itself—and this is the only way for 
explaining a lot of subjective evidence (for instance the phenomenon of intui
tion)—one may conceive it as a system of means-objects relations. No activity 
exists without means and without objects. And neither internal experiences nor 
objective constraints can be understood but in terms of means and contents of 
activity. External conditions for the subjective activity or for consciousness are 
just to be intended as contents of intentional acts. The form they take is thus the 
form of these acts and the objectivity of such a form—that is the fact that it can be 
assumed as the same in our communication or along our life—is nothing but the 
effect of our capacity of connecting evidences in classes of equivalence and of 
inducing intentional acts in similar subjects. Of course, such a capacity is, once 
again, an hypothesis we advance in order to explain our evidences, that is: it is 
part of the intentional acts directed to pose ourselves as a subject or the external 
subjects as such.

Now, in such a context, science is nothing but a specific way of producing 
objectivity and the problem of a philosophy of science is essentially the problem of 
explaining this objectivity in terms of the activity that produces it. A scientific 
theory is nothing but a way for expressing this objectivity. We can recognize in it 
an intensional as well as an extensional component. The former is connected with 
the fact that the objectivity is the result of an activity, that is an act of conscious
ness. The latter is connected with the fact that this activity is an intentional one: it 
is just that which produces an objectivity.
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But, what new sense can we give, from such a point of view, to the analytic- 
synthetic distinction, with respect to mathematics? We will try to answer to such a 
question in our following two papers.

Institute for Didactics of Mathematics,
University of Bielefeld

Centre F. Viete o f the History and Philosophy of Sciences,
University of Nantes

Notes

1 For Kant, all mathematical judgments seems to be synthetic, and therefore for him also such a distinction—  
if it is applied to judgments— takes sense with respect to mathematics, but not in mathematics.

2 If we were realists, we could argue that certain properties are necessarily connected to other properties 
being particular specifications of them. For example, the property of being red— we could say— is a 
particular specification of the property of having a color (of reflecting the light). Thus a judgment as “all 
reds are colored” should certainly be analytic. However, this argument has two main defects: not only 
does it not prove that objectively synthetic judgements exist, but it is false also. In fact, if we were realists 
concerning properties, we should make a distinction between real and ascribed properties, an ascribed 
property being a property compounded by real properties or a generalization of certain real properties. 
According to such a sense, to be colored is certainly an ascribed property, because a body does not simply 
reflect the light, but reflects it in a peculiar way. Thus the necessity of the connection between the real 
property of being red and the ascribed property of being colored is, once again, a question of definition of 
the second property.



MARCO PANZA

MATHEMATICAL ACTS OF REASONING 

AS SYNTHETIC A PRIORI*

I Introduction

My paper pursues two aims. First, I would like to argue that mathematical activity 
deals with pure objects, or even that mathematics is the human activity dealing 
with mathematical (that is pure) objects. In my view, this means that mathemati
cal activity essentially consists of synthetic acts of reasoning and, as mathematical 
objects are pure objects, these acts are also a priori. This thesis should not to be 
confused with the standard thesis generally ascribed to Kant, according to which 
mathematical judgments are synthetic a priori. Nevertheless, I think that my the
sis could be presented as a development of some of Kant’s views on mathematics: 
as such, it is not a Kantian thesis, but I believe it is a “quite natural” consequence 
of Kant’s views. Thus, my second aim is to trace a path leading from Kant’s 
premises to my own conclusions.

II Standard Accounts

According to section V of the Introduction to Kant’s Critique o f Pure Reason, 
“All mathematical judgments [Mathematische Urteiie*], without exception, are 
synthetic [synthetischY and “mathematical propositions [Satze], strictly so called, 
are always judgments a priori” (Kant B, 14). If we accept that every mathematical 
judgment is a (mathematical) proposition, we have to conclude that:

(Tj) Every mathematical judgment is synthetic and a priori.

Since Kant certainly agreed with the auxiliary premise, (Tt) is certainly a 
Kantian thesis, and it is advanced by Kant in the section V of the Introduction to 
the first Critique. Thus, it is very natural that (Tj) is presented as an important 
Kantian thesis concerning analysis and synthesis in mathematics. Generally, this 
thesis is explained by referring to the following passage contained in section IV of 
the same Introduction:
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“In all judgments in which the relation of a subject [Subjekt] to the predicate [Pradikat] is thought 
this relation is possible in two different ways. Either the predicate B belongs [gehort] to the 

subject A, as something which is (covertly) contained [enthalten] in this concept [Begriff] A\ or 
lies outside the concept A, although it does indeed stand in connection with it. In the one case I 
entitle the judgment analytic [analytisch], in the other synthetic.”(Kant A, 6-7; B, 10)

According to Kant, a judgment is not merely a “representation [Vorstellung] 
of a relation between two concepts” (Kant B, 140), but it is “the manner in which 
given modes of knowledge [Erkennntnis] are brought to the objective unity of 
apperception” (Kant B, 141). This is a very difficult definition and it is not my 
task to explain it here. However, it is clear that a judgment according to Kant, 
does not express any sort of possible association between two (or more) concepts: 
as long as it expresses a relation between a subject and a predicate, it expresses the 
appurtenance (Zugehoren) of what is individuated by means of a certain concept 
S—the concept of the subject—to the sphere (or to the domain) of another concept 
P—the concept-predicate. In other words: as long as it expresses a relation be
tween a subject and a predicate, a judgment says of a certain “representation” that 
if it is S, then it is P. Thus, we can reformulate the previous distinction in the 
following way:

(Dj) A judgment of the form < Vjc [S(jc) => P(jc)] >— where S and P are 
concepts and S(x) and P(x) mean that x  belongs respectively to the 
domains of S and P—is analytic if and only if P belongs to 5 , and it is 
synthetic if and only if P does not belong to S.

(D,) supposes that it possibly makes sense to say of two concepts a and p  that 
a belongs to p. Such a possibility depends on a compositional (classic) notion of 
concepts, according to which concepts—or at least certain sorts of concepts—can 
be treated as collections of other concepts. Definitely, this seems to be an idea of 
Kant. Nevertheless, I am far from certain whether (T() is the hard core of Kant’s 
philosophy of mathematics, and whether according to Kant, the essential episte
mological relevance of the opposition between analysis and synthesis is expressed 
by (Dj), at least when such a distinction is meant literally. However, before I will 
give my own interpretation of Kant’s views, I would like to present some standard 
reactions to (T() and (D(). This will help to make my point clear.

In order to use (Dj) for justifying (Tf), we have to state the following lemmas:

(Lt) If S and P are respectively the concept of the subject and the concept- 
predicate of a mathematical judgment of the form < Vjt[S(;c) => P(*)] > 
(and it makes sense to say that P does not belong to 5), then P does not 
belong to S.
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(L2) Every mathematical judgment is of the form < Vx [£(*) => P(jc)] > (where 
S and P are two concepts such that it makes sense to say that P does not 
belong to S).

Therefore, it is very easy to refute (Tj) without denying that (D,) is a good and 
useful distinction: you can deny (L,), (L2) or both. However, it is also possible to 
deny (L,), (L2) or both, without rejecting (Tt): if you want to do that, you have to 
look for an argument based on a distinction between analytic and synthetic judg
ments different from (Dt). The history of discussions about Kant’s philosophy of 
mathematics contains a number of different examples for all these points of view.

It is very easy, for example, to refute (L2) by quoting appropriate counter
examples and then reject Kant’s philosophy of mathematics as a whole. This was 
done by Couturat (Couturat 1893, 84), for instance.

A more interesting position is Frege’s (1844, particularly §88). According to 
Frege, the distinction between analytic and synthetic judgments cannot refer to 
the logical relation of inclusion between the concept-predicate and the concept of 
the subject, since this relation does not apply to arithmetical judgments, where the 
subject is generally a singular object. Moreover, an arithmetical judgment should 
not to be taken as an isolated one, for it is a consequence of a deductive proof. 
Thus, it is analytic if and only if it is “deducible solely from purely logical laws” 
(Frege 1884, §90), and it is synthetic if its proof depends on an appeal to intuition.

Though Frege speaks, like Kant, of mathematical judgments, his position can 
easily be generalized as one referring to mathematical sentences, to mathematical 
systems, or even to mathematics as a whole. For that, we only have to replace (Dj) 
by a more general and explicit distinction:

(D2) A sentence is analytic if and only if it is part of an analytical system, 
otherwise it is synthetic; a system (of sentences) is analytic if and only 
if it is deductively closed with respect to purely logical rules and 
(eventually) purely logical axioms, otherwise it is synthetic.

Referring to (D2), many have argued that “mathematics is analytic”. (D2), how
ever, is a very problematic distinction, since it bears on the problematic notions of 
purely logical rules and axioms.

If we intend these notions in a strict sense, it follows from (D2) that only 
propositional and predicative calculus are analytic systems. Hence—since it is 
obvious that, due to the occurrence of proper axioms in its deduction, no mathe
matical theorem, as it is generally enunciated, can be intended as a theorem of 
propositional or predicative calculus—we can assert that a mathematical theory is 
an analytic system only if we are ready to acknowledge that a mathematical theo
rem is nothing but an implication, where the antecedent is just formed by a suita
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ble class of proper axioms. This was one of Russell’s ideas (Russell 1903a), for 
example.

However, even though it would be possible to intend any mathematical theory 
as a system of implications of this sort, someone could argue that this is not the 
point, since these implications have generally to be of the form < if A, then B >, 
where A and B are not yet implications of this sort. Thus, by asserting, according 
to such an argument, that a mathematical theory is an analytic system, we are just 
saying that its theorems form a system of logical consequences of the given axi
oms, which Kant himself would have accepted. Here is what he writes just after 
the passage I quoted at the beginning:

“[...] For as it was found that all mathematical inferences [Schliisse] proceed in accordance with 
the principle of contradiction (which the nature of all apodeictic [apodiktischen] certainty re
quires), it was supposed that the fundamental propositions of the science can be themselves be 
known to be true through that principle. This is an erroneous view. For though a synthetic propo
sition can indeed be discerned in accordance with the principle of contradiction, this can only be if 
another synthetic proposition is presupposed, and if it can then be apprehended as following from 
this other proposition; it can never be so discerned in and by itself.” (Kant B, 14)

Thus, to argue that a mathematical sentence or system (or even mathematics 
as a whole) is analytic is not enough—according to Kant—to show that mathe
matical rules of inferences are purely logical; if we want to deny (T,) on the base 
of (D2), we have to argue that mathematical axioms are purely logical too, even 
though they are proper axioms. There was a time when Russell and Whitehead 
dreamed to show that just this is the case: that every mathematical theory could be 
reduced to a system of logical consequences of axioms that we should take as 
logical, since they express nothing but general properties of sets (Whitehead and 
Russell 1910-1913 f .

However, what is a logical axiom in this sense is really a disputed question and 
it is certainly not in this manner we can hope to decide whether (T,) has to be 
accepted or not. If this is the problem, the question of analyticity or syntheticity of 
mathematics is simply a question of subjective views. According to Cassirer (Cas
sirer 1907), proper mathematical axioms and definitions are synthetic, for exam
ple, and every mathematical theory is then a synthetic system, even though it uses 
only logical rules of inference.

At first glance, we might believe that Poincare advanced a similar thesis with 
respect to arithmetic (Poincare 1894), but it seems to me that Poincare’s view is 
essentially different from Cassirer’s. Poincare is interested in the nature of “math
ematical reasoning”, rather than in the character of mathematical axioms. Thus, 
when he claims that the mathematical principle of induction is synthetic, he wants 
to say that mathematicians proceed by non-logical inferences in arithmetic, that 
is: they “proceed by construction” and “mathematical induction”.
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A similar point has been made by Hintikka (Hintikka 1973). According to 
him, Kant’s distinction applies to “modes of reasoning”, namely, the modes of 
reasoning “which are now treated in quantificational theory” (ibid., 182). These 
“modes of reasoning are synthetic if the inferences or arguments that occur in 
them are synthetic”, and an inference (or argument) is synthetic if it does not deal 
“with general concepts only”, but needs “the introduction of an intuition” (ibid., 
194). A part of Hintikka’s notion of reasoning in its relations to inferences or 
arguments in quantificational theory, this is exactly the thesis I will ascribe to 
Kant in the next paragraphs III and IV. However, according to Hintikka, this 
means that “for Kant the reason why mathematical arguments are synthetic is that 
they are constructive”, that is: they proceed by introducting “new individual math
ematical objects” (ibid., 206). In other words:

“Synthetic steps are those in which new individuals are introduced into the argument; analytic 
ones are those in which we merely discuss the individual which we have already introduced.”
(ibid., 210)

Moreover:

“In a suitable formulation, arguments of the former kind can be boiled down to existential instan
tiation.” (ibid., 210-211)

If the previous thesis is ascribed to Kant, I do not think this is a good explana
tion of it. I think that for Kant an “analytical argument” (to use Hintikka’s termi
nology) does not “discuss individuals” at all (at least, if the term “individual” 
means “object”), and a synthetic one does not ask for “existential instantiation” 
and does not deal properly with “mathematical objects”.

I ll A Provisional Reformulation of Kant’s Distinction

By shifting attention from judgments or sentences to inferences or even to reason
ing, Poincare and Hintikka move, as I believe, in the right direction. Moreover, 
when Hintikka states that, according to Kant, mathematics is a constructive affair, 
and syntheticity is concerned with intuition, he points to a crucial aspect of Kant’s 
philosophy of mathematics.

Nevertheless, in my opinion, for Kant the syntheticity of mathematics does not 
depend on the occurrence of constructive, or generally non-deductive, inferences. 
As a matter of fact, it depends on the role of intuition, but intuition has to be 
intended neither as a condition of construction (in the usual sense), nor as a sort of 
psychological capacity: the capacity of “seeing” some hidden relations, or to be 
convinced by some particular evidence or even to switch on a mental light in the 
darkness of doubt or ignorance. A fortiori, intuition has not to be taken as a (log
ical or psychological) condition of non-deductive or constructive inferences. Thus,
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even though I think that for Kant intuition is in a sense the source of syntheticity 
in mathematics, I do not think that we have to argue, to justify Kant’s views, that 
mathematical proofs or arguments are full of “intuitive” (that is non-deductive, or 
even “non-logical”, or “constructive” ) steps, as some say.

III. 1 J u d g m en ts  a nd  P ro po sitio n s

Let me begin with a remark on Jasche Logic (Kant, JL). Here, Kant does not 
distinguish between analytic and synthetic judgments, but only between analytic 
and synthetic propositions. According to him, every proposition is a judgment, 
but not every judgment is a proposition: a proposition is an assertoric [assertor- 
isch] judgment (ibid., § 30, note 3), that is a judgment “accompanied with the 
consciousness [BewusstseiriY' of “the reality3 [Wirklichkeit] of the judging” (ibid., 
§30). Such a definition is not so different from that of the first Critique—accord
ing to which an assertoric judgment is that in which “affirmation or negation is 
viewed as real [wirklich] (true [wahr])” (Kant A, 74; B, 100)—but the reference to 
the idea of consciousness makes my point clearer.

That between problematic [problematisch], assertoric and apodeictic judgment 
is, according to Kant, a distinction of judgments on the base of their modality, that 
is “the way in which something is maintained [behauptet] or denied [verneint] in 
the judgment” (Kant, JL, § 30, note 1). What is important here is the modality of 
maintaining or denial and not what it is maintained or denied: a problematic 
judgment maintains or denies something possibly (moglicherweise)', an assertoric 
judgment maintains or denies something really (wirklich)', an apodeictic judg
ment maintains or denies something necessarily (notwendigerweise). The distinc
tion does not concern the modal form of the judgment itself, but the modality of 
the act of formulating such a judgment. As Kant writes in the first Critique:

“The modality [Modalitdl] of judgments is a quite peculiar function. Its distinguishing charac
teristic is that it contributes nothing to the content [Inhalt] of the judgment [...], but concerns only
the value of the copula in the relation to thought [Denkeri] in general.” (Kant A, 74; B, 99-100)

But, what does it mean that something is maintained or denied possibly, really 
or necessarily?

If we try to understand such a distinction using the usual conception of modal
ity in terms of truth in a given collection of worlds, we are not able to do it without 
a criterion founded on the modal form of appropriate statements. It is possible to 
imagine different ways to construct sets of worlds and to associate any judgment 
with appropriate statements to be evaluated with regard to these worlds, in order 
to say if such a judgment is problematic, assertoric or apodeictic. In this way we 
can justify, for example, that a judgment as < It is possible that A > is not prob
lematic, since it maintains something: particularly, it maintains that A is possible.
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However, in that way we reduce any judgment to usual modal statements and we 
decide about its nature on the basis of the modal form of the associated statements.

I think that Kant’s distinction should not be understood this way. In my inter
pretation, this distinction is rather a question of justification.

A problematic judgment is not a judgment expressed by an appropriate state
ment that is true in the worlds belonging to a proper non-empty sub-set of a given 
set of appropriate worlds. It is a judgment, referring to only one world, that has 
been formulated without any kind of justification. As Kant does not admit any sort 
of guess, this means that the act of formulating this judgment cannot be an act of 
stating anything; it is simply an act of expressing a certain connection.

But such a connection, you might notice, has to be a possible one. Hence, we 
have to explain what a possible connection is. There are two ways for doing that. 
First, we could say that the logical form of this connection has to be a possible 
form of a judgment, that is: it has to respect certain logical (or simply syntactical) 
rules of formation. Second, we could say that it is the content of the connection 
that has to be possible. If so, we come back to modality, intended in the usual 
extensional sense, but now we are considering it, not in order to know whether a 
judgment is problematic or not, but to know whether a certain connection can be 
a judgment or not. Thus, we would say that the act of formulating a problematic 
judgment is the act of expressing an arbitrary connection we have ascertained to 
be possible.

As, according to Kant, the “expression through words” is a necessary condi
tion for the act of judging (Kant JL, § 30, note 3), the first solution leads us to 
conclude that problematic judgments are sentences (or are expressed by sentenc
es), while the second solution leads us to conclude that problematic judgments are 
non-contradictory sentences (or are expressed by non-contradictory sentences).

What is important to me is that according to both, the first and the second 
interpretation, the act of formulating a problematic judgment does not require any 
justification of the content of the judgment itself. This is not the case for assertoric 
and apodeictic judgments, since, according to Kant, the act of formulating an 
assertoric or apodeictic judgment is an act of stating something. The difference 
between these two sorts of acts lies in the nature of justification. If such a justifica
tion merely depends on the “laws of understanding [Verstand]” (Kant A, 76; B, 
101) the judgment is apodeictic, otherwise it is assertoric.

If I am right, Kant’s distinction is asymmetric, since it actually distinguishes 
between problematic and non-problematic judgments on the one hand, and be
tween non-problematic assertoric judgments and non-problematic apodeictic judg
ments on the other hand. As long as problematic judgments are sentences (or are 
expressed by sentences), non-problematic judgments—both assertoric and apo
deictic—are statements (or are expressed by statements).
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Now, if only propositions can be analytic or synthetic and propositions are 
assertoric judgments, it follows that Kant’s distinction between analytic and syn
thetic does not apply to sentences, but rather to statements. However, if we would 
like to stay close to Kant’s text, we should argue that the only statements that 
could really be called “analytic” or “synthetic” are assertoric statements. But if 
that is so, how could Kant have advanced the view that mathematical judgments 
(which in his views are apodeictic judgments) are synthetic? The difficulty would 
be a major one, if Kant had not explained once again his notion of proposition in 
the following terms:

“Before I have a proposition I must first judge [urteilen]-, and I judge about much that I cannot 
make out [ausmachen]*, which I must do, however, as soon as I determine a judgment as a propo
sition.” (Kant JL, §30, note 3)

According to such a characterization, a proposition is a judgment associated 
with an act of making out. Since in my interpretation this is true for any sort of 
non-problematic judgment, that is any sort of statements, we have to conclude 
that any sort of non-problematic judgment is a proposition. The point is plaintly 
this: Kant’s distinction between analytic and synthetic judgments lies exactly in 
the nature of such an act of “making out” and can then be applied to any sort of 
statement. Thus, I propose to force Kant’s text a little bit and to interpret Kant’s 
distinction between analytic and synthetic propositions as referring to any sort of 
statement.

III.2 A nalytic and Synthetic Propositions

According to paragraph 36 of the Jasche Logic, “propositions whose certainty 
rest on identity [Identitat] of concepts (of the predicate with the notion of the 
subject) are called analytic propositions”, while “propositions whose truth [Wahr- 
heit] is not grounded [griindet] on identity of concepts must be called synthetic” 
(ibid., § 36). Even though he speaks of identity, Kant is clearly referring to the 
identity of the concept-predicate P with a part of the concept of the subject S. The 
remark 1 about the same paragraph 36 is clear:

“An example of an analytic proposition is [...] [: ‘] To everything*, to which the concept of body 
(a + b) suits [zukommt], suits [Icommt]5 also extension (b) [ ’].

An example of a synthetic proposition is [...][:*] To everything*, to which the concept of body 
(a + b) suits, suits also attraction (c) (ibid., § 36, note 1)

These examples fit very well with (Dj), but here Kant does not seem to insist 
on the fact that the concepts-predicate b and c belong or do not belong to the 
concept of the subject (a+b). What is important here is rather that the act of 
“making out” the content of the sentence “every body is extended” rests on ascer
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taining the appurtenance of the concept b to the concept a+b, while the act of 
“making out” the content of the sentence “every body attracts” does not rest and 
can not rest on ascertaining any logic relation between concept a+b and concept 
c. The point I want to make is this: the content of analytical judgments “is made 
out” merely by analyzing concepts; to “make out” the content of a synthetic judg
ment, we in contrast have to go away from concepts and base ourselves on some
thing else. The following quotation, drawn from the Introduction to the first edition 
of the Critique o f Pure Reason, seems very clear to me:

“[...] through analytic judgments our knowledge is not in any way extended, and the concept 
which I already have is merely set forth and made intelligible to me; [...] in synthetic judgments I 
must have besides the concept of the subject something else (X), upon which the understanding 
may rely, if it is to know that a predicate, not contained in this concept, nevertheless belongs to it.” 
(Kant A, 7-8)

Even though Kant eliminated this passage in the second edition, the same 
point is clearly expressed in the sections IV and V of the Introduction6. The main 
question Kant faces in these sections, after having presented (D(), could be pre
sented like this: on what do we ground ourselves for “making out” the content of 
synthetic judgments, if it is not on analysis of concepts?

For a posteriori judgments the answer is very simple and clear: we ground 
ourselves on our experience of objects, particularly of the objects that fall under 
the concepts occurring in the judgments themselves. For a priori judgments, the 
question is much more difficult, since here we cannot refer to any sort of experi
ence.

“ [...] in a priori synthetic judgments— Kant writes— this help is entirely lacking. Upon what, 
then, am I to rely, when I seek to go beyond the concept A, and to know that another concept B is 
connected with it? Through what is the synthesis made possible? since71 do not here have the 
advantage of looking around in the field of experience [Erfahrung][...]. What is here the 
unknown -  X which gives support to the understanding when it believes that it can discover out
side the concept A a predicate B foreign to this concept, which it yet at the same time considers to 
be connected with it?” (ibid. A, 9; B, 12-13)

Even though this is one of the most fundamental questions in the first Critique 
(since it is equivalent to the famous one: “how are synthetic a priori judgments 
possible?”) Kant does not sketch a general answer in the Introduction. He prefers 
to consider mathematics, natural sciences and metaphysics separately (in section 
V), and even in these cases he does not give a direct answer to the question.

If we abstract from such an answer, we once again limit ourselves to subject- 
predicate judgments and we assume that, according to Kant, analytic and synthet
ic statements have to form two complementary classes we may provisionally 
formulate Kant’s distinction as follows:
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(D3) A statement of the form < Vjc [^(jc) =3 PC*)] >— where S and P are 
concepts and S(x) and P(x) mean respectively that x  belongs to the 
domains of S and P—is analytic if and only if the act of “making out” 
that every x  which is S is also P is grounded on nothing but the 
ascertainment of the logical relation ‘P  belongs to S’ between the 
concepts S and P; it is synthetic if and only if this act asks for moving 
away from the consideration of the logical relations between the concepts 
S andP.

If we consider judgments as statements and assume that the appurtenance of P 
to S is a sufficient (and obviously necessary) condition for the act of “making out” 
that every x  that is S is also P is grounded on the ascertainment of such a logical 
relation, then the first part of (D3) (the definition of analyticity) is equivalent to 
the first part of (D(). Moreover, the second part of (Dt) (the definition of synthetic- 
ity) is perfectly complementary to the first part: according to it, a judgment is 
synthetic if and only if it is not analytic. Thus, if we accept that the second part of 
(D3) is also perfectly complementary to the first part, we have to conclude that 
(Dj) and (D3) are absolutely equivalent under the previous conditions. Now, in the 
first Critique, Kant is most of all concerned with statements rather than with 
sentences, thus we can imagine that, for him, (D() really deals with statements, 
rather than with sentences. Moreover, he certainly accepts the appurtenance of S 
to P as a sufficient condition for the act of “making out” that every x  that is S is 
also P  is grounded on the ascertainment of such a logical relation. So, if I am 
right in asserting that (D3) is a Kantian distinction, and if we assume that, accord
ing to Kant, the second part of such a distinction is purely complementary to the 
first, we should conclude that in the Introduction to the first Critique, Kant ad
vanced (D^ as a simplified version of (D3). This is just my thesis.

However, (D3) is a provisional distinction, for at least two reasons. First, it 
does not specify what enables us to formulate synthetic statements; second, it is 
restricted to subject-predicate statements. Moreover, it is also not totally satisfac
tory, since it is grounded on the interpretation of S and P as concepts, while, 
strictly speaking, they are predicates.

The latter difficulty is obviously connected with my shifting from judgments 
to statements and can only be solved by presenting an appropriate theory of con
cepts. Such a theory is also necessary for generalizing (D3) to any sort of state
ments and making its second part explicit. Furthermore, these two latter tasks 
also need an appropriate theory of logical counter-parts of concepts. I doubt that 
two appropriate theories of this sort are really available in Kant’s philosophy. In 
the next paragraph, I will try to expound Kant’s theory of concept and its logical 
counter-part (that is intuition or object) as briefly as I can, and as I am able to 
understand it, in order to make Kant’s own distinction clearer—even though not
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satisfactory yet—and to understand Kant’s reasons for claiming that “mathemat
ical knowledge” is synthetic.

IV Concept, Object and Intuition: the Final Version of Kant’s 
Distinction

In the Critique o f Pure Reason, Kant is concerned with conditions of knowledge. 
For him, judgments are forms or moments of knowledge. Thus, if we intend asser- 
toric and apodeictic judgments as statements, we have to consider statements both 
as logical (or linguistic) forms and as cognitive acts: intended in the first way, a 
statement is the logical form of the same statement, intended in the second way. 
But forms can be classified and so, in the first sense, statements both are forms 
and have forms of a higher level. These forms of higher level can be expressed by 
logical formulas as < Vx[5(x) => P(x)] >, so that these formulas express forms of 
forms of cognitive acts. The elements occurring in these formulas then have to 
express elements of a cognitive act, that is elements of an act of knowing.

Now, for Kant, knowledge can be either a priori or a posteriori. The a poste
riori knowledge is nothing but experience and generally consists in appropriate 
representations and judgments connected to the occurrence of a sensation. In this 
sense, it is knowledge of objects. On the other side, a priori knowledge is inde
pendent from the occurrence of sensations, but it is neither knowledge of some
thing different than objects, nor is it a form of knowledge alternative to experience. 
Rather, it consists of representations and judgments that make a posteriori knowl
edge or experience possible. In this sense, it is a condition of a posteriori knowl
edge and it is justified as such. The possibility of a priori knowledge is thus the 
possibility of the conditions of possibility of a posteriori knowledge or experi
ence. Hence, as for Kant a posteriori knowledge is a fact, a priori knowledge is a 
fact too and the form and nature of the latter depends on the form and nature of 
the former. To understand the first (a priori knowledge), we then have to under
stand the second {a posteriori knowledge).

IV. 1 A P osteriori K n o w led g e

A posteriori knowledge is for Kant either “objective perception [objektive Perzep- 
tionT or judgment. An objective perception is for Kant a species of the genus of 
representation:

“The genus is representation in general (representatio). Subordinate to it stands representation 
with consciousness (perceptio). A perception which relates solely to the subject as the modifica
tion of its state is sensation [Empfindung] (sensatio), an objective perception is knowledge 
(cognitio).” (ibid. A, 320; B, 376)
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In other words: an objective perception is a perception intended as an act of 
perceiving something, rather than as the event of the subject’s modification, which 
is sensation. The difference between objective perception and sensation does not 
concern the nature or the direction of consciousness; in the former as well as in 
the latter, consciousness is directed toward what is perceived. Objective percep
tion and sensation are just two different (and complementary) aspects of percep
tion, that is the act in which a subject represents something to himself, as the 
cause of modification of its own internal status. Hence, there is no objective per
ception without sensation, and the reason for this is not merely that objective 
perception and sensation are necessarily connected facts. They are simply not 
different facts, but different aspects of the same fact, namely perception. Thus, 
there is also no perception without objective perception or sensation:

“Perception (Wahrnehmungf is empirical [empirische] consciousness, that is a consciousness
in which sensation is to be found.” (ibid. B, 207)

Kant’s distinction between sensation and objective perception can be expressed 
in the following terms: if we analyze perception without considering the specifici
ty of consciousness, only insisting on its presence, we speak about sensation; in 
contrast, if we analyze perception regarding the specific nature of consciousness 
occurring in it, we speak about objective perception. To analyze objective percep
tion is then the same as analyzing consciousness occurring in perception.

However, Kant’s aim is not that of analyzing a posteriori knowledge as such, 
but it is rather that of looking for its conditions. Concerning objective perception, 
Kant’s problem is the following: how is it possible for a subject to represent some
thing to himself as the cause of a certain sensation (the modification of his inter
nal status)?

According to Kant, the cause of a sensation, as the subject of such a sensation 
represents it to himself, is an object (Gegenstand, Object)9. If the term “represen
tation” means what is represented, rather than the act of representing it, an object 
is a conscious representation:

“Everything, every representation even, in so far as we are conscious of it, may be entitled ob
ject.” (ibid. A, 189; B, 234)

Even though elementary knowledge is always a representation of something, 
such a something is an object only as long as it is represented in an act of objective 
perception. Thus, we cannot intend objective perception as a representation of 
something that is given as an object before the representation itself. Obviously, a 
subject can represent something to himself that has been already given as an ob
ject, but this is not an act of objective perception. It is rather a judgment that 
makes the subject able to classify objects (which are already given as such), ac
cording to their particular characters. Properly speaking, such a representation
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does not produce objects, but classes of objects, aspects of objects, functions of 
objects, etc. According to Kant, an object is properly a representation of some
thing that is not an object, and a posteriori knowledge just begins when an object 
is given in this proper sense. Hence, objective perception is representation of some
thing that cannot be known, but only thought as a something that is represented 
by a certain object (ibid. B, xxv)11.

The problem of the conditions of objective perception is then the problem of 
the possibility of the represention of something, which is not known as such, but 
only thought as the cause of a sensation, as a certain object. This way, we have 
arrived at the crucial point: such a representation is possible for Kant only if the 
object arises from a “subjective constitution [subjektive Beschaffenheit]” (ibid. A, 
44; B, 62), which is necessarily a priori. Thus, even though objective perception, 
as a perception of a certain object, is a sort of a posteriori knowledge, it is possible 
only as the result of an a priori act of subjective constitution of the object itself 
and, as such, it can be genetically analyzed in two different (and even opposite) 
aspects:

“This [Knowledge or objective perception] is eitherintuition [Anschauung] or concept (inluitus 
vel conceptus). The former relates immediately to the object and is singular10 [einzeln], the latter 
refers to it mediately by means of a feature which several things may have in common.” (ibid A,
320; B, 376-377)

As long as they occur in objective perception, intuition and concept are thus 
two different aspects of our representation of the cause of a sensation as an object 
for Kant, that is two aspects of subjective constitution of such an object. These 
aspects have not to be confounded with two complementary and alternative forms 
of subjective constitution of an object. The opposition between intuition as “singu
lar representation” and concept as “universal representation” (cf. also Kant JL, 
§1) is founded for Kant in another and deeper opposition: that between intuition 
as the aspect of objective perception for which the object is given as such, and 
concept as the aspect of objective perception for which the same object is thought 
as such (Kant A, 19; B, 33)11. And for Kant an object cannot be given as such if it 
is not thought, and it cannot be thought as such if it is not given. Thus, regarding 
objective perception, a singular representation is not a sort of representation dif
ferent from universal representation: singular and universal representation, i. e. 
intuition and concept, are two aspects of the same representation, that is percep
tion taken as knowledge. They are then two aspects of the same act, the act of 
subjective constitution of an object.

In their primitive and more fundamental sense, intuition and concept have 
thus to be intended, with respect to a posteriori knowledge, as two opposite cogni
tive functions we distinguish by analysis in only one cognitive act, the act of 
subjective constitution of objects. Since this act is nothing but objective percep
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tion, an object is by definition an empirical entity. However such an entity has not 
an external existence, but results from an act of representation that has been ana
lyzed as an act of constitution.

Let us continue. According to Kant, an object is given as such when the sub
ject connects his sensations (the modifications of his status) to a spatio-temporal 
unity, and it is thought as such when he recognizes such an entity as an example 
of a certain class of spatio-temporal unities. The former condition is certainly 
necessary for the latter to take place, but, according to Kant, the latter condition 
too is, a necessary condition for the former to take place, since spatio-temporal 
bounds of a certain unity do not depend on the unity itself, but have been imposed 
on it by the subjective constitution, according to a certain reason that could not be 
anywhere else but in the concept.

This remark leads us to the final step of Kant’s analysis of objective percep
tion: the act of subjective constitution of an object is possible only if we dispose of 
two connected faculties, or better of one faculty that can be analyzed into two 
different aspects. According to one of its aspects, this faculty enables us to connect 
our sensations to certain positions in an order—the spatio-temporal order—that 
is already given (and can be analyzed in two different aspects, the internal order, 
or sense—which is time—and the external order or sense—which is space). Ac
cording to the other of its aspects, this faculty enables us to recognize these posi
tions as particular representations of certain forms that are already given too.

Here a first important shift occurs: these two different aspects are generally 
taken as opposite faculties (of pure reason) and the first is confounded with intu
ition itself, the second one being the faculty of understanding. As a faculty, intui
tion is not opposed by Kant to concept anymore, it is rather opposed to a 
faculty—namely understanding—that is taken as the faculty of producing and 
even composing concepts. Thus, while intuition becomes a faculty, the place of 
concept is taken by a plurality of concepts intended as a sort of entities produced 
and manipulated by the subject.

If I am correct, Kant’s analysis of conditions of objective perception could be 
summarized as follows: the act of representing as an object which is thought as 
the cause of our sensation is an act of subjective constitution. In such a constitu
tion, two faculties concur: intuition and understanding. Intuition connects our 
sensations to positions in spatio-temporal order, that is an order that is already 
given as such; understanding recognizes these positions as particular representa
tions of certain forms that also are already given. These faculties are necessarily 
connected, since forms are already given as possibilities of positioning in spatio- 
temporal order, and intuition realizes such a connection under the guidance of the 
capacity of recognizing positions in spatio-temporal order as particular represen
tations of these forms.
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These forms are not objects, since the subject does not represent them to him
self as the cause of his sensations; they are thought as concepts, but they are just 
given as forms in “pure intuition”, or “pure forms”. Furthermore, the objects thus 
constituted are not examples of the concepts of these forms. Instead, these con
cepts are necessarily a priori and universal, while objects are empirical entities 
connected to particular sensations. The connection between objects and the con
cepts of pure forms is governed by schematism. I will not discuss this question 
here. What interests me is rather that the objects which are constituted in objec
tive perception (intended as an act of constitution) are not instances of the con
cepts of the pure forms which occur in such an act. Properly speaking, there is no 
object that is an instantiation of these concepts; they are just concepts of pure 
forms. Thus intuition and understanding, as long as they are intended as faculties 
which concur in the act of a priori constitution of objects, are both certainly a 
priori faculties. But they are not properly pure, since they apply to particular 
sensations. However, such an application is possible only if the subject disposes of 
pure forms. In other words: the subjective constitution of an object depends not 
only on two a priori faculties, but also on the disposability of a priori entities as 
pure forms. The first task then of a priori knowledge is to provide these entities.

Once objects have been constituted, they are given as particular spatio-tempo
ral unities and they are thought as particular representations of concepts of pure 
forms, as examples of empirical and individual concepts. Still, this is not the final 
step of our a posteriori knowledge. It is only the final step of the act of exhibiting 
these objects as such, namely objective perception. To know these objects in their 
respective relations, we have to be able to pass to judgments. Nevertheless, not 
every judgment is an act of a posteriori knowledge, since what is essential in a 
posteriori knowledge is not the logical form of judgment, but the occurrence of an 
experience. When it is not merely an act of objective perception, an act of a poste
riori knowledge is necessarily a judgment only according to its form, or, if you 
prefer: the logical form of judgment is only a formal or external—even though 
necessary—condition of experience. We cannot have experience of anything else 
but objects; moreover a simple succession of acts of objective perception is not an 
experience yet, it is nothing but a “rhapsody of perceptions” (ibid. A, 156; B, 
195), that is a rhapsody of different and isolated acts of elementary experience. In 
his genuine sense, experience asks for a connection between these acts, and judg
ment is just a logical form of this connection. Still, the occurrence of a connection 
of this form is only a necessary condition for knowledge, since in order to have 
knowledge, such a connection must not only be a judgment; it must also be an 
objective judgment.

But what makes a judgment “objective”? Certainly, a judgment is not objective 
when it connects objects, since, according to Kant, a judgment always connects
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concepts. Rather, we should say that a judgment is objective if it connects con
cepts according to the respective objects. However, in face of such an answer, we 
could insist: what does it mean exactly, in any particular case, that a judgment 
connects concepts according to the respective objects? This is a very difficult prob
lem, but in a sense, this is not our problem now. At the present stage of the anal
ysis, what is important is this: whatever such a condition would be, it is certainly 
impossible to satisfy it, if the concepts we are connecting were all concepts of 
particular objects. Thus, in order to make a posteriori judgments possible, a first 
condition has to be satisfied: the subject has to dispose of non-elementary empir
ical concepts, that is of empirical concepts different from distinct concepts of 
individual and particular objects. These concepts are concepts of forms of partic
ular objects. Hence, when it is not merely an act of objective perception, an act of 
a posteriori knowledge is just a judgment connecting these concepts to each other, 
or to concepts of particular objects. It is only by the mediation of these concepts 
that a judgment can (indirectly) connect particular acts of objective perception. As 
these concepts have to be empirical, they cannot come from any other source than 
objective perception itself. But since they are non-elementary, they cannot result 
from a simple succession of acts of objective perception. They have to be produced 
by a different sort of connection of objective perceptions. Still, this is not the end 
of the story, since once these non-elementary concepts have been produced, in 
order to have a judgment, they have to be connected to one another, or to elemen
tary concepts. And this is certainly not possible if they are produced in different 
and isolated acts.

Furthermore, in order to be an act of knowledge, a judgment must not merely 
be problematic; it not only must connect concepts, but it must state the content of 
such a connection. Thus, the possibility of non-elementary a posteriori knowl
edge depends on the possibility of producing non-problematic a posteriori judg
ments.

IV.2 A Priori Knowledge

The analysis of a posteriori knowledge has led us to distinguish three tasks for a 
priori knowledge: *) to provide pure forms and to permit both it) the production of 
non-elementary concepts and iii) the connection of non-elementary or elementary 
concepts in a judgment that is not merely problematic.

Let us begin with the second task. For Kant, the production of non-elementary 
concepts is the result of a synthesis of understanding. It is an act of understanding, 
but it is not as such an a priori act, since it operates on empirical concepts given as 
forms of real (and not only possible) experience. However, this act would be im
possible without the unity of internal sense that makes the different acts of objec
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tive perception different elements of only one unity of knowledge, and such a 
unity is for Kant assured by “pure [reine] intuition”. Here, intuition is no longer a 
faculty occurring in the act of constitution of objects or an aspect of objective 
perception, it becomes a guarantee of the possibility of the synthesis of under
standing. Thus, the passage from sensible intuition to pure intuition produces a 
new important shift in Kant’s conception of intuition.

Nevertheless unity of internal sense is only a formal condition for the synthe
sis of understanding applied to elementary empirical concepts. It guarantees the 
possibility of such a synthesis, but it does not guarantee that something like a 
genuine concept is produced. In other words: it does not guarantee that the result 
of the synthesis of understanding is, as such, a component of an act of knowledge. 
Even though the results of such a synthesis could certainly not be concepts of 
objects, they have to be able to refer to objects as concepts of objects do, that is, 
they have to be exemplified by aspects, functions, relations etc., or, in general, 
forms of possible objects. These results have to be “really possible concepts”, they 
have to “agree with the formal conditions of an experience in general” (ibid. A, 
220; B, 267). Of course, this could not mean that any result of a synthesis of 
understanding applied to elementary empirical concepts had to be exemplified in 
such an indirect way by an actual object. The problem then is this: what is the 
result of a synthesis of understanding applied to elementary empirical concepts?

The first part of the answer is trivial: the result has at least to be a “logically 
possible concept”. Whatever the synthesis of the understanding is, it must respect 
the condition of logical possibility, that is the principle of non-contradiction. How
ever, this is not a sufficient condition, yet. Another condition is needed, but it is 
not so easy to formulate. As I have just said, for Kant any concept has also to be 
indirectly exemplified by something that we could represent as a possible object. 
But clearly this is not a criterion, since the subject does not dispose of possible 
objects as such, and then he cannot classify logically possible concepts by compar
ing them to possible objects. Thus, if a demarcation is possible between logically 
possible concepts that are really possible, and logically possible concepts that are 
not really possible, its criterion can not be based on appealing to a comparison to 
possible objects. In other words: possible objects should be, by definition, nothing 
but the objects of really possible concepts, and not vice versa. If we want to distin
guish between logically possible concepts that are also really possible and logical
ly possible concepts that are not really possible, we have to refer directly to the 
synthesis of intuition as such. Now, according to Kant, such a discrimination does 
not depend on a criterion, rather it depends on a faculty. Such a faculty is again 
pure intuition. In this case, pure intuition is not directly applied to objective per
ceptions as a condition of unity, it directly applies to the concepts of empirical 
objects, as a condition of compatibility. For producing new empirical concepts, 
understanding realises a synthesis by starting from elementary empirical con
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cepts, that are concepts of objects which manifest concepts of pure forms in partic
ular; the result of such a synthesis is a really possible concept if it is produced in a 
way that is compatible with the conditions of compositions of concepts of particu
lar objects and pure forms.

Let us consider now the third task of a priori knowledge: that of making non
problematic a posteriori judgments possible. Let us imagine that a subject has 
non-elementary empirical concepts at his disposal. In order to connect them to 
another, or with elementary empirical concepts, in a problematic judgment, he 
has to be able to consider his own concepts together, as part of a unity of con
sciousness. Such a unity is assured by pure intuition that is now applied to ele
mentary or non-elementary concepts as a condition of unity. Still, this is only the 
beginning of the story. To obtain a posteriori knowledge, the problematic judg
ment has to be justified and transformed into an assertoric judgment (since it is 
clear that no a posteriori judgment can be apodeictic). To make it, we have to 
come back to the objects themselves—the objects that directly or indirectly exem
plify the concepts occurring in the judgment—and to consider the distinct acts of 
objective perception corresponding to them as only one experience. Thus, pure 
intuition has to occur once again as a guarantee of such a unity. In this new role, 
pure intuition does not work simply as a deaf guarantee for the act of synthesis; 
according to Kant, it is also the base of a class of synthetic a priori judgments that 
express the conditions of a posteriori knowledge discursively. These judgments 
are the dynamic principle of pure understanding, “analogies of experience”, and 
“postulates of empirical thought in general” which are rules “according to which 
a unity of experience may arise from perception” {ibid. A, 180; B, 222).

Even though we could go on by analyzing the justifications (or deductions) 
and the function of these synthetic a priori judgments (which are obviously apo
deictic judgments), I stop here, since I am not directly concerned with this sort of 
judgments. It is sufficient to have stated that they are grounded on pure intuition 
as a guarantee of the formal possibility of non-elementary experience, that is the 
possibility of the necessary form of a posteriori judgments.

However, the possibility of the form of a posteriori judgments is not yet the 
possibility of these judgments as such. For this possibility to be insured, we still 
have to guarantee that these forms can be filled up by connections that express 
something as a “possible experience” {ibid. A, 160; B, 199). This is guaranteed by 
the fact that objects are necessarily “extensive magnitudes” characterized by “in
tensive magnitudes”. This is the content of the principles of “axioms of intuition” 
and “anticipations of perception”. Such a fact is expressed by these judgments— 
that are synthetic a priori judgments and are, as such, produced by pure under
standing—but it depends on the nature of intuition—as it occurs in the subjective 
constitution of objects—and it is present to the subject thanks to pure intuition.
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Thus both axioms of intuition and anticipations of perception are justified, ac
cording to Kant, by a sort of application of pure intuition to intuition itself, or at 
least to the form of intuition. This is a new essential function of pure intuition.

Still, this is not the end of the story, since, up to now, we have only justified the 
possibility of the realization of a necessary form of experience, and not the possi
bility of assigning a real content to such a form. Now, in order to realize the latter 
possibility, we need both pure forms and real judgments connecting the concepts 
of these forms. Thus, we have arrived at the first task of a priori knowledge.

Let us begin with the first point. The act of subjective constitution of objects, 
as it was just described, asks for pure forms, but it does not give any guarantee that 
they are possible. Again, such a guarantee is provided by pure intuition that seems 
to guarantee both the availability of elementary pure forms (as straight lines and 
circles) and the possibility of composing them in order to produce other forms (as 
triangles or squares). On the first point, Kant is not really explicit. He seems to 
reason as if these forms were given as such to pure intuition. In contrast, he does 
not leave any doubt as to the second point (cf. for example, ibid. A, 220-226; B, 
267-274). The synthesis of understanding produces new concepts of pure forms 
that have to be not only logically possible, but really possible too: they have to be 
forms that can be manifested in particular by possible objects. The problem is thus 
analogous to the one we just discussed with respect to non-elementary concepts: 
how can really possible concepts of pure forms be distinguished from really im
possible ones? Of course, such a distinction cannot be made a posteriori and has 
to rely on an a priori capacity of the subject. Thus, the guarantee of this capacity 
is once again pure intuition as a guarantee of the possibility of certain sorts of 
objects. This is, I believe, responsible for Kant’s monolithic conception of mathe
matics, and particularly of geometry12.

Moreover, even if we accept that really possible concepts of pure forms are 
given (and distinguished by really impossible ones), we do not have any guarantee 
of the possibility of judgments connecting them. These judgments do not provide, 
as such, a condition of possibility of a posteriori knowledge in general, but they 
make possible particular experiences and contribute, in this way, to our knowl
edge. According to their forms, these judgments are submitted to the conditions of 
possibility of any sort of judgment. Nevertheless, the question here is not that of 
the unity of different acts of subjective constitution of objects, it rather refers to the 
subject’s own consciousness. The judgment has to connect concepts of pure forms 
here, concepts that occur in the act of subjective constitution of objects as some
thing that is already given. Thus, the unity that has to be guaranteed is the unity 
both of the field of giveness of elementary pure forms—that is also a condition of 
possibility of their composition—and of the different acts of their composition. 
Thus, if such a unity is guaranteed by pure intuition as well, a new shift occurs.
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But the question is not only that of the formal possibility of judgments con
necting concepts of pure forms. These judgments provide a condition of possibil
ity for experience only if they are not merely problematic. Thus, the main question 
is that of their justification.

Of course, if these judgments connect non elementary concepts of pure forms, 
they can be logical consequences of the way in which the concepts that occur in 
them have been produced. They are then analytic judgments. However, according 
to Kant, this is not the only way by which a judgment connecting concepts of pure 
forms can be justified.

Even though these judgments speak about pure forms, it is possible to justify 
them by considering objects (as physical figures or collections of physical objects) 
which are constructed—according to a fixed procedure (as the constructive proce
dure given in the Euclidean postulates13)—in order to be particular representa
tions of these forms. Since such objects are only considered for the forms they 
represent, the conclusions we draw from considering them necessarily apply to 
these forms. As pure intuition makes the subject certain of the real possibility of 
the concepts of pure forms, it simultaneously makes him certain of the possibility 
of constructing appropriate empirical objects for this task. But, how can the sub
ject be certain that the objects he effectively constructs have the form he wants 
them to have, that they are particular representations of pure forms? Moreover: 
how can the subject be sure that, in considering them, he refers only to the prop
erties that make them particular representations of pure forms? For Kant, the 
guarantee of all that is again pure intuition14. Thus, a new shift occurs: intuition 
now becomes a guarantee of the correspondence of certain objects and procedures 
to the concepts of pure forms.

If we accept that pure intuition provides the previous guarantees, we have to 
conclude that it enables a subject to justify judgments about pure concepts by 
leaving these concepts, but without referring to anything as pure objects. These 
judgments are then synthetic, but since they concern the concepts of pure forms 
and use objects only as they are constructed according to the concepts of these 
forms, they are a priori and apodeictic too. Finally, since the pure forms are noth
ing but possibilities of positioning in spatio-temporal order, they are part of the 
pure science of space and time, namely mathematics. Hence, they are mathemat
ical judgments15.

IV.3 Kant’s D istinction

If I am not mistaken, Kant’s distinction between analytic and synthetic judgments 
refers only to non-problematic judgments, that is to statements, it concerns judg
ments as forms of knowledge, and it is, as such, independent of the particular

MATHEMATICAL ACTS OF REASONING AS SYNTHETIC A PRIORI 293

logical form of these judgments. Thus it can finally be formulated in the following 
way:

(D3)* As long as an act of knowledge consists in the act of “making out” a 
statement of the form < A(P, Q , ..., S) >— where the concepts P ,Q , ...» 
S occur—it is analytic if and only if at least one of these concepts is 
non-elementary and the act itself is founded on nothing but the 
ascertainment of the logical relations occurring between the concepts 
P ,Q , .... 5, according to the way in which the non-elementary concepts 
which take place among them has been produced by a synthesis of 
understanding; it is synthetic, if and only if it asks for an appeal either 
to the experience of some objects—according to the way in which these 
objects fall under the concepts P, Q ,.., S—or to some guarantee provided 
by pure intuition.

V Kant’s Ontologism

According to Kant, an act of knowledge, consisting in an act of “making out” a 
statement, can only be grounded on: i) the ascertainment of the logical relations 
that take place between certain concepts, according to the way in which the non- 
elementary ones are produced by a synthesis of understanding, if) the experience 
of some objects, iii) an appeal to some guarantee provided by pure intuition. Hence, 
every act of knowledge of this sort is either analytic or synthetic, according to

However, this is no complementarity between analytic and synthetic statements 
yet. For the domains of analytic and synthetic statements to be complementary, it 
is also necessary that no statement is analytic and synthetic at the same time. 
Certainly (Dj)* only satisfies such a condition if we accept that no concept can be 
considered as an object. This is definitely Kant’s idea, since for Kant, concepts 
and objects are essentially different entities or forms of representation. For him, 
the distinction between objects and concepts is not a logical one; it does not con
cern logical roles, but the intrinsic characters of these entities: a concept could 
never be intended as the cause of a certain sensation, as the subject represents it to 
himself. However, it seems that Kant always wants to maintain something as a 
correlation between concepts and objects: even though understanding is able to 
realize any sort of synthesis of concepts already given, we cannot say that the 
result of this synthesis is a genuine concept if we cannot say that it refers in same 
way to one or more objects.

In order to satisfy both conditions, Kant should provide a non-relational char
acterization of two sorts of entities (concepts and objects) that he wants to intend 
as essentially correlative. This is the root of many difficulties in Kant’s philoso
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phy, I think. The first condition seems to be satisfied if we understand the object as 
a sort of specification, of a “reality” that is already given in confused terms, real
ized by means of concepts. Such a reality—which we have to take as absolute 
first—provides the object with its intrinsic and irreducible nature (contrary to the 
mental or, if you like, discursive nature of the concept), without denying its correl
ative character with respect to the concept. Thus it seems that the second condi
tion also can be satisfied regarding the dependence of the object on the concept. 
But, what about the dependence of the concept on the object? To guarantee it, we 
have to assume that a concept is one only if it provides a characterization of an 
object—intended, as I just said, as something that participates in the primitive 
reality. If this is not the case, we do not really have a concept, but only an arbitrary 
synthesis of understanding: understanding—by means of imagination16—puts to
gether different concepts without really producing a new concept. But this solu
tion is very weak if we do not think that the primitive reality can act, as such, on 
imagination, while the latter produces its synthesis. Now, even though we could 
find the means for expressing such a condition, without denying the apriority of 
the formal conditions of knowledge, we again have the problem of distinguishing 
guided imagination, which produces real concepts, from completely arbitrary im
agination, which produces nothing but an empty synthesis of concepts. Certainly, 
we cannot do it by referring to primitive reality itself, since it is inaccessible. Thus 
the problem arises: how can we do it?

Still, if an object is nothing but the cause of a certain sensation, and knowl
edge is always concerned with objects (even though it is not necessarily an expe
rience with certain objects), as Kant believes, then knowledge is always concerned 
with the subject’s representation of the causes of his sensations: either knowledge 
is directly such a representation or a judgment connecting in some direct or indi
rect way different representations of this sort, or it is something like an expression 
of the conditions of possibility of these representations or connections. But, if a 
knowledge of the latter sort is not directly about objects, about what is it directly? 
To give but one example: about what is, in Kant’s views, a judgment concerning 
triangles as such? In a sense, it is about the objects that are particular manifesta
tions of triangles, but certainly it is not directly about them. The correct answer is 
certainly not that such a judgment is about pure forms, since then the question 
arises: what is a pure form, if it is neither an object nor a concept? and, if it is a 
concept, of which object is it the concept?

I am not able to find any satisfactory (that is not merely metaphoric) answer to 
these questions in Kant’s philosophy.

The difficulty even grows if we consider it given the background of the leading 
principle of Kant’s theory of knowledge, which is not only the (Platonic) idea that 
there is no knowledge without justification, but the stronger precept, according to 
which any theory of knowledge is a theory of justification, as a guarantee of the
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validity of the knowledge itself. On this background, the previous questions be
come really essential: what is a possible justification (or what is the form of a 
possible justification) of a priori knowledge? Such a question is so fundamental in 
Kant’s framework that it cannot be evaded. Nevertheless Kant’s answer is really 
ad hoc: a possible justification of such a sort of knowledge consists in an appeal to 
pure intuition. The problem of this answer is not simply that it is not really an 
answer to the question—being rather an answer to another question, namely: where 
could a possible justification of a priori knowledge be found?—but that it is either 
circular or metaphoric. In Kant’s philosophy, pure intuition is nothing but the 
guarantee of the possibility of a priori knowledge (Frege 1884, § 12)—or even the 
genus under which any guarantee of this sort falls down.

Now, it seems to me that such a difficulty does not depend on a limit in Kant’s 
elaboration of transcendental philosophy of knowledge. Rather, I think that it 
depends on the premises of this philosophy themselves: i) the idea that knowledge 
is always concerned with the subject’s representations of the cause of his own 
sensations; ii) the conception of a theory of knowledge as a theory of justification, 
as a guarantee of validity of the knowledge itself.

I suspect that no satisfactory theory of knowledge is possible on grounds of 
these premises. Moreover, I think that Kant inherited these premises from the 
ontological tradition of empiricism. According to the first, knowledge is some
thing like a human interpretation and connection of a number of original facts 
that are sensations, while, according to the second, a theory of knowledge is some
thing like a general scheme of reduction of any act we want to intend as an act of 
knowledge either to these facts as such, or to the original conditions of possibility 
of their interpretation or connection.

VI Analytic and Synthetic Acts of Reasoning

In contrast to the above, I think that from a philosophical point of view a certain 
act is an act of knowledge if and only if it has a certain logical form, and a theory 
of knowledge is nothing but a theory of this form as such. Briefly speaking, I think 
that an act of knowledge is either an act of exhibition of an object or an act of 
attribution of properties or relations to objects. However, I think that not every act 
of attributing properties or relations to objects is an act of knowledge. In order to 
be an act of knowledge, such an act has to satisfy two conditions: first, the objects 
to which properties are attributed must be already exhibited as such (and be present 
as such to the subject that attributes properties or relations to them); second, such 
an attribution has to be a consequence of an analysis of the objects themselves. 
Generally, the act of attributing properties or relations to objects by grounding on 
an analysis either of the objects themselves or of the concepts of these objects, 
property or relation is, in my views, an act of reasoning, and an act of reasoning is
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an act of knowledge if and only if this attribution depends on (is locally justified 
by) the analysis of the objects themselves. An act of reasoning of this sort is syn
thetic17, while an act of reasoning is analytic when the attribution solely depends 
on the analysis of the concepts of these objects, properties or relations . A non- 
elementary act of knowledge is then a synthetic act of reasoning.

As long as we accept the idea that any act of attribution of properties or rela
tions to objects is expressed (or could be expressed) by a statement, such a distinc
tion can be formulated as follows:

(D4) An act of reasoning expressed by the statement A(P, Q,..., S, a, f t,..., d) 
—where the (monadic or polyadic) predicates P ,Q ,...,S  and the names 
of objects a, b , ..., d occur—is analytic if and only if it is grounded on 
nothing but the analysis of the concepts of these predicates or objects; it 
is synthetic, if and only if it is grounded on the analysis of at least one 
of the objects that fall under these concepts.

Since for me an act of reasoning is an act of attributing properties or relations 
to objects, by analyzing either these objects themselves or the concepts of these 
objects, properties or relations, any act of reasoning is then either analytic or 
synthetic, and cannot be both. However, this is not merely a question of definining 
the term “act of reasoning”. I think that a subject can only analyze objects or 
concepts. Thus an act of attributing properties or relations to objects is either an 
act of reasoning, or it is not grounded on an act of analysis, or it is finally ground
ed on the analysis of other objects or concepts. And it seems to me that, if we are 
speaking about science, we are interested only in the first sort of acts of attributing 
properties or relations to objects.

Moreover, even though the terms “reasoning” or, a fortiori, “act of reasoning” 
are not, as such, Kantian ones, and must not be confused with the term “infer
ence” used by Kant as referring to logical forms of acts of reasoning in my sense 
(Kant JL, part I, ch. 3)18, it seems to me that what is interesting in Kant’s distinc
tion between analytic and synthetic judgments or statements is that such a distinc
tion does not deal with statements merely intended as linguistic objects, but with 
the acts of formulating judgments. In this sense, my distinction between analytic 
and synthetic acts of reasoning fits perfectly with the spirit of Kant’s own distinc
tion.

However, it essentially differs from this distinction for a number of other rea
sons, the main ones of which are concerned with the notion of object. Since for 
Kant an object is nothing but the cause of a sensation, as the subject represents it 
to himself, Kant cannot generally intend a judgment as an act of attributing prop
erties to objects. Moreover, he cannot accept the idea that a synthetic judgment is 
an act of attributing properties to an object by grounding on the analysis of the
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object itself, since, if he accepted this criterion, he would deny the possibility of 
any sort of synthetic a priori judgment.

It is clear that, according to (D4), an act of reasoning can be both synthetic and 
a priori only if we accept the idea that there are pure objects. In the following 
parts of my paper, I will try to justify this possibility by basing myself on a radical
ly non-Kantian notion of object, in order to defend the following thesis:

(T2) What makes an act of reasoning a mathematical one is that it is grounded 
on the analysis of mathematical objects; thus mathematical acts of 
reasoning are synthetic in the sense of (D4). Moreover, as mathematical 
objects are pure objects, mathematical acts of reasoning are not only 
synthetic, but they are also a priori.

VI. 1 Objects

According to Kant, an object enters the subject’s horizon when it is properly con
stituted by the subject himself. Hence, there is no object for Kant which has not 
entered the horizon of a subject. Furthermore, an object can enter the horizon of a 
subject only if a sensation occurs. The act of constitution of an object is then an act 
of interpretation of a fact that necessarily has to be intended as preceding the 
appearance of such an object within the subject’s horizon. However, this fact can
not be described, in Kant’s framework, without referring to such an appearance, 
and it is even thought only as its source. Thus, in order to say what an object is, 
Kant has to refer to something that he can think and represent to himself only as 
the original source of the object itself.

In my opinion, such a situation is unsatisfactory. If we want to avoid such a 
difficulty (without returning to the idea that objects subsist as such, independent 
of any act of the subject), we have to give up the idea that an object is the result of 
an act of interpretation of a fact. Elsewhere, I defined an object as the meaning of 
the argument of a predication, intended as an intentional act (Panza 1995ft, 116). 
I believe of course that this is a good definition, but it is in a sense a posteriori 
with respect to the advent of the object itself in the horizon of the subject. If we 
imagine that the object is already there, we can use such a definition for character
izing it. Here, I would like to advance a genetic definition: an object is the inten
tional content of an act of exhibition; an object is exactly what a subject is exhibiting 
when he wants to exhibit something, he does it, and he recognizes his act just as 
the act of exhibiting this something. An act of predication (intended as an inten
tional act) is either addressed to an object that has already been exhibited, or it is 
part of the act of the exhibition itself. An object that has already been exhibited is 
not continuously present to the consciousness of the subject. Rather, I would say
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that an object has already been exhibited when the subject is able to represent it to 
his consciousness—to evoke it—by using any conventional symbol that is gener
ally intended as the name of the object itself. If this is the case, the object is also 
able to attribute any property to it, without coming back to the act of exhibition as 
such. Therefore I say that the object is already present in the subject’s horizon.

If we accept such a point of view, the particular nature of an object depends on 
the particular nature of the act of exhibition itself. Moreover, only logical differ
ences are important here. We cannot distinguish empirical from pure objects by 
saying that the act of exhibiting the first ones is connected in some way with the 
occurrence of a sensation. If we do that, we fall back on the previous difficulty. If 
we want to avoid it, and also avoid any heritage of classical ontological empiri
cism, we have to use the notion of empirical object to explain what a sensation is, 
and not vice versa.

Perhaps we could do that, by referring to the ostensive character of certain acts 
of exhibition, but then we have to know what an ostensive act is, before knowing 
what an empirical object—and a fortiori a sensation—is, and I am not sure that 
this is really possible. Thus, I prefer to pursue a different strategy. In order to 
present it, I have to introduce the notion of concept.

VI.2 C o ncepts

First of all, we could intend a concept as the subjective function that enables the 
subject to identify an object as such, to exhibit it to himself. This characterization 
does not apply to any sort of concept: the concepts to which it applies are concepts 
of objects, rather than concepts of properties or relations. From a logical point of 
view, we could say that a subject possesses such a capacity if and only if he dispos
es of a criterion of identity and he is able to apply it both to the contents of differ
ent acts of exhibition and to the objects evoked by a certain name (or in another 
way). Hence, we could say that a subject possesses a concept of an object if and 
only if he disposes of such a criterion and he is able to apply it.

A concept of a (monadic) property is the subjective function that makes the 
subject able to assign an object that has already been exhibited to a certain class of 
objects. From a logical point of view, we say that a subject possesses such a capac
ity—and then the corresponding concept—if and only if he disposes of a criterion 
for that, and is able to apply it to any sort of objects, by concluding either that they 
have or do not have to be assigned to that class, or that their modalities of exhibi
tion do not enable him to decide if they have or do not have to be assigned to that 
class. If a subject possesses such a capacity, he possesses the concept.

Finally, a concept of a relation is the subjective function that makes the subject 
able to assign a certain class of objects that have been already exhibited and as
signed to such a class, to a certain class of classes of objects. In this case too, a
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subject possesses such a capacity—and the corresponding concept—if he disposes 
of a criterion for that, and is able to apply it in order to obtain one of the three 
issues I have just indicated for concepts of properties.

Let us first consider concepts of objects. According to the previous character
izations, a subject cannot exhibit an object to himself, without possessing the 
concept of this object, since a subject realizes an act of exhibiting something to 
himself only if he recognizes one of his acts as an act of exhibiting something to 
himself and he is able to do it, only if he is able to distinguish his act of exhibition 
from any other act. Moreover, as no object can be exhibited to any subject if this 
subject does not ultimately exhibit it to himself, we can conclude that no object 
can be exhibited to any subject if this subject does not possess the concept of this 
object. Analogously, a subject cannot possess a concept of a certain object without 
exhibiting such an object to himself, since he cannot possess a criterion of identity 
if he does not represent such a criterion to himself, and he cannot represent it to 
himself without representing to himself the content of an act of exhibition that 
satisfies this criterion itself. The object of this concept then is present in the hori
zon of the subject himself, that is: it has been exhibited to him. Thus, the impor
tant difference is not between empty and full concepts, but between objects that 
are preceded by their concepts and objects that precede their concepts. In my view, 
the objects of the first kind are pure, while those of the second kind are empirical. 
In the first case—the case of pure objects—the act of exhibition consists in the 
presentation of the concept itself, the effort of formulating the corresponding cri
terion. In the second case—the case of empirical objects—the corresponding cri
terion acts before having been formulated; its formulation is only a post festum 
description of a capacity we have already applied. Of course, we can try to trans
mit to someone—a child, for example—the concept of Venus by showing a certain 
star to him and ask him to recognize Venus. But the child really exhibits Venus to 
himself only when he changes his concepts: Venus is not a star such and such; it is 
exactly the star the child has finally exhibited to himself. Starting from this mo
ment, the name “Venus” has a new meaning for him, it does not evoke a star such 
and such (what is, according to me, a pure object), it evokes just the star that he 
has exhibited to himself at such an occasion.

Consider the concepts of properties or relations. Even though these concepts 
are not concepts of objects, but ask for a previous exhibition of certain objects, we 
can put them together in order to produce concepts of objects (which are certainly 
pure). Moreover, according to the previous definition, any concept of a property or 
a relation corresponds to the class of objects or classes that are formed by using 
the corresponding criteria. These classes are certainly objects, but their concepts 
are not the concepts of the property or the relation to which they correspond, 
according to the previous definition. The concepts of these objects are just the 
concepts of these classes taken as objects. Thus, it is perfectly possible to possess
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the concept of a property or a relation without exhibiting the corresponding class
es as such, which are generally open classes and could even be empty.

Let us now come back to the concepts of objects. According to my definitions, 
concepts of object and objects are two logical categories correlated to one another: 
just as much as an object could be intended as the correlate of a concept of an 
object, a concept of an object could be intended as the correlate of an object. Now, 
if we intend objects and concepts of objects in such a way, we must also intend an 
act of exhibiting an object as a public act, when it consists in a certain subject’s 
effort to transmit the possession of a concept of a certain object to other subjects. 
Thus, an object has been exhibited publicly when the capacity of identifying it has 
been transmitted to a number of subjects. Hence, according to the previous defini
tion, an object that has publicly been exhibited cannot be an empirical object.

Of course, not only the possession of concepts of objects can be transmitted in 
such a way; the same is true for concepts of properties and concepts of relations. 
However an effort to transmit these concepts is not a public act of exhibition of the 
classes (of objects or classes) corresponding to these concepts.

To transmit a concept we use language. Thus, when we study public phenom
ena, like science, we can intend a concept, by extension, as a linguistic character
ization of an object, a property or a relation (that is the aspect of an object or a 
class of objects that make this object or class the members of a certain class). From 
my point of view, such a characterization has not to be intended as the discursive 
transposition of the properties of the object, or the conditions of the property or 
the relation—which is close to the Leibnitzian notion of complete concept. As a 
matter of fact, complete concept is only an abstract notion, grounded on ontolog
ical presuppositions, and it cannot be used as such in a theory of human knowl
edge. A linguistic characterization of an object, a property or a relation rather has 
to be intended as a way to fix these entities in our discourse, and in this sense it is 
only a sort of “concrete” representation of the concept (as a subjective function), 
an “exposition” or “explication” of it. This representation cannot in general be a 
complete characterization of the object, the property or the relation, but it is only 
a means for transmitting certain capacities in a community of subjects.

As a representation, such a characterization is not a representation of an ob
ject, a property or a relation, it is just a representation of their concepts. But, if 
these concepts are linguistically represented, they are ipso facto exhibited and 
thus, they are objects, even though they are certainly not the objects of themselves 
or the classes corresponding to themselves. So, when it has been presented as 
such, any concept is an object, even it is certainly a pure object.
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VI.3 A nalysis of Concepts, A nalysis of Objects

I am now able to explain what I mean when speaking of an act of reasoning 
grounded on the analysis of the concepts of the objects to which such an act is 
attributing properties or relations, that is an analytic act of reasoning. This is an 
act of reasoning where such an attribution is a consequence—according to certain 
rules of inference—of nothing but the concepts of the objects, the properties or the 
relations, intended as linguistic characterizations of them.

The acts of reasoning expressed respectively by the statement < P(a) > and 
<R(b, c) > are for example analytic if and only if these statements are conse
quences of nothing but the concepts of the property P and of the object a and of the 
relation R and of the objects b and c, respectively.

The situation is a bit more complicated for an act of reasoning expressed by a 
statement like < Vjc[5(jc) => P(x)] >19. In order to consider such a statement as an 
expression of an act of reasoning, we have to intend it as the attribution of the 
property P to some objects. I have said that it is possible to possess the concept of 
the property S without having exhibited the class of the objects which are S. Thus, 
either this statement—as long as it is intended as an expression of an act of rea
soning—attributes the property P to all the objects which have been already ex
hibited and are 5, or the concept S in it is taken as a concept of an object rather 
than a property, or finally it attributes properties to potential objects, that is the 
objects which could be elements of the class connected to the concept S. In the 
first case, such a statement is only an abbreviation of a conjunction of statements 
of the form < P{a) >, and the corresponding act of reasoning is analytic if and 
only if all the acts of reasoning corresponding to these statements are analytic. In 
the second case the statement < Vjc[S(x) => P(x)] > is not universal and is rather 
equivalent to only one statement of the form < P{a) > and the corresponding act of 
reasoning is analytic under the conditions of analyticity of the act of reasoning 
corresponding to such a statement. Finally in the third case, the act of reasoning 
corresponding to the statement < Vjc[S(jc) => P(jc)] > is analytic if the attribution 
of the property P to all the objects, which could be elements of the class connected 
to the concept S, is a consequence of nothing but the concepts of the properties S 
and P.

Still, a statement like < 3x [P(x)] > expresses an act of reasoning in my view, 
only if it is a logical consequence of a statement of the form < P(a) >, and such an 
act is analytic if and only if the act of reasoning expressed by this statement is 
analytic.

Here the term “consequence” has to be conceived in its general sense: the 
analyticity of an act of reasoning depends on the rules of inference that character
ize what a consequence of a certain linguistic characterization is. What is impor
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tant obviously is that these rules do not depend on the exhibition of the objects 
connected to the considered concepts.

An act of reasoning is grounded on an analysis of the objects to which it at
tributes properties or relations, and it is then synthetic, if such an attribution de
pends on the exhibition of these objects as such (that is: if it cannot be realized if 
such an exhibition is not realized). As any exhibition of an object asks for the 
possession of its concept, a subject which does not possess the concept of certain 
objects can certainly not realize a synthetic act of reasoning by attributing proper
ties or relations to these objects themselves. However, even though such a condi
tion is necessary, it is not sufficient.

Thus, the acts of reasoning expressed, respectively, by the statements < P(a) > 
and < R(b, c) > are synthetic if and only if the attribution of the property P and the 
relation R respectively to the object a and the objects b and c depends on the 
exhibition of these objects.

An act of reasoning expressed by a statement like < Vx[S(*) /*(*)] > could
then be synthetic only if such a statement is intended in one of the first two ways 
I just mentioned. In the first case it is synthetic if and only if one of the conjuncts 
of the statement of which it is an abbreviation is synthetic. In the second case it is 
synthetic if and only if the equivalent statement of the form < P(a) > is synthetic.

Finally, an act of reasoning expressed by a statement like < 3x [PC*)] > is 
synthetic if and only if such a statement is a logical consequence of a statement of 
the form < P(a) >, which expresses a synthetic act of reasoning.

In order to apply the previous definitions to particular acts of reasoning, we 
have to understand both what an act of exhibition of an object occurring in these 
acts could be, and how an attribution of properties or relations to such an object 
could depend on the exhibition of this object itself. As my sole aim is to justify 
thesis (T2), I may limit myself to the case of mathematical objects. Therefore, I 
have to explain what a mathematical object is; why it is pure; and how is it possi
ble to formulate a (synthetic) act of reasoning about it, by grounding on its exhibi
tion. This is now my task.

VII Naive Formalism and Conceptualism

There is a first and very radical objection to (T2) that we can formulate without 
having any idea of what a mathematical object could be. One could argue that the 
object-concept dichotomy does not provide suitable categories for speaking about 
a formal system, as modem mathematics ultimately is: in a formal system there 
are no concepts at all and if there are objects, they are only symbols (that is terms 
of a net of rules). Thus, even though (T2) is possibly right with respect to pre
modem mathematics, it is certainly wrong for modem mathematics.
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I think there is a deep misunderstanding in such an objection. Such a misun
derstanding has been denounced a number of times and it is not necessary here to 
insist on it. In my opinion, it consists in confusing (modem) mathematics as such 
with a certain collection of axiomatic systems intended as systems of sentences 
deduced by means of a number of explicit rules of inference starting from a number 
of axioms, which are in their turn simply intended as the starting point of deduc
tion. I believe this is just a confusion. Even if we accepted the idea that without 
axiomatic systems intended in this sense, there is no mathematics (which compels 
us to conclude that a great part of what has historically been and is nowadays 
indented as mathematics, is not mathematics), we should add that an axiomatic 
system, intended in such a way, is only a tool for mathematicians. Not only such a 
tool has to be constructed, and its construction has to be intended as an important 
part of the work of mathematicians (that is mathematics as an activity), but even 
when a mathematician disposes of it, he looks for deductions in it only in order to 
produce proofs of theorems. And theorems as such are not part of this system.

What is then a theorem? Let us take a very simple example. Even though we 
can exhibit a deductive path that starts from Peano’s axioms and usual definitions 
of Peano’s arithmetic and arrives at the sentence < 7 + 5 = 12 >, still the theorem 
a mathematician wants to prove by exhibiting such a path does not consist in such 
a sentence. It is rather expressed by the statement < the number ‘12’ is the result 
of addition of the number ‘7’ and the number ‘5’ >: the symbols “7”, “5” and “ 12” 
are not simply symbols introduced by the usual definitions; for a mathematician 
they are names of numbers.

Nevertheless, even if I was right on this point, (T2) could still be wrong. The 
statement < the number ‘12’ is the result of addition of the number ‘7 ’ and the 
number ‘5 ’ > could be interpreted as a statement of the form 
< V*[{7+5 }(*) => 12(x)] > or < V*Vy[({7+5 >(*)Al2(y) =* =(*, y)], attributing the 
property ‘(to be) 12’ to potential objects which could be elements of the class 
connected to the concept ‘7+5’ or the relation of equality to the potential objects 
which could be elements of the classes connected to the concepts ‘7+5’ and ‘12’, 
respectively. If this has been a correct analysis, and we intended such a statement 
as the expression of an act of reasoning in my sense, we should conclude, accord
ing to my definitions, that such an act is analytic. Thus one could accept all my 
definitions, agree with me that a mathematical statement is the expression of an 
act of reasoning and still aigue that (T2) is wrong.

A suitable framework for such a position is implicit in those philosophical 
conceptions with regard to mathematics that are generally arranged under the 
term “conceptualism”. According to such a point of view, a mathematical theory 
is nothing but a relational structure of concepts.

A new version of conceptualism has recently been proposed by L. Tharp (Tharp 
1989-1991). Tharp wants to avoid all problems of the referential view of mathe
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matics from the very beginning, by putting forward the idea that mathematical 
assertions should be regarded as expressing relations among concepts instead of 
among objects. Tharp explains the claims of his conceptualist position by a com
parison to fiction. As an illustration of the role of fiction in his argument, Tharp 
presents a very short story.

“The only people in our story are Gertrude and Hamlet. Gertrude is a queen. Hamlet is a prince, 
and Gertrude is Hamlet’s mother. [...] Given these two stipulations which constitute our story, 
various consequences follow from the meanings of the concepts ‘prince’, ‘queen’ and ‘mother’, 
and are evidently true-in-the-story: for example no princes are queens; Gertrude and Hamlet are 
distinct; Hamlet is not Gertrude’s mother. None of these conclusions follow logically from the 
given story, however. Also, the first conclusion doesn’t even use our stipulations. Although the 
stipulations are largely arbitrary, once they are fixed, the consequences of those stipulations are 
thereby fixed.” (ibid, part 1 ,168-169)

Now, according to the conceptualist point of view, the previous conclusions 
can be intended as expressing relations between concepts. These concepts do not 
subsume objects or relations between objects under them and thus it is not possi
ble to go away from them in order to get out any conclusion. So, the questions to 
which we can found an answer in the story are previously delimited. We cannot 
ask for instance, what color Hamlet’s eyes have or what his mother Gertrude 
weighs: Hamlet and Gertrude are not objects to which we have access.

This is Tharp’s position. But, if we want to refute (T2), after having accepted 
all my definitions, we are not compelled to accept this position. We could deny 
that there is something like a concept without objects and aigue that any concept, 
even if it is taken as a concept of a property or a relation, corresponds to actual or 
potential objects. We should simply state that all the concepts that occur in math
ematical acts of reasoning are concepts of properties or relations that do not corre
spond to objects that have already been exhibited, but only to potential objects that 
will never be exhibited in mathematics. I am not sure whereas this position is 
tenable, but since we can always retreat to Tharp’s more solid position, there is no 
need for me to criticize it as such.

In order to make my point clear, I will consider an example different from the 
“discursive” example of Tharp. I am taking it from an excellent forthcoming pa
per by R. Casati (Casati fc) where the author tries to “capture some of the intui
tions regarding absolute rest and motion”, as they work in Newton’s conception of 
space, by presenting an axiomatic system founded on two axioms:

(Aj) If x and y are at absolute rest, then x is at rest relatively to y 
(Vx, y[(R(x) a  R(y)) => R(x, y)]).

(A2) If x  is at absolute rest and y  moves, then x  moves relatively to y 
(Vx, y[(R(x) a  - n  R(y)) => ft(x, y)]).
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From these two very simple axioms and using usual rules of first order predi
cate calculus, Casati draws a number of “theorems” that describe Newton’s point 
of view.

Here, the variables x andy stand for bodies, but clearly this is not essential for 
the success of the deduction. In fact x and y could simply stand for any sort of 
potential objects that are or not R and are or are not between them in the relation 
R. Moreover, the deduction is also independent of the particular interpretation 
which Casati advances for the predicates R and R. This interpretation is only 
responsible for the fact that Casati’s axiomatic system captures or does not cap
ture the Newtonian conceptions. Really, (A,) and (A2) work simply as Carnap’s 
meaning postulates, fixing non-logical relations between certain predicates (Car
nap 1952).

Of course my point is not concerned with the analyticity or syntheticity of (A,) 
and (A2), since I am interested in the analyticity or syntheticity of acts of reason
ing and, if they are intended as meaning postulates, these statements do not ex
press acts of reasoning. They are merely stipulations. Moreover, if these stipulations 
are intended as explicit expressions of the relations that take place between the 
concepts of the property R and the relation R  the acts of reasoning expressed by 
the theorems deduced from (A() and (A2) are clearly analytic. If these stipulations 
are not intended in such a way, they have to be taken as arbitrary stipulations and 
so the theorems deduced from them are consequences of the new Casatian con
cepts of the property R and the relation f t  Once again the acts of reasoning ex
pressed by these theorems are then analytic.

My point should be clear now: if a mathematical theory is expressed by an 
axiomatic system like the previous one, no mathematical theorem can ever ex
press a synthetic act of reasoning and thus (T2) is certainly wrong. Hence, in order 
to justify (T2), I have to argue that a mathematical theory is not expressed by a 
system of axioms like the previous one. This is my thesis: in my view, a mathe
matical theory deals with actual pure objects and not only with concepts of prop
erties or relations.

VIII Madame Bovary as a Pure Object

According to my definitions, the notion of pure object is not problematic as such. 
We can exhibit a number of pure objects, such as Madame Bovary, the first mover, 
the concept of analyticity, the property ‘(to be) red’, or the number ‘3’. Each of 
them corresponds to a particular way of exhibition, which characterizes its specif
ic nature and which is different in each case. Of course I am not concerned here 
with these ways as such. My question is a different one: is it possible to ground 
ourself on a pure object as such (rather than on its concept) for realizing an act of 
reasoning?
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Let us first consider the example of a pure object, which is certainly not a 
mathematical object, like Madame Bovary. As the corresponding concept (intend
ed as a discursive characterization of such an object) let me take everything Flau
bert says about Madame Bovary in his novel. Are we able to derive from it, and 
from our background knowledge, some other knowledge about Madame Bovary? 
There are good reasons for answering “yes”, as well as “no”. I do not intend, here, 
to discuss these reasons. For my task, it is sufficient to remark that, even if we 
answer “yes”—by asserting, for example, according to Tharp, that in our back
ground knowledge the concepts occurring in the complex concept of Madame 
Bovaiy are connected to other concepts that do not occur directly in it (in such a 
way that we can surely conclude, for example, that Madame Bovary was not able 
to write with “Word 5” on a Macintosh PowerBook 145)—we have to maintain 
that there is no way for grounding our act of reasoning on Madame Bovary as an 
object. We can derive new knowledge only by considering the concept of Madame 
Bovary. As an object, Madame Bovary is a purely semantic entity: not only is it 
the correlate of its concept, but there is no way for having access to it that is not a 
way for having access to its concept.

You might think that this is the situation with every pure object: the act of 
exhibiting a pure object really consists in presenting its concept, and you might 
think that this makes it impossible to have a way of having access to it that is not 
a way for having access to its concept.

Let us consider this point. According to my definition, a pure object is a se
mantic entity. In a sense, such an object is only logically different from the corre
sponding concept: it is only an entity that has a different logical role than the 
concept. As the act of exhibiting it consists in presenting the concept, and as this 
presentation is nothing but a linguistic performance, a pure object could be in
tended as the reference of a linguistic term. The act of exhibition of the concept 
itself fixes such a reference, and a number of linguistic (and pragmatic) conven
tions makes a community of subjects able to recognize it as the meaning of the 
same term in different linguistic contexts. Thus, we have finally to conceive a 
pure object as the reference of this term, when it is used in certain contexts that a 
community of subjects is able to recognize.

Marco Santambrogio recently clarified the idea of a non-Fregean (that is non
distributive) notion of reference, and attached a very powerful theory of abstract 
objects to it (Santambrogio 1992). According to him, we can intend the reference 
of “certain parts of discourse” as “their contribution to the truth or falseness of the 
statements in which they appear” (ibid., 144). In this sense, the reference of the 
terms “Madame Bovary” or “triangle” in the statements < Madame Bovary killed 
herself by ingesting arsenic > or < the sum of the internal angles of a triangle is 
7i > is that which makes these statements true.
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Santambrogio’s idea enable us to formulate the problem in a new way: what 
makes the statements < Madame Bovary killed herself by ingesting arsenic > or 
< the sum of the internal angles of a the triangle is n > true? Certainly this is a 
pure object, but: how does this object make these two different statements true? 
My thesis is that the answer is different in the two cases.

When claiming, in the first case, that the statement < Madame Bovary killed 
herself by ingesting arsenic > is made true because of the object ‘Madame Bovary’ 
rather than because of its concept, we are saying merely that this statement is 
literally true only if it refers to the object ‘Madame Bovary’, rather than to its 
concept: it is really not the concept of Madame Bovary that killed itself in this or 
in another way; concepts do not kill themselves. However, it is true that Madame 
Bovary killed herself by ingesting arsenic only because this is said in the presen
tation of the concept of Madame Bovary and we know it only because we have 
read this presentation. In other words: here the object ‘Madame Bovary’, even 
though it is evoked by its proper name, works ultimately as an object that satisfies 
the property ‘(to be) Madame Bovary’, when such a property occurs in a meaning 
postulate like this:

(A3) Vjc[Madame-Bovary(;c) => killed-herself-by-ingesting-arsenic(jc)]

Thus, there is no way to realize a synthetic act of reasoning about Madame 
Bovary.

IX Euclidean Geometry

IX. 1 K ant, O nce A gain

Let us now consider the case of the triangle. Here is what Kant says about the 
proof of the Euclidean theorem on the internal angles of a triangle:

“Suppose a philosopher be given the concept of a triangle and he be left to find out, in his own 
way, what relation the sum of its angles bears to a right angle. He has nothing but the concept of a 
figure enclosed by three straight lines, and possessing three angles. However long he meditates on 
this concept, he will never produce anything new. He can analyze and clarify the concept of a 
straight line or of an angle or of the number three, but he can never arrive at any properties not 
already lied on30 these concepts. Now let the geometrician take up these questions. He at once 
begins by constructing a triangle. Since he knows that the sum of two right angles is exactly equal 
to the sum of all the adjacent angles which can be constructed from a single point on a straight line, 
he prolongs one side of his triangle and obtains two adjacent angles, which together are equal to 
two right angles. He then divides the external angle by drawing a line parallel to the opposite side 
of the triangle, and observes that he has thus obtained an external adjacent angle which is equal to 
the internal angle— and so on. In this fashion, through a chain of inferences guided throughout by 
intuition, he arrives at a fully evident and universally valid solution of the problem.” (Kant A, 
716-717; B, 744-745)
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If we read such a passage in the light of the previous non-Kantian notion of 
object, it seems to suggest that the Euclidean proof does not deal with the concept 
of triangle, but with the triangle as an object. Two reactions are quite natural in 
face of such a thesis. The first is typically philosophical and consists in asking, in 
a skeptic voice: “what is it, the triangle as an object?” The second consists in 
recognizing that classical procedures in elementary geometry, as that described by 
Kant, seem to be concerned with something essentially different from the logical 
rules of inference we use in performing analytic acts of reasoning started by meaning 
postulates.

Kant’s idea seems to be made clear in the following parts of the first section of 
chapter one of the Transcendental Doctrine o f Method (from which I have taken 
the previous quotation), where the notions of definition, axiom and proof are dis
cussed (ibid. A, 727-738; B, 755-766)). According to Kant, definitions are possi
ble only in mathematics:

“To d e f in e , as the word itself indicates, really only means to present the detailedly complete 
[a u sfu h r lich en ], concept of a thing [D in g ] originally [u rsp riin g lich ]21 within its limits [G re n z e n ].”
( ib id . A, 727; B, 755)

The definition is then made precise in a footnote:

“Detailed completeness22 means clarity [ K la r h e i t ]  and sufficiency of characteristics 
[Z u ld n g lic h k e it  d e r  M e r k m a le ]; by limits is meant the precision [P rd z is io n ]  shown in there not 
being more of these characteristics than belong to the detailed complete concept; by o r ig in a l  is 
meant that this determination of these limits is not derived from anything else, and therefore does 
not require any proof [B e w e is ]  ( ib id .)

Now, all this is possible only if the concept is “arbitrarily thought [willkurlich 
gedacht]” (ibid. A, 729; B, 757)23, but the presentation of a concept that is “arbi
trarily thought” is the definition of a “true object”, only if such a concept “con
tains an arbitrary synthesis that admits of a priori construction [welche a priori 
konstruiert werden kann]” (ibid. A, 729; B, 758), and this is possible only in 
mathematics.

Here Kant seems to come very close to the idea that mathematics deals with 
pure objects. This is what he writes next:

“[...] mathematics is the only science that has definitions. For the object which it thinks it exhibits 
[s te l l t ]  a  p r io r i  in intuition, and this object certainly cannot contain either more or less than the 
concept, since it is through the definition that the concept of the object is given— and given origi
nally, that is, without its being necessary to derive the definition from any other source.” ( i b i d  A, 
729-730; B, 757-758)

This passage seems to be quite unambiguous: if the object that “mathematics 
thinks” and “exhibits in intuition” was the particular empirical figure we trace on 
a sheet of paper or a blackboard when we repeat the Euclidean proof, Kant should
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certainly not say about it that it “cannot contain either more or less than the con
cept”.

Nevertheless, after this passage, Kant insists generically on the “construction 
of the concept”, rather than on the presence of a pure (mathematical) object. He 
distinguishes philosophy from mathematics by saying that the former is only able 
to “expose” or “explain” given concepts—by performing their definitions, analyt
ically—while the latter “constructs” concepts “originally framed”—and performs 
their definitions synthetically (ibid. A, 730; B, 758).

Of course, what Kant means by “exposition” is not a kind of description of 
something that is already given as such, and what he means by “construction” is 
not the act of providing it originally. If it was so, it would be very easy to reply that 
philosophy constructs its concepts too (where could it take them from, otherwise?) 
and even advances by constructing further and furher concepts, while mathemat
ics accepts its definitions and merely deduces theorems from them. However, Kant’s 
point is not to deny it. The “exposition of concepts” in Kant’s sense is perfectly 
compatible with their construction in the previous sense, just like their “construc
tion” in Kant’s sense is compatible with their exposition in the previous sense. 
What is important for Kant is that no philosophical construction (in the previous 
non-Kantian sense) can produce anything but concepts: it is, and it cannot be 
anything but an exposition of concepts (even though these concepts are new). 
What is exhibited in such a construction is nothing but concepts, and thus such a 
construction is nothing but an “exposition of concepts”. Mathematical definitions 
in contrast exhibit objects, and not merely concepts. Thus, for Kant, the construc
tion of concept is just the access to the object, as in the seventeenth century the 
construction of equations was just the exhibition of the mathematical object ex
pressed by its roots (Bos 1984). This point seems to be made clearly by Kant, not 
only in the previous passage, but also in his discussion of axioms and proofs in 
mathematics:

“Mathematics [...] can have axioms, since by means of the construction [K o n s tru k tio n ] of con
cepts in the intuition of the object it can combine the predicates of the object both a  p r io r i  and 
immediately [...] .” ( ib id . A, 732; B, 760)

“ [...] mathematics can consider the universal in  c o n c r e to  [d a s  A llg e m e in e  in  c o n c re to ]  (in the 
singular24 intuition) and yet at the same time through pure a  p r io r i  representation [...] [it realizes] 
d e m o n s tr a t io n s  [D e m o n s tr a t io n e n ], which, as the term itself indicates, proceed in and through 
the intuition of the object.” ( ib id . A, 734-735; B, 762-763)

However, there is no way, in Kant’s framework, for making the idea of an 
object that could be just the object of a mathematical concept (as the concept of 
triangle) clear and acceptable. This object should be pure, and there is no room for 
pure objects in Kant’s framework. Thus, Kant alternates passages like the the 
previous one and others much more ambiguous, such as this one:
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“Mathematics alone, therefore, contains demonstrations, since it derives its knowledge not from 
concepts but from the construction of them, that is, from intuition, which can be given a priori in 
accordance with the concepts.” (ibid. A, 734; B, 762)

Therefore, the only interpretation of the remarks contained in the first section 
of chapter one of the Transcendental Doctrine o f Method which seems to be con
sistent with Kant’s philosophy, is the one I have already given in the previous 
paragraph III.2.: intuition is pure, but objects are not. Pure intuition assures us 
that usual empirical objects which are manifest in particular pure forms are con- 
structible and that we are able to operate on them in such a way that all the conclu
sions we draw from such an operation are also true for pure forms. Thus the 
triangle that the mathematician constructs is a particular empirical figure, but the 
conclusions he draws by operating on it, as in the Euclidean proof, are about the 
triangle as pure form, which is not really an object.

The distinction between pure forms and objects is quite impossible to clarify. 
However, the problem is not solved simply by eliminating such a distinction. Even 
though we consider pure forms as genuine objects, the situation does not change 
essentially: if the Euclidean proof deals with a particular empirical object—as in 
the previous reconstruction of Kant’s argument—it can be a proof of a geometri
cal theorem only if it stays constantly under the control of the concept. But if this 
is so, the guarantee of the theorem comes just from the concept, and thus such a 
theorem expresses an analytical act of reasoning, in my sense.

IX.2 E uclid’s Proof of The Theorem on Internal A ngles of a Triangle

My point should now be clear: in my view, the Euclidean proof uses an empirical 
figure, but does not deal essentially with it. Such a figure is nothing but a partic
ular notation (an icon, as Peirce says (Peirce 1885, 163)25) for the real object of 
such a proof, that is just the triangle. Like any object, the triangle is particular, but 
it can be represented by an infinite class of empirical figures. Even though these 
figures work in any reformulation of the Euclidean proof as a very particular 
notation, which expresses directly some properties of the triangle itself, this proof 
runs by applying a number of constructive procedures chosen in a certain domain 
of permitted procedures to such a notation.

To understand this point, let us reconstruct the Euclidean proof from the very 
beginning.

Euclid imagines we know what a (finite) straight line is and takes straight 
lines as elementary objects. He represents them by empirical lines that have two 
essential properties: they are continuous lines (property of continuity) and they 
are open lines that separate a region of the surface on which they are traced into 
two parts we can distinguish (property of separation). These properties are not 
expounded or defined by Euclid: they are simply two manifest properties of em
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pirical lines we use as notations of straight lines. But they are also the only two 
properties of these lines that occur as such in the proof of any theorem of Euclid’s 
geometry.

In order to assure such a starting point of his geometry, Euclid certainly has to 
make an appeal to a certain capacity of his readers: this capacity could be de
scribed in my terms as possessing a certain concept. This concept has a very 
particular nature: it is the concept of a pure object—that is just a straight line— 
rather than the concept of a property, but it can be used for introducing an open 
domain of pure objects. These objects are not—as it is the case with every concept 
of a property—different objects corresponding to different concepts; they are dif
ferent objects corresponding to the same concept, which is the concept of an ob
ject. Simply, these objects are introduced and considered, one after the other, in 
different positions: a straight line differs from another only by its position. But 
position is a relative property and it is not possible to characterize the positions of 
two different straight lines, if we do not intend them as different straight lines 
beforehand.

Thus, two straight lines are not the objects of two different concepts we ar
range in the same class, according to a concept of a property. They are two differ
ent objects corresponding to the same concept of an object. But, as these objects 
are treated in geometry exactly in the same way, they also can be intended as two 
different manifestations of the same object, too. They merely differ according to 
an original subjective capacity of differentiation, the capacity which enables us to 
distinguish different positions in spatio-temporal order. If we generally consider 
the modalities according to which we can operate on it, we have to speak about a 
straight line as only one object; if we pass to another level and we consider differ
ent applications of certain procedures consistent which these modalities, we have 
to speak about straight lines as different objects.

If I am right, a straight line is an object exhibited according to a quite complex 
strategy, appealing to different subjective capacities. However, such an exhibition 
is not completed since the operative procedures according to which we can oper
ate on a straight line (or on straight lines) are not fixed. This is the task of the 
Euclidean postulates. These postulates are certainly not simple sentences working 
as starting points of a deductive game. They are constructive clauses (cf. the paper 
of Maenpaa in the present volume, who particularly insists on this point) that 
teach how to compose straight lines, in order to construct non-elementary objects 
starting from these. First, these objects are constructed, and then they are ana
lyzed just like the objects which are constructed as they are, starting by straight 
lines.

Now, imagine that three straight lines are given. This means that three empir
ical lines are traced on a certain surface. If the third of these lines is long enough, 
relatively to the others, by applying the theorems 1.2 of the Elements, we can
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construct the triangle that has these straight lines as its sides, and trace a corre
sponding figure on the same surface. Then, by applying the theorem 1.27, we can 
construct a straight line parallel to one of the sides of the triangle, passing through 
the opposite vertex. Furthermore, by applying the second postulate, we can pro
long all the sides. If we trace on our surface the lines corresponding to these 
constructions, we have a new figure. According to the property of separation for 
empirical straight lines, we can now recognize three angles on the same straight 
line. By applying the theorem 1.29 to the angles formed by a transversal on two 
parallel straight lines, we can finally prove the theorem.

It is clear that the triangle and the angles we have considered here are the 
triangle and the angles that have been constructed, according to the previous pro
cedure, starting with the three given straight lines. Thus, they are, like straight 
lines, pure objects.

As an object, the triangle is exhibited in Euclidean geometry when their mo
dalities of construction starting with straight lines are given, according to the 
possibilities admitted by the postulates and the properties of continuity and sepa
ration of empirical lines. Such an exhibition is in a sense a presentation of a 
complex concept—that is not the naive and original concept of triangle, as a typ
ical form of empirical objects, but a “mathematical” translation of it. But once this 
concept has been exhibited in such a way, it does not operate as such in the Eucli
dean proof; it does not control anything. The proof is properly the result of an 
analysis of the triangle as an object, that is an account of the properties of it, 
according to: its particular way of construction; the constructive clauses expressed 
by the postulates; the properties of continuity and separation of empirical lines; 
the subjective capacity of multiplication of pure objects in space and time.

X Arithmetical Proofs

If my analysis of the Euclidean proof of the theorem on the internal angles of a 
triangle is correct, such a theorem expresses, in the Euclidean framework, a syn
thetic act of reasoning, according to (D4). The specification “in the Euclidean 
framework” is essential, since the same theorem could be stated as a consequence 
of a suitable class of meaning postulates. In this case, it would express an analyt
ical act of reasoning. Thus, in order to justify (T2) I now have to aigue that the 
Euclidean framework is a typical framework of mathematical acts of reasoning.

The first step in the argument should obviously consist in stating that the 
situation of the previous theorem is common to every theorem of Euclidean geom
etry. Since I cannot present a general account of Euclidean geometry here, I am 
compelled to take for granted that this is the case. I will simply try to argue that 
the situation I have just described is not typical—with respect to its structural

MATHEMATICAL ACTS OF REASONING AS SYNTHETIC A PRIORI 313

characters—of such a mathematical theory, but it is general for mathematics as 
such, that is for classical, as well as for modem mathematics.

With the term “structural characters”, I refer of course to the relations between 
concepts and objects, independent of their particular nature. My point is this: 
what you make when you conduct a geometrical proof, as the one we have just 
considered, is not to compare at every step the empirical figure in front of you— 
the notations of geometrical objects you are dealing with—to your concepts of 
these objects; simply, you apply with respect to certain figures—which you know 
to be good notations for these objects—certain standard procedures, you know as 
being permitted in the context of your theory. Thus, if the concepts of the geomet
rical objects occur, they occur not in the proof as such, but in an original stage, 
when the question is that of fixing notations (and identity criteria for them) and 
legitimate procedures. But if you know that the notations you are using are good 
notations, and the procedures are accepted, the concept does not occur as such.

Thus, if I am right, the structure of the a Euclidean proof could be described as 
follows. First, we have a certain number of original and naive concepts of proper
ties, the concepts of spatial forms of extended objects. We associate such concepts 
with certain empirical figures we learn to reproduce according to certain relations 
of equivalence. Then, we introduce a number of procedures to transform our fig
ures, and we fix certain rules that allow us to draw certain conclusions from cer
tain figures (by considering the path we have pursued to attain them). Finally we 
apply these procedures and rules to our figures and we draw our theorems.

Of course, this is not, as such, the structure of every mathematical proof. There 
is something here that is typical of classical geometry—that is geometry in its 
original and proper sense. I obviously refer to the empirical figures or notations, 
which are not merely conventional or uninvolved symbols, but occur as such in 
the proof itself as bearers of certain properties—the properties of continuity and 
separation—that are also essential properties of the mathematical objects. Even 
though such a circumstance seems to entail a more natural development of math
ematical acts of reasoning, it obscures its essential character. Empirical figures 
are essential tools of a geometrical proof, since a geometrical object is essentially 
a pure object represented by them (certainly it is quite possible to translate a geo
metrical proof into a purely linguistic deduction, but the result of this translation 
is not really a geometrical theory, but only a representation of it), but they are not 
essential tools of a mathematical proof as such.

X.l < 7 + 5 = 12 >

However, the essential occurrence of empirical figures or notations within a math
ematical proof, as bearers of certain properties of mathematical objects is not, as 
such, proper only to classical geometry. Let us consider another example drawn
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from classical or constructive arithmetic, which once again is a Kantian example. 
Here is what Kant writes in section V of the introduction to the second edition of 
the Critique o f Pure Reason.

“We might, indeed, at first suppose that the proposition 7+5 -  12 is a merely analytic proposi
tion, and follows by the principle of contradiction from the concept of a sum of 7 and 5. But if we 
look more closely we find that the concept of the sum of 7 and 5 contains nothing save the union 
of the two numbers into one, and in this no thought is being taken as to what that single number 
may be which combines both. The concept of 12 is by no means already thought in merely think
ing the union of 7 and 5, and I may analyze my concept of such a possible sum as long as I please, 
still I shall never find the 12 in it. We have to go outside these concepts, and call in the aid of the 
intuition which corresponds to one of them, our five fingers, for instance, or, as Segner does in his 
Arithmetic, five points, adding to the concept of 7, unit by unit, the five given in intuition. For 
starting with the number 7, and for the concept of 5 calling in the aid of the fingers of my hand as 
intuition, I now add one by one to the number 7 the units which I previously took together to form 
the number 5, and with the aid of that figure [the hand] see the number 12 come into being. That 
5 should be added to 7 ,1 have indeed already thought in the concept of a sum -  7+5, but not that 
thus sum is equivalent to the number 12. Arithmetical propositions are therefore always synthetic.
This is still more evident if we take larger numbers. For it is then obvious that, however we might 
turn and twist our concepts, we could never, by the mere analysis of them, and without the aid of 
intuition, discover what is the sum.” (Kant B, 15)

If we analyze the proof described by Kant, as we have done in the case of the 
Euclidean proof of the theorem on the sum of internal angles of a triangle, we find 
the following structure. First we have an original and naive concept of number, as 
a property of any collection of distinct objects: two collections have the same 
number, if and only if, we can alternatively eliminate or mark their objects one 
after the other, and finish our work at the same time (or stage). By using this 
concept, we arrange all the collections of objects we are considering into different 
classes in such a way that all collections which belong to the same class have the 
same number. Then, we associate each class of collections we have just formed 
with a collection of conventional symbols that has the same number as all the 
collections which belong to such a class. Finally, we fix some procedures for oper
ating on the collections of symbols that have been formed by respecting this con
dition: all we could do with these collections of symbols, according to these 
procedures, has to be repeatable when any collection of symbols has been replaced 
by any other collection with the same number. In other words: we determine these 
procedures so that they are completely independent of the choice of symbols. Par
ticularly: i) we order our collections of symbols in such a way that we can 
move from each of them to the following one by adding only one symbol, we 
associate to any collection a conventional name and we order all the names, ac
cording to the order of the respective collections; ii) we define an operation of 
composition of two collections of symbols, so that the result of such a composition 
is exactly the collection of symbols that is formed by putting together the two 
collections we are composing, and we extend such an operation to the names of
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our collections. In this way the names ‘7’ and ‘5’ are associated with two collec
tions of symbols, the composition of which gives just the collection of symbols 
associated to the name ‘12’.

We can decide that these names are the names of the collections of symbols 
themselves, of the classes of collections with which these collections of symbols 
are associated, or of the forms of these collections. This is not important. What is 
important is that in this way we have proven the statement < 7 + 5 -  12 >, by 
operating—as in the case of a geometrical Euclidean proof—on suitable empiri
cal figures, or notations (the collections of symbols), according to certain proce
dures. The numbers, intended as objects, are just the objects that are represented 
by these notations. They are exhibited when the modalities of construction of the 
corresponding collections are given and the procedures for operating on these 
collections are fixed. Once again, such an exhibition is, in a sense, a presentation 
of the concepts of numbers, but these concepts do not occur as such in the proof of 
our theorem. This proof has the same structure as every proof in Euclidean classi
cal geometry: according to (D^, the theorem <7 + 5 « 1 2 >  expresses a synthetic 
act of reasoning.

X.2 Peano’s A rithmetic

If I am right, I have given two arguments for the claim that the two classical 
Kantian examples of mathematical synthetic a priori judgments express, in their 
natural mathematical framework, synthetic acts of reasoning. However, these are 
not arguments in favor of (T2) yet. The objection one could advance is very tradi
tional: even though the previous arguments are correct, they prove nothing but the 
syntheticity of acts of reasoning proper to classical mathematics, that is Euclidean 
classical geometry and elementary constructive arithmetic; but these theories are 
essentially pre-modem mathematical theories and their structural characteristics— 
particularly the ones I have considered in the previous arguments—are not struc
tural characteristics of modem mathematical theories. Obviously, I think this is 
wrong. I now have to justify my view.

I have spoken about the mathematical concepts of triangle and of different 
numbers, but a doubt could arise. We can provide many different characteriza
tions both of the triangle and of number 3. We can say, for example, that a triangle 
is a region of the plane confined by three non-parallel straight lines, or that it is 
the region of space that is common to three angles placed in such a manner that 
every side of one of them is also a side of one (and only one) of the two others. In 
analogy, we may say that the number 3 is the first odd prime number (if 1 is not 
prime or not odd), or the only divisor of 9 other than 1 and 9 itself, or that it is the 
result of the addition of 2 to 1. All of these definitions characterize the triangle 
and the number 3 as the only objects that satisfy certain conditions, that is: as the
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only members of the classes associated to certain concepts of properties. But, how 
can we say that these classes contain the same objects?

Let us imagine that a new novelist writes a modem version of Madame Bova
ry, where Madame Bovary does not kill herself by ingesting arsenic, but by eating 
poisonous mushrooms. It seems very natural to me to think that we are faced with 
a new concept of Madame Bovary, and consequently that the new novelist has 
exhibited a new object, which bears the same name as Flaubert’s personage, but is 
not the same person. Yet, this is clearly not the case with mathematical objects. 
Even though they are exhibited by means of presenting different concepts, they 
are not different objects. But, how is this possible if a mathematical object is a 
pure object?

The answer is not simply that the different concepts of properties we might use 
for characterizing a mathematical object are equivalent, since this is exactly what 
we have to explain: how can they be equivalent? It is neither that we dispose of a 
suitable class of meaning postulates, since these postulates do not take part, as 
such, in a mathematical theory, and are, at most, a way of expressing the equiva
lence of different concepts, rather than to guarantee this equivalence.

The different concepts of properties to be used for characterizing a mathemat
ical object are equivalent because their corresponding classes contain only one 
object that is always the same. And this object is not the object of these concepts, 
since these concepts are just concepts of properties, rather than concepts of ob
jects. This object corresponds to another concept: the triangle is the geometrical 
object that is constructed in a certain way starting with straight lines, according to 
Euclidean constructive clauses; the number 3 is the number represented by the 
collection of symbols that is constructed in a certain way, starting with only one 
symbol. Thus, the other concepts I have just presented are equivalent because we 
can prove in Euclidean classical geometry and in elementary constructive arith
metic that the classes corresponding to these concepts are just composed by the 
triangle and the number three.

This simple remark clarifies what the essentially structural character of a math
ematical theory is: it is just the disposability of a suitable class of concepts of 
objects that works essentially as such, rather than as concepts of properties. The 
examples of classical Euclidean geometry and elementary constructive arithmetic 
show two different modalities for satisfying such a condition. These modalities 
have an important aspect in common: they are constructive ways grounded on an 
original cognitive capacity, that is the capacity to fix the elementary objects of 
constructions—straight line and unity—and to multiply them in space and time. 
But other, non-constructive modalities are possible.

Using Salanskis’ terminology (Salanskis 1995), I oppose these constructive 
modalities to “correlative” ways. According to a constructive modality, a mathe
matical object is exhibited when the way for constructing it is exhibited and the

MATHEMATICAL ACTS OF REASONING AS SYNTHETIC A PRIORI 317

procedures for operating on it are fixed. According to a correlative modality, a 
domain—generally a set—of mathematical objects is exhibited when the condi
tions that such a class has to satisfy as such are expounded and the criterion for 
distinguishing—if necessary—the different objects of such a domain have been 
given. For example, this is the case of Peano’s arithmetic.

Let us also consider such an example. In Peano’s arithmetic we assume that 
we know what a class is and—by means of Peano’s axioms—we fix the conditions 
that a class has to respect in order to be a progression. These conditions refer to 
the members of the class itself, so that we have to assume too that we can consider 
these members separately, as different objects, even though we characterize all of 
them simply as members of a certain class. Thus, we make an appeal, once again, 
to our original capacity to multiply a certain object—the member of a certain 
class—in space and time.

The first axiom tells us that it has to be possible to take one element of the 
class, to nominate it—let us say by the name ‘a ’—and to evoke it, and only it, by 
means of this name, in any circumstance. Thus a class is a progression only if it 
has at least a member. The second axiom tell us that any member x  of the class is 
associated with another (and only an other) one xr by means of a certain monadic 
operator r , that need not to be characterized ulteriorely, even though we have to 
assume that, for every member jc of the class, we can individuate the member xr 
associated to it by r . As this axiom does not specify that xr and x  are distinct 
objects, every singleton could satisfy the first two Peano’s axioms. The third axi
om tells us that the member a of the class is associated to no other member by the 
operator T. Thus our class could not be a singleton, but it could be, for example, a 
couple {a, a r >, if (ar)r is a r itself. The fourth axiom tells us that the member of 
the class which is associated by T with a certain member x  cannot be associated 
with another member y of the class, distinct from x. Hence, the class must be 
infinite and must be almost a starting point with respect to T. But it is possible 
that it was composed by different T-chains (one of which starts with a) independ
ent of each other. Finally the fifth axiom tells us that this cannot be the case, since 
any property of a  (for example the property of participating in the T-chain starting 
with a)—that, if it is a property of a member x  of the class, then is also a property 
of xr—is a property of every member of the class.

Once these axioms are given, we can assume that a class N is a progression, 
that is: i) we use the concept of property ‘(to be) a progression’, or ‘to respect the 
Peano’s axioms for exhibiting an open class of classes (the class of progressions), 
by assuming that classes are, as such, already given objects; ii) we assume that 
such a class is not empty (for example, by asserting that we are able to exhibit a 
progression, as we have just done for the domain of numbers in elementary con
structive arithmetic); iii) we assume we are able to choose a member of this class, 
to give a name to it and and to evoke it, and only it, by means of this name, in any
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circumstance. If N is a progression, we can pick out one of its member, which is a. 
We take this member and we rename it “zero” (“0”) then we rename the element

of N “one” (“1”), and so on.
Up to now, we have used a concept of property and applied it to the class of 

classes in order to pick out the progressions. Then we have assumed that we can 
take one and only one progression, that is just N. The concept of N is thus a 
concept of an object, since, in order to be N, a class has not only to be a progres
sion, but also has to be the progression we have chosen. It is not important that we 
are able to distinguish N from any other progression (certainly, we are not able do 
to it). What is important is that we take the concept of N as a concept of object: the 
progression we have chosen as the progression of natural numbers. Once we have 
done it, the concepts of the different members of N work also as concepts of ob
jects (rather than as concepts of properties), because the concept of the member a 
of a progression is used as a concept of an object (rather than a concept of a 
property). Thus, we are in front of an infinite set of objects, which are just Peano’s 
numbers.

To prove the theorem < 7 + 5 = 12 >, we now have to introduce the operation 
of sum to the members of the progression N. For that we state that for every three 
members x, y and z of N: /) +(*, 0) =df x; ii) +(*, 1) «df;cr; Hi) +[*, +(y, z)] 
- df +[+(*, y), z)]; iv) +(*, y) - df +(y, x)\ where “v -  p” means: “v and p are two 
notations or names for the same member of N”. Once we have done this, we can 
prove the theorem in the classical Leibnitzian way. However, if I am right, the 
conducting of such a proof, is an argument for the syntheticity of the act of reason
ing expressed by this theorem, rather than from its analyticity. If the mathemati
cal concepts of the numbers 5,7 and 12 are certainly responsible for the exhibition 
of these objects, they do not work as such in the proof; rather this proof deals with 
their objects.

XI Concepts of Objects, Concepts of Properties: the Essential Character 
of Mathematics

The previous three examples should clarify the essential character of mathemati
cal acts of reasoning, which turns them into synthetic acts of reasoning, according 
to (D^. Mathematical objects are not only pure, but they are also exhibited by a 
very complex act of presenting their concepts. These concepts are generally con
structed with the aim of providing a suitable translation of other concepts. Such a 
translation is successful when we are able to imagine a deductive structure apply
ing to the names or notations of different objects we have introduced, first by 
multiplying a pure object in space and time, and second by individualizing some 
of the distinct objects we have created in such a way by a simple act of nomina
tion. Because of the deductive structure and the particular nature of the act of
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multiplication, all the objects arising from this sort of act are submitted to the 
same procedures and correspond to the same concept. Thus, such a concept is in a 
sense the concept of only one object, let us say a. It is only by a new act of individ
ualization that we can change our level of analysis and pass to consider distinct 
o’s, each of them now being characterized in a particular and suitable way, and 
submitted as such to the fixed procedures. As the concepts of these objects are not 
only presentations of the distinctive character of such objects, but integrate both, 
the act of multiplication in space and time and the act of fixing the possible proce
dures that can be applied to the objects themselves, they give, in a sense, an auton
omous life to their objects, by enabling us to consider them as such. It is just this 
act of consideration of mathematical objects as such that is typical of mathemati
cal acts of reasoning and makes them synthetic acts of reasoning.

Thus, a mathematical act of reasoning is only possible according to an inten
tional act which consists in treating a concept that fixes a certain character as a 
concept of an object, rather than as a concept of a property. Usually, the distinction 
between a concept of an object and a concept of a property is conceived as the 
logic correlate of a metaphysical difference between individual substances and 
their attributes. In contrast, I think that such a difference lies merely in the inten
tional use of concepts. If our concept of chair is such that to be a chair (or better 
the chair) means to be a particular object and not to enjoy a particular property 
referred to a certain class of specified objects, then we have to accept the idea that 
the chair (and not this or that chair) is an object, a pure object, of course.

Some argue that an object of this sort—like the triangle, or the natural number— 
is a universal object. However, I cannot understand what a universal object could 
be, since for me an object is essentially an individual entity. Nevertheless, this 
does not mean that for me an object is a certain determined substance, but merely 
that its exhibition (or evocation) exhausts certain exigencies of individuation that 
a subject could advance: it is possible to treat the pseudo-properties ‘(to be) a ' as 
a “final characterization” with respect to a certain domain of other properties. 
Thus a concept of an object is nothing but a final characterization, working with 
respect to certain exigencies of individuation26.

As the exigencies of individuation could be very different from one another, 
the same characterization could work in different context either as a concept of an 
object (that is a final characterization), or as a concept of a property. This is true 
for any sort of pure objects. The chair, as an object, is nothing but a particular kind 
of drawing-room suite: here, the concept of a drawing-room suite is a concept of a 
property, while the concept of the chair is a concept of an object; likewise the 
triangle, as an object, is nothing but a particular geometrical figure, a particular 
polygon: here the concept of triangle is a concept of an object, while the concept of 
polygon is a concept of a property. However, the same characterization that pro
vides the concept of the chair can be taken to express a property, and, in such a
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sense, it can be specified: we could have, for example, the Louis XIV chair, or the 
Louis XIV chair conserved in Versailles, and so on. Analogously for triangles: we 
could have the isosceles triangle, the isosceles triangle associated with a certain 
construction, and so on.

Thus, in order to have a domain of objects, we need not individuate a particu
lar substance or a particular content of thought that is intrinsically individual. We 
simply have to fix the final stage of an exigency of individuation. This is exactly 
what we do when we expound a mathematical theory as a theory of a certain 
domain of objects. Hence, that a certain concept is a concept of an object a does 
not mean that we cannot imagine, and even exhibit a number of different a ’s. If 
we do that, we are simply changing our exigencies of individuation, and we are 
passing to a theory of a strictly different domain of objects.

Since the different exigencies of individuation can often be hierarchically or
dered, it is then possible to organize the respective theories, with originally strict
ly different domains of objects, such that they form only one general theory, the 
objectual domains of which is hierarchically structured. This is the case with clas
sical Euclidean geometry. Thus, certain concepts of mathematical objects of such 
a general theory can be specified ulteriorly, when a new exigency of individuation 
is advanced. However, as these concepts are just concepts of objects, they charac
terize individual entities on which it is possible to operate according to fixed 
procedures. I think that it is just this essential character of a mathematical theory 
that makes it possible, in mathematics, to operate—as Kant said—on the univer
sal in concreto.

Moreover, this is also the condition of possibility of analysis as a mathematical 
method.

Imagine that a mathematical problem asks for the individuation of one or 
more a ’s which satisfy certain conditions. If these conditions characterize one or 
more a ’s which are still unknown (they do not provide a presentation of the con
cepts of these objects, but only a presentation of the concept of a property or a 
relation that they have to satisfy), we can use a suitable notation for expressing 
these objects and operate on it with respect both to the fixed procedures that apply 
on the object a and to the conditions which the objects we are looking for have to 
satisfy.

A very simple case is the following. We are looking for two complex numbers 
the sum and the product of which are cp and \\r, respectively (where “<p” and ‘V ’ are 
names or notations of two objects given as such, two natural numbers). Thus we 
can express these two numbers by the symbols “ j c ”  and “y” and operate on them as 
if they were common complex numbers. Here, “ j c ”  and “ y ”  are the names of two 
potential objects that satisfy two different, even though reciprocal, properties: for 
x, the property ‘to produce cp and \y, respectively, when it is added and multiplied 
to y’ and, for y, the property ‘to produce cp and \|r, respectively, when it is added
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and multiplied to j c ’ .  Thus the concepts of j c  and y work as concepts of properties 
here. However, as the objects that satisfy these properties are certainly complex 
numbers, we can treat j c  and y as names of specified complex numbers, operate on 
them according to the algebraic procedures and solve the problem by exhibiting 
two couples of complex numbers, let us say, c, and c2 and dl and d2 (which are the 
objects of suitable concepts of objects) which satisfy the condition of the problem.

In my terminology (Panza fc), j c  and y are “conditional objects”, while c,, c2, 
dl and d2 are “proper objects”. This terminology allows us to reformulate the 
classical Pappus’ distinction between analysis and synthesis (as mathematical meth
ods or procedures) in the following terms: analysis consists in operating on condi
tional objects as if they were proper objects, in order to determinate the proper 
objects that satisfy a given condition; synthesis is just the act of exhibiting or 
determinating these objects.

XII Concluding Remarks

If I am right, my notion of mathematical objects as pure objects not only provides 
a reformulation of the Kantian distinction between analytic and synthetic judg
ments, as a distinction between analytic and synthetic acts of reasoning, accord
ing to which mathematical acts of reasoning are just synthetic, but it also provides 
a reformulation of Pappus’s distinction between analysis and synthesis and makes 
these two classical distinctions not so extraneous to each other, as it has been 
usually argued: while both “analysis” and “analytic” refer to our activity on con
cepts, “synthesis” and “synthetic” refers to our activity on objects. In such a way, 
the connections between the general question of analysis and synthesis in mathe
matical knowledge and the classical controversy on Platonism (Panza and Salan- 
skis 1995) also become clear.

It seems to me that such a result is important from a historical point of view, as 
well. Even though my starting point is essentially a non-Kantian one, my inter
pretation of Kant’s distinction fits very well with some crucial aspects of Kant’s 
interpretation of mathematics.

Firstly, the distinction between “analytic” and “synthetic” bears, in my view, 
neither on the logical internal form of statements nor on their relations to other 
statements, nor does it apply to statements as such. Rather, it refers to the logical 
nature of the act that a statement expresses. It seems to me that, despite the crite
rion presented by Kant in his Introduction to the second edition of the Critique o f 
Pure Reason, this is also the case with Kant’s distinction itself.

Secondly, in my understanding, an act of reasoning is synthetic because it is 
grounded on the analysis of the objects to which it is attributing properties or 
relations, rather than on their concepts. Even though the Kantian thesis asserting 
the syntheticity of mathematical judgments has frequently been defended by refer
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ring to a mentalist conception of intuition—a sort of intellectual light that should 
originate mathematical principles, axioms or proofs—it seems to me that for Kant 
a judgment (or better a statement) is synthetic if intuition occurs in its justifica
tion, as a modality or even a guarantee of the actual or possible presentation of an 
object. According to Kant, work on concepts is, in fact, a mark of analyticity, 
rather than syntheticity. It is only by going away from our concepts, and further 
away from our mental contents, that we can formulate a synthetic judgment.

Thirdly, my argument for the syntheticity of mathematical acts of reasoning 
links such a thesis to Kant’s thesis, according to which “mathematics can consid
er the universal in concrete”. Both this thesis and the other one, which asserts the 
syntheticity of mathematical knowledge, or judgments, are parts of the hard core 
of Kant’s philosophy of mathematics. Nevertheless, Kant’s interpreters frequently 
fail in showing the link between them. If the second of these theses is reformulat
ed in the manner I have suggested, this link becomes evident.

Still, these three remarks do not eliminate the major differences between my 
conceptions and those of Kant. I think that these differences are reducible to a 
fundamental one that I would like to expound, as clearly as possible, at the end of 
my paper. According to Kant, the distinction between empirical and pure con
cepts is a primitive one, and it is not ulteriorly explicable. Nevertheless, Kant 
seems to reason as if empirical intuition could be “prolonged” in the pure one, by 
providing a guarantee of a priori knowledge as a sort of “potentially empirical” or 
“pre-empirical” knowledge. In such a way, pure intuition has a task to fulfill: it 
has to found the possibility of a posteriori knowledge, by guaranteeing the empir
ical content of a priori knowledge. Particularly, mathematical knowledge is for 
Kant about the general forms of (empirical) objects, such forms being just the 
forms that these objects have as such, the forms in which they present themselves 
to the empirical intuition. A subject, according to him, has intuition of objects 
only as contents that fill up general pure forms, and the possibility of prolonging 
empirical intuition in the pure one is nothing but a way to come back to the 
transcendental origins of empirical intuition itself. Thus, pure intuition often has 
to work as a criterion of constructibility of mathematical concepts, or of the real 
possibility of them (Kant A, 220-221; B, 267-268, for example), and it can realize 
its task only by imposing on these concepts the limits characterizing our empirical 
intuition. In such a way, mathematics has to respect, as such, certain conditions, 
or it has to be kept within certain limits, which cannot merely be the limits of 
thought, and cannot be found other than in the characters of subjective evidence27.

Such a war-machine is founded on a deep and essential confusion. If objects 
are filling up general pure forms, it is not possible to refer to them, or their form, 
in order to distinguish constructible from not constructible concepts. I do not 
know if this confusion (which is nothing but a circularity) can be avoided when 
we want to realize the double program of Kant: to found the possibility of a poste
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riori knowledge on the availability of mathematical knowledge and to found math
ematical knowledge as such on the conditions of the possibility of a posteriori 
knowledge. I do not know it and I am not interested in it. In my view a philosophy 
of knowledge has to found nothing: neither the possibility of empirical knowl
edge, nor mathematics as such. It only has to provide the hermeneutic tools for 
understanding knowledge as it is, as it has been historically realized by individu
als. When I speak about subject, I do not refer, as Kant does, to a transcendental, 
universal or typical subject. I refer to individual subjects, just like us, I look for a 
characterization of our cognitive acts, I try to distinguish them among the totality 
of our acts according to a formal criterion, and finally I aim to describe and under
stand what sorts of subjective abilities are employed in our cognitive activity.

Thus the task of a philosophy of mathematics is, for me, that of providing 
valuable categories for characterizing and understanding mathematics, as a typi
cal human activity, and not that of founding its legitimacy on an irrefutable guar
antee—even though to understand a mathematical theory is also to come back to 
its origins and to make clear (and eventually discuss) its reasons. Here, I have 
suggested that mathematics is both the activity of constituting pure objects on 
which synthetic acts of reasoning are possible and to realize these acts. Even 
though it is not only a formal deductive game, it is both the activity of construct
ing pure objects, according to a certain aim—so that a (quasi-) formal game could 
be applied to them, for discovering their properties or relations—and the activity 
of applying this game and realizing this task.
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Notes

* I thank Andreas Etges, Agnese Grieco, Claudio La Rocca, Jean Petitot, Jean-Michel Salanskis, and 
specially Michael Otte for their linguistic and philosophical suggestions and commentaries on a number 
of previous versions of my paper.

1 In order to avoid any possible misunderstanding due to the English translation, I add the German original 
term in brackets after the first occurrence of every English term translating a Kantian key term. If no 
particular reference is made when the expression is used again, it always refers to the same original 
German term. A glossary is given at the end of the paper. If not stated otherwise, English translations of 
Kant’s statements are quoted from (CS) and (LY).

2 For a recent version of the logicist program, cf. Wright (1983).

3 For reasons of uniformity with the text of the first Critique, I here change the Young’s translation and 
translate “WirklichJceit” with “reality” instead of “actuality”.

4 Young translates here “to decide” for “ausmachen”, but this seems to be a misleading translation, since 
a decision is a choice between different possibilities that are already given as such, which is strange to the 
meaning of the German term “ausmachen”.



324 MARCO PANZA

5 Once again I changed Young’s translation, translating “kommen” and “zukommen” with “to suit”— 
instead of with “to belong” as Young does—in order to avoid any possible confusion between the relation 
of object and concept—which is the case here—and the relation between two concepts, which Kant 
indicates with the verb “gehoren", above translated with “to belong”.

6 Here is an other excerpt both from the first and the second edition, that is not less clear (cf.ibid. A, 154- 
155; B, 193-194):

“In the analytic judgment we keep to the given concept, and seek to extract something from it.
[...] But in synthetic judgments I have to advance beyond the given concept, viewing as in relation 
with the concept something altogether different from what was thought in it. This relation is con
sequently never a relation either of identity or of contradiction; and from the judgment, taken in 
and by itself, the truth or falsity of the relation can never be discovered.”

7 I changed the order of propositions of Smith’s translation, in order to stay closer to the original.

^ Following Smith’s translation, I translate both the German “Perzeption” (which very rarely appears in 
Kant’s texts) and “Wahrnehmung” with “perception”, by considering these terms equivalent in meaning.

9 According to Eisler’s classical Kant Lexicon [cf. Eisler [1930], p. 391], there is no appreciable difference 
between Kant’s use of the terms “Gegenstand” and “Objekt' in the first Critique, even if these terms, 
taking together, cover a laige spectrum of different meanings. Here I consider only one of these meanings 
(actually covered in the first Critique by both German terms), namely the one according to which an 
object is that of which elementary knowledge is just knowledge. What is important to me is not that the 
same terms could or could not have other meaning in Kant’s works (certainly they do), but that for Kant 
there is no room for something like a pure object (either Gegenstand or Objekt), intended as that of 
which a priori knowledge could just be knowledge.

i prefer the term “singular” to Smith’s term “single”.

11 The passage, at the very beginning of the Aesthetics, is so well known that it is not necessary to quote it 
here.

12 Cf on this point Panza (1995a), where I have tried to justify such a thesis.

13 For Kant’s interpretation of postulates as clauses for constructing objects, cf. Kant [JL], § 32 and 38:

“[...] practicalpropositions [...] are those that state the action whereby, as its necessary condi
tion, an object becomes possible.”

“A postulate is a practical, immediately certain proposition, or a principle that determines a 
possible action, in the case of which it is presupposed that the way of executing it is immediately 
certain.”

14 A. Ferrarin (1995,137) writes:

“[According to Kant] the synthesis [...] involves the necessity to go beyond the concept and show 
its pure a priori determination of spatio-temporal intuition: the guidance for the construction of the 
object. And a synthetic judgment is not a formal, discursive relation between the subject and its 
predicate, but the activity of exhibiting in intuition the real belonging of a property of its object.”

I completely agree with that.

1 5 Notice that, if I am correct, a mathematical judgment is for Kant a judgment about (the concepts of) pure 
forms, but it is justified by means of procedures referred to empirical entities. Thus, truth, or even necessity, 
of mathematical judgments must as such be independent of their justification or proof. Of course, we can 
insist on the possibility of imagining the objects occurring in such a justification, but this does not change 
the situation, since imagination has just to be imagination of objects.
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16 On the role of imagination and its relations with understanding in Kant’s theory of knowledge cf. Palumbo 
(1984).

17 it might appear paradoxical that a synthetical act of reasoning depends on an analysis, but I believe it is 
not. Cf. on this point the concluding chapter of the present book (particularly § VI).

18 In my view a reasoning is a specific and particular event that cannot be repeated as such, even if it can 
take a general form that logic can study (that is the “inference” in Kant’s sense).

^A nalogous considerations could be advanced for universal statements of a conditional form where 
relational predicates occur.

20Here Kant uses the verb “ l ie g e n ” which I translate literally as “to lie on”— instead of “to contain”, as 
Smith does— in order to mark the difference with the verb “e n th a lte n ”, just translated “to contain”.

21 Smith simply translates “au sfU h rlich en” as “complete”. Instead I follow the suggestion of Giorgio Colli 
who in his Italian translation [Einaudi, Torino, 1957] just translates it as “d e tta g l ia ta m e n te  c o m p le to ” . 
Moreover, he translates “u r sp r iin g lic h ” as an adjective referring to “concept”, while it works in the 
German text as an adverb referring to “G r e n z e n ” . This is the reason for a second change of Smith's 
translation.

22c f . the previous note (21).

23 Smith translates “arbitrarily invented”.

24Cf. the previous footnote (10).

25 Not any notation is for Peirce an icon:
“I call a sign— he writes (1886,163)— which stands for something merely because it resembles 

it, an icon. Icons are so completely substituted for their objects as hardly to be distinguished from 
them. Such are the diagrams of geometry.”

In my (1985a), I called this sort of notations “transparent” and I considered their role in classical Euclidean 
geometry (cf. ib id . , § 5, pp. 78-84); I will come back later to some of the arguments I have presented 
there. In the paragraph X, I will argue that this sort of notation essentially occurs also in classical or 
constructive arithmetic. Moreover, Peirce ( ib id ., 165) believes that icons play an essential role in algebraic 
(or formal) deduction too. I will not discuss this last point here, even though I think that Peirce’s argument 
is far from being completely wrong. On the role of diagrammatic thinking, as founded on iconic notations, 
in mathematics, according to Peirce, cf. the paper by M. Otte in the present volume.

26 a  similar idea has been advanced by M. Otte, in his discussion of the Locke-Berkeley-Kant controversy 
on the “general triangle” (Otte 1994b, 276-284 and 1995, 102). It is evident that a pure object is 
indeterminate with respect to a very large range of properties. This is the case both with the triangle and 
with Madame Bovary. To the question “how tall is Madame Bovary?”, we have no answer. The reason 
is not that we do not know how tall Madame Bovary is. The reason is that, for every property like “to be 
x  tall” Madame Bovary does not have such a property without having its negation. Simply, Madame 
Bovary is a woman, but she does not have a tallness, even if this does not mean that Madame Bovary is 
a “universal woman”. On the consequences of such a character of a pure, and particularly a mathematical 
object, cf. my (1995b), § 6 ., pp. 122-128.

2? It seems to me that such a question is connected with the one advanced by Parrini, by referring to Herbart, 
concerning the conditions of possibility of “determinate knowledge” (1990,60-62).
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Analytic: analytisch.
Apodeictic: apodiktisch. 
Assertoric: assertorisch.
Belong (to): gehoren. 
CXaxity.Klarheit.
Concept: Begriff.
Consciousness: Bewufitsein. 
Construct (to): konstruieren. 
Contain (to): enthalten.
Content: Inhalt.
Construction: Konstruktion. 
Demonstration: Demonstration. 
Denied: verneint.
Detailedly complete: ausfUhrlich. 
Empirical: empirisch.
Exhibit (to): vorstellen. 
Experience: Erfahrung. 
Grounded: grundet.
Identity: Identitat.
Inferences: Schliisse.

Glossary

Intuition: Anschauung.
Judge (to): urteilen. 
Judgments: Urteile. 
Knowledge: Erkennntnis. 
Limit: Grenze.
Maintained: behauptet.
Make out (to): ausmachen. 
Mathematical: mathematisch. 
Modality: Modalitdt.
Object: Gegenstand or Objekt. 
Objective perception: objektive 

Perzeption.
Original: urspriinglich. 
Perception: Perzeption or 

Wahrnehmung.
Precision: Prdzision.
Predicate: Prddikat. 
Problematic: problematisch. 
Propositions: Sdtze.
Pure: rein.

Real: wirklich.
Reality: Wirklichkeit. 
Representation: Vorstellung. 
Sensation; Empfindung.
Singular: einzeln.
Subject: Subjekt.
Subjective constitution: subjektive 

Beschaffenheit.
Sufficiency of characteristics: 

Zulanglichkeit der Merkmale. 
Suit (to): kommen, zukommen 
Synthetic: synthetisch.
Thing: Ding.
Thought: Denken.
True: wahr.
Truth: Wahrheit.
Understanding: Verstand. 
Universal in concreto: Allgemeines 

in concreto.

MICHAEL OTTE

ANALYSIS AND SYNTHESIS IN MATHEMATICS 

FROM THE PERSPECTIVE 

OF CHARLES S. PEIRCE’S PHILOSOPHY*

I Introduction

This paper is particularly concerned with Peirce's conception of mathematics. 
Taking into account that there exists a great deal of scholarly insight into his 
philosophy of science, one is surprised to notice how indefinite, uneven and var
ied opinions are regarding Peirce’s conception of mathematics. Peirce has de
clared mathematics to be paradigmatic for philosophy (CP, 7.80) which leads us 
to investigate the relationship of Peirce’s epistemology to classical German phi
losophy, to the conceptions of Leibniz, Hegel and above all of Kant. Kantian thought 
is not only crucial for Peirce’s early period but is indispensable to any understand
ing of Peirce’s philosophy and his conception of mathematics. It is true that cer
tain beliefs, common to Kant and Peirce take on a different importance and meaning 
when passing from one to the other. Intuition, for instance, was an important term 
for both. Peirce called “intuition” “the one sole method of valuable thought” (ibid., 
1.383). Another common idea refers to the linkage between generality and conti
nuity. Continuity, writes Peirce, for instance, is “nothing but a higher type of that 
which we know as generality. It is relational generality” (ibid., 6.190; with re
spect to Kant cf., for instance, B 206). As, however, the architecture of Kant’s 
Kritik rests exclusively on the idea of the a priori, and as Peirce, on the other 
hand, does not share Kantian aprioricism, these, as well as various other ideas, 
change in meaning and acquire new roles. For instance, time is such, says Kant, 
“that every part of it has similar parts,—a proposition very different from merely 
saying that Time is infinitely divisible, though Kant himself did not perceive the 
distinction” (ibid., 8.114). However, because of his aprioricism, Kant had no need 
for that distinction. For Peirce, on the contrary, it was of crucial importance. Con
tinuity, or similarity of parts, making time (as well as space) an individual whole, 
was absolutely essential, because continuity in this manner serves to introduce a 
new type of metaphysics, the universe being conceived of as a system of interrelat
ed systems rather than as a set of isolated things.
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“Nominalism— or at least, modem Nominalisms— is precisely the doctrine that the Universe is a 
heap of sand whose grains have nothing to do with one another, and to recognize concatenation is 
to recognize that there is something that is not Individual and has another mode of Real Being than 
that of an Individual Existent.” (Ms 641)

The a priori is nothing but that which is universally valid and “whatever is 
universally true is involved in the conditions of experience” (CP, 2.690). In con
trast to his predecessors, Kant considered these general conditions to be subjective 
rather than objective. “It was the essence of his philosophy to regard [...] the 
reality as the normal product of mental action, and not as the incognizable cause 
of it” (ibid., 8.15). Peirce now claims that his new philosophy of synechism (syn- 
echism is a regulative principle of logic based on the idea of continuity) allows 
these general conditions or the a priori to be understood as being both subjective 
and objective by relating them to an evolutionary process which is at the same 
time constrained and yet not absolutely determined. The resulting relativity of the 
distinction between the subjective and the objective gives the principle of continu
ity its prominent place in methodology, because in order to reconcile relativity and 
objectivity of knowledge, one has to accept that the distinction between the asser
tion that A = B and its negation cannot be absolute, since “absolute discontinuity 
cannot be proved to be real” (ibid., 8, 278). “When Synechism has united the two 
worlds of the subjective and the objective; the belief in the relativity of the subjec
tive and the objective gains new life” (ibid., 6.590).

Kathleen Hull (Hull 1994) claims that Peirce closely follows Kant in his un
derstanding of mathematics and of mathematical reasoning. It therefore seems 
justified to approach the matter historically and to begin with Kant, with a consid
eration of Kant’s conception of mathematics. As is well-known, Kant characteriz
es mathematics in terms of the analytic-synthetic distinction, claiming that 
mathematical propositions, or the judgments represented by them, are synthetic a 
priori. As Peirce abandoned aprioricism, his specific answer to the continuum 
problem and his conception of an evolutionary realism derived from that answer, 
made his views essentially different from Kant’s, rendering the analytic-synthetic 
distinction somewhat relative, because the distinction between the subjective and 
the objective became a relative one (with respect to the connection between these 
two distinctions see part V of this paper, and, ex negativo, also Grice and Straw- 
son 1971). Thus, I agree with Kathleen Hull, this being my first premise, that 
“mathematics, not logic, is the cornerstone of Peirce’s architectonic” (Hull 1994, 
273). And this is so exactly because of the importance of generality as based on 
the idea of continuity to which the law of contradiction cannot be applied, and 
Peirce, as well as Hilbert, therefore had to look for a different logic of reasoning.

My second premise then is that we should take Peirce’s views with respect to 
mathematics and to science in general as being based on one and the same philo
sophical conception. This implies for instance that mathematical axioms and nat

ANALYSIS AND SYNTHESIS FROM THE PERSPECTIVE OF PEIRCE 329

ural laws are to be classified as ontologically of the same nature, they both employ 
free variables and are generals in the sense of Peirce’s philosophical realism as 
based on the reality of the continuum. Knowledge of any sort is formal and to take 
on meaning it has to be applied. As it cannot be itself a theory of its own applica
tion, we enter into an infinite regress of meta-levels. Aprioricism (any kind of 
foundationalism, in fact), on the one side and philosophies of practice (like prag
matism) on the other side meet the challenge of infinite regress differently. With 
respect to Peirce, one notices that ideas like evolution and continuity become im
portant as substitutes for the idea of foundationalism. In evolution the infinite 
regress is interrupted as certain possibilities are in fact realized and others not and 
the continuum represents all that is possible.

This brings me to the third premise of my argument. We should take seriously 
Peirce’s approach to the question of philosophical realism when trying to under
stand his views regarding mathematics. In contrast to this requirement, investiga
tions of Peirce’s realist approach to mathematics sometimes start by asking “can 
one be a realist without being a platonist” (Engel-Tiercelin 1993), while for Peirce 
realism and platonism really had nothing in common. In exploring the connec
tions between “Peirce and logicism”, Susan Haack places everything into aFregean 
framework from the very beginning by asking whether Peirce would ascribe to 
two theses she presents characterizing logicism in the sense of Frege. Then the 
impression is conveyed that Peirce was not really consistent in his views, as he 
seems to accept one of the theses but not the other. He held, it is claimed, that 
mathematics is reducible to logic and yet staunchly denied another logicist thesis, 
that the epistemic foundations of mathematics lie in logic, whereas “Frege took it 
for granted that both theses stand or fall together” (Haack 1993, 36). At this point 
I do not want to discuss the content of these claims (see however Houser 1993), 
but would rather oppose the justification of the approach as such. Peirce starts by 
observing how mathematicians really practice their business and how they ac
complish their results, rather than, like Frege, with an idea of how they should 
perform their activities.

Finally in his excellent and influential book on the development of Peirce’s 
philosophy, M. G. Murphey claims that “the creative or dynamic agent” in this 
development is Peirce’s logic (Murphey 1961, 3), as well as that in spirit “Peirce 
has more in common with the logicist school than with intuitionism” (ibid., 288). 
It is correct that Peirce did not accept that “mathematics limits itself to the range 
of objects it can construct” (ibid.). But taking into account the Kantian roots of his 
philosophy, it is equally correct to say, that he would never believe that the con
struction and the presentation of mathematical objects could be completely sepa
rated. Just this particular problem, how to conceive of the link between the 
development and substantiation of mathematical knowledge, might already sug
gest that a framework different from the traditional philosophies of mathematics,
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formalism, platonism, intuitionism or logicism has to be found in order to under
stand what Peirce had in mind.

II Analysis and Synthesis from Leibniz to Kant

With respect to the analytic-synthetic distinction Kant states:

“In all judgments wherein the relation of the subject to the predicate is thought this relation is 
possible in two different ways. Either the predicate B belongs to the subject A, as something which 
is contained (covertly) in this concept A; or B lies completely outside of the concept A, although it 
stands in connection with it. In the first instance, I term the judgment analytical, in the second 
synthetical.” (B, 10)

Synthesis is the opposite of analysis. Now, during the age of classical rational
ism the term “analysis” is used in two applications:

1. Empirical theories are analytical, as far as they claim to speak about the 
essence of reality as such, as far as they seek to find out what is the core of a thing. 
This is because analysis proceeds from a given unknown which it seeks to inves
tigate. Substances or essences are real and are the real subjects of predication. 
Kant’s reformulation of the analyticity of judgments stays in line with this as long 
as one assumes that conceptualization captures the essence of some real being or 
some existing substance. But how is this to be guaranteed? By the structure of the 
epistemic subject, says Kant. “It was the essence of his philosophy to regard the 
real object as determined by the mind” (Peirce CP, 8.15).

2. Logical theories are analytical, as far as they deal with the way something 
which has been said can be said in another way as well, and this is how the law of 
contradiction, that is the claim that something cannot be simultaneously named p 
and non-p, obtains its significance. It becomes the basis for the analyticity of 
formal theories. Algebra, and mediated by it also geometry, are called “analytic” 
as soon as the unknown variable “x” is introduced into their activities. Equations, 
taken as S « P expressions, represent not only a method but rather a way of secur
ing true knowledge.

To classical ontologism all true propositions had been analytically true. Clas
sical thought had as its ultimate goal, which was in general only to be accom
plished by God because it required an infinite analysis, the determination of 
individual substances. This view is an outgrowth of the static world view of the 
classical age but also a result of its optimism that the world is knowable. And the 
existence of God is a basis of this optimism. In this manner the law of contradic
tion used formally serves to give proofs of existence. This later became a funda
mental idea of Cantorian pure mathematics. Kant does not accept that a 
non-contradictory is also real (Kant B, 629).

ANALYSIS AND SYNTHESIS FROM THE PERSPECTIVE OF PEIRCE 331

Leibniz has created our modem concept of mathematical proof by understand
ing that a proof is valid by virtue of its form, not by virtue of its content. This does 
not imply, however, contrary to a claim made by Russell (Russell 1903b, 178) that 
Leibniz’s philosophy rests solely on his logic, because Leibniz assumed a one-one 
correspondence between concepts and objects. Symbols represent thoughts and 
collections of thoughts determine or represent objects. As in his view all things in 
this world are constituted by the concepts corresponding to them in God’s mind, 
proof amounts to an infinite analysis of the respective concept, and all cognition 
becomes analytical cognition. “Leibniz making proof a matter of ontology not 
methodology, asserts that all true propositions have an a priori proof, although in 
general human beings cannot make those proofs”, because of the infinity of the 
analysis required. (Hacking 1984,221). Thus it is due to our limitations that some 
truths appear to be contingent and not necessary.

Everybody knows analytically that Hamlet’s mother cannot have been a man, 
but nobody can know a priori and analytically what was the color of her eyes. 
Leibniz would consider this due to the fact that we, the human beings, unlike 
God, do not have the complete concept of “Hamlet’s mother” at our disposal. We 
do not know all the details of her existence, nor the complete story of her life. In 
mathematics we do, because mathematical concepts are simpler, and thus mathe
matical truth is based on proof and mathematics is analytical (Hacking 1984). In 
mathematics the intensions of concepts are just definitions and mathematical con
cepts can be analyzed. It is therefore easy to see whether a proposition is analytic 
or synthetic, because we stay completely inside a language system as soon as we 
reason in mathematics. This does not apply to Kant’s views.

The law of contradiction may, according to the above distinction, be interpret
ed in various ways. Let us consider the example “gold is a yellow metal”. Accord
ing to Kant the law of contradiction comes in because, according to the usual 
definition of terms, it would be a self-contradiction to say: “gold is not a yellow 
metal or bodies are not extended”. Kant believed that to any substance some pred
icates inherently and essentially belong while others depend on experience, but 
the distinctions he draws in some cases of empirical concepts are rather arbitrary.

Now Kant takes great pains to distinguish analytic and synthetic propositions, 
because his view of the analytic-synthetic distinction depends on the invalidation 
of the ontological proof of God’s existence and represents his own Copemican 
step. Classical thought rested in the idea of God. The proof of the existence of God 
warrants Leibniz’ foundation of truth on proof as well as the Cartesian cogito 
ergo sum, this final truth which constitutes the foundations of the entire structure 
of Cartesian rationality. Accordingly a schism was caused in the heritage of the 
classical age, hence also in the foundations of modem science, by the invalidation 
of the proofs of God’s existence, for God guaranteed a strict correspondence be
tween clear and distinct thought on the one hand and external reality on the other.
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Kant claims that “God exists”, can never be analytic, as Leibniz believes, be
cause “being is not a real predicate; that is, it is not a concept of something which 
could be added to the concept of a thing” (Kant B, 626). Thus the proposition 
“God exists” is not real knowledge. Kant realized “that no general description of 
existence is possible, which is perhaps the most valuable proposition that the 
Critic contains” (Peirce CP, 1.35). Kant changes orientation from substances and 
essential properties to concepts and objects, or functions and arguments as we 
have already seen when observing his definition of analytic and synthetic. God 
exists means that the extension of the concept God is not empty. God exists and 
God, on such a presupposition signify the extension and the intension of one and 
the same concept, or the factuality and the possibility of the being of God respec
tively (ibid., 4.583). Extension and intension of concepts appear to be relatively 
independent of one another and the transition from the possible to the factual 
cannot be accomplished by means of logic or language and pure thinking. All 
judgments are conditional. The proposition that a triangle necessarily has three 
angles does not say “that three angles are absolutely necessary, but that, under the 
condition that there is a triangle, three angles will necessarily be found in it” 
(Kant B, 622). Kant, contrary to Cantor or Leibniz, did not consider consistency 
sufficient for existence even in mathematics.

And Kant shared with Leibniz the foundational concern expressed by apriori- 
cism. Kant’s transcendental subject, which takes the role of Leibniz’s God, at first 
sight, shares the problematic nature of the latter, such that not much seems to be 
gained by this kind of reorientation. On the one hand all knowledge is based on 
the structure of the transcendental subject. But on the other hand, the transcen
dental subject is not directly accessible to the individual subject because the prop
osition “I think”, which according to Kant is the supreme foundation of all 
knowledge (ibid., 132), in itself does not express any knowledge. The proposition 
“I think” does not imply my existence, although it contains the proposition “I 
exist”. Thus the transcendental subject is in a sense declared to be a thing in itself, 
“a kind of otherworldly entity” (Lektorsky 1980, 84-86). It guarantees however 
the constitution of the subject and object of knowledge by means of the process of 
Synthesis.

“A mind, in which all the manifold should also be given by self-consciousness 
would be intuitive; our mind can only think, and must look for its intuition to 
sense” (Kant B, 135). Thus the transcendental subject could become known only 
after having been externalized by constructive activity, and mathematics plays a 
special role in this process, as by means of mathematical reasoning we become 
aware of the forms of all intuition, which mathematics presents as original intui
tions themselves. Mathematics therefore presents the general conditions of all 
knowledge in concreto (see, for instance Panza's paper, in this volume).
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“The constructivist project, rooted in Descartes’ geometry and exfoliated in Kant’s critical enter
prise, took its bearings from the desire to master and possess nature, where nature was understood 
as the locus of apparently ineliminable or intractable otherness. Mind could aspire to master its 
other [...] by externalizing itself in a construction carrying the clear marks of its inward and delib
erate origin.” (Lachterman 1989,23)

However, the idea of the human self producing itself, as well as knowledge as 
part of it, represents an essential step, because after taking it, the growth and the 
justification of knowledge become interrelated and intertwined. To understand 
the reality of knowledge one has to understand the reality of understanding. And 
in order to accomplish this one has to find a point where understanding is con
struction, conceived of as a unity of process and result. This can already be guessed 
from the very special role mathematics seems to play in Kantian epistemology. 
Mathematics gives the best example of knowledge as active creation. “Approxi
mation to the ideal of a thoroughly free divine or archetypical intellect yields at 
one and the same time the basic sense of our active existence and the limits or 
mitigations to which this active existence is inevitably subject” (ibid., 11). Kant, 
in fact, warns philosophers against trying to imitate mathematical procedures and 
methods, because in philosophy this unfolding identity of concept and object does 
not exist.

This warning is based on a very problematic distinction within the area of 
synthetic judgments a priori, classifying them into intuitive ones and discursive 
ones. The latter refer primarily to the ordering function of general concepts whereas 
the former are related to the structure of perception. The judgments of pure math
ematics belong to the class of intuitive judgments. Kant himself describes the 
intended distinction as follows:

“A n apriori conception contains either a pure intuition, and in this case it can be constructed; or 
it contains nothing but the synthesis of possible intuitions which are not given a priori. In this 
latter case the concept may help us to form synthetical a priori judgments, but only discursively by 
means of concepts and never intuitively, by means of the construction of concepts.” (Kant B, 749)

And he generally classifies axioms as intuitive principles, adding that philosophy 
does not possess any axioms and “has no right to impose her a priori principles 
upon thought, until it has established their authority and validity by a thorough 
deduction” (ibid., 762; we should take into account at this point that deduction 
means legitimation rather than logical or mathematical deduction). Thus Kant 
introduces a separation between intuitive and discursive knowledge, which seems 
to exclude mathematics from conceptual thinking. Mathematics “does not only 
construct magnitudes, as in geometry; it also constructs magnitude as such, as in 
algebra” (ibid., 745). Synthetic a priori knowledge in the sense of Kant is most 
importantly characterized by its constructivity.
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Kant believes that mathematics rests on concepts that are given by definitions 
and that mathematical cognition originates from the construction of the concepts.

“To construct a concept, however, means: to present the intuition corresponding to it a priori 
[...]. Thus, I construct a triangle by the presentation of the object corresponding to this concept 
either by mere imagination in pure intuition, or after the latter also on paper, in empirical intuition, 
in both cases completely a priori (ibid., 741-742)

This distinction depends on the fact that in the world of phenomena “there are two 
elements—the form of intuition (space and time) [...] and the matter or content, 
that which is presented in space and time, [...]” (ibid., 751). We are able to con
struct mathematical concepts a priori “in as much as we are ourselves the creators 
of the objects of the concepts in space and time” (ibid., 752). Mathematical con
cepts were constituted by definitions (ibid., 756) and had to be reified or applied 
in intuition according to space and time as the forms of pure intuition. In as much 
as mathematical reasoning operates on these reifications it is synthetical, other
wise analytical. But no mathematical truth can be acquired by analytical reason
ing only, because we have to apply a concept to gain knowledge. We cannot cogitate 
a straight line without drawing it, Kant says, (ibid., 154). The line drawn is em
pirical and is therefore no mathematical object, but it is the construction of a 
mathematical concept. To know means to observe one’s own constructive activity 
and its results.

Kant held a much narrower view with respect to the subject matter of mathe
matics than say Leibniz, as his contemporaries already noticed. Why is “the form 
of mathematical knowledge the cause that it is limited exclusively to quantities” 
(ibid., 743)? Because the construction refers to either geometrical or algebraic 
algorithms or functions taken in intension, construction of the pair {x,f(x)}. Thus 
a judgment is to be presented by a pair or a relation {x,f(x)}. It is sometimes said 
that Kant gained his vision of mathematical cognition from the problems of ana
lytical geometry. And his concepts indeed depend on functions insofar as Kant 
defines functions as the “unity of the act of arranging various representations 
(Vorstellungen) under one common representation” (ibid., 93). The pair or rela
tion {x,f(x)} represents a reified function or a judgment. All judgments are func
tions. Kant took the idea of function from algebraic analysis in the sense of Euler 
and Lagrange, identifying function with algorithm or formula (Cassirer 1910).

A completed or reified function may be understood as a representation of a 
representation of an object. This Kant also calls “mediate knowledge of an ob
ject”. Lachterman claims that Kant took his understanding of the technique of 
construction from algebra and not from geometry. “Kant’s phrase ‘construction of 
a concept’ is derived from the expression ‘construction of an algebraic equation’”. 
This latter expression refers to “the interpretation of the terms of the equation in 
ways that lead to the actual exhibition of a particular geometric formation satisfy-
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ing the general equation” (Lachterman 1989, 11). The construction was meant to 
yield line segments that corresponded to the roots of the equation together with its 
application in a particular case. This technique does nothing but exhibit the algo
rithm by which we arrive at the roots of the equation. The technique gradually 
disappears around the middle of the eighteenth century. But between the publica
tion of Descartes’ Geometry and about 1770 it was considered crucial within alge
bra and analytic geometry and was developed by first-ranking mathematicians 
(Bos 1984).

Euclidean geometry itself is thoroughly algorithmic. Euclid had founded a 
geometry that allowed constructions by straight lines and circles. “Descartes had 
extended this geometry by allowing in principle all algebraic curves as means of 
construction” (Bos 1984, 360). Newton wanted algebra to be more subservient to 
geometry and wished “to work out a truly geometrical approach to the construc
tion of problems and equations. Geometrical simplicity, namely the simplicity of 
tracing, should be the criterion, not algebraic simplicity” (ibid., 362-363). In 1835- 
1844 a similar motivation led Grassmann, to introduce the direct methods of vec
tor algebra into the geometrical sciences in order to mathematize projective 
geometry. The point of reference of the construction should be immanent rather 
then external, was the demand. Grassmann, like Leibniz or Poncelet, wanted to 
operate on geometrical entities rather than on functions (coordinates) in order to 
realize a synthesis brought about by the intrinsic properties of space itself. The 
following statement from Peirce’s Cambridge Conference of March 1898 sounds 
very much like Grassmann indeed:

“That which already had been called the Elements of geometry long before the day of Euclid is a 
collection of convenient propositions concerning relations between the lengths of line, the area of 
surfaces, the volumes of solids and the measures of angles. It concerns itself only incidentally with 
the intrinsic properties of space.” (Peirce CCL, 242-243)

But it is projective geometry or topology (geometrical topic as Peirce called it) 
“what the philosopher must study who seeks to learn anything about continuity 
from geometry” (ibid., 246). And continuity is essential to understand synthesis 
as soon as Aprioricism has been abandoned, as has already been mentioned in the 
introduction above.

The Greeks, Peirce believes, were acquainted with projective geometry and 
had already perceived “that it was more fundamental,—more intimately concerned 
with the intrinsic nature of space,—than metric is” (ibid., 244). Principles of 
continuity are indispensable when reasoning about infinity, as in calculus or the 
theory of irrationals, for instance. By means of the notion of similarity or self
similarity Greek diagrams demonstrate the irrationality of the measure of the ra
tio of the side to the diagonal of certain regular polygons, like, for example, the 
regular pentagon. One may in fact consider these diagrams in different ways.
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Concentrating on the exhibition of self-similarity one might obtain as a result, on 
the basis of the visual representation, insight into the recursive structure of the 
Euclidean algorithm for determining a common unit or the greatest common divi
sor. The true application of the notion of similarity requires us to disregard scales, 
that means accepting geometric space as a continuum and as an individual whole, 
in the sense of Peirce. The invariance under geometric similarity then directly 
demonstrates that the algorithm does not lead to the desired goal, the algorithm 
itself having been transformed into an object of thought. Side and diagonal are 
thus incommensurable, i.e. a/5 is an irrational number. Note that I have not pro
posed to replace the geometrical quantities involved by their numerical measures 
with respect to a certain unit and therefore I have not obtained the result by an 
indirect method, based on the law of contradiction, but have “seen” it directly 
because of the recursive structure of the algorithm.

It is by geometric construction that we notice the concept of say V5 not being 
empty, but such a root is not a number, says Kant, “but only the rule of approxi
mating it” (letter by Kant to Rehberg, quoted after Parsons 1983, 111). But the 
law of approximating it or the rule can replace the series of values in that approx
imation, it is the intensional side of this concept of a/5 . Besides Kant, such a view 
was also held by intuitionists like Kronecker. Kronecker argued that if you have a 
rule which effectively determines every term of an infinite sequence, then the law 
itself can replace the sequence. It is obvious that one can only represent the class 
of computable numbers (in the sense of Church or Turing) in this manner, and 
therefore the idea of infinity involved here means the countable infinite only.

To the challenge, put forward by Rehberg, that the application of arithmetical 
truth to sensible items may well be subject to the conditions of time, but not arith
metic as such, Kant replies by letter:

“As soon as instead ofo, the number of which it is the sign -\f5 is given, in order not merely to
designate its root as in algebra, but to find it, as in arithmetic, the condition of all generation of
numbers, namely time, is unavoidably presupposed.” (ibid, 117)

Again we might conclude from this that the procedure or rather its concept, the 
concept of a particular algorithm is to be exhibited in space or time as the forms of 
pure intuition. Once again we may observe that it is mathematical constructivity, 
that means the exhibition of the sense of mathematical concepts which Kant had 
in mind, when terming mathematics synthetic a priori knowledge. Existence is 
made equal to exhibition in space and time. We construct problems which did not 
exist prior to our definition of them. And by constructing them and presenting 
their properties, we construct the construction itself, exhibiting it in the forms of 
pure intuition.
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III Kant and Forster

Peirce agrees with Kant in that it is the idea of the (epistemic) subject on which 
any conception of knowing is founded. Peirce’s concern, however, is not with the 
unity of ideas (Vorstellungen) in a self-consciousness, but rather with the socially 
effective unity represented by signs, like works of art or of science. “Conscious
ness is used to denote the I think, the unity of thought; but the unity of thought is 
nothing but the unity of symbolization”, Peirce says (CP 7.585).

Kant assumes that all our knowledge extending cognitions are synthetical. For 
him, however, this synthesis does not lie in the matter of experience as such, but 
springs from the function of cognizant consciousness itself which this way be
comes aware of itself. The synthetic unity of consciousness, according to Kant, is 
“an objective condition of all knowledge. [...] For in the absence of this synthesis, 
the manifold would not be united in one consciousness” (Kant B, 138). Peirce 
now stresses that this very unity is based on the reality of the continuum. The 
continuum being that on which the unity of symbolization is based. This unity is 
not just an ex post fact. Representations or interpretations are not arbitrary or just 
contingent.

“Thus, the question of nominalism and realism has taken this shape: Are any continua real? Now 
Kant, like the faithful nominalist [...], says: ‘no’. The continuity of Time and Space are merely 
subjective. There is nothing of the sort in the real thing in itself.” (Peirce Ms, 439 and NEM, IV,
343)

That Kant had given epistemology too much of a “subjectivist” turn emerges 
therefore, first of all, in his conception of the (epistemic) subject, which he con
ceives primarily in terms of activity, or according to Peircean terminology, as 
Secondness.

“Secondness is that in each of two absolutely severed and remote subjects, which pairs it with the 
other not for my mind nor for, or by, any mediating subject or circumstance whatsoever, but in 
those two subjects alone. [...] But this pairedness [...] is not mediated or brought about; and conse
quently it is not of a comprehensible nature, but is absolutely blind. [...] In their essence the two 
subjects are not paired.” (Peirce CCL, 147-148)

Kant had learnt from Hume that relations are “external”, that they represent noth
ing of the essence of the relata, that they are arbitrary. What in the nature of Paul 
should cause his being taller than Peter? All subjects are isolated like Leibnizian 
monads. Continuity we find, according to Kant, only in the realm of phenomena 
as they are synthezised by activity.

Peirce, in contrast, repeatedly emphasized (for instance in his various criti
cisms of William James, who held views of the continuum similar to Kant’s) that 
action is not the ultimate aim and end of humans (CP, 2.151; 2.763; 5.3; 5.429; 
8.115; 8.212). The highest kind of synthesis according to Peirce is represented by
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Thirdness. Thirdness replaces Kant’s so-called “highest point”, that is, synthetic 
unity of consciousness. Thirdness is what makes representation real. Under the 
perspective of Thirdness the human subject is to be characterized primarily by its 
capacity to grow, or to learn and evolve.

Hegel had already put forward a similar criticism of Kantian dualism (cf. He
gel, “Glaube und Wissen”, W, I, 1-154). But Hegel neglected the importance of 
Secondness altogether. Hegel regards the Third as the only true one Category. For 
in the Hegelian system the other two are only introduced in order to be aufge- 
hoben” (Peirce CP, 5.79). Hegel,

“seeing that the B e g r if f  'xn a sense implies Secondness and Firstness, failed to see that neverthe
less they are elements of the phenomenon not to be au fgeh oberu  but as real and able to stand their 
ground as the B e g r i f f  itself. The third element of the phenomenon is that we perceive it to be 
intelligible, that is, to be subject to law, or capable of being represented by a general sign or 
Symbol.” ( i b i d ,  8.268)

Peirce’s own position is reflected very clearly in some passages taken from a 
manuscript written in 1890 under the title A Guess at the Riddle:

“The highest kind of synthesis is what the mind is compelled to make neither by the inward 
attractions of the feelings or representations themselves, nor by a transcendental force of necessity, 
but in the interest of intelligibility, that is, in the interest of the synthesizing ‘I think’ itself; and this 
it does by introducing an idea not contained in the data, which gives connections which they would 
not otherwise have had. [...] Kant gives the erroneous view that ideas are presented separated and 
then thought together by the mind. This is his doctrine that a mental synthesis precedes every 
analysis. What really happens is that something is presented which in itself has no parts, but which 
nevertheless is analyzed by the mind, that is to say, its having parts consists in this, that the mind 
afterward recognizes those parts in it. Those partial ideas are really not in the first idea, in itself, 
though they are separated out from it. It is a case of destructive distillation. When, having thus 
separated them, we think over them, we are carried in spite of ourselves from one thought to 
another, and therein lies the first real synthesis. An earlier synthesis than that is a fiction.” ( ib id .,
1.383-384; this resembles closely Marx’s characterization of the dialectical method)

The problematic nature of Kant’s conception of the subject, and of his entire 
epistemology, is nicely reflected in a controversy between Kant and Forster, which 
took place in 1785. As a boy joining his father, Georg Forster (1754-1794), Alex
ander von Humboldt’s teacher, accompanied James Cook on the latter’s second 
sailing around the world. This voyage took almost three years, and Forster be
came famous in Europe, still a young man, for his report of it. In an article entitled 
“Noch etwas fiber die Menschenrassen [Some Additional Remarks on Human 
Races]”, in which he opposed Kant’s considerations concerning “Die Bestim- 
mung des Begriffs einer Menschenrasse und mutmablicher Anfang der Menschen- 
geschichte [Determining the Concept of a Human Race and presumptive Beginnings 
of Human History]”, Forster wrote:
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“A laige part of the merit Linn6 earned in botany was incontestably in the precise definitions. [...] 
After certain assumptions which he abstracted from his own experience, he designed his structure 
and fitted the creatures of Nature into it. As long as our insight remains limited, however, we 
would seem far from an infallibility of principles. Will categorizations which are based on limited 
experience, while possibly useful within these limits, not appear one-sided and half-true once the 
horizon is expanded, the point of view displaced? [...] Perhaps our present scheme of the sciences 
will become obsolete and deficient half a century from now, just like the previous ones. Even 
speculative philosophy would seem to be prone to this fate. Who does not immediately think of the 
C rit iq u e  o f  P u re  R e a s o n  in this context? Even if the theorem that one can only find in experience 
what one needs if one knows beforehand what to look for, were undisputedly correct [as Kant had 
written in the B e r lin e r  M o n a ts s c h r if t  of November 1785 (Kant SA, VII, 107)], a certain care 
would nevertheless be in order when applying this theorem, to avoid the most common of illu
sions, namely that in looking for what one needs, one presumes to have found the same even in 
places where it is really not present.” (Forster W, 1,5-6)

Forster’s point here is that there can be no transcendental and absolute in
sight. Otherwise, the new and unexpected would be nothing but a passive case of 
application of the preestablished categorical frame and the established prejudices. 
The new would be reduced to things already well familiar, and new insights could 
never emerge.

In content, the polemic between Forster and Kant is about determining the 
concept of Human Race and about the question whether Europeans and Africans 
belong to different genera, or whether they should not better be considered, be
cause of a presumptive common origin, as species of one and the same genus. 
Both authors depart from their own concept of Nature. For Forster, who traveled 
the world already as a boy, Nature is the whole, is reality as a continuum, in which 
all differences and connections can be found.

Forster always points out the systemic character of reality and of Nature in 
particular.

“A Negro”— Forster says for instance, is properly speaking— “a true Negro only in his own 
fatherland. Any creature of Nature is what it should be only in the locality for which it has been 
created; a truth which is seen confirmed every day in menageries and botanical gardens. A Negro 
bom in Europe is like a greenhouse plant, a modified creature, in all properties subject to change 
more or less unlike that which would have become of him in his own fatherland.” ( ib id ., 13)

Forster was very familiar with the principle of continuity as it was used by eight
eenth-century French authors, like Buffon or Robinet for instance, to emphasize 
the “Great Chain of Being” (Lovejoy 1936). On the other hand, Forster says, all 
our categorizations are necessarily arbitrary, a situation which already results from 
the fact that we are only able to think within fixed differences while the distances 
between the various genera in Nature fill an entire continuum.

“The order of Nature does not follow our categorizations, and as soon as one tries to impose them 
on it, one falls into inconsistencies. Each and every system is meant only to be a guideline for 
memory by giving sections as Nature itself seems to make them.” (Forster W, 22)
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Hence, and in contrast to Kantian epistemology, any constructive synthesis is pre
ceded or accompanied by analysis.

What can be said in view of this situation with regard to the question whether 
“Negro” is a genus or a species of humankind?

Forster, on the basis of his own systemic reasoning, assumes that Nature, like 
any continuum, forms a complete whole in every locality of the earth and in every 
climatic zone and that man represents no exception.

“If every region produced the creatures which were appropriate to it, and moreover in precisely 
those relations which were indispensable for their safety and upkeep: how is it that the fragile 
human being should be an exception here? Rather, Nature has given its own character, as Herr 
Kant himself professes, its special organization, an original relationship to a climate and suitabil
ity to the latter to each and every stock and race. Indisputably, this precise relationship between the 
land and its inhabitants can be most easily and briefly explained by the local emergence of the 
latter.” (ibid., 28)

Kant, in contrast, had claimed that all human races stemmed from only one and 
the same root.

Forster hesitates to answer the question “whether there are several original 
races” with certainty, but considers this hypothesis no less plausible than the Kan
tian one. And to Kant’s teleological or functionalist reasoning that in case of 
bigger differences human beings need to wage war on one another and that it is 
thus not in the interest of Nature to create such differentiation, Forster objects as 
follows:

“In a world where nothing is superfluous, where everything is linked by the finest nuances, 
where the concept of perfection finally consists in the aggregate and in the harmonic cooperation 
of all individual parts, the idea of a second genus of humans would be for the supreme mind a 
forceful means to develop ideas and feelings which are worthy of an earthly creature endowed 
with reason, thus interweaving this creature himself much more firmly with the plan of the whole.”

And he observes that one need only look at the slave trade to see how idealistic 
and abstract Kant’s considerations are. Slavery has not been prevented at all by 
the belief that all human beings are of one kind only.

Kant published a reply to Forster’s objections, “Uber den Gebrauch teleolo- 
gischer Prinzipien in der Philosophic” (Kant SA, VIII, 157-184). In his retort 
Kant wishes to do more than just maintain his position on the necessity of a priori 
principles: “It is indubitably certain that by mere empirical stumbling about with
out a guiding principle defining that which is sought after, nothing useful would 
ever be found” (ibid., 161). Kant accordingly begins with a quite different concept 
of Nature:

“If, by Nature, we understand the embodiment of everything which exists determined by laws 
[...] research into Nature can pursue two paths, either the merely theoretical or the teleological 
one, while using, however, [...] only such purposes which can become known to us by experience
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[...] for its intention. [...] Rightfully, reason calls first for theory in eveiy study of Nature, and only 
later for teleology.” (ibid., 159)

Nature is no more than order and uniformity of appearances. We prescribe a pri
ori rules to which all possible experiential reality must conform.

For Kant it seems indisputable that “where theoretical sources of knowledge 
do not suffice, we may make use of the teleological principles, but with such 
limitations of its use that theoretical-speculative research will always be assured 
precedence in order to try its best effort on the question at hand” (ibid., 164). 
From the necessity of this principle, Kant now derives an essential distinction 
between natural history and a mere description of Nature. Natural history, accord
ing to Kant, is exclusively concerned with “pursuing back, only as far as analogy 
permits, the connection between certain present features of natural things and 
their causes in former times according to the laws of cause and effect which we do 
not invent but derive from forces of Nature as they present themselves to us” 
(ibid., 162). It is evident here that Kant is not concerned with the objects, but with 
the laws, and further with getting “to know more precisely the limits of these laws 
lying in reason itself, together with the principles according to which they could 
best be extended” (ibid., 165).

Kant’s intention is to determine

“how the greatest variety in genesis can be reconciled by reason with the strictest unity of origin 
[...]. And one sees clearly here that one must be guided by a certain principle to even observe, that 
is to pay attention to what could give indication of the origin not only of similarity of appearance, 
because we are concerned here with a task of natural history, not of the description of nature.” 
(ibid., 164)

Kant then introduces such a principle which is intended to demonstrate a 
difference of origin, that is “the impossibility of obtaining fertile descendants by 
mixing two genetically different species of humanity” (ibid., 164-165).

According to this concept, Kant writes, “all men on the wide Earth belong to 
one and the same genus of nature, because they can consistently sire fertile chil
dren with one another, no matter how large the differences in their appearances 
encountered” (Kant SA, II, 430). Kant says that to assume a variety of “local 
creations” is an opinion “which multiplies the number of causes without necessi
ty” (ibid., 431). “It is the appropriateness in an organization which is the general 
reason from which we conclude that there is a design originally placed in the 
nature of a creature” (Kant SA, VII, 103).

Against this criterion, Forster again raises systemic objections by arguing that 
things in Nature are quite different from those in an experimental situation brought 
about arbitrarily. Artificial experiments, like breeding experiments “conducted 
with animals under the constraints of captivity” must not be quoted as genuine 
scientific explanations of cause. But he does not see this as an absolute counter
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argument to Kant concerning the hypothesis on the origin of Man, or a counter
argument only insofar as he qualifies Kant’s criterion as totally arbitrary, as a 
matter of mere definition. This resembles Hegel’s charge that Kantian reason 
furnishes only postulates and not knowledge of reality (cf. Hegel, “Glauben und 
Wissen”, cit.).

For Kant reasoning is founded on certain teleological principles. Thus, he 
says:

“In view of the varieties [i.e. of species], nature seems to prevent a fusion, because it runs counter 
to its purpose, namely manifolds of characters, while it at least permits this (fusion) in case of 
different races [...] because this makes the creature adapted to several climates while not making it 
suitable for any of them to the same degree found in the original adaptation to it.” (ibid., VIII, 
166-167)

That the latter also leads to disadvantages is proved, for Kant, by “the inferior 
quality” of (American) Indians who exist both in the northern and in the tropical 
climates. Kant argues against Forster who assumes that every region created its 
own human race by saying that:

“If one does not want to add a second to the special creation of the Negro already suggested by 
Herr Forster, namely that of the American (Indian), no other answer remains but that America is 
too cold or too new to ever produce the degeneration of the Negroes or of the yellow Indians, or to 
have produced them in the short period it has been inhabited.” (ibid., 176)

Kant thus assumes that men are, on the one had, of one common origin and 
that on the other hand, a cause lying in themselves, “and not merely in the cli
mate”, must have led to the differences between them. For Kant, as is well known, 
the transcendental principles of the use of reason must serve as a basis to derive 
everything else in a way coordinated with observation. Laws are verified ex post, 
since “by mere empirical stumbling around without guiding principles as to what 
should be sought”, nothing useful will be ever found, “for to have experience 
methodically means solely to observe” (ibid., 161). For Forster, conversely, the 
principles themselves must also result from observation, even if this cannot be 
imagined to come by itself and without activity from the cognizant subject.

The excessive mixture of speculations and principles ranging from phlogiston 
theory to medicine which he draws upon to explain differences in skin color and 
the like is very remarkable in Kant’s argumentation. His contributions are entirely 
unreadable, while Forster’s are still informative today. For instance, Kant takes 
external features like skin color for mere body paint “which is added to the skin by 
the sun and which will be taken away again by colder air” (ibid., 105). Everything 
which cannot be brought in agreement with any kind of experience is mere spec
ulation. In any case, Kant gives the element of the epistemic subject’s activity 
priority over the material element and this is how the principle of synthetic unity 
of apperception really works. The contrast between Kant and Forster seems essen
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tially to correspond to the two poles in the system-subsystem paradox. This is 
sometimes presented as follows: “Any given system can be adequately described 
provided it is regarded as an element of a larger system. The problem of present
ing a given system as an element of a larger system can only be solved if this 
system is described as a system” (Blaubeig, Sadovsky and Yudin 1977, 270). It 
seems obvious that the system paradoxes enforce an evolutionary perspective for 
their resolution. Kant starts from the necessity of characterizing his own subsys
tem, Man, as a system before all else, because the (epistemic) subject guarantees 
the possibility of knowledge, whereas Forster characterizes Man primarily as a 
subsystem of a more comprehensive system, namely Nature.

One cannot err in assuming that Kantian reasoning is rather more determined 
by the inner regularities and forces of the mind, that is by mental motive forces, 
and less by intuition and experience. It seems to be a reasoning based, as Peirce 
said, on the relation of similarity, for “of the two generally recognized principles 
of association, contiguity and similarity, the former is a connection due to a power 
without, the latter a connection due to a power within” (Peirce CP, 6.105). Now 
Peirce has pointed out that it is exactly analytical reasoning which “depends upon 
associations of sim ilarity, synthetical reasoning upon associations of 
contiguity"(ibid., 6.595).

IV Some Issues where Peirce and Kant differ

Peirce writes:

“Kant divided propositions into Analytic, or Explicatory, and Synthetic, or Ampliative. He de
fined an analytic proposition as one whose predicate was implied in its subject. This was an objec
tionable definition due to Kant’s total ignorance of the logic of relatives. The distinction is gener
ally condemned by modem writers; and what they have in mind (almost always most confusedly) 
is just. The only fault that Kant’s distinction has is that it is ambiguous, owing to his ignorance of 
the logic of relatives and consequendy of the real nature of mathematical proof. He had his choice 
of making either one of two distinctions. Let definitions everywhere be substituted for definite in 
the proposition. Then it was open to him to say that if the proposition could be reduced to an 
identical one by merely attaching aggregates to its subjects and components to its predicate it was 
an analytic proposition; but otherwise was synthetic. Or he might have said that if the proposition 
could be proved to be true by logical necessity without further hypothesis it was an analytic one; 
but otherwise, was synthetic. These two statements Kant would have supposed to be equivalent.
But they are not so.” (NEMIV, 58)

The difference Peirce has in mind, I believe is this: Any subject-predicate expres
sion can be transformed by means of a hypostatic abstraction into a logically and 
empirically equivalent relational statement (CP, 1.551; with respect to the funda
mentally important notion of hypostatic abstraction see also: ibid., 4.234, 4.235, 
4.463, 4.549, 5.447, 5.534 and NEM IV, 49). Now if the original statement has 
not just been a logical truth it exhibits its hypothetical character, because the
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reality of hypostatic abstractions and of relations in general remains a hypotheti
cal one. We have to construct hypostatic abstractions to make possible what Peirce 
calls theorematic reasoning.

Since Kant's abstract definition is ambiguous, Peirce continues:

“We naturally look to his examples, in order to determine what he means. Now turning to 
Rosenkranz and Schubert's edition of his works, Vol. II [the Kritik, Kant B, 14] p. 702 we read, 
Mathematische Urtheile sind insgesammt synthetisch. That certainly indicates the former of the 
two meanings, which in my opinion gives, too, the more important division. The statement, how
ever, is unusually extravagant, to come from Kant. Thus, the ‘Urtheile’ of Euclid's Elements must 
be regarded as mathematical; and no less than 132 of them are definitions, which are certainly 
analytical. Kant maintains, too, that 7+5 - 1 2  is a synthetical judgment, which he could not have 
done if he had been acquainted with the logic of relatives. For if we write G for “next greater than,” 
the definition of 7 is 7 -  G 6 and that o f l 2 i s l 2 - G l l .  Now it is part of the definition of plus, that 
Gx+y -G(x+y). That is, thatG6+5 - G 11 is implied in 6+5 -1 1 . But the definition of 6 is 6 -G 5 , 
and that of 11 is 11 -G 1 0 ; sothatG 5+5 -G 1 0  is implied in 5+5 -  10, and so on down to 0+5 -  
5. But further it is a part of the definition of plus that Jt+Gy -  G(x+y) and the definition of 5 is 5 -  
G4, so that 0+G4 -  G4 is implied in 0+4 -  4, and so on down to0+0 -  0. But this last is part of the 
definition of plus. There is, in short, no theorematic reasoning required to prove from the defini
tions that 7+5 -  12. It is not even necessary to take account of the general definition of an integer 
number. But Kant was quite unaware that there was such a thing as theorematic reasoning, be
cause he had not studied the logic of relatives. Consequently, not being able to account for the 
richness of mathematics and the mysterious or occult character of its principal theorems by corollarial 
reasoning, he was led to believe that all mathematical propositions are synthetic.” (NEMIV, 58)

Now theorematic reasoning, according to Peirce, essentially depends on hypo
static abstraction. I am able to prove, he writes, “that the most practically impor
tant results of mathematics could not in any way be attained without this operation 
of abstraction” (ibid., 49). We depend on hypostatic abstractions to make relations 
visible that would otherwise remain hidden.

Kant says that we do not have axioms in arithmetic, because statements like 
“7+5 -  12” have nothing general to themselves (Kant B, 206). Number symbols 
seem to be proper names of concepts that have to be applied to gain objectivity. 
This implies the syntheticity of the statement. But Kant wants it to be a priori 
also. The whole matter, as presented above, therefore rests on a sharp distinction 
between intuitive and discursive conceptions and procedures.

Peirce ascribes to Kant the merit of having given for the first time in history 
the distinction between the intuitive and discursive processes of the mind its prop
er weight. If mathematics is not merely tautological it must contain an intuitive 
element. But the line between intuition and logic being drawn too firmly, the 
greatest merit of Kant’s doctrine turns itself at the same time into its greatest fault 
(Peirce CP, 1.35). Kant misses the importance of relations, and “wholly fails to 
see that even the simplest syllogistic conclusion can only be drawn by observing 
the relation of the terms in the premises and conclusion” (Peirce W, 5, 258). This 
is done by means of appropriately constructed diagrams. Peirce believes that math
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ematics proceeds by diagrammatic reasoning and that a diagram is characterized 
by the fact that one is able to find out more than was necessary to construct it. 
Mathematical reasoning is diagrammatic. But diagrams may nowadays contain 
highly complex conceptual structures. Recall for example the exact sequence de
fining the notion of a group extension, or the diagrams of homological algebra in 
general. In any case they do not contain names of definite objects. They are icons 
and deal with generals only, with hypostatic abstractions, and any individual, 
“whatever is determinate in every respect must be banished from the logic of 
mathematics” (Peirce NEM IV, XIII). An icon, like a free variable, does not “pro
fess to represent anything; for if it did, that would be a manner of signifying its 
object, not consisting in merely resembling it” (Peirce CP, 8.119).

According to Kant, a theorem like “7+5 = 12” is not purely analytical, because

“the conception of a sum of 7 and 5 contains nothing but the uniting of the two numbers into one, 
whereby it cannot at all be cogitated what this single number is which embraces both. The concep
tion of twelve is by no means already obtained by merely cogitating the union of 7 and 5; [...] One 
must go beyond these concepts, and have recourse to an intuition [...].” (Kant B, 15-16)

An intuition of what, the reader might ask. And he might think, what is clear
ly needed is an intuition or a concept of the relations and algorithms involved, the 
relation of recurrence, for instance (such were already the views of Bolzano in 
1810 and later again Poincare). Kant continues by saying: “[...] an intuition, which 
corresponds to one of the two—our five fingers, for example, [...] and so by de
grees add the units contained in the five given in the intuition to the conception of 
seven” (ibid., B 16). Thus it is obvious that the syntheticity derives from my fac
ulty of coping with the algorithm and that this in turn relies on the fact that it is 
applied onto particular cases. Kant’s distinction between purely conceptual argu
ment or deduction on one side and the application of concepts on intuitions (con
cepts according to Kant can only be applied on Vorstellungen of things rather than 
things themselves (ibid. B, 94)) remains artificial, because even in formal deduc
tion a meta-cognitive element is always present. To state that in Peircean termi
nology: deduction involves Thirdness and is not confined to Firstness and 
Secondness.

This results in the first point of difference. Peirce even says that the entire 
Kantian philosophy must fall to the ground, as his logical system of distinctions of 
propositions is artificial, resting on mere accidents of language. As soon as one 
formulates the concept of arithmetical sum, for instance, in terms of the cardinal
ity of sets, the concept is obtained as a law, and the arithmetical theorems in 
question thus become synthetical. As soon as the whole numbers, however, are 
constructed completely from the concept of ordinal numbers, introducing the con
cept of sum axiomatically and recursively on the basis of the successor operation 
of the ordinal numbers, the arithmetical theorems become analytical (Otte 1992,
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part IV). This situation leaves us with the choice of either negating the analytic- 
synthetic distinction any objective meaning or claiming that the operations of 
mathematical deduction and of concrete observation are not as distinct as it might 
appear. Peirce takes, as has been shown above, the second route. What is missing 
in Kant, he says, is the logic of relatives as it is developed from an analysis of 
diagrams, and as it is involved even in a perceptual judgment.

Now the logic of relatives shows

“that observation and ingenuity are involved in the reasoning process. For it leads us to perceive 
that purely deductive reasonings involve discovery as truly as does the experimentation of the 
chemist; only the discovery here is of the secrets of the mind within, instead of those of Nature’s 
mind. Now the distinction between the Inward and the Outward, great and decisive as it is, is, after 
all, only a matter of degree.” (Peirce NEM, IV, 355)

Thus the analytic-synthetic distinction also is only a matter of degree (see also 
part V of this paper).

The usefulness of mathematics is due to the fact that mathematical relations 
are to be interpreted and applied in an indeterminate multitude of constellations. 
They relate possibilities not facts. Kant already had seen that things necessarily 
remain isolated. Thus laws or axioms do relate generals rather than things. They 
are conditional counterfactuals. Sets of possibilities is what physicists speak about: 
the configuration space of a system is the set of its possible instantaneous states. 
Natural laws and mathematical axioms or propositions thus establish relations 
between possibilities, which means between free variables or continua. “A true 
general is a whatever-should-be which will impart its generality to the following 
would be”, as Peirce says (Ms, 641). Peirce thus assumes that a characteristic of 
mathematical thought is, “that it can have no success where it cannot generalize”. 
Mathematicians strive for the greatest possible generality, often “exchanging a 
smaller problem that involves exceptions for a larger one free from them” (Peirce 
CP, 6.236). But generalization in respect to its widest possible scope is continuity 
or refers to the continuum, because “the continuum is all that is possible” (Peirce 
CCL, 160). In contrast to Kant Peirce believes that continuity is real and that 
possibility is not just our present possibility. The idea of possibility is not con
strained by the idea of a (transcendental) subject. The human subject is a poten
tially unlimited being and growth or evolution marks its essence, rather than activity 
(see part III).

Thus we may understand his second point of disagreement with Kant, which 
is to be seen in the characterization of continuity. We know about the importance 
of the principle of continuity from the history of mathematics. To Peirce’s realism 
it is however essential to conceive of the continuum, not as a collective entity, but 
as strictly general. Peirce uses the idea of continuity to introduce the reality of 
generality. But the reality of a general is the reality of the possible. Thus continu
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ity is possibility. The possible is however not determined and fixed in every re
spect. Therefore Peirce refuses the continuum being constructed and built up from 
particulars, as in Cantorian set theory or arithmetized analysis after the fashion of 
Cauchy. Possibility is essential to Peirce because to really conceive of epistemolo
gy in evolutionary terms, the indeterminate or less determinate and possible must 
to a certain degree govern evolution. Only the past is factual, whereas thought is 
directed also to the future and therefore to the possible, rather than factual. Other
wise one could not understand how new objects, new laws and new knowledge in 
general can arise.

With Peirce’s abandonment of aprioricism the relation between generality and 
continuity becomes prominent. Free variables such as in axiomatic statements or 
statements like “a triangle has ...” do not imply a definite ontological commit
ment. A free variable or a “general triangle” does not represent a general that is 
predicative. It refers to a mere possibility. Therefore the term “general” is used by 
Peirce to designate a regularity or a law open to an indefinite number of instanti
ations, which means to something beyond all definite cardinality and this some
thing therefore represents a continuum. Were it a set of distinct individuals and 
not a continuum, then Cantor’s powerset axiom would show that it cannot be 
beyond all multitude. Is there any sense, asks Peirce, “in saying that something 
that is not a multitude of distinct individuals is more than every multitude of 
distinct individuals”. Yes, he answers, there is in the following way.

“That which is possible is in so far general, and as general, it ceases to be individual. Hence, 
remembering that the word ‘potential’ means indeterminate yet capable of determination in any 
special case, there may be a potential aggregate of all possibilities that are consistent with certain 
general conditions; and this may be such that given any collection of distinct individuals whatso
ever, out of that potential aggregate there may be actualized a more multitudinous collection than 
the given collection.” (Peirce CCL, 247)

The particular is at the same time general, and the concept of the general must 
be related to continuity, because a general relationship is a relationship that is 
stable under small perturbances. Such a variation does not concern a set of facts 
but a set of possibilities or hypotheses such that a general is a relation between 
possibilities, which are dependent on continuity and which have no isolated indi
vidual existence. The continuum thereby gains an ontological status independent 
of synthesizing activity and this certainly implies that any mathematical reason
ing contains an analytical element, because of the fact that the continuum is not, 
as Kant believed, subordinate or secondary to a preceding mental synthesis. This 
idea thus involves that of a continuum. This new idea of general was expressed by 
Poncelet and by Peirce in nearly the same words.

We know that an algebraic or a complex analytic function /, such that/(x) -  g (x) 
holds for as small a variation of the argument as you please, is identical with g. 
Poncelet, on the basis of such observations, and taking into account that analytical



348 MICHAEL OTTE

geometry consists in coordinating continua, understood that the principle of con
tinuity is at the heart of operating with equations like x  -  5; and that it is the secret 
of algebraic generality. We can accept* = 5 and operate with it although a variable 
* and a particular value of that variable are of different logical type. The particu
lar, an ellipse for instance, represents in a certain sense, which cannot universally 
be specified, the general, the conic; as long as it represents certain essential prop
erties pertinent to that purpose, which are stable under continuous variation. Pon- 
celet aimed at a method that was based on the interaction of general and particular, 
concept and representation. As in geometry, one can always only represent the 
general by a particular, the genus by a species, or the category by a prototype, as 
with the idea of “general triangle”, for instance, or like a conic section by a partic
ular exemplar, like a circle or an ellipse, one has to employ the principle of conti
nuity to state in full generality relationships that have been verified for a particular 
diagram. Poncelet himself described the procedure as follows:

“Let us consider some geometrical diagram, its actual position being arbitrary and in a way 
indeterminate with respect to all the possible positions it could assume without violating the con
ditions which are supposed to hold between its different parts. Suppose now that we discover a 
property of this figure, whether it be metrical or descriptive, by means of ordinary explicit reason
ing— that is, by methods alone regarded as rigorous in certain cases. Is it not clear that if, observ
ing the given conditions, we gradually alter the original diagram by imposing a continuous but 
arbitrary motion on some of its parts, the discovered properties of the original diagram will still 
hold throughout the successive stages of the system, always provided that we note certain altera
tions, such as that certain quantities vanish, etc.— alterations, however, which can easily be recog
nized a priori and by reliable rules?” (Poncelet AAG, II, 531)

Thus the permanence of relationships rather than the empirical and isolated 
existence or non-existence of the relata validates the argument. The general is of 
the character of a relationship or connection, like an idea that spreads among 
minds. Peirce makes this comparison between natural laws and the effect of words. 
“It is proper to say that a general principle that is operative in the real world is of 
the essential nature of a representation and of a symbol because its modus operan- 
di is the same as that by which words produce physical effects” (Peirce CP, 5.105).

Third, the belief that mathematics represents absolute and apodictic true knowl
edge, may be questioned on grounds of two types of arguments, doubting that 
there is indubitable knowledge at all or questioning that mathematics represents 
factual knowledge. Peirce voices both kinds of disbelief. We have already dealt 
with one of them above in the first point of divergence. With respect to the second 
Peirce writes:

“Kant regarded mathematical propositions as synthetical judgments a  priori-, wherein there is 
this much truth, that they are not, for the most part, what he called analytical judgments; that is, the 
predicate is not, in the sense he intended, contained in the definition of the subject. But if the 
propositions of arithmetic for example are true cognitions, or even forms of cognitions, this cir
cumstance is quite aside from their mathematical truth.” (ibid., 4.232)
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Mathematics is not at all concerned with meanings (ibid., 5.567), but rather, as 
Peirce writes, with the substance of hypotheses. “Mathematics is purely hypothet
ical: it produces nothing but conditional propositions” (ibid., 4.240). And what is 
more important: mathematics cannot be applied to reality by first identifying premis
es in every detail. Observable details do not at all guarantee any real connection 
and “synthetic inference is founded upon a classification of facts, not according to 
their characters, but according to the manner of obtaining them” (ibid., 2.692).

This, however, implies that all knowledge is fallible and subject to possible 
revision. We have seen how Peirce’s conception of the subject matter of mathe
matics is connected with his conception of the continuum and that this conception 
in turn implied to treat the problem of the evolution of knowledge in mathematics 
and in the natural sciences on a par. It also follows that theories become realities 
sui generis in relation to concrete reality. This means, that they cannot simultane
ously be theories of their own application. Interpretation is a meta-operation that 
leads to a new representation. But theories being also signs (besides being entities 
in their own right) take part in a continuum of signs. This continuum, again, is 
not just a collection of particulars, because it incorporates all the meta-meta ...- 
levels of interpretation.

How then does Peirce the Pragmatist conceive of the interaction of general and 
particular? This is what Doctor Z, a character in one of Peirce’ dialogues, asked 
the Pragmatist:

“You say that no collection of individuals could ever be adequate to the extension of a concept in 
general, [...]. But really I do not quite see how you propose to reconcile that to the proposition that 
the meaning extends no further than to future embodiments of it.” (ibid., 5.526)

The Pragmatist in answering this question illustrates his views “by the considera
tion of the continuity of space”. I shall, he says,

“adopt the Leibnizian conception of space in place of the Newtonian. In that Leibnizian view, 
Space is merely a possibility [...] of no matter what affections of bodies (determining their relative 
positions), together with the impossibility of those affections being actualized otherwise than un
der certain limitations, expressed in the postulates of topical, graphical and metrical geometry. No 
collection of points [...] could fill a line so that there would be room for no more points, and in that 
respect the line is truly general, [...1 and yet it is so to say nothing but the way in which actual 
bodies conduct themselves.” (ibid., 5.530)

Fourth, Peirce, as opposed to Kant, does not see the problem in the question: 
“How are synthetical judgments a priori possible ?”, but rather in the more gener
al question: “How are any synthetical judgments at all possible? How is it that a 
man can observe one fact and straightway pronounce judgment concerning anoth
er different fact not involved in the first?” (ibid., 2.690). An answer is given 
which reminds us of the principle of continuity, which is fundamental to Peirce’s 
philosophy. The answer is this: “whatever is universally true is involved in the
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conditions of experience” {ibid., 2.691); and further: “experiences whose condi
tions are the same will have the same general character” {ibid., 2.692). The prin
ciple of continuity referring to generals cannot be based on a concept of uniformity 
of Nature (Mill).

“Mill never made up his mind in what sense he took the phrase uniformity of Nature when he 
spoke of it as the basis of induction. In some passages [...] Mill holds that it is not the knowledge 
of the uniformity, but the uniformity itself that supports induction, and furthermore that it is no 
special uniformity but a general uniformity in nature. Mill’s mind was certainly acute and vigor
ous, but it was not mathematically accurate; and it is by that trait that I am forced to explain his not 
seeing that this general uniformity could not be so defined as not on the one hand to appear mani
festly false or on the other hand to render no support to induction, or both. He says it means that 
under similar circumstances similar events will occur. But this is vague. Does he mean that objects 
alike in all respects but one are alike in that one? But plainly no two different real objects are alike 
in all respects but one. Does he mean that objects sufficiently alike in other respects are alike in 
any given respect? But that would be but another way of saying that no two different objects are 
alike in all respects but one. It is obviously true; but it has no bearing on induction, where we deal 
with objects which we well know are, like all existing things, alike in numberless respects and 
unlike in numberless other respects.” (ibid., 1.92)

The principle of continuity applies here because “whatever is universally true is 
involved in the conditions of experience” {ibid., 2.691), that is, belongs to the 
general aspects of that particular event in question, to its law like character. The 
principle of continuity, according to Peirce is a methodological principle regulat
ing the interaction between general and particular and it is the only such funda
mental principle, lending support also to induction.

If we understand Kant in the sense that synthetical judgments a priori just 
signify conditions of experience (see the introduction), then the difference be
tween Kant and Peirce amounts essentially to the question of the nature and onto
logical status of generals (or continua) or laws.

“While uniformity is a character which might be realized, in all its fullness, in a short series of 
past events, law, on the other hand, is essentially a character of an indefinite future; and while 
uniformity involves a regularity exact and exceptionless, law only requires an approach to uni
formity in a decided majority of cases. [...] The law should be a truth expressible as a conditional 
proposition whose antecedent and consequent express experiences in a future tense, and further, 
that, as long as the law retains the character of a law, there should be possible occasions in an 
indefinite future when events of the kind described in the antecedent may come to pass. Such, then, 
ought to be our conception of law, whether it has been so or not.” ( ibid.,8.192)

For Peirce, the reality of the “general” becomes clear from the way we deal 
with natural laws: natural laws are general because they permit predictions, and 
not only because they are stated with regard “to many things”, as the traditional 
definitions of the general say. In other words: the Aristotelian concept of the gen
eral as something predicative is replaced here by another concept of the general, a 
cognition or a situation being designated as “general” which permits predictions 
to a certain degree. If these predictions, however, are not to be held to be acciden
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tally true, the general must be assumed to be an active connection in reality, be it 
in nature or in history (see for example ibid., 5.103). If the possibility of predic
tions with regard to future events is given (a stone raised will fall down), this 
possibility must find a basis in the reality of the connection between things sug
gested here. And if relations (the laws of falling bodies) and relata (the series of 
falling stones) thus have the same ontological status, then there exists a genuine, 
that is in Peirce’s sense an inexhaustible continuum between these two entities— 
between the general law and the particular case—both whose existence is as
sumed here.

Let us come back once more to the analogy between mathematical axioms and 
natural laws to illustrate how Peirce’s ideas about continuity are linked to his 
philosophical realism. To explain a statement like 2+2 -  4 {ibid., 4.91), or7+5 -  12 
if you like, one first argues, as in discourse on ordinary knowledge, that this prop
osition expresses a simple matter of fact, to be easily verified by means of a calcu
lation (which however is in itself independent of such verification as it seems 
present in intuition). After a while one goes on, completely as in the case of sci
ence, to try and give an explanation of this fact. This endeavor implies a change of 
perspective, a jump to a level of different logical or categorical type. The law gives 
a unified account of what is otherwise a mere series (Armstrong 1983). In this 
endeavor one uses the general and abstract to explain the particular and concrete, 
or seemingly concrete, in exactly the same manner in which Newton’s laws are 
used to explain simple mechanical phenomena, or Ohm’s law is used to explain 
the facts of electricity. The general, as used in scientific explanations of such kind, 
in our case for instance the associative law of algebra, is less sure from a concrete 
empirical point of view and less positive than the individual facts to be founded on 
it. The less certain is used to explain the more certain, because what could be 
more certain because the effects of a law can never be certain. Such a strategy 
makes sense if it is employed exploratively and predictively, even though the pre
dictions made can never be absolutely sure.

Nominalism, denying the existence of universals outside the mind, has no use 
for the idea that laws are relations between universals and therefore cannot ex
plain the power of prediction inherent in them. Nominalism, or empiricism, per
haps, would speak of an inductive establishment of regularities, in which theoretical 
concepts and scientific laws lose their independent meaning. The great difference 
between induction and what is involved here is “that the former infers the exist
ence of phenomena such as we have observed in cases which are similar, while 
hypothesis supposes something of a different kind from what we have directly 
observed, and frequently something which it would be impossible for us to ob
serve directly” (Peirce W, III, 335-336).

The nominalists would say that a natural law is a mere representation, “the 
word mere meaning that to be represented and really to be are two very different
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things” (Peirce CP, 5.96). Now natural laws, as was said earlier, have some im
portance to us because of their predictive power. Exactly because of their prognos
tic function they cannot just be established by empirical verification. The nominalist 
would say they are free creations of the human mind, making their effectualness a 
miracle or a matter of pure chance “in order to escape the conclusion that general 
principles are really operative in nature” (ibid., 5.101). It makes no difference 
that the laws of nature do produce their effects with a certain probability only. On 
the contrary probability judgments exhibit much more clearly the general charac
ter of synthetic reasoning (ibid., 2.692 and Ms, 107).

For Peirce, the general is thus necessarily of a hypothetical character, as it is 
seen from the very outset in its potential for development. And this holds in the 
same vein for the natural laws which in Peirce’s view are subject to evolution in 
the same way as the physical phenomena determined by them. On this basis, the 
paradigmatic role of mathematics can be seen in the very fact that for Peirce it 
always had to do with hypotheses alone, so that the mode “in which mathemati
cians generalize” (CP, 6.26) can be used to study the process of increasing gener
alization within a “true” continuum of applications. Again this continuum, not 
being collective, just forms a space of possibilities.

The process of applying a theorem is thus a generalization. Firstly, because 
collective experience accumulates and is embodied within the system of symbolic 
means and every application of that means fosters this process, being at the same 
time dependent on it. Therefore generalization takes place, because the embodi
ment of experience in the construction of signs suggests new analogies, and gen
eralized hypotheses. Generalization thus is both a social process and an 
object-related one. Two continua, one linking the sign with its object, and the 
other established by the successive series of interpretants, appear as if fused into 
one, because interpretants depend on the relation between sign and signified ob
ject.

The idea of sign brings us to the fifth divergence between Kant and Peirce. 
Kant’s refutation of the ontological proof of God’s existence, which formed the 
basis of Leibnizianism, confines us in philosophy to a construction of concepts, 
without providing the certainty that these concepts are not empty. Hence, the ques
tion arises as to how these concepts can be applied to objects. Kant’s answer con
sists in pointing out the role of intuition. In mathematics these objects are only 
variables, such that mathematical reasoning becomes hypothetical. Peirce intro
duces the following changes: on the one hand, he eliminates the difference be
tween concept and representation (Vorstellung) by means of the notion of “sign”. 
On the other hand, he has a quite different idea of what reasoning or inferring is. 
Peirce always stressed that the insufficiencies of Kant’s epistemology were due to 
the latter’s insufficient logic, to a mere subject-predicate logic, and that this logic, 
in order to remedy the defect, must be extended to a logic of relations. It is in this
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very aspect, that diagrammatic reasoning becomes indispensable. Diagrammatic 
thinking is essentially established by the principle of continuity (ibid., 5.162) and 
it shows that deduction and induction or analysis and synthesis are not so thor
oughly unlike as might be thought (ibid., 5.579).

A sixth aspect is also closely linked with the role of signs and means of repre
sentation, namely that mathematics is essentially a kind of social cognition. Math
ematical cognition is the art of bridging gaps by inventing analogies and 
generalizations. Pure mathematics is the child of an explosive growth of mathe
matical activity that occurred around 1800 and that, in its sources, may be sum
marily characterized by stating that for the first time in the history of mathematics 
a great number of connections between apparently very different results and prob
lems was discovered (Scharlau 1979, 277). A complementary presupposition is 
hidden here, namely that plurality and difference played a fundamental epistemo
logical role. The world was seen as ruled by difference rather than by similarity or 
equality. In view of the fact that equality and difference are the fundamental sub
ject matter of mathematics, it seems plausible to claim that

“the chief characteristic of mathematical propositions is the wide variety of equivalent formula
tions that they possess. [...] In mathematics the number of ways of expressing what is in some sense 
the same fact while apparently not talking about the same objects is especially striking.” (Putnam 
1975, 45)

It seems obvious then that mathematics cannot be analytic, as otherwise there 
should be a universal mechanism that decides for any A whether one should be 
allowed to call it B thus deciding whether A could also be called B. It seems not 
surprising at all that Quine in “Two Dogmas” (1953) was not able to define syn
onymy in logical terms.

V The Analytic-Synthetic Distinction according to Peirce is only 
relative

Kant’s definition of analytic judgments expresses a whole or partial identity be
tween concepts serving as subject and predicate. The predicate essentially belongs 
to the subject and the subject is presented in its essential properties or relations. 
What is new about this situation in Kantian philosophy is only the fact that the 
essence of an object is not given but is constructed. Knowledge, says Kant,

“consists in the determinate relation of given representations (Vorstellungen) to an object: and 
an object is that in the concept o f which the manifold of a given intuition is united. Now, all 
unification of representations demand unity of consciousness in the synthesis of them. Conse
quently it is the unity of consciousness that alone constitutes the relation of representations to an 
object, and therefore their objective validity, [...] and upon it therefore rests the very possibility of 
the understanding.” (Kant B, 137)



354 MICHAEL OTTE

Accordingly knowledge and understanding depend on consciousness and the (epis- 
temic) subject becomes the pivotal and crucial point of epistemology. Peirce sub
stitutes the subject’s consciousness for the sign. In a sign, like in a work of art for 
instance, the synthesis of representations is realized in a way similar to the way 
the very essence of Monet’s garden at Givemy has been realized in his paintings.

“The work of the poet or novelist is not so utterly different from that of the scientific man. The 
artist introduces a fiction; but it is not an arbitrary one; it exhibits affinities to which the mind 
accords a certain approval in pronouncing them beautiful, which if it is not exactly the same as 
saying that the synthesis is true, is something of the same general kind. The geometer draws a 
diagram, which if not exactly a fiction, is at least a creation, and by means of observation of that 
diagram he is able to synthesize and show relations between elements which before seemed to 
have no necessary connection. The realities compel us to put some things into very close relation 
and others less so, in a highly complicated, and in a sense itself unintelligible manner; but it is the 
genius of the mind, that takes up all these hints of sense, adds immensely to them, makes them 
precise, and shows them in intelligible form in the intuitions of space and time.” (Peirce CP, 1.383)

The objectivity of a piece of art or of a theory which “compels us to put some 
things into very close relation and others less so” is due to the fact that works of 
art or theories, besides being signs, became recognized as realities sui generis. 
They are, in Peirce’s words, distinct quales or qualia.

“In so far as qualia can be said to have anything in common, that which belongs to one and all is 
unity; and the various synthetical unities which Kant attributes to the different operations of the 
mind, as well as the unity of logical consistency, or specific unity, and also the unity of the indi
vidual object, all these unities originate, not in the operations of the intellect, but in the quale- 
consciousness upon which the intellect operates.” (ibid., 6.225)

By his “semiotic transformation” of critical philosophy, Peirce was able to 
take into account that looking from different perspectives on one and the same 
thing and viewing different objects from one and the same point of view become 
indistinguishable approaches, as in the fusion of analytical geometry and linear 
algebra. The semiotic theory attempts to explain cognitive growth as a process in 
which the stages are indifferently members of a social community or sequential 
states of a single person. Knowledge and cognition are relative only in that they 
have to grow and to be generalized. That is their essential nature. Man is a sign 
himself and the processes of objective and of communicative generalization be
come unified into one process. Peirce semiotic theory now relies essentially on the 
logic of continuity and on the reality of the continuum. I cannot extensively deal 
with this thesis here but take it into account only as far as it concerns my topic.

With respect to this “semiotic transformation” of critical philosophy the refor
mulation of the definition of analytical judgments—in the sense of Kant as given 
by Quine in his “Two Dogmas of Empiricism”—seems justified. Quine writes:

“Kant conceived of an analytic statement as one that attributes to its subject no more than is 
already conceptually contained in the subject. This formulation has two shortcomings: it limits
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itself to statements of subject-predicate form, and it appeals to a notion of containment which is 
left at a metaphorical level. But Kant’s intent, evident more from the use he makes of the notion of 
analyticity than from his definition of it, can be restated thus: a statement is analytic when it is true 
by virtue of meanings and independently of fact.” (Quine 1953,20-21)

Meanings are generals, they are instances of Thirdness, and that implies that 
an investigation into meaning relations is a meta-knowledge activity. Any mental 
activity, in fact, involves the idea of context and this means meta-cognitive ele
ments. For instance, the form which a simple distinction commonly takes is “All 
things of sort S are either A or B ”. A simple distinction thus already involves 
generality (hinted at by the term: “ ... of sort 5”). Every cognitive activity involves 
a meta-cognitive element. To give but one more example: human rote learning is 
an example of a very rudimentary form of cognitive activity. But normally it is 
accompanied by a second-order phenomenon which we may call “learning to rote 
learn”. For any given subject, there is an improvement in rote learning with suc
cessive sessions asymptotically approaching a degree of skill which varies from 
subject to subject. Meta-cognitive activity making that one has thought about any 
subject itself a subject of thought creates what Peirce has termed “hypostatic ab
stractions”.

“In order to get an inkling— though a very slight one— of the importance of this operation in 
mathematics, it will suffice to remember that a collection is an hypostatic abstraction, or ens 
rationis, that multitude is the hypostatic abstraction derived from a predicate of a collection, and 
that a cardinal number is an abstraction attached to a multitude.” (Peirce CP, 5.534)

Now hypostatic abstractions like the essence of “Two” or like “Blue-ness” are 
indeterminate in many respects and to varying degrees, they are continua and they 
are real. Thus they represent Thirdness.

The analytic-synthetic distinction must therefore be liberated from questions 
about objectivity and objective truth. It is a methodological question. One has, 
with respect to the purpose at hand, to choose the appropriate level of generality. 
And taking into account the identity between generality and continuity any inves
tigation into meaning relations should be governed by the principle of continuity 
rather than the principle of identity of indiscemibles. One would ask then how 
meanings become connected, that is become species of one kind or type, rather 
than whether different meanings refer to the same thing or are identical. Now

“the meanings of words ordinarily depend upon our tendencies to weld together qualities and our 
aptitudes to see resemblance, or, to use the received phrase, upon associations by similarity; while 
experience is bound together, and only recognizable, by forces acting upon us, or, to use an even 
worse chosen technical term, by means of associations by contiguity.” (ibid., 3.419)
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And

“analytical reasoning depends upon associations of similarity, synthetical reasoning upon asso
ciations of contiguity. The logic of relatives, which justifies these assertions, shows accordingly 
that deductive reasoning is really quite different from what it was supposed by Kant to be; and this 
explains how it is that he and others have taken various mathematical propositions to be syntheti
cal which in their ideal sense, as propositions of pure mathematics, are in truth only analytical.” 
( ib id .,  6.595)

This error with respect to the character of deduction in pure mathematics is 
due to the sharp discrimination Kant has drawn between deductive inference and 
observation or between discursive and intuitive knowledge. Kant

“saw far more clearly than any predecessor had done the whole philosophical import o f this 
distinction. This was what emancipated him from Leibnizianism, and at the same time turned him 
against sensationalism. [...] But he drew too hard a line between the operations of observation and 
of ratiocination.” ( ib id ., 1.35)

Kant shared with Leibniz a foundationalist attitude with respect to knowledge. 
He, however, conceived of the foundations differently from the God’s eyes per
spective of Leibnizianism. This different orientation made him emphasize the 
distinction between discursive and intuitive knowledge, because only God’s mind 
is intuitive, whereas ours is necessarily discursive (Kant B, 135). Peirce does not 
accept Kantian foundationalism and the sharp separation between the subjective 
and the objective in Kantian thought and this makes the analytic-synthetic dis
tinction a relative one too.

“The truth is our ideas about the distinction between analytical and synthetical judgments is 
much modified by the logic of relatives [...]. Deduction, or analytical reasoning, is [...] a reasoning 
in which the conclusion follows (necessarily, or probably) from the state of things expressed in the 
premises, in contradistinction to scientific or synthetical reasoning, which is a reasoning in which 
the conclusion follows probably and approximately from the premises, owing to the conditions 
under which the latter have been observed [...]. The two classes o f reasoning present, besides, 
some other contrasts [...] some significant resemblances. Deduction is really a matter of perception 
and of experimentation, just as induction and hypothetical inference are; only, the perception and 
experimentation are concerned with imaginary objects instead of with real ones.” (Peirce CP, 
6.595)

Mathematics, being based on experimentation with diagrams, has deduction as its 
main method of reasoning (Peirce knows of two other methods, namely induction 
and abduction) and Thirdness as its main category.

Another explanation of the connection between the analytic-synthetic distinc
tion and the subject-object relation can be furnished via a discussion about the 
character of relations and in particular via the question whether relations are 
internal or external (Peirce uses the attributes “relation of reason” vs. “real rela
tion” and he parallels analytic knowledge with the former (ibid., 1.365)). The 
attempts by Russell and Moore to understand relations and to see the implications
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of the distinction between internal and external relations led to the establishment 
of analytic philosophy around the turn of the century (Moore 1922, 276-309).

Kant believed that relations are “external” and real knowledge must therefore 
be synthetical. All objects (substances) are isolated like Leibnizian monads. Con
tinuity we find only in the realm of phenomena as they are synthesized by activity. 
Kant accordingly based synthesis and continuity on activity. But contrary to Hume 
he believed in the objective character of the synthesis and the resulting knowledge 
because the subject’s activity is framed by conditions that are a priori. Therefrom 
comes his project of understanding how synthetic knowledge a priori is possible.

An analytic proposition implies S = P and this means S< P  and S > P. S < P, in 
words: the predicate is to be applied to the subject; whereas S > P means the 
predicate inherently belongs to the subject. This last expression is normally used 
when explaining what analyticity of judgments means. S < P and S > P, however, 
are equivalent, as we have just seen from the rephrasing (a more formal statement 
of this equivalence can be found in Peirce (Peirce CCL, 131 ff.). We see from this 
that if all relations are internal all propositions are analytical. The externality of 
relations by contrast, leads to synthetic propositions. Instead of using a priori 
intuition to secure the objectivity of synthetic knowledge Peirce uses a theory of 
the continuum. Objectivity of knowledge namely is an ontological question, ac
cording to Peirce. It is the question of the reality and generality (which is the 
same) of relations, and the latter question depends on continuity (as we have seen 
when discussing Poncelet's views). On these grounds, the analytic-synthetic dis
tinction becomes relative. We have, in fact, shown that analysis and synthesis are 
complementary elements in every mental activity (even in formal deduction).

Quine in “Two Dogmas of Empiricism” claims (1953, 37) that Peirce adhered 
to the verification theory of meaning and held a limit theory of truth. This, howev
er, is a too narrow interpretation of the pragmatic maxim and of Peirce’s frequent 
endorsement that the truth of any proposition is a function of whether or not its 
being accepted by the epistemic community in the idealized long run. In a contro
versy with William James and the latter’s views on pragmatism, Peirce denied the 
existence of absolute individuals and stressed the importance of the general, which 
is a continuum that is not collective. The continuum of space, we recall, served 
Peirce as an illustration of such a potential aggregate that contains only general 
conditions “which permit the determination of individuals”. The pragmatic max
im in a narrow sense implies a God’s eye perspective, as Peirce had explained in 
a review of Royce’s philosophy because the thing which God imagines, and the 
opinion to which investigation would ultimately lead, in point of fact, coincide. 
(Peirce CP, 8.41). Thus to hold a verification theory of meaning would amount to 
falling back on Leibnizianism, which certainly was not on Peirce’s mind.

Quine, in “Two Dogmas of Empiricism”, linked the analytic-synthetic dis
tinction to the classical view of scientific knowledge, namely to the belief that
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each meaningful statement is equivalent to some logical construct upon state
ments that express direct matters of fact. Quine, in fact, defines this type of reduc- 
tionism more narrowly, but we want here to stick to the classical Aristotelian 
scheme of a science. Such a science is a system of sentences which satisfies the 
following postulates: there is a finite number of terms and a finite number of 
sentences such that the meaning of the terms and the truth of the sentences are so 
obvious as to require no further explanation and proof. The meaning of any other 
term as well as the truth of any other sentence is definable or logical inferable 
starting from the original collections of terms and sentences, which are given by 
means of intuition and experience.

Kant adhered to this Aristotelian model of rationality, but radicalized it by 
amplifying the part of the rational mind as a standard, since he learned from 
Hume that all knowledge presupposes a synthetic constructive element. His views 
are best illustrated by quoting his characterization of the term “Nature” (Kant A, 
125-128). The unity of apperception is the basis of any order and uniformity of 
Nature (cf. part III of this paper).

Holism in the sense of Kuhn or Feyerabend followed the Kantian route a little 
further still. On this account theory as a whole or the paradigm becomes the standard 
which determines fact and rationality. But this standard becomes thoroughly rel
ative. Kant sacrificed truth for objectivity. Now even objectivity is to be under
stood relative to the theory in question. Kuhn or Feyerabend believe that theory as 
a whole determines the intensions of its terms and that intensions determine ex
tensions. The theory or the paradigm becomes a way of seeing the world, which is 
completely incommensurable with other ways. It is clear then that the analytic- 
synthetic distinction loses all objective meaning because of the thoroughgoing 
relativism involved. Where do the scientific revolutions and the new rationality 
standards come from? To answer questions like this we would have to engage in 
an understanding of the objectivity of the subjective outside aprioricism. The task 
then is to see how in the evolution of knowledge social and objective factors inter
act. Quine finally believes that the theoretical system as a whole must be squared 
with experience but is as such hopelessly underdetermined by experiential fact. 
Quine’s solution of the dilemma of relativism is that “in practice we end the re
gress of background languages, in discussions on reference, by acquiescing in our 
mother tongue and taking its words at face value” (Quine 1968, 201). This means 
we understand scientific objectivity as resting on common sense. But this is, says 
Chomsky, “no help at all, since every question he had raised can be raised about 
the mother tongue and the face value of its words” (Chomsky 1976, 186). Com
mon sense convictions themselves have to be taken as variables and have to be 
related to scientific expertise and inquiry. It is the relationship between science 
and commonsense knowledge which determines our cultural evolution.
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Nevertheless it is common sense where our most stable convictions are bor
rowed from, even in science. Meaning essentially depends on the fact that all 
humans ultimately live in a common world, irrespective of the fact that pluralism 
and diversity are very essential to human life. Peirce always stresses that purposes 
of “a general description” are intended in the pragmatic maxim, and that

“upon innumerable questions, we have already reached the final opinion. How do we know that?
Do we fancy ourselves infallible? Not at all; but throwing off as probably erroneous a thousandth 
or even a hundredth of all the beliefs established beyond present doubt, there must remain a vast 
multitude in which the final opinion has been reached. Every directory, guide-book, dictionary, 
history, and work of science is crammed with such facts. In the history of science, it has sometimes 
occurred that a really wise man has said concerning one question or another that there was reason 
to believe it never would be answered. The proportion of these which have in point of fact been 
conclusively settled very soon after the prediction has been surprisingly large. Our experience in 
this direction warrants us in saying with the highest degree of empirical confidence that questions 
that are either practical or could conceivably become so are susceptible of receiving final solutions 
provided the existence of the human race be indefinitely prolonged and the particular question 
excite sufficient interest.” (Peirce CP, 8.43)

VI Pure and Applied Mathematics: Some Examples of Non-Kantian 
Applications of Mathematics

What concerns us here is the complementarity of means and problems, or of methods 
and objects, which became prominent. This complementarity becomes essentially 
Thirdness, if one takes into account that activity has to enter as a third into the 
relation. The fundamental ideas of science or mathematics are of a methodologi
cal character, rather then of an objective one. Objects and relations become means 
and means become objects of scientific activity. Means and objects are fully differ
entiable by their respective moments on individual cognitive activity, but they 
play a completely symmetric part in the development of cognition. This comple
mentarity (difference and unity) of objects and means accounts for the emergence 
and dynamism of pure mathematics in the nineteenth century. It follows from this 
that there are no absolute foundations nor universal justification processes for 
mathematics. Looking from different perspectives on one and the same thing and 
viewing different objects from one and the same point of view become methodo
logically indistinguishable approaches, as in the fusion of analytical geometry 
and linear algebra. This equivalence or complementarity is represented in the 
idea of sign, when taken in the sense of Peirce. Linear algebra or synthetic projec
tive geometry were meant by its inventors as new and more fundamental approaches 
to geometry, in comparison to the ones espoused by Euclid or Descartes. Still they 
did not lead as was hoped to the final determination of mathematics. They were in 
fact first steps towards what later on became called a de-ontologization of mathe
matics.
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Mathematical ontology nowadays can only be conceived of as Peirce’s inex
haustible continuum of real possibilities of relations. And which of these possibil
ities become actualized in a certain context and at a certain point in time depends 
on our goals and means of knowing. The future determines the past, which is the 
universe of the factual. The world contains only signs and the continuum of pos
sibilities ahead in the future. A theory of meaning based on concepts abstracted 
from substances does not permit us to distinguish between analytical or syntheti
cal judgments of cognition. The continuum’s meaning serves only as a philosoph
ical hypothesis which enables us to tie meanings to whether a practice of cognition 
has been verified and to justify generalizations by their ability to predict. The 
foundation of mathematics cannot be separated from its application. This is the 
conclusion we draw from what has been said above.

The dialectic of means and objects may briefly be summarized as follows:
A) As in any other cognitive activity, object and means of cognition are linked in 
mathematical activity as well. Mathematics cannot proceed in an exclusive orien
tation towards universal, formal methods. This would in the last instance amount 
to mathematical activity itself being suited to mechanization and formalization. 
Mathematics, too, forms specific concepts intended to serve in the grasping of 
mathematical facts.
B) Object and means are not only linked, but also stand in opposition to one 

another. Objects or facts are resistant to cognition. They represent Secondness, as 
Peirce says. And problems do not produce the means to their solutions out of 
themselves. Modem mathematics even obtains its own dynamics in no small part 
from applying theorems and methods which at first glance have nothing to do 
with the problems at hand.

In this, we understand by “object” any problem or any kind of resistance of 
reality against the subject’s activity, and by “means” anything which seems appro
priate to achieve mediation between the subject and the object of cognition. In this 
sense not only sign systems but also theories—knowledge of any kind and also 
intuitions in the Kantian sense—are means of the subject’s activity.

This double problematic of means and objects as outlined under (A) and (B) 
also determines the relationship between analysis and synthesis and the quite con
troversial evaluations of the latter.

With regard to (A), for instance, the advantage of synthesis is presented as 
concreteness and genuine objectivity in mathematics (AS), whereas under (B) 
synthesis is presented as a method too much dependent on the particulars of the 
situation under consideration that proceeds timidly, conservatively and tentative
ly, and by chance and error. Synthesis is a method which becomes mired in the 
particular and is unable to attain genuine generalization (BS).

Under (A), conversely, the restricted character of logic or of algebraic analysis 
is salient.
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“The objects considered which are mere compositions or compounds of elements do not contain 
more or less than the elements themselves; as a result, the goal pursued will always be determined 
by the means applied [...]. The problem is from the very outset cast into the mold of algebraic 
composition.” (Boutroux 1920,193-194)

In these words Boutroux criticizes Cartesian algebraic science. The means them
selves, dominating thought too much, become the only objects considered. Or, to 
put it differently, knowledge becomes abstract and formal (AA). From perspective 
(B), on the other hand, algebraic generalization appears as an opportunity for 
symbolic generality which detaches itself from links too close to referential mean
ings, and in which true generalization is attained by introducing hypostatic ab
stractions, whereas in synthetic mathematics the general is always only presented 
by a particular (BA).

For purposes of illustration, let us consider two examples of mathematical 
application. The first concerns the so-called “theory of cellular automatons” and 
the possibilities of using them to describe the developmental dynamics of process
es. In an application developed by Bielefeld mathematicians, the matter at hand 
was to investigate heterogeneous-catalytic reactions on metal surfaces. These are 
chemical reactions occurring in many processes of detoxification of exhaust fumes, 
and in particular in exhaust catalyzers for car engines. Complicated oscillation 
patterns were formed in these reactions, and it was possible to simulate these by 
cellular automatons. These simulations, however, were not hit upon by analyses 
of the chemical processes at hand, but rather by observing that a certain function 
of number theory shows a quite similar oscillatory behavior. And this function in 
turn was easily represented by a cellular automaton. Only afterwards did it be
come possible to give a chemically plausible interpretation for this behavior (Jahnke 
1992). These relations of similarity led to a computer simulation of the relevant 
processes, and this in turn led to deeper study and interpretation. Mathematics 
and computer simulation just furnished a reservoir of forms.

A second, similar example comes from research into the brain and into cogni
tion. First, by investigating the brain, the computer was used to try and find out 
what thinking really is. This mechanistic or reductionist approach, however, did 
not bring theory close to the “essence” of cognitions. Later, computers were vari
ously used in trying to identify certain brain activities within an electrical thun
derstorm which can be measured on the scalp. The results obtained were then 
used to build apparatuses which transform certain brain activities into material 
processes such as controlling an airplane. For this, it is necessary that the individ
ual whose brain is the source of the signals learns to repeatedly produce certain 
impulses at will, just as I do involuntarily when I raise my right arm. How a 
certain effect can be produced must be found out by every individual for himself. 
There is, so to say, no clear-cut material basis for that. “In principle, it doesn’t 
matter what signal is measured as long as one is able to influence it somehow with
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one’s brain”, as A. Junka, one of the pioneers in the analysis of biosignals, de
scribes his own working philosophy (Focus, No. 28 July 1994, 104 ff.). Together 
with some friends, he set up a company which developed a so-called biolink sys
tem. Three forehead electrodes do not only record electric currents in the brain, 
but also signals from facial muscles. A calculating method is used which analyzes 
the signals in real time in ten different frequency ranges. According to the strength 
of the signal received, the computer can be made to carry out certain actions. 
“This must not be seen too analytically, the main thing is that it feels good” (ibid.), 
Junka points out to those who want to decide and find out for themselves how they 
want to coordinate their own will and their brain activity. Particularly for wheel
chair patients with severed spinal cords opportunities hitherto unheard of are pro
vided.

The researchers do not approach the matter analytically, but rather play around 
with various types of brain control devices. What matters therefore is not the 
question what thinking really is, here and at this point in time, but rather how 
thinking can influence reality. The computer thus is a machine which establishes 
relations between the brain and some other entity and confers a certain reality on 
them. Similarly, the diagram in mathematics is a machine which permits us to 
confer reality to certain relations. The process is always the same. From a contin
uum of real possibilities, some of these are being actualized by means of distinc
tions. In this sense, Peirce guessed

“that the laws of nature are ideas or resolutions in the mind of some vast consciousness, who, 
whether supreme or subordinate, is a Deity relative to us. I do not approve of mixing Religion and 
Philosophy; but as a purely philosophical hypothesis, that has the advantage of being supported by 
analogy.” (Peirce CP, 5.107)
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CLASSICAL SOURCES
FOR THE CONCEPTS OF ANALYSIS AND SYNTHESIS*

In the introduction to the present book, different meanings of the terms “analy
sis”, “synthesis” and their cognates, variously related to mathematics are taken 
into account. It appears to me that the papers composing the present volume, 
exhibit a great variety of meanings of these terms as they occurred in the history of 
philosophy of mathematics. In such a situation, it is quite natural to wonder if, 
when speaking of analysis and synthesis in mathematics, we are really speaking 
of a unitary and well-defined question, or if the title of the present book merely 
refers to a number of different and unconnected questions. At first glance, one 
might believe that this is the case; that what is common to the different meanings 
of “analysis” and “synthesis” consists just in the fact that people happen to use 
these same words. But if a term is used to refer to different meanings, it is plausi
ble that there is a reason for that. Even though these meanings are really different, 
it is nevertheless possible, for example, that they are linked by a causal chain 
which is so long that the ends of it have actually nothing to do with beginnings. If 
this were the case, our book would finally be concerned with a succession of se
mantic shifts or stretches rather than with a historical and philosophical question. 
I do not believe that this is so. The different topics discussed in the various contri
butions are, I believe, intrinsically connected to each other; besides, I argue that 
all of them are parts of only one question, and that this question can be addressed 
both as a historical and as a philosophical one.

I should like to provide two distinct aiguments: the first is based on my under
standing of the relations between history and philosophy of mathematics, the sec
ond one is concerned with my understanding of the different meanings of “analysis” 
and “synthesis” and their cognates. The main objective of the present essay is to 
state and unfold the second of these arguments. Thus I will consider the first one 
only very briefly.

Mathematics is a human activity (here, ch. 11), as is philosophy. Mathematics 
is concerned with the creation and study of mathematical objects (here, ch. 12, 
par. IV), while philosophy creates and studies philosophical objects. A philosoph
ical object is nothing but a concept. It is a general category we use in our explana
tion of certain phenomena, for example, the phenomenon of knowledge. Thus, 
philosophy takes part in any explanatory activity. Thus, as long as mathematics is
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an explanatory activity, it contains philosophy as a part of it. But, as long as it is a 
human activity, mathematics is also a phenomenon that we would possibly want 
to explain. Such an explanation is exactly the goal of a different sort of activity 
which is generally either called “history” (or “historiography”) or “philosophy” of 
mathematics. The use of one or the other of these two distinct names depends on 
the particular aspect of explanation on which we want to insist. By using the first 
name, we insist on a local explanation, that is the explanation of a fragment of 
mathematics, as it has been performed (and according to the results it has pro
duced). By using the second name, we insist on the search for and discussion of 
the general categories we use in such an explanation. This does not mean, of 
course, that I intend history (or historiography) of mathematics as a particular 
application of philosophy of mathematics. As an activity, mathematics is a single 
and individual phenomenon and it seems to me that it is not possible to intend it 
as a succession of repetitions of certain patterns or models. Thus, philosophy of 
mathematics is not the activity of describing patterns or models of mathematics. 
By speaking of general categories, I do not refer to general patterns for mathemat
ical activity, but to general concepts we use in order to speak about such an activ
ity and to explain it.

From such a point of view, the question of analysis and synthesis in mathemat
ics is the question of legitimacy, nature and use of the general categories of anal
ysis and synthesis for the explanation of (certain fragments of) mathematics, and 
it is really a unitary question if the terms “analysis” and “synthesis” refer, or could 
refer, to two general concepts used to speak of mathematics and explain it. It is a 
matter of fact that these terms have been used both to explain and do mathematics. 
A number of papers of our book aim to understand and discuss some of these uses. 
If their conclusions were intended as an evidence for a radical difference between 
these uses, it would not be possible to assert that they are parts of an answer (or 
even different partial answers) to only one historical and philosophical question. 
We would be justified in speaking about the philosophical and historical question 
of analysis and synthesis in mathematics only if we accepted to specify a particu
lar meaning in which we use the terms “analysis” and “synthesis”. This is not my 
wish, since I do not think that the conclusions of the previous papers are evidence 
for a radical difference between the admitted uses of these terms. I think, quite to 
the contrary, that the different concepts of analysis and synthesis discussed in the 
previous essays are intended as different elements of two classes of equivalence 
which constitute as such two general concepts; that is, they are different forms of 
exposition of these concepts. The aim of the present essay is to expound some 
important aspects of these concepts by discussing some classical source.
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I Philology and Literature

Both the terms “analysis” and “synthesis” stem from the Greek. As they are com
posed of more primitive terms, they could, in a sense, be understood as sorts of 
descriptions. Thus, at a first glance, we can consider their etymology as a source 
of suggestions.

The Greek term for “analysis” is “avdAAXJiq” that is composed by the prefix 
“ava” and the substantive “A,uoiq”. The prefix “ava” was generally used in Greek 
to indicate the idea of motion upwards, and could accordingly be translated by 
expressions like: “upwards”, “above”, “towards”, or even “near” or “close to”. 
However, in composed words it is also used sometimes in the sense of “back” or 
“backwards”. The substantive “A,t3aiq” is used in different senses too, like “solu
tion” or “conclusion”, but—as it is derived in turn from the verb “Aaxd”, that 
means “to free”, “to liberate”, “to loose”, “to unknot”, “to dissolve”, or even “to 
break” or “to destroy”—it is also used to indicate the ideas of liberation, loosen
ing, dissolution or even destruction. Thus, tentative transitions of “dvaXuaiq” 
could be: “back from solution”—or, as it was common for Latin translations of 
Greek texts, “resolution [resolutio]”—or “back from conclusion”, but also “to
ward the solution”, “close to the conclusion” or again “what brings to the solution 
(or dissolution or even destruction)”, “what makes it possible to unknot some
thing”, etc.

The situation is simpler for the term “synthesis”, that is the English version of 
“cruvOecriq” or (more seldom) “£,uvdsoiq”. This is composed by the prefix “ouv” 
(or “£uv”)—which means “with” or “together”—and the verb —which
means “to put”, “to lay (down)”, “to set” or even “to state”. Thus a synthesis could 
be etymologically intended as the act of putting (something) together or the act of 
stating (something) with an accord.

These swift etymological considerations suggest a starting point for our search: 
etymologically, the Greek terms for “analysis” and “synthesis” do not oppose each 
other in a direct way. Whatever semantic opposition there is, it is that between the 
verb “A/uco”, which vehicles an idea of separation and the prefix “cruv” which 
transports an idea of composition. However, though the term “oyvOeoiq” directly 
refers to the action of composing, the term “dvdA.uoiq” refers to the action of 
separating only in a more indirect way, by means of the prefix “avd” and accord
ing to the complex idea of “A/uoiq”.

This is confirmed by the occurrence of the terms “dvdA.uoiq”, “ovvdeoiq” and 
their cognates in the Greek corpus, where they are not generally used to express 
two opposite ideas. Even though the first one is often used to express an idea close 
to that of separation, such an idea is generally more complex, and it is not in 
direct contrast to an idea of composition as transported by the term “ouvffeoiq”.1 
In the Odyssey, Penelope, waiting for Ulysses to return, “analysed [dA.A.UEOKEv]”
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her web during the night, but she did not synthesize it during the day; she “weaved 
[ucpaivecncev]” it (Odyssey, P, 104-105 and x, 149-150). In the tragedy by So
phocles, the chorus snubs Electra because of her inability to “analyze” herself 
from her males (Electra, 142), but Electra never synthesizes herself with them. 
Again, for the author of On the Universe (which was during a long time ascribed 
to Aristotle), some winds can be formed by “analysis” of clouds’ thickness (On the 
Universe, 394Z>, 17), but no cloud is formed by synthesis. In these three examples, 
“analysis” and its cognates carry respectively the ideas of unraveling, liberation 
and dissolution, three ideas expressing separation that are not opposed to compo
sitions by “synthesis”. A similar exercise is possible starting from the term “syn
thesis”. According to Pindar {The Pythian Odes, IV, 168) the agreement between 
Pelias and Jason, after which the latter leaves for Colchis to seek the Golden 
Reece, is just a “synthesis”. You can find the same idea of synthesis, as an agree
ment in Plutarch {Live o f Sulla, 35, 10), who uses the verb “to synthesize [cruv- 
Tif)Ti|ii]” to indicate the act of bargaining over a marriage (namely the marriage of 
Sulla and Valeria at the end of Sulla’s life). Following Isocrates (X. Helen, 11), a 
“synthesis” is then the act of drafting an oration—five centuries later, it will be for 
Plutarch {Moralia, 747d) the act of composing a poem—, while for Aeschylus 
{Prometheus Bound, 460) it was, in the same vein but more fundamentally, the 
science of writing, that is the art of arranging letters in order to form a word. In 
such a sense, it is one of the gifts from Prometheus to human beings, which make 
them able to reason and think. Six centuries later, Plutarch associates the idea of 
synthesis to a different art, namely the art of counting or even to the science of 
numbers. In his treatise The Obsolescence o f Oracles, he generalizes an old def
inition of (natural) numbers as “synthesis of unities”, already quoted by Aristotle 
in Metaphysics as a customary one (1039a 12), and uses the term “cruvdeaiq” to 
refer both to the composition of (natural) numbers by smaller numbers {Moralia, 
429b, cf. also 744b) and to their addition (416b). Cognates of the verb “auvriftr|- 
pi” were besides used in the Elements (for example in the definitions VII, 13-14) 
in a similar sense, to indicate composition of numbers or magnitudes. In these five 
examples, “synthesis” means something close to composition, but it does not ap
peal to any sort of analysis, before it, or after it.

Of course these examples have not to be taken too seriously, in particular when 
two common verbs like “avaA,ixo” and “owriffripi” are involved. They confirm 
however that the opposition between analysis and synthesis was not as natural in 
Greek culture as it is for us. Moreover as long as, in all of these previous exam
ples, analysis and synthesis are particular sorts of separation and composition, 
they seem to operate on certain objects to change their relational status or obtain 
other sort of objects of the same logical nature. Neither synthesis, nor analysis 
entails a passage from the particular to the universal, or from the universal to the 
particular, or from objects to concepts or vice versa.
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II Plato

The same seems to be true of the idea of synthesis as it occurs in Plato’s dialogues. 
In the Cratylus (431c), Plato comes back to the idea of Aeschylus and generalizes 
it with respect to the structure of language, by saying a proposition is a “synthe
sis” of verbs and nouns (cf. also Sophist, 263d and Plutarch, Moralia, 1011c, 
which just assigns such a definition to Plato). In the Republic, he speaks of “syn
thesis” as referring to the combination of parts in a certain system. You have not 
to believe—he argues (611 b)—that soul consists of distinct parts, since it is diffi
cult that a being is immortal if is composed (ouvOetov) from a number of parts, 
except when the “synthesis” is perfect. Elsewhere, in the same treatise (533b), he 
speaks about “synthesis” of manufactures (ownOepeva) as one of the concerns 
of Texvai. And in the Phaedo (92c - 93a) he treats harmony (agpovia) as some
thing produced by an act of synthesis. In these examples, synthesis is something 
like the process of composing or arranging objects into a structure or system, and 
it is not, as such, opposed to any sort of analysis. Moreover, in contrast to the term 
“synthesis”, the term “analysis” is not part of Plato’s lexicon.

This does not prevent Plato from contrasting the ideas of composition and 
separation in the core of his philosophy, namely in his presentation of dialectics. 
In the Phaedrus (265c - 266c) he calls “dialecticians” those, who are able to 
operate with “division” and “gathering” (&icuqeok;  icai cruvaytoyf|). By the sec
ond of these conducts, scattered ideas are grouped together, while, by the first, one 
idea is presented according to its natural joints. Plato’s choice to use the term 
“cruvaycoyn” rather than “cnjvffeoiq” to indicate the first of these operations could 
be understood as a symptom of his will to distinguish between two different sorts 
of compositions: the assemblage of distinct objects in order to form a certain sys
tem (we could call “oruvdeoiq”) and the subsuming of distinct ideas under one of 
a higher type (we could call “ouvaytoyrj”). As, for Plato, ideas are contrasted to 
appearances in terms of an opposition between real objects and fictitious ones, 
this distinction does neither correspond to the distinction between composition of 
objects and composition of concepts nor does it refer to subsumption of objects 
under concepts. As long as Plato does not dispose of concepts, both synthesis and 
cruvaycoyfj operate on objects (“ideas”), but while the result of synthesis is a new 
object, which operates as such in a certain realm, the result of oiMxyayyfj is the 
acknowledgment of a certain relation linking different ideas, which produces, as 
Plato says, “clearness and consistency” of discourse {ibid. 265d). According to 
such a conduct, we can say, for example, as Plato says, what is love, but we do not 
necessarily recognize the different sorts of loves, that is the different ideas which 
are submitted to the idea of love (but which do not compose it). This is the concern 
of biaiQeoiq, which operates on an idea that has been made clear by ouvaycoyn 
and which recognizes its different species.
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III Aristotle

III. 1 Synthesis

When Aristotle in Politics (1294a, 30 - 12946, 1) speaks jointly of hiatgeon; and 
oi3vdeai<;, he seems not to understand them very differently from Plato’s. The 
6icuQ£Oi<; is the distinctive character of certain forms (namely democracy and 
oligarchy as forms of government), while auvffeou; is just the composition of 
these forms by resulting in a new form (of government). Similarly in the Meta
physics, where Aristotle contrasts owdeaiq with Siaigeoig (1027b, 19; and 10676, 
26), by respectively referring to the composition and separation of subject and 
predicate, or (10426, 12-18) observing that differences (biacpogai) between sub
jects may depend on the manner in which they are “synthesized”. Aristotle in 
these arguments associates the notion of synthesis with an idea of separation, but 
he does not express the latter by the term “analysis”, using respectively the Pla
tonic term “Skxiqeok;” and the term “6ia<poQri”. Here, a synthesis is a way to 
produce objects (either subjects or forms), which can be distinguished (or separat
ed) from one another in terms of the particular character of synthesis itself. Else
where, in Metaphysics, the term “synthesis” is used to indicate a particular mode 
of composition—which Aristotle explicitly distinguishes both from mixture (pl^iq; 
1043a, 13; and 1092a, 26) and from communion (cruvoixila; 10456,12)—or com
position in general (11136, 22; and 11146, 37).

III.2 A nalysis: Analytics Prior and Posterior

Thus, taken as such, the idea of synthesis seem not to suffer very deep modifica
tions, when passing from Plato to Aristotle: both authors use it to express the 
composition of objects in order to form new objects. What is new in Aristotle is 
rather the conception of objects upon which a synthesis may operate. Like Plato, 
Aristotle believes that knowledge entails, as a necessary condition of it, a funda
mental duality. But he substitutes for Plato’s duality of real objects (that is ideas) 
and fictitious objects (that is appearances) the duality of matter and form, or sub
ject and predicate, and finally, object and concept (here, ch. 12, § IV. 1 and IV.2). 
Thus Aristotelian objects are objects of certain concepts, subjects of certain pred
icates, or pieces of matter with a certain form.

Therefore, in contrast to Plato, a proposition like “Socrates is mortal”, for 
Aristotle, does not mean to say that the idea of Socrates is subsumed, in the hier
archy of ideas, under the idea of mortality, but is to say that the predicate ‘(to be) 
mortal’ applies to the subject ‘Socrates’, or that the object ‘Socrates’ belongs to 
the extension of the concept ‘mortal’. “Socrates” is here the name of an object 
(which functions as the subject of a predication). However, according to Aristotle,
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an object is not merely a piece of matter, rather it is a substance; it is a piece of 
matter with a certain form. And it is this form, which makes this substance just 
what it is. Thus, the term “Socrates”, properly speaking, refers to this form, that is 
to a predicate or, even to a concept (here, ch. 11, § II). The question thus is the 
following: to what piece of matter does the form ‘Socrates’ apply? In different 
terms: what is the subject of the predicate ‘(to be) Socrates’ or the object which 
belongs to the concept ‘(that which is) Socrates’. In answering that this object 
(subject or piece of matter) is just Socrates, we accept to use a concept (a form or 
a predicate) to indicate a piece of matter, a subject or an object. No knowledge 
would be possible if we were not able to do it. But no knowledge would be possible 
yet, if all forms, predicates or concepts were treated as pieces of matter, subjects or 
objects. Thus knowledge asks for a distinction between forms, predicate or con
cepts, which indicate pieces of matter, subjects or objects, and forms, predicate or 
concepts which do not. Of course, such a distinction is relative to specific acts of 
knowledge, since we can utter both the sentence “Socrates is mortal” and the 
other “this man is Socrates”. Therefore, new and essentially non-Platonic prob
lems arise at the core of the Aristotelian theory of knowledge: is it possible—in a 
certain epistemological context—to treat a certain form, predicate or concept as a 
piece of matter, a subject or an object, or is this impossible? Under which condi
tions is Such a thing possible? What piece of matter, subject or object, is the con
tent of this form, predicate or concept, when it is treated in such a way? In other 
and simpler terms: is a certain concept able to indicate an object, or a plurality of 
objects, or it is not?

This is not the same question as asking if one or more objects fall under a 
certain concept, since the latter may be possible, even though the concept is not 
able to indicate any objects as such. Take the example of the concept ‘(to be) red’. 
Its extension is certainly not empty in the context of our empirical knowledge. 
Nevertheless, it fails to indicate any empirical object as such. Nor is it the ques
tion whether a certain predicate is essential to a certain subject, or not, since it is 
possible that we agree in considering a certain predicate as essential to a certain 
subject (for example the predicate ‘(to be) human’ for Socrates), even if we main
tain that it does not indicate an objects as such.

Even though he seems to accept the intensional distinction between predicates 
which can indicate a subject and predicates which are essential for a certain sub
ject, Aristotle seems to believe that no predicate can be essential for a certain 
subject, if it is not able to indicate an object. By essential predicates of a certain 
subject P Aristotle means {Posterior Analytics 13a 34 - 736 3) both the predicates 
which belong to the essence of this subject (as the predicate ‘(to be a) man’ be
longs to the essence of Socrates). And the predicates such that if they are taken as 
indicating a subject, let us say Q, then the predicate which indicates the subject P
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belongs to the essence of this subject 0 . Thus a predicate 0  is an essential predi
cate for a subject P if and only if either the predication “P is 0 ” or the predication 
“0  is P” are essential predications, that is: they assign to their respective subjects 
a predicate which belongs to the essence of them2. On the base of such a defini
tion, Aristotle aigues3 in chapters I, 19 - 1, 22 of Posterior Analytics in favor of 
the following thesis:

If “P is 0 ” is an essential predication, and {/*.}, {0 } and {S } are three
series of predicates respectively occurring in the series of predications:
(a) {“P, is P”, “P2 is P ,”, “P3is P2”, ...}
(b) r e  is £ ”, “e, is 0 2”, “02is 0 / \  ...>
(c) CP  is S,”, “5, is s2”, .... is ”, 0 ” >
then:
(/) if the predications of the series (a) and (b) are all essential, then the 

series {P }, and {0 } are finite;
(«) if the predications of the series (c) are all essential, then the series (S } 

is finite;
(Hi) if the negations of the predications of the series (a), (b) and (c) are all 

essential, then the series {P.}, {0 } and {S } are finite.

As, according to him, a proof can only contain essential predications, this means 
both that no proof goes on ad infinitum, and that there is no proof of everything 
(ibid., 82a, 6-8). In the chapters I, 20 - 1, 21, he argues that if (i) is true, then (it) 
and (iii) are also true. Finally in the chapter I, 22 he argues that (i) is true.

At the beginning of this chapter, Aristotle states that no subject can be defined 
and known, if its essential predicates are infinite in number (82b, 37 - 83a, l)4 
and that no predicate can be an essential predicate of a certain subject, if it is not 
able to indicate a subject, namely either the same subject to which it applies or a 
certain species of it (ibid, 83a, 24-25). According to the literal reading of the 
second of these theses, it is not possible that a predication “P is 0 ” is essential, if 
the predicate 0  does not indicate a subject that is just P (since, if 0  is a species of 
P, it is certainly not essential). However Aristotle seems to think that this predica
tion could also be essential if the predicate Q indicates a subject of which the 
subject P is just a species. In any case, Aristotle is aiguing that if there is no white 
which is just white, without besides being also something else (ibid, 83a, 30-32), 
then the predicate ‘(to be) white’ cannot be essential of any subject. This means, 
according to Aristotle, that Platonic ideas have to be rejected, or, at least, that they 
can not occur in a proof (ibid, 83a, 32-33).

After this, Aristotle advances three different aiguments in favor of (i), the 
third of which (ibid., 84a 17-28) is called “analytic” (ibid., 84a 8), and contrasted 
to the other two, which are said to be “logical [Xoyixoc;]” or—as someone trans
late, according to Gerard of Cremona— “dialectic”.
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Let us look how such an argument runs. If the downward series of predicates 
P. is infinite, there will be for every (natural) number j  a predicate P ., such that 
“P . , is P ” is an essential predication, thus, reascending the series, we should 
conclude that for every (natural) number j  there is a predicate P. such that UP. is 
P” is an essential predication. But this is impossible, because it is not possible that 
infinitely many things belong to only one thing. Thus the conclusion is proved for 
the first series. The same argument works for the second series too, because if this 
series were infinite, there would be for every (natural) number j  a predicate 0  , 
such that “P is 0  ” is an essential predication, what makes definition impossible.

It is not important here whether this argument is correct or not5. What is im
portant for us is that Aristotle calls this argument “analytic”. What does he mean 
by that? Which character of this argument does he want to underline by choosing 
such a qualification? If we consider two further passages of the Posterior Analyt
ics, where the term “analysis” occurs with a clearer meaning, two distinct an
swers are possible6. The first answer appeals to a passage of chapter I, 32 (88b, 
15-20), where Aristotle aigues that, from the obvious premise that every (right) 
conclusion can be proved starting from all principles, it does not follow that the 
principles are the same for every science. And, as a counter-example, he mentions 
the cases of mathematics and analysis. Clearly, the term “analysis” here refers to 
the science of syllogisms or, generally, the science of proof, in harmony with the 
title itself of Aristotle’s treatises on this topic (cf. also Metaphysics, 1005b, 4). If 
we accept such a notion of analysis, we may assert that Aristotle’s argument is 
analytic, because it proceeds by (implicit) syllogisms. The second answer appeals 
to a passage of chapter I, 12 (78a 6-8). There Aristotle says that if it were impos
sible to derive truth from falsehood, “analysis” would be easy, because it would 
there be necessarily convertibility (dvteoTQecpe). Here, the term “analysis” seems 
to refer to deduction of knowns from unknowns, or (accepted or acceptable) premises 
from conclusions we are trying to prove (cf. Barnes 1975, p. 147). If we assume 
this is the meaning of the term “analysis”, we can assert that Aristotle’s argument 
is analytic, because it assumes that conclusions are true and deduces something 
that is known to be false (or accepted as false) that is: it is a reductio ad absurdum.

Taken separately, these two answers might be convincing. However, when com
pared with each other, the problem arises of how to understand their compatibili
ty. Why is the science of proof called “analysis”, if analysis is, in a different sense, 
regressive deduction? We can find an answer to such a question in the first lecture 
(Proemium) of Saint Thomas’s commentary on the Posterior Analytics. Thomas’s 
aigument is the following. At the beginning of the Metaphysics, Aristotle says 
that man lives thanks to art and reason. Art is a certain order of reason, according 
to which human acts attain certain ends. Reason not only directs the acts of infe
rior parts of man, but it is an act too. Thus, there is an art of reason which enables 
us to order the acts of reason without mistake. This art is logic, that is thus both
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rational (as every art) and is about reason. Therefore, logic is divided into differ
ent parts, according to the differences of the acts of reason. There are three kinds 
of acts of reason. The first one is understanding of the indivisible and simple; this 
is the matter of Aristotle’s Categories. The second is the act of composition or 
division, which produces respectively affirmative and negative judgments; this is 
the matter of Aristotle’s De interpretatione. The third finally is “concerned with 
what is proper to reason [secundum id quod est proprium rationis]” and it is just 
the act of inference (as Thomas says: it is “discurrere ab uno in aliud, ut per id 
quod est notum deveniat in cognitionem ignotr). Such an act in turn can be 
performed according to three different modalities, since reason can act with or 
without necessity (or certainty), and if it acts without necessity, it may attain truth 
or falsehood. The part of logic which treats the first kind of these modalities of 
reason is called “iudicativa” and it produces judgments which have certainty of 
science. Now, such a certainty is only possible if these judgments are “resolved” 
into the first principles (they are brought back to the certainty of the first act of 
reason, that is the understanding of indivisible and simple). Because of that, this 
part of logic is called “analysis” and is the matter of Aristotle’s Analytics.

Generally kept back by this splendid argument is the fact that, according to 
Aristotle, analysis is concerned with certainty and demonstration (rather than 
with probability and discovery—which is, according to Thomas, the matter of 
Aristotle’s Topics —or false arguments—which is the matter of Aristotle’s Soph- 
istici elenchf). This is certainly the case: according to Aristotle, analysis is con
cerned with certainty and demonstration. But, if Thomas is right, as I believe he 
is, it is not because analysis is demonstrative, but because demonstration is neces
sarily analytic, that is: it guarantees the truth of the conclusions by reducing them 
to first principles. This does not mean that a proof of T is necessarily a deduction 
of (some) first principles from T, since Aristotle knows perfectly well that truth 
can be deduced from falsehood. The point is different and may be stated as fol
lows. If a proposition T is given and has to be proven (or refuted), the only thing 
we can do is just look for first principles from which T can be deduced. Thus, if we 
consider a proof from the point of view of its conclusions, rather than of its prin
ciples, it is necessarily preceded by a regressive conduct that reduces these conclu
sions to their principles. By calling “analysis” the science of proof, Aristotle seems 
to insist on this aspect of proof (Ross 1949, 400), that is really the most important 
one, if we are concerned—as Aristotle was—with the truth of conclusions and the 
conditions of such a truth. Of course, if the regressive conduct consists in deduc
ing the negation of one first principle from T, it is ipso facto (at least from classical,or 
Aristotelian point of view) a proof of T . This is exactly the case with the 
previous argument, but it does not represent the general case.

Thus, when Aristotle states that his previous argument is analytic, he is refer
ring to analysis as a regressive conduct, which brings us from certain statements
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to the principles making them true (or provable)8. A similar idea is evoked in a 
short passage of the Metaphysics (1063b, 15-19), where Aristotle argues that con
trary statements cannot both be true. The reason of that, he says, is evident “by 
analyzing the definitions of contraries into [its] principle [eat’ a,Qxi\v xoix; Xoyotx; 
avaXuoixa roix; xtov evavrtcov]”. Here, analysis is a regressive conduct, which 
brings us from a definition to the principle that explains it, assigns to it a certain 
meaning.

This seems to be quite clear, but it is not yet the end of the story, since in the 
Prior Analytics Aristotle often uses (cf., as only an example, 51a 18-19) the term 
“analysis” with in a strictly different meaning (Hintikka and Remes 1974, 31). 
According to this meaning, analysis is reduction, or more precisely, breaking up 
of a certain figure of syllogism into another figure (cf. Smith 1983, 161), which 
enables us to know whether the syllogisms of the former figure are valid or invalid. 
Thus, the science of proof is concerned with regressive reduction in a twofold 
way. First, because proof asks for regressive reductions of conclusions to first 
principles, and second because a necessary condition for the correctness of a cer
tain proof is its reducibility to the accepted figures of syllogism. It is just because 
the act of this double regressive reduction is an analysis, that proof is concerned 
with analysis: it is not analysis that is demonstrative for Aristotle—as Timmer
mans (1995) says, for example—but proof that is necessarily analytic.

Once again, this is not the end of the story. Before leaving the Analytics, let us 
briefly come back to the previous analytic argument. What Aristotle asserts by 
such an aigument9 is that no proof is possible about a certain subject, indicated by 
a predicate P, if the regressive series of predicates P. which specify P, does not 
terminate in a predicate Pn = A which can not be ulteriorly specified. Aristotle 
speaks of proof, but he seems to refer to knowledge in general. In our terms, he is 
thus asserting that no knowledge is possible if there are no concepts which are, as 
such, concepts of objects, rather than concepts of properties or relations; in differ
ent and more Aristotelian terms: no knowledge is possible if there are no forms 
which are intrinsically substances.

III.3 A nalysis: N icomachean E thics

Let us keep this result in mind, and consider now the famous aigument of the 
chapters III, 3 - III, 5 of Aristotle’s Nicomachean Ethics (1111a, 21 - 1113a, 12; 
cf. here, ch. 9, par. II). Here Aristotle is discussing the difference between a volun
tary act (eicotiaiov) and a choice (atgoaigeoiq). While a voluntary act is the act of 
which the moving principle is in the agent itself (111a 22-23), a choice is certain
ly a voluntary act, but it is not any kind of voluntary act. First of all, choice is 
neither appetite nor anger, nor wish (Po\3A,r|0i<;). Moreover, it is neither opinion 
(6o£a) in general, nor a particular kind of opinion. There are different reasons for
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that. Two of them are: first, opinion may concern any kind of object, while choice 
can only be exercised on things which are in our own power; second, opinion is 
either true or false, whereas choice is either good or bad. Thus opinion, as such, is 
different from choice, even though the former either precedes or accompanies the 
latter. Namely (1112a, 15) choice is a voluntary act which has been the object of 
deliberation (rtgoPePouXeupEVOv10), the voluntary act which follows (and de
pend on) an act of deliberation (PouXedok;). By referring to the act of the PouA/rj", 
Aristotle seems to assert that choice is an act resulting from a plural, or even 
public or political consideration, aiming at determination of a certain action, that 
is the choice itself.

Now, according to the previous characterization of a voluntary act, the agent 
of such a deliberation can be nothing else but the subject, who operates the choice 
himself. But what is the object of such a deliberation, about what is it? This is the 
topic of chapter 5. Implicitly, the answer has already been given, since Aristotle 
has said above that choice can only be exercised on things that are in our own 
power. However, he tries now to make such an answer explicit, by extending it to 
any sort of deliberation, and by saying what sorts of things these things are, or are 
not. First of all, according to Aristotle, eternal (that is necessary12) things—like 
those which mathematics treats—are not objects of deliberation. The same is true 
for that which changes if it changes always in the same way—like the subject of 
natural motions—or without any regularity—like rain—or still according to 
chance—like finding a treasure. This is quite clear, since no human (or political) 
subject—that is the agent of a deliberation—can intervene on these things. Ac
cording to Aristotle, the range of deliberation is however even narrower, since 
each subject only deliberates on things which he is able to modify. For example, 
Aristotle says, no Lacedaemonian deliberates on the Scythian government. Thus, 
if we are referring to deliberation, human power has to be intended as practical 
and political power, that is power fixed by accidental constraints and even social 
conventions. Moreover, deliberation does not concern ends, but only means, which 
are necessary to reach already fixed ends. Namely, the objects of deliberation are 
just two. First, if the same end can be reached by a number of distinct means, 
deliberation establishes, which of them entails the easier and better realization of 
this end. Second, if the end can be reached only in one way, it establishes the 
chain of means which produces this way, by descending from it, up to the actual 
situation of the subject.

Aristotle continues (1112b 20-21) “who is deliberating seems to research and 
analyze the way described as [it happens with] a (geometrical) figure [6 [...] Pou- 
Xcuopevoq eoike £t)teiv icai avaA/UEiv rov eiqtkievov tqojcov gxjjceq bidyQap- 
pa]”. Here our translation is literal, but we could interpret the previous passage in 
this way: “who is deliberating seems to research in the way described like he were 
analyzing [a] (geometrical) figure”. Thus Aristotle seems to intend that what has
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been described is just the path of analysis. Deliberation is thus a sort of analysis, 
or better, analysis is the form of deliberation; it is a form of thinking, namely the 
form or thinking which deliberation satisfies. But how can this form be character
ized in general; what is proper to it, rather than to the particular nature of deliber
ation? It seems that Aristotle would like to answer such a question, since he 
immediately remarks (1112Z?, 21-23) that, though every deliberation is a research, 
not every research is a deliberation—“as [it is the case of] mathematical ones 
[olov at paOqpaTiKCu]”—and asserts (1112b, 23-24) that what is last in the anal
ysis is the first “in generation [ev xt \ y ev eo ei]” . The meaning of Aristotle’s com
parison is not completely clear. Different translations understand it in quite different 
ways. It seems to me, however, that Aristotle is comparing respectively delibera
tion with the path that brings us from the definition of a certain figure to the 
elements from which the construction (or generation) of this figure starts (and, 
implicitly, choice of the construction itself), and he is asserting that both deliber
ation and this path are examples of analysis. However, comparison is not identifi
cation, since the path that goes from the definition of a certain figure to the elements 
from which the construction of this figure begins is a mathematical research and 
mathematical researches are not deliberations (even though every deliberation is 
a research).

If this is correct, Aristotle thinks that, as long as it is a regressive reduction, 
analysis can be both the reduction of the definition of a geometrical figure to the 
elements starting from which the (geometrical) construction of this figure is pos
sible (which I shall call a “geometrical reduction”), and the reduction of a certain 
end to the actually available means, from which a chain of means, bringing us to 
such an end, could start. In the first case, analysis brings us from a certain condi
tion (that is not still an actual object, but only a character that a certain object 
should be eventually satisfy) to the actual objects starting from which another 
actual object satisfying the given condition will certainly (and always) be pro
duced. In the second case, analysis brings us from the determination of a certain 
end (that has not been actually reached), to the means that possibly may produce 
such an end. While in this second sense analysis is deliberation, in the first sense 
it is not.

As we have just seen, a deliberation, according to Aristotle, is never about 
eternal (that is necessary) things and therefore, it is not accompanied by the guar
antee that the end will be reached by following the chain of means that it is actu
ally indicating. Here, Aristotle seems very close to a Platonic conception, since he 
seems to argue that deliberation is just a matter of opinion and not of knowledge. 
According to such a point of view, analysis does necessarily accompany the de
monstrative necessity of mathematics. Thus, while the agent of the first sort of 
analysis is nothing but the mathematician, who actually knows that a certain con
struction is possible and that it certainly produces an object satisfying certain
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conditions, the agent of the second sort of analysis is the PouXfj, or generally the 
political community that has to evaluate the risks and chances of a certain choice. 
I do not say that, as long as analysis is a regressive reduction, it is not necessarily 
a regressive deduction; still, neither do I say that analysis is necessarily neither a 
regressive deduction nor a regressive reduction preparing a possible deduction. 
What I am saying is, that analysis is not necessarily neither a regressive deduc
tion, nor a regressive reduction preparing a successful enterprise (and thus, a 
fortiori, a demonstrative performance, as a geometrical construction is).

This is only one aspect of the question, however, since there is a further impor
tant, and, as I believe, deeper aspect both of deliberation (in Aristotle’s sense) and 
of geometrical reduction, according to which they appear logically similar, de
spite the radical difference between practical reason (to which deliberation seems 
to belong) and purely speculative reason (to which geometrical construction seems 
to belong, instead). A deliberation starts with the fixation of an end and is con
cerned with considering suitable means to reach this end. Now, to fix an end 
means to present both the concept of a state of things and to state the will to 
realize it. Thus, in the case of deliberation, analysis terminates with the determi
nation of a possible action that has to be performed in order to produce a certain 
state of things. Similarly, a geometrical reduction does not start by merely stating 
a definition, but only when the aim is stated to exhibit an actual object satisfying 
such a definition. In the case of geometrical construction, the conclusion of anal
ysis is therefore also the determination of a possible action which has to be per
formed, the difference being that in the first case, the action produces, or should 
produce, a new state of things, while in the second case, the action permits one to 
exhibit a geometrical object. In the first, as in the second case, however, the result 
of such an action is just something which falls under the concept presented in the 
first stage; it is the object of this concept. Thus in both the cases, analysis is 
reduction of a certain concept, which is given as such (independently from the 
corresponding object), to the conditions of actual realization of the corresponding 
object, that is the conditions that make this realization actually possible (for the 
agent of the analysis himself).

IV Aristotelian Forms of Analysis

Following Aristotle in his arguments of Analytics and Nicomachean Ethics, we 
have thus encountered four examples of what he calls “analysis”: the regressive 
conduct connected to a proof of a given statement T (that is its reduction to accept
ed principles or their negation) or to an explication of a certain definition—which 
we could call “reduction to principles”—, the reduction of a certain figure of 
syllogism to a different figure—which we could call “syllogistic reduction”—,
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the geometrical reduction, and the deliberation. What do these four examples 
have in common?

A first answer is already implicitly contained in what I have said: they are all 
examples of regressive reduction13. Differently from the first two, the third and 
the fourth examples, however, are not examples of regressive reduction, because 
in them something is reduced to something different which is already given or 
known as being true or false. These are examples of regressive reduction, because 
they reduce a concept to certain conditions that can be satisfied in the actual 
situation of the subject. This observation suggests a possible generalization of the 
idea of regressive reduction: a reduction is regressive when: i) it is finite; i7) it is 
such that its last stage is a conclusive stage, a stage that could not support any 
further reduction (as long as analysis is always research, as Aristotle says, it is 
finished only when its last stage does not ask for any other research of the same 
kind); iii) the reason for it is that such a stage is the stage of the actual knowledge, 
disposability or possibility of the subject. Such a generalization enables us to say 
that every analysis is, according to Aristotle, a regressive reduction.

Another common aspect of the four previous examples is that they refer to 
analysis as a form of inferential thinking, rather than merely as a form of a system 
of sentences or statements. Even though Aristotle directly presents the third argu
ment of chapter 1,22 of the Posterior Analytics as “analytic”, it seems quite obvi
ous that he means that the conduct of reasoning that follows such an aigument is 
analytic. This is quite evident in the case of deliberation. Thus, we might say that, 
for Aristotle, analysis is a form of inferential thinking, that is a system, or even a 
chain, of (intentionally) connected acts which brings us from a certain stage to 
another, essentially different one. These are acts of representation and assertion of 
certain contents. Moreover, the representation of these contents may be meant as 
a certain sentence in an available language. If this is the case, their assertion is a 
statement in this language. By using—as I have already done above, at a number 
of occasions—the same term to indicate both the form and the substance of which 
this form is just the form, we might then say that an analysis is a system of acts of 
thinking, expressed by a system of statements.

For Aristotle, an analysis, following the two previous remarks, is a system of 
acts of thinking realizing a regressive reduction. This means that, in order to be 
an analysis, a system of acts of thinking has to carry one from a certain stage to an 
essentially different, stage. We could call the first stage, the “initial stage of anal
ysis”, and the second the “final stage of analysis”. Our previous characterization 
of the notion of regressive reduction specifies the nature of the final stage. As long 
as the notion of reduction is taken for granted however, this characterization spec
ifies neither the nature of the initial stage nor the relations between the initial and 
the final stage.
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What seems clear from the previous examples, is that the initial stage has to 
include the stating of a certain aim, and the final stage has not only to be a conclu
sive stage, according to the previous conditions (i) and («), but has also to be 
conclusive with respect to the possibility of realization of such an aim. However 
the four examples differ on this point. While in deliberation and geometrical re
duction a concept is given in the initial stage, in reduction to principles and syllo
gistic reduction, that which is given in the initial stage is an object. Thus, we have 
to conclude that, according to Aristotle, there are two kinds of analysis: those 
which start with an object (we might call them “analysis of objects”) and those 
which start with a concept (and might be called “analysis of concepts”).

Moreover, in the reduction to principles the aim is just to prove the given 
statement (or the classification of the given definition), in syllogistic reduction is 
the validation of the given inference, in deliberation it is the realization of the end 
characterized by the given concept, and finally in the geometrical reduction it is 
the exhibition of one or more objects, which satisfy the given concept. It is then 
clear that the aim is neither the same for all types of analysis, neither is it the same 
respectively for all the types of analysis of objects, nor for all the types of analysis 
of concepts.

Still, while in deliberation, in geometrical reduction, and in reduction to prin
ciples, as well—when this does not consist in deducing the negation of one prin
ciple starting from the given statement—analysis does not realize the aim, but 
merely indicates the conditions of its realization, in syllogistic reduction, and in 
reduction to principles—when this consists in deducing the negation of one prin
ciple starting from the given statement—analysis does realize the aim (or at least 
it provides all the material allowing us to say that the aim has been realized). The 
latter cases both are examples of analysis of objects. In them the givens are objects 
that have actually been exhibited to the subject. However these objects are so 
given that the subject ignores something about them, namely he ignores whether 
these objects enjoy or do not enjoy certain properties. The aim just specifies which 
properties they have and further states the will to know whether these objects 
satisfy these properties or not. Thus, by saying that in these cases an object is 
given, we are stressing that what is given will be considered as an object in the act 
of thinking (or, if you prefer, in the statement) that finally states that the aim has 
been reached. It seems, according to the previous examples, that, when this is the 
case, analysis can realize the aim alone. Now, in the case of analysis of concepts as 
well, the givens might be intended, in a sense, as objects, since every concept can 
be treated as an object and a subject just treats it in this way when taking it as 
being given. Nevertheless these concepts will not occur as objects in the act of 
thinking (or, if you prefer, in the statement) that states that the aim has been 
reached finally; they just occur in it as concepts. This remark should render the 
previous distinction between analysis of concepts and analysis of objects. Besides,
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it should also justify the following general conclusion: no analysis of concept can 
produce as such the realization of the aim occurring in its initial stage. Thus, we 
can refine our previous distinctions by distinguishing three different genera of 
analysis: analysis of concepts; analysis of objects which does not realize alone the 
aim occurring in its initial stage (or “non conclusive analysis of objects”); and 
analysis of objects which does realize alone the aim occurring in its initial stage 
(or “conclusive analysis of objects”).

Consider first the previous examples of analysis of concepts, that is delibera
tion and geometrical reduction. It is obvious that the conditions of realizing the 
aim are not the same in the two cases. The following are two obvious necessary 
conditions. In the case of geometrical construction, the subject has to operate on 
the given object which analysis has indicated and realize the construction accord
ing to the accepted clauses. If we assume that these clauses are just the Euclidean 
axioms, such a construction may be intended as a synthesis, in the usual meaning 
of this term (cf. the next paragraph V.4): it is a construction of a new object 
starting from given objects. Thus, we could say that in this case, the aim occurring 
in the initial stage of analysis is not realized as long as no synthesis follows the 
analysis. In the case of deliberation the subject has to act, he must pass from 
deliberation to choice. In this case no one of the previous senses of the term “syn
thesis” seems to entitle us to say that the aim occurring in the initial stage of 
analysis is not realized as long as no synthesis follows the analysis. Are these two 
necessary conditions also sufficient? At first glance, we might say that this is not 
the case, since neither synthesis nor choice produces the realization of the aim, if 
the analysis has not indicated the correct starting point for them. Such an answer 
is certainly correct, but it also trivial. And triviality cannot simply be avoided by 
considering nothing but the case of correct analysis, since we have no general 
means to distinguish a priori between correct analysis and false analysis. The 
situation is quite different in the two cases. This is clear if we consider examples 
of geometrical construction taken from Euclid’s geometry: while for deliberation 
we certainly do not dispose of these means, for geometrical reduction we possibly 
dispose of them. This remark elucidates the essential difference between deliber
ation and “mathematical analysis” stated by Aristotle. Besides, it makes this dis
tinction independent of the Platonic attitude inherent in the argument of 
Nicomachean Ethics. From an intensional point of view, the correct distinction 
thus is the one between analysis of concepts regulated by a criterion of correctness 
(relatively to the aim) which operates a priori from the actual application of its 
indications (or “regulated analysis of concepts”) and analysis of concepts which is 
not regulated by a criterion of this sort (or “non regulated analysis of concepts”). 
The only example of a regulated analysis of concepts Aristotle presents is an ex
ample where the aim is reached if and only if a synthesis follows the analysis.
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Consider now the previous example of a non-conclusive analysis of objects. It 
is a reduction to principles which does not consist in deducing the negation of one 
principle starting from the given statement. In this example a necessary condition 
for the aim to be realized is that a deduction of the given statement from first 
principles is conducted. In this case analysis has two distinct tasks: to indicate 
which first principles have to be taken as starting points of this deduction, and to 
suggest the path of this deduction. Clearly, to do it is not to conduct the proof of 
the given statement. This proof demands that deduction is conducted. If analysis 
is nothing but a regressive deduction, the indication of the first principles which 
have to be taken as the starting points of the proof is obvious. In this case, the only 
criterion for the correctness of the analysis (relatively to the aim) is convertibility 
of deduction. Now, this criterion is a priori, in the previous sense, only if it oper
ates on the analysis itself. Hence, it is a priori only if it states that analysis has to 
contain only inferences by equivalence. This is in general a too restrictive criteri
on, however, since T might be deductible from certain first principles, even if it is 
not equivalent to them. Nevertheless, no other a priori criterion for the correct
ness of the analysis seems to be available in this case. As long as it is a non- 
conclusive analysis (of objects), a reduction to principles is thus either regulated 
or not regulated; if it is regulated it fails, in general, to exhibit all the sufficient 
conditions of deduction of the given statement.

In the first as well in the second case, the realization of the aim demands that 
the analysis is followed by a deduction, which, according to the previous senses of 
this term, is not a synthesis. There is an aspect of non-conclusive reduction of 
principles (as it is intended by Aristotle) however, which makes it similar to geo
metrical construction and even suggests a generalization of the idea of synthesis 
which includes such a deduction. To understand this point let us come back to the 
very last remark of the previous paragraph III.2, where I have aigued that for 
Aristotle no proof is possible about something that is P if there is no predicate P 
-  A, intrinsically indicating a subject. This means that the first principles of any 
proof are just statements which refer to an object just given as such, rather than to 
an object which merely satisfies a certain concept of property (ch. 12, par. VI.2). 
This is to say that no proof is possible if an object is not exhibited as such. As one 
of the tasks of non-conclusive reduction to principles is to indicate the first princi
ples from which the proof can start, this means that, in this case, one of the tasks 
of analysis is just to indicate some objects which are given as such, serving as the 
starting points of the proof (these objects are clearly not first principles, they are 
rather that about which first principles speak, since no first principle is an object 
given as such, being rather an object satisfying the concept ‘to be known as true’). 
This is also true of geometrical construction: one of its tasks is to indicate a given 
object given as such, serving as the starting point of construction. Thus, as long as 
they follow an analysis, both, proof and geometrical construction, start from ob
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jects which have to be given as such, rather than as objects which satisfy certain 
concepts of property.

Even though there is no evidence to ascribe such a generalization to Aristotle, 
we might call “synthesis” any conduct of thinking that follows a non-conclusive 
analysis, realizing the aim occurring in the initial stage of this analysis, and starts 
from an object that is given as such (rather than as the object which satisfies a 
certain concept of property). This meaning of the term “synthesis” has become 
common during the modem age, but it seems to us that there is no room for it in 
the Greek culture of the classical age. While the notion of analysis, because of 
Aristotle, grows into gnoseological complexity which enables it to describe a fun
damental conduct of knowledge, the notion of synthesis does not seem to suffer a 
similar evolution and always refers, in the Greek culture of the classical age, to 
the composition of given objects in order to obtain new objects, or, more in gener
al, to the construction of new objects, starting from given objects. Moreover, when, 
probably in the first half of the fourth-century of the Christian era, Pappus explic- 
itely contrasts synthesis with analysis, describing them as successive stages of a 
geometrical method, he does not take into account the notion of analysis in all its 
Aristotelian complexity. Rather, it seems that the generalization of the notion of 
synthesis will only occur later, when the Pappusian opposition of it to analysis 
will be considered in the framework of the general Aristotelian conception of the 
latter.

V Analysis and Synthesis According to Pappus

V.l Pappus’s Definition

At the beginning of the 7th book of Mathematical Collection (VII, 1-2), when 
Pappus expounds the method of analysis and synthesis, he seems to advance a 
rational reconstruction of an important fragment of Greek mathematics (here, ch. 
6, par. I). He does not say merely that the “domain [or treasury] of analysis [avaXuo- 
pevoq; literally: being analyzed]”14 is a certain matter (namely a matter prepared 
for those who, after having got usual elements, wish to gain “in the (geometrical) 
figures [ev ypappaiq]” the power of solving the problems which are proposed to 
them—and the only matter useful for that). His proposition is more complex: “'O 
KdA.oupevo<; avaXuopevoq, my son Hermodorus, Kata cn3XX.T|\|xv i6ia tiq ecrriv 
uX,ti ...”. The problem is with the expressions “KaXoupevoq [being called]” and 
“Kara 0 ”uX.XTyi|xv [according to the comprehension]”. Hintikka and Remes, fol
lowing Heath, translate the first expression by “so-called” and substitute for the 
second the adverbial form “in short” (“The so-called Treasury of Analysis, my 
dear Hermodorus is, in short,...”; Heath’s translation is: “The so-called avaXuo- 
pevoq (‘Treasury of Analysis’) is, to put it shortly, ...”). Jones also agrees with
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Heath about the first expression, but renders the second in the verbal impersonal 
form “taken as a whole” (“That which is called the Domain of Analysis, my son 
Hermodorus, is, taken as a whole,...”)- The same idea of using a verbal form to 
translate “k<xt& ai3AAr|T|>iv” was already used by Hultsch (Pappus CH, 635). 
Hultsch used however a personal form for that and even the first person singular 
“ut paucis comprehendam”15. This is also the solution advanced by Ver Eecke who 
translates the whole expression “6 icaXoupevoq avaA/uopevog” by “le champ de 
l’analyse” and renders “icaT& auA.A,rn|uv” as an auto-reference: “Le champ de 
l’analyse, tel que je le confois, mon fils Hermodore, est...”.16

From a philological point of view, Ver Eecke’s solution is probably too ex
treme. Nevertheless it at least suggests that Pappus is here interpreting the work 
of Greek mathematicans of the classical age (here, ch. 6, 170, note 2), rather than 
expounding a method largely and explicitly employed in Greek geometry. Ac
cording to such an interpretation (that is also that of Hultsch) we could even guess 
that, even if they applied conducts of thinking or arguments that could be intend
ed as examples of analysis and synthesis in Pappusian sense, these mathemacians 
did not conceptualize them as Pappus does.

Pappus’ exposition of the method of analysis and synthesis is well known 
(here ch. 8, par. II), and I may limit myself to some remarks (cf. also here, ch. 12, 
320-321). As we have just seen, the domain of analysis is presented first as con
cerned with non-elementary geometrical problems. According to Pappus, this matter 
was treated by Euclid, Apollonius and Aristaeus the Elder, by using the method of 
analysis and synthesis. This method then is applied to the realization of a certain 
aim; and this is perfectly consistent with the Aristotelian conception of analysis. 
Pappus’ description of the first stage of this method, that is just analysis, is also 
consistent with Aristotle’s views17: analysis is presented as a way, or a path (66og 
ecpoboq), which leads from the assumption of what is sought, as if it were admit
ted, to something that is already admitted, that is a first principle. It is thus an 
inverted (dvdotaAiv) way and, namely, it is an inverted solution or conclusion 
(avcbtaAiv A/uai<̂ . The final stage of analysis for Pappus is the initial stage of 
synthesis. The latter follows after the former and just considers what is given as 
given. It is also a way, and it is namely the inverted way of analysis. Since Pappus 
says: “in the synthesis, on the other hand, by inverting the way [e£ ujtoerrQoepfjg], 
that which has been grasped last in analysis [to ev xrj avaA/uaei KcrraXricpdev 
txjTcrrov] is supposed [to be] already gotten and [its] consequences [&r6peva] 
and prolegomena [rtgoriyoupeva] [are] ordered according to their nature [Kara 
(puoiv rd^avteq] and [are] linked with one another to arrive, at the end [elg reXoq], 
at the construction of what is sought [tfjg tou ^ritoupevou KaTacnceufjcj”. The 
Greek term for “construction” is thus a cognate of the verb “KaTacncem^co”, which 
has really a more general sense and also means “to organize”, “to set out”, or “to
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prepare”, and we could generally intend—coupling it with the term “TeX,oq”—as 
referring to the realization of the aim.

Thus Pappus uses the term “synthesis” to refer generally to the argument, 
which follows a non-conclusive analysis and leads from the final stage of it onto 
the realization of the aim. Hence, the woolliness of his text has an obvious justifi
cation: he is trying to provide a general description of different sorts of processes. 
However, Pappus’s generality goes not as far as Aristotle’s. According to him, 
there are two types of analysis. One of them enables us to research that which is 
true (^t|TT|Tik6v taA/ndouq) and is called “theoretical [Oecoqtitikov]”, while the 
other is able to get what was proposed (jtOQicmicdv too jcgoTctdevroq) and is 
called “problematical [jtqo pA.rj paxiKov] ”. In the first one—Pappus says—what is 
sought is supposed to be true, while in the second what is proposed is supposed to 
be known. Starting from these suppositions, the theoretical analysis brings us to 
something which is admitted as being true or false, while the problematical anal
ysis brings us to something that is admitted as being possible (realizable or given) 
or impossible. Even though Pappus’s language is very general (and also quite 
ambiguous and inaccurate), it seems clear that he is only concerned with geome
try and believes that as long as it provides a geometrical argument, analysis is 
either a regression to principles or a geometrical reduction. Moreover, he seems to 
restrict his description to convertible analysis, since he aigues that both, truth and 
falsehood, or possibility and impossibility, occurring respectively in the final stage 
of theoretical or problematical analysis, entail respectively truth and falsehood, or 
possibility and impossibility of the thing that is sought or proposed. The proof and 
the construction then are nothing but the reversal of analysis. If this is the case, 
synthesis only needs to exhibit proof or construction, since analysis is able to 
conclude, both whether the given sentence is true or false and whether the pro
posed definition can be satisfied or not, and to indicate the whole conduct of proof 
and construction. Such a strong (logical) restriction however does not appears to 
be consistent with Pappus’s mathematical practice, nor even with the (historical 
and mathematical) extension he ascribes to the method of analysis and synthe
sis18. Nevertheless, Pappus’s presentation makes his attitude manifest. Even though 
in a sense Pappus is generalizing the classical notion of synthesis as simple com
position, he is, in a different sense, restricting it. Not only does he make of synthe
sis nothing but the prolongation of analysis, but he also considers both, analysis 
and synthesis, as quite codified procedures belonging to a technical domain.

V.2 Heron and/or a S ch ouu m  to Euclid’s E lements

Pappus’s presentation of the method of analysis and synthesis is probably not the 
very first one, even though it is certainly the most extensive and explicit. We can 
refer to two pieces of evidence to support this thesis. The first one is al-Nayrizi’s
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Arabic account of certain passages from Heron’s commentary on book II of the 
Elements (al-Nayriz'i ECC, 89) and the second one is an interpolation introduced 
at different places in the beginning of the 13th book of Euclid’s Elements (Euclid 
OO, IV, 364-381). Because of the similarity between these two expositions, Heib
erg (Heiberg 1903, 58) ascribed the second one also to Heron, who lived in Alex
andria during the Christian era: during the first century, according to Neugebauer 
(1938), or during the third-century, a little earlier than Pappus (Heath 1921, II, 
298-306). Knorr (1986, 355) guesses that it is successive to Pappus and merely 
depends on Heron’s (and Pappus’s) exposition, instead.

According to Gerard’s translation from the Arabic19, Heron describes analysis 
(dissolutio) as a way to answer a question: “first we set that which is in the order 
of thing sought [primo ponamus illud in ordinem rei quesite]” (al-Nayriz'i ECC, 
89, 14-15), then we “reduce [it] <to that> of which the proof has already preceded 
[reducemus <ad illam>, cuius probatio iam precessit]” (ibid., 89, 15-16). The 
synthesis (<compositio) is then nothing but a composition: “we begin from a thing 
known, then we compose until the thing sought is come upon [incipiamus a re 
nota, deinde componemus, donee res quesita inveniantur]" (ibid., 89, 18-19).

Heron20 seems, like Pappus, to include in his general presentation both prob
lematic and theoretical analysis (that is geometrical reduction and reduction to 
principles). But he presents, differently from Pappus, synthesis as a simple proc
ess of composition of objects, which is only consistent with the first sort of analy
sis. This does not prevent him from exemplifying the method by proving theorems 
with it, namely by applying it to the demonstration of the first thirteen theorems of 
book II of the Elements (ibid, 89-110).

The application of the method of analysis and synthesis to the proof of theo
rems is however much more clear in the interpolation to book XIII of the Ele
ments. Here a proof, different from Euclid’s one, is provided for each one of the 
propositions XIII, 1 - XIII, 5. These proofs consist of two distinct parts, the first 
of them being called “analysis” and the second “synthesis”. Moreover, a general 
definition is advanced. According to this definition, “analysis, on the one hand, is 
the assumption of that which is sought as [if it were] admitted up [to arrive], by 
means of [its] consequences, to something [which is] admitted [as] true [avaA,txn<; 
pev ouv ecm too £r|Toupevov &<; opoAoyoupevov &ia tcdv &koA.ou&cqv 
em ti &A.r|f)eq opoA-oyoupevov]” (Euclid OO, IV, 364, 18-20); while “synthesis 
[is], on the other hand, the assumption of that which is admitted up [to arrive], by 
means of [its] consequences, to something [which is] admitted [as] true [ot)v- 
deoiq be Xqijxq tov opoA.oyoupevov 6ia tgjv aicoA,oudcov em ti aA.qOe<; opo- 
Aoyoupevov]” (ibid. 366, 1-2) or, in the Theonine version, “the assumption of 
that which is admitted and then, the attainment (or the ending [?]), by means of 
[its] consequences of what is sought [A,f)\|)i<; to n  6poA,oyovpevov 6ia t©v 
aicoXoudcov em xf|v ton £r|Toupevoi> KaTaA.q£iv qroi iccn:aA.r|\|xv]” (ibid. n. 2).
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Consider as an example the alternative proof of proposition XIII, 1 (ibid, IV, 
366-369): if a segment AB (fig. 1) is cut in C (according to the construction ex
posed in the proposition II, 11), in such a way that AC is the mean proportional 
between AB and CB, and the segment DA is equal to the half of it, then the square 
constructed on AC + DA is five times the square constructed on DA:

[(AB : AC = A C : CB) a  (AB -  IDA)] => Sq.(AC + DA) = 5[Sq.(DA)]

In modem terms, if we put AB = K  and AC = x, the antecedent provides the equa

tion: x2+ K x -K 2 -  0, from which we have: f x + — 1 =5| — 1 , that was to be 
,  V 2)  U J

proved.
The scholiast takes both AB and AC (< AB) as given on the same straight line, 

in such a way that AB : AC = A C : CB and constructs on the same straight line, 
but on the opposite side than AB, a segment DA, so that AB = 2DA. Then he
assumes that

Sq.(CD) = 5Sq.(DA) (a. 1)

and proceeds according to the following deduction:

Sq.(CD) = Sq.(DA + AC) (a. 2)

Sq .(CD) = Sq.(DA ) + Sq.(AC) + 2Rect.(DA, AC) (a. 3)

Sq.(AQ + 2Rect.(DA, AC) = Sq.(CD) -  Sq.(DA) (a.4)

Sq.(AQ + 2Rect.(DA, AO = 4Sq(DA) (a.5)

according to (a.l) and (a.4),

2Rect.(£)A, AC) = Rect.(A£, AC) (a.6)

Sq.(AQ = Rect.(AB, CB) (a.l)

according to the proportion AB : AC  = AC: CB,

Rect.(A£, AC) + Rect.(A£, CB) * 4Sq.(DA) (a.8)
according to (a.5), (a.6) and (a.7),

AC + C B=  AB (a. 9)

Rect.(A£, AO + Rect.(AB, CB) = Sq.(AB) (a. 10)

Sq.(AB) -  4Sq.(DA) (a .ll)

according to (a.8) and (a. 10).
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As (a. 11) follows from the hypothesis AB =* 2D A, without appealing to (a.l), it 
is true and then (a.l) entails something that is true. Thus, as analysis finishes
with it, synthesis has to begin with it:

Sq.(AR) = 4Sq.(£>A) (s.l)

Sq.(AR) = Rect.(AS, AC) + Rect.(AR, CB) (5.2)

4Sq.(DA) =* 2Rect.(£>A, AC) + Sq.(AC) (5.3)

according to (5.1), (s .2), (a.6) and (a.l) which do not depend on (a.l),

5Sq.(AD) = Sq.(CD) (s. 4)

according to (5.3) and the figure 1 that is a part of the figure constructed by Euclid 
in his proof of the same XIII, 1.

[C*]

[A*]

D A  C B

Figure 1

Clearly, the above analysis is, according to our previous terminology, an ex
ample of a non-conclusive and non-regulated21 analysis of objects, namely, it is a 
non-conclusive and non-regulated reduction to principles. In its final stage, it 
indicates the starting point of the proof, by expressing an obvious property of an 
object given as such, namely the segment DB, constructed starting from AB for 
addition of DA, equal to a half of AB itself. Thus, taken as such, it does not include 
any logical novelty with respect to Aristotelian conceptions. The same is true for 
the proof (that is the synthesis), if it is taken as such, since it does not differ, 
according to its logical aspect, from common Euclidean proofs. The difference
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between this proof and that proposed by Euclid for the same proposition XIII, 1 
does not concern its logical character. Rather, scholiast’s proof (its synthesis) is 
significantly simpler and wilier than Euclid’s. This is clearly possible because of 
the indication of the analysis that suggests a good (but as such not obvious) start
ing point for it22. What the scholiast does in his interpolation thus is to apply, in a 
wily way, an Aristotelian indication, in order to obtain a not obvious suggestion to 
improve Euclid’s proof. What is essentially new, with respect to Aristotelian con
ceptions and Euclid’s mathematical practice, is both the explicit presentation of 
the analysis as a premise of a proof, namely as an argument suggesting the start
ing point of this proof; and the consequent interpretation of the proof as the sec
ond stage of a single and general method to produce (mathematical) aiguments, 
including a heuristic as well a demonstrative aspect. Both the first and the second 
novelty are underlined by the use of the term “synthesis” to refer to the second 
stage of this method, which is nothing but what Aristotle and Euclid have called 
“proof’.

V.3 Evidences for the application of Pappus* method in the classical 
age: Apollonius, Archimedes and Aristotle once again

In the 7th book of the Collection, Pappus argues that the method of analysis and 
synthesis, as he describes it, was actually working in Greek mathematics of the 
classical age, and namely in a large corpus of texts that, as a whole forms the 
“KaA.OTJ|i£VO<; avaXu6pevo<;”: Euclid’s Data, Porisms and Surface-Loci, Apollo
nius’s Conics, Plane Loci, Cutting-off o f a Ratio, Cutting-off o f an Area, Deter
minate Section, Contacts and Vergings, Aristaeus’s Solid Loci and finally 
Eratosthenes’ On Means. The aim of the 7th book of the Collection is to exhibit 
some results or lemmas (XqppaTa) which should be useful to get the main results 
contained in them.

Unfortunately, among the treatises that Pappus mentions as part of the domain 
of analysis, only Euclid’s Data has reached us in an integral Greek version. Be
sides, we dispose of the Greek text of the first four books of Apollonius’s Conics, 
and of Arabic versions both of the books V-VII of the same treatise (the book VIII 
being lost) and of Apollonius’ Cutting-off o f a Ratio. All the other treatises are 
lost (except for few fragments).

Euclid’s Data is concerned with the problem of determining that which can be 
given (constructed) if certain geometrical objects are taken as given (in magni
tude, species, or position) and, according to Pappus’s terminology, all its argu
ments seem to be typically synthetic23.

Even though it exposes the theory of the conics “in a synthetic mode” (Knorr, 
1986, 293), Apollonius’s Conics in contrast presents many examples of conclu
sive reduction to principles and we can even find in this treatise some aiguments
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like the following, which aims to prove that if from a point D (fig. 2), external to 
a conic section we draw both a tangent DB and a chord DEC of this conic section, 
and from the point B we draw an other straight line BZ that cut DEC in a point Z 
in such a way that Z C : EZ = D C : DE> then this straight line cuts the conic sec
tion in a point A such that the straight line DA is the second tangent to it, passing 
from D (prop. IV, 1). In order to proof this proposition—that clearly teaches as to 
draw the second tangent to a conic section when a tangent has been already drawn— 
Apollonius assumes that the tangent DA is already drawn and the straight line BA 
cuts the chord DEC in a point H, different from the point Z, which satisfies the 
previous proportion. Then, appealing to proposition III, 37—which is just the 
reciprocal of the proposition that he is proving—he concludes that this is absurd. 
Hence, he derives that the straight line BA cuts DEC in a point Z which satisfies 
the previous proportion and here terminates his proof.

Figure 2

The logical schema of the argument is the following:

[Tg(DB) a  Tg(ZM)] => (BA cuts DEC in Z) (1)

according to III, 37,

Tg (DB) (2)
Tg (DA) a —>(BA cuts DEC in 2) (3)

by assumption,
- ( 1 ) (4)

by modus tollens,
- 0 ) (5)

by reductio ad absurdum.
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It is clear that (5) is not equivalent to Tg(ZM) and it thus does not accomplish 
the proof. To prove the proposition, we still have to appeal, both to the existence 
and uniqueness of a second tangent and of the fourth proportional. Thus the argu
ment (l)-(4) is not a conclusive analysis. But, according to the Aristotelian con
ceptions, this is no more a non-conclusive reduction to principles, except if we 
take it as a suggestion of starting the proof from the contemporary (hypothetical) 
negation of both the conjuncts of (3). In such a case we face to a non-conclusive 
reduction to principles, preparing a conclusive reduction to principles. This ex
ample could be taken as a symptom of a liberal use of regressive reduction as a 
heuristic tool in Greek geometry, but not yet as a symptom of the general applica
tion of Pappus’s method to the proof of theorems.

Figure 3

A number of cases of analysis and synthesis occur, in contrast, in book II 
(propositions II, 49-51: Apollonius GE, I, 274-305), applied to the solution of 
problems24, i. e. to the construction of geometrical objects satisfying certain con
ditions. Let us consider, as a simple example, the first part of proposition II, 49, 
where the problem is to draw a tangent to a parabola in a certain point. Apollon
ius’s argument runs as follows. Let AB (fig. 3) be the parabola and let the point A 
be given on it. Let us also assume that the tangent is traced, and let it be AE, the 
point E lying on the straight line prolonging the diameter of the parabola. From 
the point A let us draw the perpendicular AD to the diameter. As both the point A 
and the (diameter of the) parabola are given, the segment AD is also given in 
position. Beside, according to proposition I, 35 of the Conics themselves, EB is 
equal to BD. Thus as BD is given, EB is also given and, as B is given, the point E 
is given too. Thus the tangent is given in position. This is the first part of the 
aigument. The second one is introduced by the phrases: “it will be synthesized in



392 MARCO PANZA

this way [Z/uvredijoeTai 6f| oirtcog]” (ibid, 274, 21)25, and it consists of course in 
the presention of the obvious construction of the tangent. Let the perpendicular 
AD to the diameter DB be drawn and the point E taken on the straight line 
prolonging such a diameter in a way such that EB -  BD. The straight line EA 
passing through the given points E and A will be the tangent sought.

Even though arguments of this sort are rather exceptional in the Conics, they 
are common in Apollonius’ Cutting-off o f a Ratio, as it is presented to us in the 
Latin translation from Arabic by E. Halley (Apollonius SRH).

Consider as an example the first problem of such a treatise (ibid., 1-3). Two 
parallel straight lines AB and CD (fig. 4) are given in position and three points E, 
Z e t T  are given as well, the first on AB, the second on CD and the third not on 
these straight lines, being rather inside the angle DZH (where H is any point on 
the straigt line EZ after Z itself). Apollonius is searching for the position of a 
straight line passing from T and cutting AB and CD respectively in two points 
determining together with points E and Z two segments which are between them 
in a given ratio. He imagines first that this straight line cuts AB between E and B 
and CD between Z and D and calls K  and L the points where it does it. He assumes 
these points as given and draws the right TLK. Then he draws the straight line ET 
which is obviously given, as both the points E and T are given. The point M  of 
intersection of this straight line with CD is given too. Thus also the ratio 
Rat.(£T, MT) is given. But (for the VI, 2 of the Elements) this ratio is clearly 
equal to the ratio Rat.(Etf, ML) and then this latter ratio is given. Thus, as the 
ratio Rat^Etf, ZL) is given, the ratio Rat.(ZL, ML) is given for composition and 
therefore the ratio Rat. (ZM, ML) is also given for substraction. Now, as ZM is 
given, this means that ML is given and thus the point L and the searched straight 
line TLK are given too.

After this argument is been presented, Apollonius’s treatise continues with a 
new paragraph which is opened by the phrase: “Componetur autem Problema hoc 
modo” (ibid., 2), and presents an actually construction of the straight line TLK, 
starting from two segments N  and XO that are between them in the same ratio 
than the two segments that are determined respectivelly on AB and CD by the line 
sought.
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Even though Apollonius does not say so explicitly, the two previous construc
tions are then preceded by an analysis, and they are thus synthesis in Pappus’s 
sense. Both in the first and in the second case, analysis is clearly problematical, 
or, if you prefer, it is just a geometrical reduction. If we consider Halley’s transla
tion from the Arabic as faithful to Apollonius’s treatise, we thus have to conclude 
that Apollonius not only proceeded as in the Pappus’s method in a short fragment 
of his Conics, but he also composed a genuine analytical treatise (in Pappus’s 
sense). This justifies the belief that other treatises of the same Apollonius actually 
proceed in the same style.

Still, we can find other, similar evidences apart from Pappus’ analytical cor
pus, in the book II of Archimedes’s treatise On the Sphere and Cylinder 
(Archimedes OO, 1,168-229; cf. Knorr 1986,170-174), for example. This is com
posed of nine propositions: three theorems (2,8 and 9) and six problems (1 and 3- 
7). The solution of all the problems runs in two stages: the first is a classical 
geometrical reduction (or, in Pappus’s terms, problematic analysis), while the 
second is a geometrical construction, explicitly presented by Archimedes himself 
as a synthesis26.
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A

Figure 5

Let us consider as a very simple example problem 3 {ibid, 184-187): to cut a 
sphere by a plane into two segments, in such a way that the ratio between these 
segments is equal to a given ratio. Archimedes assumes that the plane sought cuts 
the great circle ADBE (fig. 5) of the given sphere in the points D and E, being 
peipendicular in C to the diameter AB of this circle, and he draws the chords AD 
and DB. Then he remarks that the surfaces of the segments ADE and ABE are 
respectively equal to the surfaces of the circles of radius AD and DB (for the 
propositions 1,42 and I, 43 of the same treatise), which are between them as Sq.(A£>) 
and Sq.(DB), i. e.—because of the Pythagorean theorem—as AC  and CB. Hence 
he concludes that, as the ratio between the surfaces of the segments ADE and ABE 
is given, the ratio between AC  and CB is also given and thus the plane sought is 
given too. The synthesis is then obvious: it is a question of dividing the diameter 
AB by a point C such that the ratio between AC and CB is equal to the given 
ratio—which is made by a simple application of the proposition VI, 10 of the 
Elements—and of proving that this point satisfies the conditions of the original 
problem.

The evidence for Archimedes’ application of the method of analysis and syn
thesis becomes even stronger, if we observe that when, in the course of the solu
tion of problem 4, he assumes that a certain problem is solved—namely the problem 
of dividing a given segment so that one of its parts is to another given segment as 
a given surface is to the square constructed on the other part of it—, he announces 
that it will both be analyzed and synthesized at the and of the treatise: “ejti rekei 
avakirdTjaetm te icai cruvtedfjaeTai” {ibid, I, 192, 5-6; cf. Dijksterhuis [1956,
195]). Neither the analysis nor the synthesis are actually given by Archimedes in
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his treatise, but they are reconstructed by Eutocius in his commentary, and attrib
uted by him to Archimedes himself (Archimedes OO, III, 132-149). Besides, Eu
tocius also attributes in his commentary three other explicit applications of Pappus’s 
method to mathematicians of the classical age: two to Menaechmus {ibid. Ill, 78- 
85) and one to Diodes (ibid., Ill, 160-177)27. In all these cases Eutocius introduc
es the second stage of the solution by the same formula, that we can also find in 
Apollonius’s and Archimedes’ treatises: “ZuvTEfffjoETai 6f| ovrax ;” (ibid., Ill, 
136, 14; 80, 4; 82, 18; and 168, 26 respectively).

An extrinsic, but relevant argument to accept previous examples as evidence 
for an explicit application of the method of analysis and synthesis by Greek math
ematicians of the classical era could finally come from a short passage taken from 
chapter 16 of Aristotle’s Sophistici Elenchi. Here Aristotle insists on the differ
ence between our capacity of seeing and solving the faults of an argument when 
we consider it and our ability in meeting it quickly in discussion. He argues, both 
that we often do not know at certain occasions things we know in other circum
stances, and that speed and slowness in argumentation depend on training. Thus, 
he concludes, “sometimes it happens as with (geometrical) figures [Kadcbtep ev 
rou; biaypappaoiv], for there sometimes [after] having analyzed, on the other 
hand, we are not able to synthesize [dvakuoavre^ eviote ouvOeivoi Jtatav &6ova- 
to'0|xev]” (175a, 26-28)28. The verb “ow rifhipi” seems to refer here to the actual 
construction of the figure after analysis has shown the starting point of it. Thus we 
could imagine that it occurs here in its common sense in Greek common language 
and merely indicates a composition of objects in order to produce an object. But it 
is also possible that Aristotle actually refers to a common procedure in geometry, 
namely the procedure of analysis and synthesis (Hintikka and Remes, 1974, 87).

V.4 C oming B ack to Pappus

The previous examples should be sufficient evidence to support a historical hy
pothesis: Greek mathematicians of the classical age actually applied a two-stage 
method to solve problems29, coupling the construction of mathematical objects 
which satisfy certain conditions, with a previous geometrical reduction, which 
indicated to them both a starting point and a plan for construction. This thesis is 
perfectly consistent with our previous interpretation of Aristotle’s comparison of 
analysis and deliberation in chapter III, 5 of the Nicomachean Ethics. However, 
this comparison disagrees with previous examples of the use of the terms “analy
sis” and “synthesis”. While Aristotle uses only the first, the second occurs very 
prominently both in Apollonius’s and in Archimedes’ arguments. Such a promi
nent occurrence of the second term might perhaps not be very significant, since 
this term here has a meaning that is very close to the common meaning. Even
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though here synthesis is not strictly a composition of given objects which form— 
because of this composition itself—a new object, it is nothing but a construction 
of a new object, which starts from given objects and follows accepted constructive 
clauses. The almost complete absence of the term “analysis” in Apollonius’s and 
Archimedes’ arguments might in contrast indicate a deep difference between Ar
istotelian conception of analysis as form of thinking and the conceptualization of 
a geometrical procedure, consisting in the investigation of that which is given 
when the objects sought are taken as given30 and aiming at the individuation, both 
of a starting point and of a plan for construction. It could be the case that the term 
“analysis” was used in the classical age to refer to the Aristotelian notion but not, 
or not frequently, to this geometrical procedure.

If this were the case, the two previously mentioned passages from Aristotle’s 
Nicomachean Ethics and Sophistici Elenchi would contain, as a philosophical 
judgment, the acknowledgment of the analytical nature of this geometrical proce
dure. From such a point of view, Pappus’s general description of the method of 
analysis and synthesis seems to occupy a middle position between Aristotle’s con
ceptions and mathematical practice31. Even though Pappus uses the term ‘analy
sis’ to refer to this geometrical procedure (that is just a geometrical reduction), he 
assignes to it a very specific and technical meaning. However this meaning is 
wide enough such that the term “analysis” also refers to Aristotelian reduction to 
principles. Moreover Pappus’s description associates—as Aristotle did—under 
the same term of “theoretical analysis”, both reduction ad absurdum (or conclu
sive reduction to principles) and non-conclusive reduction to principles. Thus it 
actually unifies three procedures. The mathematical relevance of such an unifica
tion is understandable when we observe that the third of these procedures (namely 
non-conclusive reduction to principles) is almost absent from the geometrical prac
tice of the classical age. Besides, the previous example, taken from the scholium 
to book XIII of the Elememts makes manifest the technical gain of applying non- 
conclusive reduction to principles to the proof of geometrical theorems. Even though 
al-Nayrizi’s commentary seems to show that this is not an original idea of Pappus, 
the available evidence seems to confirm that it is nevertheless an acquisition of 
Pappus’ time, at least if we assume that his scholium goes back to that time (like 
it should be the case if Heibeig and Heath are respectively right in ascribing it to 
Heron and in guessing that Heron lived in the third century). The passage from 
the idea of synthesis, as simple composition or construction, to the idea of synthe
sis, as an inferential procedure following an analysis, seems to be joined by such a 
later acquisition.

Nevertheless, the interest of Pappus’s description is not exausted by that. It is 
also concerned with the idea of synthesis as reconstruction of the natural order. As 
we have just seen, Pappus uses the properly Aristotelian term “<puoiq”, saying that
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synthesis orders the consequences and the prolegomena of the givens “Kara <pi3oiv”. 
He not merely refers to a logically correct order here, but appeals to the reality of 
nature. A comparison with the very beginning of Aristotle’s Physics is thus una
voidable. There (184a, 16 -1846,14) Aristotle aigues (184a, 16-18) that the way 
(oboq) of knowledge goes from that whch is more knowable and clear to us, up to 
that which is more knowable and clearer by nature (xfj cpuoei) and specifies (184a 
21-26) that what is manifest and clearer to us is what is more confused (xa mry- 
Kexvneva paAAov), or the whole (oXov). It is only afterwards, he adds, that, 
starting from it, the elements and principles (xa orotxeia al icai agxai) become 
known, by division. Finally he concludes that (in knowledge) we have to proceed 
“from the general to the particular [ek xcdv KafroXou £jti xa Kafr’ EKaoxa]”, 
since the general is a sort of whole, because it contains a plurality of things (otoA.- 
Xa) as (its) parts. Aristotle’s term for “division” is not “avdX,uoiq”, but “biaigeoig”, 
and there is a reason for that. In fact, as long as it is the way of knowledge in the 
Aristotelian sense, division goes from what is given for us to what we seek, from 
the object that is given as such, to the conditions of its realization. This proceed
ing is exactly the opposite of a regressive reduction. Nevertheless, Aristotle’s de
scription has been understood during the Latin and modem ages as a typical 
characterization of analysis (and the term “biaiQEOiq” has often been translated 
by “analysis” or “resolutio”).

Pappus’s reference to the notion of nature provides a key to understand such a 
shifting. It seems just to result from an inversion of the Aristotelian point of view, 
according to which what is given as such is not that which is given to us as such. 
Rather, it is that which is given as such in itself (or in the eternity of truth). Thus 
the problem becomes one of understanding what is given to us as such, according 
to the eternal troth of what is given as such in itself, that means to represent it to 
ourselves as a system or even a collection of parts or properties; these parts or 
properties being intended as first elements, which are given as such in them
selves. I am not arguing that Pappus actually realizes such an inversion (that is 
quite natural from a Platonic point of view, and particularly with respect to math
ematical matters). I am merely observing that Pappus’s argument seems to sug
gest such a possibility or may even be suggested by it32. In this non-Aristotelian 
sense, analysis and synthesis of course come together, since the “resolution” of an 
object into its elements or parts asks for its reconstitution, according to the nature 
(or even its nature). However, such a reconstitution (that is just a synthesis in the 
original sense of this term) is not necessary for the realization of the aim, because 
the problem was that of understanding the object, not that of reconstructing it as 
such. As long as we realize the synthesis, it is nothing but a repetition of a process 
that has to have occurred already in nature. Thus, a new sort of conclusive analy
sis of objects arises. And, even though its notion is definitely not Aristotelian, it
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may be characterized in terms that refer to Aristotle’s Physics. We might call it 
“reduction to elements”33.

VI Thomas

Aristotle’s exposition of the way of knowledge in the beginning of the Physics 
was one of the major references for medieval conceptions of “resolutio” (that is 
“re -so lu tio“ava-A.i3cn.c;”) and “compositio” (that is “cum-positio”:“ow-f)EOi<;”). 
According to B. Gerceau34 (1968, 217) it is, for example, just on the background 
of this text that Albertus Magnus, the master of Thomas, read Chalcidius’s com
mentary to Plato’s Timaeus, where these notions are discussed. This means both 
that he understands them as referring to the process of knowledge—rather than to 
the order of cosmological reality—and that he considers that resolutio brings us 
from what is first in our knowledge to what is first as such. Hence, the latter is 
(from the point of view of the cognitive subject) an upward conduct bringing us 
from the complex in itself, but first for us, to the simple in itself35, but last for us. 
In different terms, it is just a reduction to elements. However, what is complex in 
itself (and first for us), is the individual as such, while what is simple in itself (and 
the last for us) is that which makes the individual belong to a certain species; thus 
resolutio brings us from the individual to the species. Still, the individual is a 
whole, while its elements are parts of it, hence resolutio goes also from the whole 
to its parts. Finally, if the reference is not to a single act of knowledge, but to 
human knowledge as such, the individual is part of multiple and the species is 
unity, thus, resolutio goes from multiple to unity, as Thomas says in De Trinitate 
(qu. 6, a.l, c.). The compositio is then (still for the point of view of the cognitive 
subject) a downward conduct, bringing from the simple in itself to the complex in 
itself, from the universal as a principle, to the individual, from the parts to the 
whole, from the one to the multiple.

Even though this conception inverts the extensional order of Aristotelian anal
ysis, it does not invert its logic (or one of the intensional orders that characterizes 
Aristotelian analysis): analysis always proceeds regressively from the last to the 
first, from the not given to the given, from the problem to its solution, or to the 
conditions of the solution. Moreover, it is a conduct of thinking, a way of knowl
edge.

This is however not the only sense ascribed to the pair “resolutio-compositio" 
in the 13th-century philosophy. An further sense comes up with Peter of Spain, 
from the eclectic views exposed by Boethius in his Commentary on Porphyry’s 
Isagoge, where Platonic and Aristotelian conceptions are applied together to pro
vide a complex representation of logic (Garceau 1968, 210-213). According to 
Boethius, there are two different but complementary ways of distinguishing the 
different parts of logic: either these parts are definitio, partitio and collectio, or
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they are inventio and judicium. While the second distinction comes from Aristo
tle, passing through Cicero’s Topics, the first refers to Phaedrus's distinction be
tween 6 icuqeoi<; andcruvaytoyn. The complementarity of these distinctions appears 
when Boethius aigues that inventio provides material for definitio, partitio and 
collectio—which includes, in turn, demonstrate, dialectica and sophistica, deal
ing respectively with necessary, probable or false arguments—while judicium de
termines whether we are well defined and divided, whether our arguments are 
necessary, probable or false and whether they are linked by inferential relations, 
or not. In this way, Plato’s distinction between biaipeoiq and cruvaycoyn is grafted 
onto an Aristotelian schema. It is hence not surprising that Peter of Spain, more 
than seven centuries later, in his commentary on De anima (Qucest. Prceemb.) 
interpreted the ideas of resolutio and compositio as referring to Plato’s dialectic— 
by effacing the essential distinction between oovaytoyq and cruvdeoiq. Resolutio 
becomes, in this frame, a downward path bringing us from the genus to the spe
cies, from the one to the multiple, while compositio becomes an upward path 
bringing us from the species to the genus, from the multiple to the one.

Even though, in this way, Peter of Spain agrees with Aristotle on the regres
sive nature of analysis, he seems to change the point of view from which analysis 
is considered. Analysis is not regressive because it brings us from the last to the 
first, from the not given to the given. It is regressive because it goes from the 
higher to the lower. It is not a way of knowledge, but a sense in the disposition of 
being.

In Qucestio 14 of Summa, prima secundce (a. 5) Thomas treats the following 
question: “does deliberation [consilum] proceed by resolutorio order?” In the first 
objection, he argues that this cannot always be the case, since deliberation “is 
concerned with that which is done by us [est de his quce a nobis aguntur]” and our 
operations (operationes) proceed more modo compositivo, than modo resoluto
rio; that is, according to Albertus’s views: they go de simplicibus ad composita. 
Still, in the second objection, he adds that deliberation is an inquisitio rationis, 
and, according to the most convenient order, reason “begins with that which is 
prior and goes to that which is posterior [a prioribus incipit, et ad posteriora 
devenit\\ such that deliberation has to go from the present (that is prior), to the 
future (that is posterior), and not viceversa. As Thomas refers just to chapter III.5 
of the Nicomachean Ethics, his answer is obviously positive: deliberation does 
proceed according to the resolutorio order. The aigument implicitly refers to the 
beginning of the Physics. We can consider prior and posterior—he argues—either 
with respect the order of knowledge (cognitione) or to the order of being (esse). If 
what is anterior in the first order were also anterior in the second, deliberation 
would be compositiva. But it is not always so, and it is particularly not so in the 
case of deliberation, where the end (finis) is prior in intention (intentio), but pos-
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tenor in being. Thus, deliberation is resolutiva. The solutions of the previous 
objections are not essentially different: deliberation deals with operations and “or
der of reasoning about operations is contrary to the order of operating [ordo rati- 
ocinandi de operationibus, est contrarius ordini o p e r a n d reason starts from 
what is prior for reason (,secundum rationis), but not always from what is prior in 
time.

Six orders are mentioned in this argument: the order of knowledge, the order 
of reason, the order of being, the order of time, the order of intention and the order 
of (human) operations (or acts). Deliberation—says Thomas—proceeds analyti
cally, since it goes from what is the last in the order of acts to that which is the first 
in the same order. As deliberation is an inquisitio of reason, it has to go from what 
is first for reason to that which is the last for reason. But when reason applies to 
action, what is first for reason, is the last in the order of acts. This is just our end. 
Certainly, it is also the last in the order of time, while it is the first in the order of 
intention. Moreover, it seems to be, according to Thomas’s argument, the first in 
the order of knowledge, and, if it is so, it is then the last in the order of being too. 
Therefore for Thomas, deliberation is an example of analysis, since it brings us 
from the last in the order of being (acts and time) to the first in the order of 
knowledge (intention) and reason, whereas, for Aristotle, it was an example of 
analysis, since it brought us from what is given to us as the object of a certain 
concept (that is just the end), to what is given to us as such (the act we can perform 
here and now). Thus if Thomas’ conclusion is the same as Aristotle’s, it is be
cause of the fact that in deliberation knowledge is nothing but a means for action, 
and it is not intended as such (ibid., I-II, qu. 14, a. 3). Such a remark enables 
Thomas to accept Aristotle’s thesis of chapter III.5 of Nicomachean Ethics, by 
appealing to an aigument that is similar to the one Aristotle advances at the be
ginning of the Physics. However such a double agreement stands on many differ
ences. Nevertheless, on two essential points Aristotle and Thomas agree: for both 
of them, analysis is a regressive conduct of thinking (or reason, according to Tho
mas’ terminology); this conduct can be applied in order to reduce either concepts 
to the conditions of their satisfaction or aims to the conditions of their realization.

The same tension between the point of view of knowledge and the point of 
view of being appears when we consider Thomas’s conception of relations be
tween the pairs resolutio-compositio and inventio-judicium (Garceau, 1968, 218- 
220). As a matter of fact, Thomas sometimes identifies resolutio with judicium 
and compositio with inventio, and at other occasions identifies resolutio with 
inventio and compositio with judicium.

He states the first double identification, when he speaks from the point of view 
of knowledge and considers inventio as a research for conclusions, starting from 
principles, and judicium as an evaluation of conclusions in the light of princi
ples36. This seems to be the case of the Proemio of the commentary to the Posteri
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or Analytics I have quoted before. Now, Thomas is here properly concerned with 
the conduct of reason that brings us to the act of judging, rather than with this act 
as such. According to Garceau (ibid.) this is also the case of the other occurrences 
of the first double identification in Thomas’s writings. If this is correct, Thomas 
asserts that the act of judging is prepared by an analysis. Quaestiones 13 and 14 of 
Summa, prima secundce are even more explicit. In the latter (a. 1), Thomas aigues 
that in doubtful and uncertain matters, reason does not pronounce a judgment 
(profert iudicium) without previous inquistione “concerned with [his] choice [de 
eligendis]”, which is just said “deliberation”. Thus, he says that the act of pro
nouncing a judgment is a sort of choice (electio), that is formally an act of reason, 
but being substantially an act of will, instead (qu. 13, a. 1). If we accept that 
synthesis is just what comes after analysis and is made possible by it, we can 
conclude that the act of judging is a synthesis, it is made possible by an analysis 
and can even express an act of will, as choice is. In this sense, synthesis is no 
more, strictly speaking, a conduct of thinking or a way bringing us from a certain 
stage to a different one. It is a singular act of reason which closes an analysis and 
eventually expresses a will. Whether a judgment, in turn, then is either analytic or 
synthetic, cannot depend on the nature of this act, but on the characters of the 
analysis which leads to it. This exactly seems to be the idea of Kant (here, ch. 12).

Thomas states the second double identification instead, when he speaks from 
the point of view of the intrinsic nature of being, which the results of inventio and 
judicium express or identify. From such a point of view, inventio assumes the 
character of an analysis, since it reduces what is the first for us, but the last and 
the most complex in itself, to the intrinsic simplicity of its principles. Judicium, in 
contrast, is a synthesis, since by it the intrinsic complexity of reality is under
stood, starting from the intrinsic simplicity of principles. In this case, the term 
“ judicium” clearly refers to the act of judgment as such.

Thus, from the point of view of judgment, the two previous double identifica
tions do not contradict one another: in both the cases, the act of judgment seems to 
be intended as an act of synthesis, preceded and prepared by an analytic conduct.

VII Viete and Descartes

Pappus’ characterization of the mathematical method of analysis and synthesis 
and medieval doctrines of resolutio et compositio, in their relations with Tho
mas’s theory of judgment, seem to be the two gateways through which the Aristo
telian idea of analysis enters the modem age. By passing through both these 
gateways it comes to be associated to a non-Aristotelian idea of synthesis, which 
generalizes Plato’s and even a pre-Platonic conception of synthesis as mere com
position of objects (by integrating Plato’s conception of cTuvaycoyfi, for example), 
but also restricts its range, just because of this association. Still, by passing through
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the first of these gateways, it is both clarified—or even codified—and restricted to 
the specific domain of geometry; namely it is identified with nothing but geomet
rical reduction and reduction to principles. Finally, by passing through the second 
gateway, it loses its Aristotelian purity, both being confounded with 6iai()£ai<; 
(and integrating, in such a way, Plato’s dialectic) and being projected on a plural
ity of distinct orders, often opposite each other (here, ch. 13, par. II).

In coming out from the first gateway, Aristotelian idea of analysis is met by 
Vidte, who goes on to formulate a very ambitious program: to apply to geometry 
both methods and results of Diophantus’ arithmetic (ch. 3, par II. 1). This pro
gram is clearly expounded in the Isagoge (1591) and partially realized in a number 
of works published later.

Application to geometry of arithmetical technics was impeded in pre-modem 
mathematics for different reasons, the most important of which was probably the 
absence of a general definition of internal multiplication between geometrical 
magnitudes. Though for Greek mathematicians (integral positive) numbers could 
be multiplied with each other and into any sort of magnitude, the same was not 
true with respect to magnitudes in general. Construction of squares, rectangles, 
cubes or parallelepipeds was of course intended as particular analogues to the 
multiplication of numbers, when two or three segments were involved. This was 
not, however, a general definition of multiplication for geometrical quantities. 
Moreover, such a geometrical “proto-multiplication” was not conservative with 
respect to homogeneity, by producing a result that could be added neither to its 
factors, nor to any other magnitude of the same kind. Vidte’s basic idea, to pass 
beyond such a difficulty was to provide aquasi-axiomatic definition of multiplica
tion as a general operation on quantities (both numbers and magnitudes). In this 
way, he enabled himself to pass from proportions between geometrical magni
tudes like a : b -  A : B, to equations like aB =* bA, and to express different sorts of 
problems involving geometrical magnitudes in terms of equations. In order to 
accomplish that, Vidte proposed to use a genuinely analytic procedure.

In the very beginning of the Isagoge he defines analysis as a “certain way to 
search for the truth in mathematics [veritatis inquendce via qucedam in Mathe- 
maticis]” (Vidte 1591a, 4r). He mentions the opinion according to which Plato 
was the first to come upon (invenire) it37; he ascribes to Theon (who lived in 
Alexandria in the 4th-century a . d.) the merit of being the first to call this way 
“analysis”, and asserts that he is just quoting Theon’s definition. It is possible that 
Vidte refers here to the scholium of book XIII of Euclid’s Elements in the form it 
takes in the Theonine version38. Analysis, he says, is “the assumption of what is 
questioned as if it were admitted, [in order to arrive], by means of [its] conse
quences, to what is admitted to be true [adsumptio qucesiti tanquam concessi per 
consequentia ad verum concessum]”; in contrast (ut contrd), synthesis is “the
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assumption of what is admitted, [in order to arrive], by means of [its] consequenc
es, to the end and comprehension of that which is questioned [adsumptio concessi 
per consequentia ad qucesiti finem & comprehensionem]” (ibid.). The use of the 
terms “finem” and “comprehensionem” is perfectly consistent with the Aristote
lian conception of analysis, as I have presented it, and serves Vidte’s program too. 
In fact, though he mentions the two kinds of analysis distinguished by Pappus (by 
calling them “^rjTqtiKfj” and “jcoqiotikiY’)—saying that the previous definition 
is perfectly pertinent for them—and even asserts to have added a third kind to 
them, which he calls “QT|TiE,f|” (from “qe(d”: to flow; but also: to explain) or 
“ie r̂iYTlTiicn” (from “e^qyeopai”: to conduct up to the end, to explain, or to 
expose), he profoundly changes the intended sense of Pappus’s distinction. Far 
from being three distinct species of the same genus, Viete’s zetetics, poristics and 
exegetics (or rhetics) are three successive stages of the same conduct. According 
to Vidte's general definition, in the first stage “an equation or a proportion is 
obtained between the magnitude which are sought and that which is given [inven- 
itur cequalitas proportiove magnitudinis, de qua quceritur, cum iis quce data sunt]”', 
in the second one “the truth of the theorem concerning with the equation or pro
portion [de cequalitate vel proportione ordinati Theorematis veritas examinatur]”; 
and finally in the third one “the magnitude is exhibited [starting] from the equa
tion or proportion about what is questioned [ex ordinata cequalitate vel propor
tione ipsa de qua quceritur exhibetur magnitudo]” (ibid). However, zetetics more 
properly consists in transforming the given problem in an equation, eventually by 
passing from one or more proportions, and in solving it; clearly it is an analytic 
procedure. Poristics consists in verification of the conclusions of zetetics; it can be 
as such—as we shall see later—either an analytic or a synthetic procedure. Final
ly, exegetics consists in the exhibition of the searched magnitude; it is certainly a 
synthetic procedure .

In order to understand the relations among the three stages of Vidte’s methods, 
we have to investigate the nature of zetetics. As long as it is expounded in general 
terms, Vidte’s idea is quite simple. If a problem is advanced according to which 
certain magnitudes are sought, he proposes to assume that these magnitudes are 
given and to indicate them with certain letters (Vidte actually uses capital vowels 
(here, ch. 6, notr 13), but we can use the last letters of the Latin alphabet, as we 
normally do). Then he proposes to work on these magnitudes as if they were 
actually given, in order to translate, according to the new definition of geometri
cal multiplication, the conditions of the problem in a certain equation that could 
be solved according to the usual arithmetical technics, or transformed into a new 
proportion. Imagine that this problem asks for the construction of two segments 
which should form a rectangle equal to a certain square B and should have the 
same ratio as two other segments S and R, which is a particular case of the zetitic 
11,1 (Vidte 1591 b, lib. II, z. 1). If these segments are called x  and y, we have the
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proportion x : y  = S :R and thus, according to Vidte (but in modem notation),

C y R x  Cy^
x  = —  and y = —  and then B = -----= ------  or Sy2 — RB and Rx2 = SB. Even

R S R S
if these equations were solved, as if they were usual arithmetic equations, the 
exhibition of their roots would not yet be the construction of the segments sought. 
Therefore, it is not the exhibition of the solution of the problem. The situation 
does not change if we transform these equations into two corresponding propor
tions, as Viete actually does. We have then, respectively, the proportions 
S: R = B : y 2 and/? :S  = B :x 2 which do not exhibit as such the segments sought. 
When we face the roots of the previous equations or the proportions that corre
spond to the latter, in both cases two problems remain still open: first to verify, 
starting from the magnitudes that are actually given, whether the relations ex
pressed by these roots or proportions are correct, and second to interpret either of 
these roots or these proportions as suitable suggestions to actually realize the con
struction we were seeking. Poristics should solve the first problem, exegetics should 
solve the second one.

We have just asserted that the first stage of Vidte method is an example of 
analysis. The reason is clear: it is a conduct of thinking, responding to a certain 
aim, which starts from the hypothesis that a certain object, which is only present
ed as the object of a certain concept, is given a such, and runs by assuming that we 
can actually operate on and with such an object. This is also the case of Aristote
lian geometrical construction. However zetetics does not bring us from this hy
pothesis to the exhibition of an object that is given as such, rather it terminates as 
soon as the object which is sought is presented as the object of a new concept: the 
concept of root of a certain equation, or, to be more precise, the concept of being 
the (geometrical) magnitude that is expressed by a root of a certain equation. Thus 
it is not strictly a regressive conduct, since it does not regress from that which is 
not given as such to that which is just given as such. Rather, it exploits the admis
sion occurring in its first stage to exhibit a certain operational relation, that was 
unknown before, between the object sought and the objects given as such. There
fore, as long as it is not a regressive conduct, ViSte’s zetetics is a way to come 
upon a certain relational configuration that was unknown before. Even though it 
is not conclusive with respect to the aim occurring in its first stage, it is conclusive 
with respect to a different aim, which is just that of exhibiting such a configura
tion. It is then an example of a new, non-Aristotelian sort of analysis, that we 
might call a “configurational analysis”.

Because of the particular nature of this analysis—and inspite of ViSte’s decla
ration in the chapter VI of Isagoge (Viete 1591a, 8r), where it is described as a 
sort of synthesis—the stage which follows zetetics can be either an analytic or a 
synthetic procedure. The reason is clear: its specific aim is proving a theorem—
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that is just the conclusion of zetetic—and it can do this either by a conclusive 
reduction to principles or by a synthetic proof that can eventually be preceded by 
a non-conclusive reduction to principles. However, both in the first and in the 
second case, poristics does not realize the aim occurring in the first stage of zetet
ics. Rather, it is conclusive only with respect to an intermediary aim, which is just 
the specific aim the conclusions of zetetics leave to it. The task of realizing the 
principal aim is thus left to the third stage, that is exegetics.

Even though, exegetics thus is a geometrical construction and is then, because 
of its logical form, a quite normal synthesis, its connection with the previous 
analysis is not the same that in Pappusian and Medieval examples. In fact it does 
not start from the object that analysis has indicated. As long as it starts from the 
final stage of analysis (that is the final stage of zetetics), it has to interpret the 
final stage of analysis; namely, it has to transform the expression of a certain 
relational configuration into a suggestion for a geometrical construction. Thus, at 
its very beginning, it has to proceed as analysis does, starting from the presenta
tion of a certain concept and seeking for the first elements of construction. This is 
specifically difficult, because of the non-geometrical character of the configura
tion exhibited by zetetics. In fact, in Viete’s method, zetetics realizes its specific 
aim and exhibit such a configuration, thanks to a quasi-axiomatic definition of 
internal multiplication. But, even though such a definition enables mathemati
cians to write equations where products (and ratios) of magnitudes occur and to 
manipulate them, it does not specify what a product (or a ratio) of magnitudes is. 
This is the source of one of the main difficulties of Viete’s program, since, in order 
to assign a geometrical sense to his equations and their roots, Viete proposes to 
interpret them according to a generalization of the classical definition of product 
of segments as constructions of rectangles or parallelepipeds. The problem with 
this suggestion is twofold. First, such a definition does not work for any sort of 
geometrical magnitude. Second it forces us to distinguish magnitudes according 
to their order with respect to a certain base, since, according to the previous defi
nition, internal multiplication between segments is not conservative with respect 
to homogeneity.

This difficulty is one of the starting points of Descartes’ program in geometry. 
Many scholars have underlined that Cartesian geometry is nothing but a collec
tion of methods to solve geometrical problems. I do not believe this is the case. 
Rather, I think that the aim motivating Descartes’ Geometry was a new founda
tion of geometry as a whole. And such a foundation makes an essential appeal to 
the analytic way of thinking. This is the last stage in the history of the notion of 
analysis I shall consider here, since it is the first stage of a new era, where the 
original Aristotelian notion gets its modem character.
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As is well known, Descartes, in his Discours de la methode, contrasts the 
“Analyse des anciens” and the “Algebre des modernes” (1637, 19). He refers to 
them as two “arts” and considers them together with a third “art”, that is logic. 
His famous four precepts (ibid., 20) are expounded by him as the only “laws” of a 
method that “comprenant les avantages de ces trois [arts], fust exempte de leurs 
defaux” (ibid., 19). The first and the third precept seem to recommend a quite 
non-analytic conduct of thinking: never accept as true anything of which we do 
not have evidence; always start with the simplest and the most easily knowable 
objects in thinking and proceed step by step upwards to the knowledge of the most 
composed ones. Though such an apparent refusal of analysis seems to be balanced 
by the second precept, this precept does not really recommend an analytic con
duct, limiting itself to suggest to always divide any difficulty in as many “parti
cles” as possible. Such an attitude seems to be inconsistent with the equally famous 
precept of the Geometrie, which in contrast recommends a very analytic conduct:

“Ansi, voulant resoudre quelque problesme, on doit d’abord le considerer conune desia fait, & 
donner des nommes a toutes les lignes qui semblent necessarires pour les construiie, aussi bien & 
celles qui sont inconnugs qu’aux autres” {ibid., 300; cf. here, ch. 1,23-26 and ch. 8,208).

The contrast appears to be even more evident when we observe that, just after 
having set forth his four precepts, Descartes presents a very short abstract of his 
geometry, as an example of his method.

How can these precepts for a good conduct of thinking be rendered consistent? 
The answer depends on Descartes’ conception of his method, as a combination of 
the advantages of (Aristotelian) logic, classical geometry (which, by referring to 
Pappus’ interpretation of it, he calls “analysis of the ancients”) and of what he 
calls “the algebra of modems”. From the first of these “arts”—which he here 
understands as the art of conducting logical proofs—Descartes takes the progres- 
sivity of thinking and the certainty of the starting points. From the second, he 
takes both the modalities of giveness of objects and the conditions of their possible 
comparison. Finally, from the third, he takes the modalities of expressing both 
objects and operations and the agility of deduction that these modalities permit; in 
fact, when he speaks of “algebra”, he seems to refer to the modem (for him) 
technics of transforming and solving equations. The key to understanding Des
cartes’ point of view seems just to lie in the previous distinction between modali
ties of giveness and comparison and modalities of expression. This distinction is 
already visible in Viete’s program, the aim of which is just to find a way to work 
with the “algebraic technics” on certain expressions of geometrical objects, in 
order to obtain suitable suggestions to perform classical constructions. However, 
in Descartes’s new geometry it seems to become much more explicit.

In following Israel’s suggestion (here, ch. 1), we might come back to the Reg
ular in order to understand Descartes’ views. In the Regula XIV (Descartes AT, X,
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450-52), Descartes states that there are only two sorts of things which compare 
themselves to each other (the Latin verb is “confero”: literally “to bring together”, 
and it is used here in the passive form): multitudes and magnitudes. And he adds 
that we dispose of two sorts (genara) of figures “to conceive them [ad illas con- 
ceptui nostro proponendas]”. The first type of these figures are diagrams (as sys
tems of points or genealogical trees), the second are geometrical figures. By using 
Descartes’ terms, they respectively “exhibit [or are to exhibit: exhibenda]” multi
tudes and “explicate [explicant]” magnitudes. Among all the possible classes of 
figures of these sorts, Descartes wants to choose only one and use its elements as 
general representations of multitudes and magnitudes. In order to justify his choice, 
he remarks that all the conditions (habitudines) which can subsist (esse) between 
entities of the same genus (that is all the relations between such entities) refer 
(esse referenda) either to order or to measure. Then he states that measure essen
tially differs from order because of the necessity of the consideration of a third 
term, when two entities are compared according to it (which is not the case of 
order). Finally, he argues that “as far as a unity is assumed [beneficio unitatis 
assumptice]" magnitudes can be reduced to multitudes, and the multitudes of uni
ties can be disposed in such an order, that every difficulty “concerning the knowl
edge of measure [quce ad mensurce cognitionem pertinebat]” only depends on 
order. Starting from these premises, Descartes concludes that, as long as it is 
question of proportions between magnitudes, only segments can be considered 
and that the same figures can be used to exhibit both, multitudes and magnitudes.

Descartes’ argument may appear rather obscure, but it becomes very clear as 
soon as it is considered in connection with his geometry. What Descartes says, is 
that if a certain magnitude is assumed as a parameter to measure all the other 
magnitudes of the same genus (a unity of measure), then the essential difference 
between comparison by order and comparison by measure—that is just the neces
sity of a third term—fails, since the third term is given already once for all. Thus, 
it is possible to intend any proportion as a relation with respect to the order and 
pass from it to a usual identity. Namely, as he will teach in the very beginning of 
Geometrie (Descartes 1637, 297-298) and as he anticipates in the Reguala XVIII 
(Descartes AT, X, 463), a proportion like u : a - b :  c (where u is just the unit) 
means that c is the product of a and b. Such a definition is completely independ
ent of the nature of the measured quantities: they can be multitudes or magni
tudes, and, if they are magnitudes, they can be any sort of magnitudes. Therefore, 
to give a sense to the product of two magnitudes a and b, it is merely necessary 
that the unity is chosen as homogenous either to a or to b. But, if this is the case, 
the comparison of distinct quantities can be expressed by a consistent formalism, 
which does not depend on the particular nature of these quantities, and thus, as 
long as we are comparing them, all quantities can be intended as being segments.
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Regula XIV stops here. This is not however the end of the story, since these 
considerations do imply neither that each quantity can be compared to every other 
(since Descartes’ argument refers to the modalities of comparison, but not to the 
possibility of it), nor that the product of two quantities can be exhibited, if these 
quantities are given, together with a unit homogeneous to one of them. According 
to the previous definition, this is only possible, if the fourth proportional between 
these quantities and the unit can be exhibited. If both these quantities are seg
ments, theorem VI, 12 of Euclid’s Elements teaches us that this is always possi
ble. But if this is not the case, no a priori guarantee can be given for that. Thus, 
Descartes’ definition of internal product for any sort of magnitudes (that can be 
easily applied to multitudes too) does not go together with the possibility of exhib
iting this product under any circumstances. If we want this possibility to exist 
always, we have not only to treat or represent all quantities as segments—as long 
as we are measuring them—, we have also to assume that they are segments. The 
same argument may be applied to internal division, integral power and any sort of 
root (the only difference being, for the last case, that the possibility of exhibition 
of every root of a given segment does not depend on any theorem of Euclid’s 
geometry, but on Descartes’ enlargement of Euclid’s constructive clauses).

If we want to do geometry in general, we of course, cannot restrict ourselves to 
the consideration of segments. However, we may assume that only segments are 
given as such and try to construct any geometrical entity (that is a magnitude or a 
form), step by step, starting by segments. This is the progressive way of (Aristote
lian) logic. Nevertheless, if we want to reach non-rectilinear figures by this con
struction, we cannot limit ourselves to Euclid’s constructive clauses. According to 
Descartes, there is no question of adding further postulates to Euclid’s. It is even 
preferable to eliminate these postulates as such. We have only to be confident of 
our capacity to distinguish and trace segments and to perform elementary opera
tions with them (like to construct a circle by rotating a segment) or with ideal 
machines composed by segments or other objects, which have already been con
structed (like in the case of the construction of the ellipse by means of the garden
er’s method). Hence, the construction of geometrical objects, starting from 
segments, is not submitted to any general rule, but has simply to satisfy a condi
tion of exactness, which Descartes actually formulates in his Geometrie in differ
ent and not always consistent ways. This general precept both expresses the 
condition of certainty of the starting points—which Descartes inherited from (Ar
istotelian) logic—and the modalities of giveness of geometrical objects. I have 
just said that Descartes inherited these modalities from classical geometry (read 
through the glasses of Pappus’ interpretation). In fact, these modalities are for
mally the same which work in classical geometry: only objects that are explicitly 
constructed starting from elementary objects are given as such. However, the sub
stance of this condition has changed, since such a condition is no longer expressed
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in terms of deductive constraints (like in the Euclidean deductive system), but it is 
merely satisfied by the application of a constructive capacity which looks after its 
own exactness. Thus the progressive order of Descartes’s method is not the order 
of Aristotelian proof, it is rather an order of construction, or, in the original Latin 
sense of the term, an order of inventio (that is literally the act of coming in or 
upon)39.

As long as geometrical objects are given as such, the modalities according to 
which we can operate on them and compare them, are the same as in classical 
geometry: two segments are added, for example, by juxtaposition (the term is 
explicit) and compared by referring to the conditions of their mutual inclusion. 
This is the second aspect of classical geometry inherited by Descartes. Neverthe
less the objects, which are given as such are not the only ones we are able to 
consider. We can also consider objects, which are simply characterized by the 
conditions they have to satisfy. These objects are not given as such, but, as long it 
is question of their comparison with other objects (which are given, instead), we 
can express them by means of suitable terms and apply to them the usual rules of 
proportion. Moreover, if a unit is given, proportions can be expressed by equa
tions (or, if you prefer, translated into them). Such a possibility enable us to deter
mine the relational configuration of any domain of known or unknown quantities 
and to characterize them as the objects which satisfy (or, better, would satisfy) 
certain conditions. This is the modality for representing both quantities as well as 
operations on quantities. It is the consequent agility of formalism that Descartes 
inherits from the “algebra of modems”. This is also the analytic procedure on 
which Descartes’ geometry is founded. However, this is not a regressive conduct, 
being rather, as in the case of Viete, a configurational analysis (here, ch. 8).

However, two novelties make Descartes’ analysis essentially different from 
Viete’s. First, the introduction of a unit (that is, in modem terms, the neutral 
element of a multiplicative group) eliminates any necessity of distinguishing quan
tities with respect to their (multilicative) order, as long as it is only question of 
expressing their mutual relations; and, if these quantities are supposed being seg
ments, it enable us to perform a finite and regulated construction, which exhibits 
the object (obviously a segment) expressed by every finite algebraic composition 
of given quantities. This means that if analysis terminates in the exhibition of an 
identity like x =*/*(a, b,..., q)—where /(a , b,..., q) is a finite algebraic composi
tion of the given quantities a, b , ..., q—then the successive construction is certain
ly possible and is completely determined by analysis itself. Second, the introduction 
of the idea of coordinates, makes it possible to express geometrical loci by means 
of equations, independently from our capacity of solving the latter. Here to ex
press is not the same than to give; but it is no more the same than to denominate. 
In fact, thanks to the expression of these loci by means of equations, we can estab
lish a number of geometrical properties of them and even classify them. Moreo
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ver, if these equations are solvable, we can even actually construct any finite number 
of points belonging to these loci. Once again, this is not giveness of these objects 
as such, but it is a very strong and geometrically informative characterization of 
them as objects satisfying certain concepts.

These differences between Vote’s and Descartes’ analysis are responsible for 
the results of a new “art”, namely modem analysis as a mathematical theory, the 
new theory of functions. I do not think this to be the effect of a simple oblivion of 
geometrical construction or even of the transformation of the previous conditions 
of characterization into conditions of giveness. Rather, it seems that it is the effect 
of Descartes’ introduction of a new sort of constructive objects, which are not 
particular quantities, but are the relational expressions of quantities or—as they 
will become in the 18th-century—abstract quantities or functions (here, ch. 3 and 
5 and Panza 1992). From here stem a number of new and more modem meanings 
of the terms “analysis” and “synthesis”. The different chapters of the present book 
should make the greater part of these meanings clear and elucidate their mutual 
relations. My aim here was only to suggest the intrinsic dependence of these mean
ings on a single source: the Aristotelian notion of analysis as a regressive conduct 
of thinking performed in order to make the realization of a given aim possible.
Centre F. Viete o f the History and Philosophy o f Sciences,
University o f Nantes

Notes

* I thank Clotilde Calabi, Jean Dhombres, Agnese Grieco, Michael Hoffmann, Francois Loget, Michael 
Otte, Jackie Pigeaud, Bernard Vitrac for their suggestions and linguistic and philosophical advices.

1 We owe a number of our examples of occurrences o f the term “analysis”, both in the Greek corpus and 
somewhere, to Timmermans (1995).

2 True to say, Aristotle’s definition is not so clear. The passage I have mentioned belongs to a larger 
argument, where Aristotle states four different meanings for the expression “(to be) in itself’. According 
to the third of these meanings (Posterior Analytics, 13b 5-10) Q is in itself if it is not said to be of a 
certain subject, let us say P, while, according to the fourth (ibid., 13b 10-16) P is Q in itself, if it is Q 
because of it is just P (and for no other external reason). The first two meanings are those we have just 
exposed in the text However, Aristotle seems to insist on the circumstance that predications “P is Q” and 
“Q is P” occur respectively in the definition of P and Q. Because of that, Barnes (1975,114 and 112) 
argues both that the third and fourth meanings are ontological, while the first and second are logical, and 
that all of them are meanings of “Q holds ofP  in itself”. Moreover, he maintains that the arguments o f* ** 
chapters 19-22 which will be discussed below only refer to the two first meanings. However, it seems to 
me that the third of these meanings is quite different from the other and specifically concerns the fact that 
the predicate ‘Q’ indicates a certain subject, while the fourth integrates the first two by making clear that 
they refer to essence, rather than merely to definition (or even to essential definition, rather than to purely 
linguistic definition).
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3 Even though I come far from that in certain points, my reconstruction is laigely indebted to Barnes’ 
translation and commentaries as they appear in Barnes (1975).

4 Remark that, as such, this neither entails the main thesis of chapters 1 ,19 - 1,22, nor it is entailed by it, 
since it is possible thatP is not able to be defined and known, and all the series of predications as the 
previous ones are finite, these series being infinitely many.

5 According to Barnes (1975, p. 180) the argument for the downward series of Pj is not correct. This is 
quite right if we consider, as Barnes does, this series as a series of predications where the predicate 
“inheres in the definition” (ibid, p. 112) of the subject and we directly refer Aristotle’s argument to the 
possibility of a (finite) proof and definition. If it is so, the fact that for every (natural) number j  there is a 
predicate Pj such that is F ’ is an essential predication (in the previous sense) only means that P 
inheres in the definition of infinitely many subjects. In order to make Aristotle’s argument correct, we 
have to assume that Pj is a subject and namely a species of P— (essentially) defined by the genus to 
which it belongs— and that no subject can contain an infinite number of species (what makes clear the 
role of the second premise advanced by Aristotle at the beginning of chapter 1,22). In any case, if we do 
not refer, as Baines does, the Aristode’s argument directly to the possibility of a (finite) proof and definition, 
it is the argument for the upward series of Qj which fails, except if we accept that the predicate of an 
essential definition is a genus of the subject and no subject can belong to infinitely many embedded genus 
(cf. the previous endnotes 2 and 4).

6 The interpretation of Waitz (Aristotle AOG, II, 353-354), according to which an “analytical” proof is 
rigorous, while a “logical” one is not, seem to be unacceptable.

7 This is one of the roots of the wrong idea of many amateur philosophers, who think that synthesis is 
nothing but invention (or even “intuition” as a creative act).

8 Cf. Proclus (PEEL, ed Friedlein ,17-19), which ascribes this sort of analysis to Eratosthenes.

9 Cf. the previous endnote (5).

I® Literally: “pre-delibered”, since the verb “ {knAeixo” means “to deliberate”, as an act of a council, the 
“PouX.fi” being just the administrative council of a political community.

11 Cf. the previous note (10).

12 Aristotle’s identification of eternity and necessity (his non-modal conception of necessity) has been 
discussed by a number of scholars. Cf. for example Hintikka (1975).

13 Of course regressive reduction is part of what we do when we “work backwards”. Thus the Aristotelian 
notion of analysis is completely compatible with the general meaning that Szab6 (1974) has ascribed to 
the term “avaXuoi<;” as referring to a “working backwards”. It appears to me, however, that the Aristotelian 
notion of analysis is more profound. It is not at all restricted to the level of methodology, but is related to 
fundamental questions of epistemology and metaphyics. We can even regard it as the source of modem 
epistemological conceptions which are not merely concerned with the examples that Szab6 discusses, 
that are, P61ya’s heuristic and Lakatos’ “proof-analysis” or “method of proof(s) and refutations” (cf. 
P61ya 1945, particularly 141, and Lakatos 1976 and PP, II, ch. 5: “The Method of Analysis-Synthesis”, 
70-103).

14 ‘Treasury of Analysis” is Heath’s and Hintikka-Remes’s translation (Euclid EH, 1 ,138; and Hintikka 
and Remes 1974,8). Jones and Ver Eecke translate the same Greek expression respectively with “Domain 
of analysis” (Pappus CJ, 82; cf. here, ch. 8, par. II) and “champ de l ’analyse” (Pappus CVE, 477).

15 Hultsch was here following Halley’s translation in the preface to Apollonius Cutting-off o f a Ratio 
(SRH, XXVIII), which translated “Kata ouX.X.r|ttxv” with “ut paucis dicam”.
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16 For the references, cf. note (14).

*7 On the correspondence between Pappus’s definition and Aristotle’s argument of the chapters III, 3-5 of 
Nicomachean Ethics cf. Hintikka and Remes (1974, 86-87) and Knorr (1986, 356-357) that even 
guesses that Pappus “may present not a distillation of [..] ancient tradition, but rather a rephrasing of 
standard philosophical views” {ibid., 357).

18 On all the question cf. Hintikka and Remes (1974,11-19).

1 9 For a tentative literally translation of the Arabic text cf. Knorr (1986,376).

20 o ther examples of analysis in Heron’s works are listed by Hintikka and Remes (1974,19-20, n. 2) and 
Knorr (1986, 376-377, n. 87). You can also consider the paragraph 136,7 of the [pseudo-] Heron’s 
Definitiones, which (as it mention Porphyry) can not be antecedent to the 3rd century A.D.

21 It is clear that, even though it is possible to intend all the identities (1)-(10) as logical equivalencies, the 
inferential chain ( 1)-(10) is not convertible as such, because of the essential occurrence of ( 1) in the 
passage from (4) to (5).

22 The particular aim of analysis, here, seems just to provide such a suggestion. Thus it does not seem to us 
be “completely artificial” as Knorr says (1986,358).

23 a  reason justifying Pappus’ inclusion of Euclid’s Data in the corpus of analysis is advanced in the note 
(30)above.

24  On the classical distinction between theorems and problems in Greek mathematics cf., for example, 
Caveing (1990,133-37).

25 The same formula appears, sometimes without the particle “6fj” also in: 276,3 and 18; 278,13 and 24; 
280,15; 282,8; 284,8; 286,5; 298,20; and 300,22; while in: 288, 15; 290, 24; and 297,7 we found 
the more explicit formula “the problem will be synthesized in this way [XuvTEdfjoETcn 6f| to ]tQ6f3A.qpci 
otmoq]”. Beside, after having presented the last analysis in prop. n. 49, Apollonius shortly concludes by 
observing that “the synthesis [is] like [that] of the previous [problem] [r| be ouvdeoic; f| aurri rfj ttpo 
auToO]”

26 The second stage in the solution of the problems 1, 4, 5, and 7 is introduced by the formula. 
“luvTETfjoeTai 6f| to 3TQoP>.T||ia ovTajq” (Archimedes OO, 172, 7; 192, 7; 198, 13; and 205, 15 
respectively), while the second stage in the solution of the problems 3 and 6 is introduced by the formula. 
“XuvTETfjoETcu. 6r| ovrox;” {ibid., 184, 21 and 204, 11).

27 The arguments of Menaechmus aim to solve the same problem, namely, that of finding two segments 
which are medium proportional, according to a continuous proportion, between two given segments. 
Consider as an example the first of these arguments. A and£ being the given segments, let us call# and 
C the searched ones. Imagine that these latter are taken on two straight lines perpendicular each other, in 
such a way that they have a common extreme. As Rect.(A, C) -  Sq.(fi) it is clear that the other extreme 
of B belongs to a given parabola passing for the other extreme of C. But as Rect.(C, B) is given—being 
equal to Rect.(A, E)— this point also belongs to an hyperbola that is given too. Thus it is given as well, by 
intersection of two conics. This makes clear that this point can be easily constructed by constructing two 
suitable conics.

28 Remark that Aristotle is clearly not concerned here with a possible convertibility of analysis.

29 The problematic character of geometrical analyses of the classical age is stressed by Knorr (1986). Cf. 
also Hintikka and Remes (1974,84).

30 As a matter of fact this is the structure of all the previous problematic analyses, which are, because of 
that, very similar to many arguments found in the 7th book of Pappus Collection. Cf. as an example the
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proposition 155 (Pappus CH, 905-907), quoted and discussed as paradigmatic by Hintikka and Remes 
(1974,52-53). A similar argument is also in Aristotle’s Meteorologies, 375b, 30-376a, 9. The fact that 
analysis is concerned here with what is given when the problem is assumed to be solved might explain 
Pappus’ inclusion of Euclid’s Data in the corpus of treatise belonging to the domain of analysis (Heath 
1921,422 and Knorr, 1986,109-110).

31 Cf. the previous note (17).

32 Hintikka and Remes (1974,91) observe that “analysis as a philosophical method was in vogue in the 
centuries before Pappus”, when “widely different methods were called ‘analysis’” and {ibid. 89-91) 
evoke the compound influences of Platonic and Stoic traditions on the these conceptions. Knorr (1986, 
357) even argues that “Pappus could pick up [...][his] general views through te medium of commentators 
like Geminus and others, conversant with a syncretizing form of Platonism”.

33 have not to confound reduction to elements in the previous sense, with a natural process of 
decomposition as that which Aristotle evokes in the chapter 4 of book H of Metaphysics (1044a, 15-25). 
Here Aristotle is opposing two (natural) processes according to which a thing comes from an other. The 
first one goes from the matter to the substance and is exemplified by the passage from the sweet to the fat 
and from the fat to the phlegm. At the opposite, the second one goes from the substance to the matter and 
is exemplified by the passage from the bile to the phlegm. Aristotle describes this process in general, by 
saying that a thing comes from another “as being analyzed in (its) principles [on  dvuXuftevroq eiq tt|v 
dexiyv]” (1044a, 24-25) and says that the phlegm comes from the bile “by analyzing [rep dvaXdeoOai]” 
the latter “in [his] first matter [el? rf |v  argc&TTiv OXtjv]” (1044a, 23). Clearly, analysis is not here a 
conduct of thinking, it is rather a natural process of decomposition of objects, the verb “dvaA-ueo” being 
used with a meaning close to the one we have evoked in the previous paragraph I. The fact that this 
meaning occurs sometimes in Aristotle’s writings does not entail that Aristotle does not refer in general 
to analysis as to a (regressive) conduct of thinking. It is just in this sense that Aristotelian notion of 
analysis interests us here.

34 The following remarks on Thomas’s conception of analysis and synthesis and its sources rest largely on 
Garceau’s book (1968, specially 209-220).

35 The idea that (geometrical) analysis brings us “from a complex to the simple” was advanced in the 6th- 
century by John Philoponus in his commentary to Aristotle’s Prior Analytics {Comm. Ar. Gr., XID-2,2, 
16-17: cf. Hintikka and Remes 1974,94). It is not clear however wheter the starting point of analysis is 
the complex in itself or the complex for us; as far as geometrical analysis is concerning, it is probably 
both.

36 w e could maintain that this is due to Albertus’s views, since research necessarily goes from the simple 
to the complex, while the evaluation of the results of a certain research goes from the complex to the 
simple. However, it seems that here we are not speaking of simple and complex in themselves, but of 
simple and complex for us, which is not necessarily the same.

37 This is what Proclus says (PEEL, ed Friedlein 211). It is remarkable that Proclus opposes here the 
method of analysis both to the method for separation (f| 5uxi(>T]Tiicfj)—that he equally ascribes to Plato 
and considers as proper to every science—and to the reduction to the absurd—that, he says, does not 
show what is sought and only refutes its contrary (cf. also ibid., 225,8-12).

38 The terms “finem” and “comprehensionem” (cf. below) could in fact translate the terms “k<xt<xA.T|£iv” 
and “tcaTaA.TpJxv”, which appears there.

39 o f  course, geometrical construction is not blind, it does not work without aims and it does not provide 
objects merely by chance. Rather, it is guided by the aim of constructing objects which satisfy certain 
conditions which are given a priori with respect to i t  Thus, either it is preceded (both for Euclid and 
Descartes) by a geometrical reduction (that is just an analysis) or it consists in this reduction itself (this
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is obviously possible as far as all its steps are trivially convertible). As a matter of fact, Descaate&Geomitrie 
is especially rich in examples where construction is exposed as a progressive conduct. However, the 
essential difference between Euclid’s progressivity (that is and was intended as a synthesis by Pappus) 
and Descartes’ progressivity could have suggested the latter is less far from analysis that the former is, or 
is even easily convertible into it. This could explain the famous remarks on analysis and synthesis advanced 
by Descartes in the “second answers” following his Meditationes, quoted by Israel (here, ch. 1,5-6), 
where analysis is both considered as a conduct of proof and inventio. The essential difference between 
Descartes views—as expounded here—and Aristotelian ones does not lies, as many scholars have observed 
(for example, Timmermans, who construct his book (1995) on this opposition), in Descartes’ identification 
of analysis with a conduct of invention. Foremost, the modem meaning of the term “invention” (both in 
English or French) is strictly different from the meaning of the Latin “inventio” (which in 17th-century 
is simply transferred to the French “invention”), being closer to the original idea expressed by the verb 
“invenire” (literally “to come in, or upon”), which is more like “to found”; to obtain, or even “to reach” 
than “to invent”. And, if we speak of inventio in this sense, it is vety easy to observe that for Aristotle too, 
analysis was a conduct of inventio. The problem rather is that for Aristotle analysis (as long as it is not 
conclusive) does not reach a theorem, or generally the realization of the aim, but reaches the first principles 
of the proof, or generally the conditions of realization of the aim. Thus, it is just “inventive” as long as it 
is not, as such, demonstrative (or at least conclusively demonstrative). For Descartes, in contrast, it 
seems to be “inventive” and “demonstrative” at the same time. As we have just said, we can eliminate 
such a difficulty in the interpretation of Descartes’ text by referring to the difference between Descartes’ 
proofs and usual deductions. But we can also remark that the difficulty is a very local one, since a few 
lines after, when he speaks of the application of analysis and synthesis to metaphysics, Descartes comes 
back to a very classical point of view, speaking about the “first notions [prinue notiones]” of geometry 
(here, ch. 1,6) and remarking (AT, VII, 157) that analytic conduct is the most suitable one in metaphysics, 
since here that which is really important is “to perceive the first notions clearly and distinctly [deprimis 
notionibus clare A distinctepercipiendis)”. Thus the difference with Aristotle reduces to one we have 
extensively discussed above: Descartes is simply referring to ontological (rather than epistemological) 
notions of clearness, evidence and firstness.

i
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Translated from Russian. Revised and enlarged English Edition, with an Appendix by G.A. 
Smimov, E.A. Sidorenko, A.M. Fedina and L.A. Bobrova. [Synthese Library 46] 1973

ISBN 90-277-0193-8; Pb 90-277-0324-8
10. L. Tondl: Scientific Procedures. A  Contribution Concerning the Methodological Problems of

Scientific Concepts and Scientific Explanation.Translated from Czech. [Synthese Library 
47] 1973 ISBN 90-277-0147-4; Pb 90-277-0323-X

11. R.J. Seeger and R.S. Cohen (eds.): Philosophical Foundations of Science. Proceedings of
Section L, 1969, American Association for the Advancement of Science. [Synthese Library 
58] 1974 ISBN 90-277-0390-6; Pb 90-277-0376-0

12. A. Griinbaum: Philosophical Problems of Space and Times. 2nd enlarged ed. [Synthese
Library 55] 1973 ISBN 90-277-0357-4; Pb 90-277-0358-2

13. R.S. Cohen and M.W. Wartofsky (eds.): Logical and Epistemological Studies in Contem
porary Physics. Proceedings of the Boston Colloquium for the Philosophy of Science, 
1969/72, Part I. [Synthese Library 59] 1974 ISBN 90-277-0391-4; Pb 90-277-0377-9

14. R.S. Cohen and M.W. Wartofsky (eds.): Methodological and Historical Essays in the 
Natural and Social Sciences. Proceedings of the Boston Colloquium for the Philosophy of 
Science, 1969/72, Part II. [Synthese Library 60] 1974

ISBN 90-277-0392-2; Pb 90-277-0378-7
15. R.S. Cohen, J.J. Stachel and M.W. Wartofsky (eds.): For Dirk Struik. Scientific, Historical 

and Political Essays in Honor of Dirk J. Struik. [Synthese Library 61] 1974
ISBN 90-277-0393-0; Pb 90-277-0379-5

16. N. Geschwind: Selected Papers on Language and the Brains. [Synthese Library 68] 1974
ISBN 90-277-0262-4; Pb 90-277-0263-2

17. B.G. Kuznetsov: Reason and Being. Translated from Russian. Edited by C.R. Fawcett and
R.S. Cohen. 1987 ISBN 90-277-2181-5
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18. P. Mittelstaedt: Philosophical Problems of Modern Physics. Translated from the revised 4th 
German edition by W. Riemer and edited by R.S. Cohen. [Synthese Library 95] 1976

ISBN 90-277-0285-3; Pb 90-277-0506-2
19. H. Mehlberg: Time, Causality, and the Quantum Theory. Studies in the Philosophy of 

Science. Vol. I: Essay on the Causal Theory of Time. Vol. II: Time in a Quantized Universe. 
Translated from French. Edited by R.S. Cohen. 1980

Vol. I: ISBN 90-277-0721-9; Pb 90-277-1074-0 
Vol. II: ISBN 90-277-1075-9; Pb 90-277-1076-7

20. K.F. Schaffner and R.S. Cohen (eds.): PSA 1972. Proceedings of the 3rd Biennial Meeting of
the Philosophy of Science Association (Lansing, Michigan, Fall 1972). [Synthese Library 
64] 1974 ISBN 90-277-0408-2; Pb 90-277-0409-0

21. R.S. Cohen and J.J. Stachel (eds.): Selected Papers of Leon Rosenfeld. [Synthese Library
100] 1979 ISBN 90-277-0651 -4; Pb 90-277-0652-2

22. M. Capek (ed.): The Concepts of Space and Time. Their Structure and Their Development.
[Synthese Library 74] 1976 ISBN 90-277-0355-8; Pb 90-277-0375-2

23. M. Grene: The Understanding of Nature. Essays in the Philosophy of Biology. [Synthese
Library 66] 1974 ISBN 90-277-0462-7; Pb 90-277-0463-5

24. D. Ihde: Technics and Praxis. A Philosophy of Technology. [Synthese Library 130] 1979
ISBN 90-277-0953-X; Pb 90-277-0954-8

25. J. Hintikka and U. Remes: The Method of Analysis. Its Geometrical Origin and Its General
Significance. [Synthese Library 75] 1974 ISBN 90-277-0532-1; Pb 90-277-0543-7

26. J.E. Murdoch and E.D. Sylla (eds.): The Cultural Context of Medieval Learning. Proceedings
of the First International Colloquium on Philosophy, Science, and Theology in the Middle 
Ages, 1973. [Synthese Library 76] 1975 ISBN 90-277-0560-7; Pb 90-277-0587-9

27. M. Grene and E. Mendelsohn (eds.): Topics in the Philosophy of Biology. [Synthese Library
84] 1976 ISBN 90-277-0595-X; Pb 90-277-0596-8

28. J. Agassi: Science in Flux. [Synthese Library 80] 1975
ISBN 90-277-0584-4; Pb 90-277-0612-3

29. J.J. Wiatr (ed.): Polish Essays in the Methodology of the Social Sciences. [Synthese Library
131] 1979 ISBN 90-277-0723-5; Pb 90-277-0956-4

30. P. Janich: Protophysics of Time. Constructive Foundation and History of Time Measure
ment. Translated from German. 1985 ISBN 90-277-0724-3

31. R.S. Cohen and M.W. Wartofsky (eds.): Language, Logic, and Method. 1983
ISBN 90-277-0725-1

32. R.S. Cohen, C.A. Hooker, A.C. Michalos and J.W. van Evra (eds.): PSA 1974. Proceedings
of the 4th Biennia] Meeting of the Philosophy of Science Association. [Synthese Library 
101 ] 1976 ISBN 90-277-0647-6; Pb 90-277-0648-4

33. G. Holton and W.A. Blanpied (eds.): Science and Its Public. The Changing Relationship.
[Synthese Library 96] 1976 ISBN 90-277-0657-3; Pb 90-277-0658-1

34. M.D. Grmek, R.S. Cohen and G. Cimino (eds.): On Scientific Discovery. The 1977 Erice
Lectures. 1981 ISBN 90-277-1122-4; Pb 90-277-1123-2

35. S. Amsterdamski: Between Experience and Metaphysics. Philosophical Problems of the 
Evolution of Science. Translated from Polish. [Synthese Library 77] 1975

ISBN 90-277-0568-2; Pb 90-277-0580-1
36. M. Markovid and G. Petrovid (eds.): Praxis. Yugoslav Essays in the Philosophy and 

Methodology of the Social Sciences. [Synthese Library 134] 1979
ISBN 90-277-0727-8; Pb 90-277-0968-8
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37. H. von Helmholtz: Epistemological Writings. The Paul Hertz / Moritz Schlick Centenary 
Edition of 1921. Translated from German by M.F. Lowe. Edited with an Introduction and 
Bibliography by R.S. Cohen and Y. Elkana. [Synthese Library 79] 1977

ISBN 90-277-0290-X; Pb 90-277-0582-8
38. R.M. Martin: Pragmatics, Truth and Language. 1979

ISBN 90-277-0992-0; Pb 90-277-0993-9
39. R.S. Cohen, P.K. Feyerabend and M.W. Wartofsky (eds.): Essays in Memory of Imre

Lakatos. [Synthese Library 99] 1976 ISBN 90-277-0654-9; Pb 90-277-0655-7
40. Not published.
41. Not published.
42. H.R. Maturana and F.J. Varela: Autopoiesis and Cognition. The Realization of the Living. 

With a Preface to ‘Autopoiesis’ by S. Beer. 1980
ISBN 90-277-1015-5; Pb 90-277-1016-3

43. A. Kasher (ed.): Language in Focus: Foundations, Methods and Systems. Essays in Memory 
of Yehoshua Bar-Hillel. [Synthese Library 89] 1976

ISBN 90-277-0644-1; Pb 90-277-0645-X
44. T.D. Thao: Investigations into the Origin of Language and Consciousness. 1984

ISBN 90-277-0827-4
45. Not published.
46. P.L. Kapitza: Experiment, Theory, Practice. Articles and Addresses. Edited by R.S. Cohen.

1980 ISBN 90-277-1061-9; Pb 90-277-1062-7
47. M.L. Dalla Chiara (ed.): Italian Studies in the Philosophy of Science. 1981

ISBN 90-277-0735-9; Pb 90-277-1073-2
48. M.W. Wartofsky: Models. Representation and the Scientific Understanding. [Synthese

Library 129] 1979 ISBN 90-277-0736-7; Pb 90-277-0947-5
49. T.D. Thao: Phenomenology and Dialectical Materialism. Edited by R.S. Cohen. 1986

ISBN 90-277-0737-5
50. Y. Fried and J. Agassi: Paranoia. A Study in Diagnosis. [Synthese Library 102] 1976

ISBN 90-277-0704-9; Pb 90-277-0705-7
51. K.H. Wolff: Surrender and Cath. Experience and Inquiry Today. [Synthese Library 105]

1976 ISBN 90-277-0758-8; Pb 90-277-0765-0
52. K. Kosik: Dialectics of the Concrete. A Study on Problems of Man and World. 1976

ISBN 90-277-0761-8; Pb 90-277-0764-2
53. N. Goodman: The Structure of Appearance. [Synthese Library 107] 1977

ISBN 90-277-0773-1; Pb 90-277-0774-X
54. H.A. Simon: Models of Discovery and Other Topics in the Methods of Science. [Synthese

Library 114] 1977 • ISBN 90-277-0812-6; Pb 90-277-0858-4
55. M. Lazerowitz: The Language of Philosophy. Freud and Wittgenstein. [Synthese Library

117] 1977 ISBN 90-277-0826-6; Pb 90-277-0862-2
56. T. Nickles (ed.): Scientific Discovery, Logic, and Rationality. 1980

ISBN 90-277-1069-4; Pb 90-277-1070-8
57. J. Margolis: Persons and Mind. The Prospects of Nonreductive Materialism. [Synthese

Library 121] 1978 ISBN 90-277-0854-1; Pb 90-277-0863-0
58. G. Radnitzky and G. Andersson (eds.): Progress and Rationality in Science. [Synthese

Library 125] 1978 ISBN 90-277-0921-1; Pb 90-277-0922-X
59. G. Radnitzky and G. Andersson (eds.): The Structure and Development of Science. [Synthese

Library 136] 1979 ISBN 90-277-0994-7; Pb 90-277-0995-5
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60. T. Nickles (ed.): Scientific Discovery. Case Studies. 1980
ISBN 90-277-1092-9; Pb 90-277-1093-7

61. M.A. Finocchiaro: Galileo and the Art of Reasoning. Rhetorical Foundation of Logic and
Scientific Method. 1980 ISBN 90-277-1094-5; Pb 90-277-1095-3

62. W.A. Wallace: Prelude to Galileo. Essays on Medieval and 16th-Century Sources of
Galileo’s Thought. 1981 ISBN 90-277-1215-8; Pb 90-277-1216-6

63. F. Rapp: Analytical Philosophy of Technology. Translated from German. 1981
ISBN 90-277-1221-2; Pb 90-277-1222-0

64. R.S. Cohen and M.W. Wartofsky (eds.): Hegel and the Sciences. 1984
ISBN 90-277-0726-X

65. J. Agassi: Science and Society. Studies in the Sociology of Science. 1981
ISBN 90-277-1244-1; Pb 90-277- 1245-X

66. L. Tondl: Problems of Semantics. A Contribution to the Analysis of the Language of
Science. Translated from Czech. 1981 ISBN 90-277-0148-2; Pb 90-277-0316-7

67. J. Agassi and R.S. Cohen (eds.): Scientific Philosophy Today. Essays in Honor of Mario
Bunge. 1982 ISBN 90-277-1262-X; Pb 90-277-1263-8

68. W. Krajewski (ed.): Polish Essays in the Philosophy of the Natural Sciences. Translated 
from Polish and edited by R.S. Cohen and C.R. Fawcett. 1982

ISBN 90-277-1286-7; Pb 90-277-1287-5
69. J.H. Fetzer: Scientific Knowledge. Causation, Explanation and Corroboration. 1981

ISBN 90-277-1335-9; Pb 90-277-1336-7
70. S. Grossberg: Studies of Mind and Brain. Neural Principles of Learning, Perception, 

Development, Cognition, and Motor Control. 1982
ISBN 90-277-1359-6; Pb 90-277-1360-X

71. R.S. Cohen and M.W. Wartofsky (eds.): Epistemology, Methodology, and the Social
Sciences. 1983. ISBN 90-277-1454-1

72. K. Berka: Measurement. Its Concepts, Theories and Problems. Translated from Czech. 1983
ISBN 90-277-1416-9

73. G.L. Pandit: The Structure and Growth of Scientific Knowledge. A Study in the Methodol
ogy of Epistemic Appraisal. 1983 ISBN 90-277-1434-7

74. A.A. Zinov’ev: Logical Physics. Translated from Russian. Edited by R.S. Cohen. 1983
[see also Volume 9] ISBN 90-277-0734-0

75. G-G. Granger: Formal Thought and the Sciences of Man. Translated from French. With and
Introduction by A. Rosenberg. 1983 ISBN 90-277-1524-6

76. R.S. Cohen and L. Laudan (eds.): Physics, Philosophy and Psychoanalysis. Essays in Honor
of Adolf Grunbaum. 1983 ISBN 90-277-1533-5

77. G. Bohme, W. van den Daele, R. Hohlfeld, W. Krohn and W. Schafer Finalization in
Science. The Social Orientation of Scientific Progress. Translated from German. Edited by 
W. Schafer. 1983 ISBN 90-277-1549-1

78. D. Shapere: Reason and the Search for Knowledge. Investigations in the Philosophy of
Science. 1984 ISBN 90-277-1551 -3; Pb 90-277-1641-2

79. G. Andersson (ed.): Rationality in Science and Politics. Translated from German. 1984
ISBN 90-277-1575-0; Pb 90-277-1953-5

80. P.T. Durbin and F. Rapp (eds.): Philosophy and Technology. [Also Philosophy and
Technology Series, Vol. 1 ] 1983 ISBN 90-277-1576-9

81. M. Markovid: Dialectical Theory of Meaning. Translated from Serbo-Croat. 1984
ISBN 90-277-1596-3
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82. R.S. Cohen and M.W. Wartofsky (eds.): Physical Sciences and History of Physics. 1984.
ISBN 90-277-1615-3

83. E. Meyerson: The Relativistic Deduction. Epistemological Implications of the Theory of
Relativity. Translated from French. With a Review by Albert Einstein and an Introduction by 
Milic Capek. 1985 ISBN 90-277-1699-4

84. R.S. Cohen and M.W. Wartofsky (eds.): Methodology, Metaphysics and the History of
Science. In Memory of Benjamin Nelson. 1984 ISBN 90-277-1711-7

85. G. Tam&s: The Logic of Categories. Translated from Hungarian. Edited by R.S. Cohen. 1986
ISBN 90-277-1742-7

86. S.L. de C. Fernandes: Foundations of Objective Knowledge. The Relations of Popper’s
Theory of Knowledge to That of Kant. 1985 ISBN 90-277-1809-1

87. R.S. Cohen and T. Schnelle (eds.): Cognition and Fact. Materials on Ludwik Fleck. 1986
ISBN 90-277-1902-0

88. G. Freudenthal: Atom and Individual in the Age of Newton. On the Genesis of the Mechanis
tic World View. Translated from German. 1986 ISBN 90-277-1905-5

89. A. Donagan, A.N. Perovich Jr and M.V. Wedin (eds.): Human Nature and Natural 
Knowledge. Essays presented to Marjorie Grene on the Occasion of Her 75th Birthday. 1986

ISBN 90-277-1974-8
90. C. Mitcham and A. Hunning (eds.): Philosophy and Technology II. Information Technology

and Computers in Theory and Practice. [Also Philosophy and Technology Series, Vol. 2] 
1986 ISBN 90-277-1975-6

91. M. Grene and D. Nails (eds.): Spinoza and the Sciences. 1986 ISBN 90-277-1976-4
92. S.P. Turner: The Search for a Methodology of Social Science. Durkheim, Weber, and the

19th-Century Problem of Cause, Probability, and Action. 1986. ISBN 90-277-2067-3
93. I.C. Jarvie: Thinking about Society. Theory and Practice. 1986 ISBN 90-277-2068-1
94. E. Ullmann-Margalit (ed.): The Kaleidoscope of Science. The Israel Colloquium: Studies in 

History, Philosophy, and Sociology of Science, Vol. 1. 1986
ISBN 90-277-2158-0; Pb 90-277-2159-9

95. E. Ullmann-Margalit (ed.): The Prism of Science. The Israel Colloquium: Studies in History, 
Philosophy, and Sociology of Science, Vol. 2. 1986

ISBN 90-277-2160-2; Pb 90-277-2161-0
96. G. Markus: Language and Production. A Critique of the Paradigms. Translated from French.

1986 ISBN 90-277-2169-6
97. F. Amrine, F.J. Zucker and H. Wheeler (eds.): Goethe and the Sciences: A Reappraisal.

1987 ISBN 90-277-2265-X; Pb 90-277-2400-8
98. J.C. Pitt and M. Pera (eds.): Rational Changes in Science. Essays on Scientific Reasoning.

Translated from Italian. 1987 ISBN 90-277-2417-2
99. O. Costa de Beauregard: Time, the Physical Magnitude. 1987 ISBN 90-277-2444-X

100. A. Shimony and D. Nails (eds.): Naturalistic Epistemology. A Symposium of Two Decades.
1987 ISBN 90-277-2337-0

101. N. Rotenstreich: Time and Meaning in History. 1987 ISBN 90-277-2467-9
102. D.B. Zilberman: The Birth of Meaning in Hindu Thought. Edited by R.S. Cohen. 1988

ISBN 90-277-2497-0
103. T.F. Glick (ed.): The Comparative Reception of Relativity. 1987 ISBN 90-277-2498-9
104. Z. Harris, M. Gottfried, T. Ryckman, P. Mattick Jr, A. Daladier, T.N. Harris and S. Harris:

The Form of Information in Science. Analysis of an Immunology Sublanguage. With a 
Preface by Hilary Putnam. 1989 ISBN 90-277-2516-0
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105. F. Burwick (ed.): Approaches to Organic Form. Permutations in Science and Culture. 1987
ISBN 90-277-2541-1

106. M. Almasi: The Philosophy of Appearances. Translated from Hungarian. 1989
ISBN 90-277-2150-5

107. S. Hook, W.L. O’Neill and R. O’Toole (eds.): Philosophy, History and Social Action. Essays 
in Honor of Lewis Feuer. With an Autobiographical Essay by L. Feuer. 1988

ISBN 90-277-2644-2
108. I. Hronszky, M. Feher and B. Dajka: Scientific Knowledge Socialized. Selected Proceedings

of the 5th Joint International Conference on the History and Philosophy of Science organized 
by the IUHPS (Veszpr6m, Hungary, 1984). 1988 ISBN 90-277-2284-6

109. P. Tillers and E.D. Green (eds.): Probability and Inference in the Law of Evidence. The Uses
and Limits of Bayesianism. 1988 ISBN 90-277-2689-2

110. E. Ullmann-Margalit (ed.): Science in Reflection. The Israel Colloquium: Studies in History, 
Philosophy, and Sociology of Science, Vol. 3. 1988

ISBN 90-277-2712-0; Pb 90-277-2713-9
111. K. Gavroglu, Y. Goudaroulis and P. Nicolacopoulos (eds.): Imre Lakatos and Theories of

Scientific Change. 1989 ISBN 90-277-2766-X
112. B. Glassner and J.D. Moreno (eds.): The Qualitative-Quantitative Distinction in the Social

Sciences. 1989 ISBN 90-277-2829-1
113. K. Arens: Structures of Knowing. Psychologies of the 19th Century. 1989

ISBN 0-7923-0009-2
114. A. Janik: Style, Politics and the Future of Philosophy. 1989 ISBN 0-7923-0056-4
115. F. Amrine (ed.): Literature and Science as Modes of Expression. With an Introduction by S.

Weininger. 1989 ISBN 0-7923-0133-1
116. J.R. Brown and J. Mittelstrass (eds.): An Intimate Relation. Studies in the History and 

Philosophy of Science. Presented to Robert E. Butts on His 60th Birthday. 1989
ISBN 0-7923-0169-2

117. F. D’Agostino and I.C. Jarvie (eds.): Freedom and Rationality. Essays in Honor of John
Watkins. 1989 ISBN 0-7923-0264-8

118. D. Zolo: Reflexive Epistemology. The Philosophical Legacy of Otto Neurath. 1989
ISBN 0-7923-0320-2

119. M. Keam, B.S. Philips and R.S. Cohen (eds.): Georg Simmel and Contemporary Sociology.
1989 ISBN 0-7923-0407-1

120. T.H. Levere and W.R. Shea (eds.): Nature, Experiment and the Science. Essays on Galileo
and the Nature of Science. In Honour of Stillman Drake. 1989 ISBN 0-7923-0420-9

121. P. Nicolacopoulos (ed.): Greek Studies in the Philosophy and History of Science. 1990
ISBN 0-7923-0717-8

122. R. Cooke and D. Costantini (eds.): Statistics in Science. The Foundations of Statistical
Methods in Biology, Physics and Economics. 1990 ISBN 0-7923-0797-6

123. P. Duhem: The Origins of Statics. Translated from French by G.F. Leneauxj V.N. Vagliente
and G.H. Wagner. With an Introduction by S.L. Jaki. 1991 ISBN 0-7923-0898-0

124. H. Kamerlingh Onnes: Through Measurement to Knowledge. The Selected Papers, 1853- 
1926. Edited and with an Introduction by K. Gavroglu and Y. Goudaroulis. 1991

ISBN 0-7923-0825-5
125. M. 6apek: The New Aspects of Time: Its Continuity and Novelties. Selected Papers in the

Philosophy of Science. 1991 ISBN 0-7923-0911-1
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126. S. Unguru (ed.): Physics, Cosmology and Astronomy, 1300-1700. Tension and Accommoda
tion. 1991 ISBN 0-7923-1022-5

127. Z. Bechler: Newton’s Physics on the Conceptual Structure of the Scientific Revolution. 1991
ISBN 0-7923-1054-3

128. E. Meyerson: Explanation in the Sciences. Translated from French by M-A. Siple and D.A.
Siple. 1991 ISBN 0-7923-1129-9

129. A.I. Tauber (ed.): Organism and the Origins of Self. 1991 ISBN 0-7923-1185-X
130. F.J. Varela and J-P. Dupuy (eds.): Understanding Origins. Contemporary Views' on the

Origin of Life, Mind and Society. 1992 ISBN 0-7923-1251-1
131. G.L. Pandit: Methodological Variance. Essays in Epistemological Ontology and the

Methodology of Science. 1991 ISBN 0-7923-1263-5
132. G. Munevar (ed.): Beyond Reason. Essays on the Philosophy of Paul Feyerabend. 1991

ISBN 0-7923-1272-4
133. T.E. Uebel (ed.): Rediscovering the Forgotten Vienna Circle. Austrian Studies on Otto 

Neurath and the Vienna Circle. Partly translated from German. 1991 ISBN 0-7923-1276-7
134. W.R. Woodward and R.S. Cohen (eds.): World Views and Scientific Discipline Formation.

Science Studies in the [former] German Democratic Republic. Partly translated from 
German by W.R. Woodward. 1991 ISBN 0-7923-1286-4

135. P. Zambelli: The Speculum Astronomiae and Its Enigma. Astrology, Theology and Science
in Albertus Magnus and His Contemporaries. 1992 ISBN 0-7923-1380-1

136. P. Petitjean, C. Jami and A.M. Moulin (eds.): Science and Empires. Historical Studies about
Scientific Development and European Expansion. ISBN 0-7923-1518-9

137. W.A. Wallace: Galileo’s Logic of Discovery and Proof. The Background, Content, and Use 
of His Appropriated Treatises on Aristotle’s Posterior Analytics. 1992 ISBN 0-7923-1577-4

138. W.A. Wallace: Galileo’s Logical Treatises. A Translation, with Notes and Commentary, of 
His Appropriated Latin Questions on Aristotle’s Posterior Analytics. 1992

ISBN 0-7923-1578-2 
Set (137+ 138) ISBN 0-7923-1579-0

139. M.J. Nye, J.L. Richards and R.H. Stuewer (eds.): The Invention of Physical Science.
Intersections of Mathematics, Theology and Natural Philosophy since the Seventeenth 
Century. Essays in Honor of Erwin N. Hiebert. 1992 ISBN 0-7923- 1753-X

140. G. Corsi, M.L. dalla Chiara and G.C. Ghirardi (eds.): Bridging the Gap: Philosophy, 
Mathematics and Physics. Lectures on the Foundations of Science. 1992

ISBN 0-7923-1761-0
141. C.-H. Lin and D. Fu (eds.): Philosophy and Conceptual History of Science in Taiwan. 1992

ISBN 0-7923-1766-1
142. S. Sarkar (ed.): The Founders of Evolutionary Genetics. A Centenary Reappraisal. 1992

ISBN 0-7923-1777-7
143. J. Blackmore (ed.): Ernst Mach -  A Deeper Look. Documents and New Perspectives. 1992

ISBN 0-7923-1853-6
144. P. Kroes and M. Bakker (eds.): Technological Development and Science in the Industrial 

Age. New Perspectives on the Science-Technology Relationship. 1992 ISBN 0-7923-1898-6
145. S. Amsterdamski: Between History and Method. Disputes about the Rationality of Science.

1992 ISBN 0-7923-1941-9
146. E. Ullmann-Margalit (ed.): The Scientific Enterprise. The Bar-Hillel Colloquium: Studies in 

History, Philosophy, and Sociology of Science, Volume 4. 1992 ISBN 0-7923-1992-3
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147. L. Embree (ed.): Metaarchaeology. Reflections by Archaeologists and Philosophers. 1992
ISBN 0-7923-2023-9

148. S. French and H. Kamminga (eds.): Correspondence, Invariance and Heuristics. Essays in
Honour of Heinz Post. 1993 ISBN 0-7923-2085-9

149. M. Bunzl: The Context of Explanation. 1993 ISBN 0-7923-2153-7
150. I.B. Cohen (ed.): The Natural Sciences and the Social Sciences. Some Critical and Historical

Perspectives. 1994 ISBN 0-7923-2223-1
151. K. Gavroglu, Y. Christianidis and E. Nicolaidis (eds.): Trends in the Historiography of

Science. 1994 ISBN 0-7923-2255-X
152. S. Poggi and M. Bossi (eds.): Romanticism in Science. Science in Europe, 1790-1840. 1994

ISBN 0-7923-2336-X
153. J. Faye and H.J. Folse (eds.): Niels Bohr and Contemporary Philosophy. 1994

ISBN 0-7923-2378-5
154. C.C. Gould and R.S. Cohen (eds.): Artifacts, Representations, and Social Practice. Essays

for Marx W. Wartofsky. 1994 ISBN 0-7923-2481 -1
155. R.E. Butts: Historical Pragmatics. Philosophical Essays. 1993 ISBN 0-7923-2498-6
156. R. Rashed: The Development of Arabic Mathematics: Between Arithmetic and Algebra.

Translated from French by A.F.W. Armstrong. 1994 ISBN 0-7923-2565-6
157. I. Szumilewicz-Lachman (ed.): Zygmunt Zawirski: His Life and Work. With Selected

Writings on Time, Logic and the Methodology of Science. Translations by Feliks Lachman. 
Ed. by R.S. Cohen, with the assistance of B. Bergo. 1994 ISBN 0-7923-2566-4

158. S.N. Haq: Names, Natures and Things. The Alchemist Jabir ibn Hayyan and His Kitab al-
Ahjdr (Book of Stones). 1994 ISBN 0-7923-2587-7

159. P. Plaass: Kant's Theory of Natural Science. Translation, Analytic Introduction and
Commentary by Alfred E. and Maria G. Miller. 1994 ISBN 0-7923-2750-0

160. J. Misiek (ed.): The Problem of Rationality in Science and its Philosophy. On Popper vs.
Polanyi. The Polish Conferences 1988-89. 1995 ISBN 0-7923-2925-2

161. I.C. Jarvie and N. Laor (eds.): Critical Rationalism, Metaphysics and Science. Essays for
Joseph Agassi, Volume I. 1995 ISBN 0-7923-2960-0

162. I.C. Jarvie and N. Laor (eds.): Critical Rationalism, the Social Sciences and the Humanities.
Essays for Joseph Agassi, Volume II. 1995 ISBN 0-7923-2961-9

Set (161-162) ISBN 0-7923-2962-7
163. K. Gavroglu, J. Stachel and M.W. Wartofsky (eds.): Physics, Philosophy, and the Scientific

Community. Essays in the Philosophy and History of the Natural Sciences and Mathematics. 
In Honor of Robert S. Cohen. 1995 ISBN 0-7923-2988-0

164. K. Gavroglu, J. Stachel and M.W. Wartofsky (eds.): Science, Politics and Social Practice.
Essays on Marxism and Science, Philosophy of Culture and the Social Sciences. In Honor of 
Robert S. Cohen. 1995 ISBN 0-7923-2989-9

165. K. Gavroglu, J. Stachel and M.W. Wartofsky (eds.): Science, Mind and Art. Essays on
Science and the Humanistic Understanding in Art, Epistemology, Religion and Ethics. 
Essays in Honor of Robert S. Cohen. 1995 ISBN 0-7923-2990-2

Set (163-165) ISBN 0-7923-2991-0
166. K.H. Wolff: Transformation in the Writing. A Case of Surrender-and-Catch. 1995

ISBN 0-7923-3178-8
167. A.J. Kox and D.M. Siegel (eds.): No Truth Except in the Details. Essays in Honor of Martin

J. Klein. 1995 ISBN 0-7923-3195-8
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168. J. Blackmore: Ludwig Boltzmann, His Later Life and Philosophy, 1900—1906. Book One: A
Documentary History. 1995 ISBN 0-7923-3231-8

169. R.S. Cohen, R. Hilpinen and R. Qiu (eds.): Realism and Anti-Realism in the Philosophy of
Science. Beijing International Conference, 1992. 1996 ISBN 0-7923-3233-4

170. I. Ku?uradi and R.S. Cohen (eds.): The Concept of Knowledge. The Ankara Seminar. 1995
ISBN 0-7923-3241-5

171. M.A. Grodin (ed.): Meta Medical Ethics: The Philosophical Foundations of Bioethics. 1995
ISBN 0-7923-3344-6

172. S. Ramirez and R.S. Cohen (eds.): Mexican Studies in the History and Philosophy of
Science. 1995 ISBN 0-7923-3462-0

173. C. Dilworth: The Metaphysics of Science. An Account of Modem Science in Terms of
Principles, Laws and Theories. 1995 ISBN 0-7923-3693-3

174. J. Blackmore: Ludwig Boltzmann, His Later Life and Philosophy, 1900-1906 Book Two:
The Philosopher. 1995 ISBN 0-7923-3464-7

175. P. Damerow: Abstraction and Representation. Essays on the Cultural Evolution of Thinking.
1996 ISBN 0-7923-3816-2

176. G. Tarozzi (ed.): Karl Popper, Philosopher of Science. (in prep.)
177. M. Marion and R.S. Cohen (eds.): Quebec Studies in the Philosophy of Science. Part I:

Logic, Mathematics, Physics and History of Science. Essays in Honor of Hugues Leblanc. 
1995 ISBN 0-7923-3559-7

178. M. Marion and R.S. Cohen (eds.): Quebec Studies in the Philosophy of Science. Part II:
Biology, Psychology, Cognitive Science and Economics. Essays in Honor of Hugues 
Leblanc. 1996 ISBN 0-7923-3560-0

Set (177-178) ISBN 0-7923-3561-9
179. Fan Dainian and R.S. Cohen (eds.): Chinese Studies in the History and Philosophy of

Science and Technology. 1996 ISBN 0-7923-3463-9
180. P. Forman and J.M. Sanchez-Ron (eds.): National Military Establishments and the Advance

ment of Science and Technology. Studies in 20th Century History. 1996 ISBN 0-7923-3541-4
181. E.J. Post: Quantum Reprogramming. Ensembles and Single Systems: A Two-Tier Approach

to Quantum Mechanics. 1995 ISBN 0-7923-3565-1
182. A.I. Tauber (ed.): The Elusive Synthesis: Aesthetics and Science. 1996 ISBN 0-7923-3904-5
183. S. Sarkar (ed.): The Philosophy and History of Molecular Biology: New Perspectives. 1996

ISBN 0-7923-3947-9
184. J.T. Cushing, A. Fine and S. Goldstein (eds.): Bohmian Mechanics and Quantum Theory: An

Appraisal. 1996 ISBN 0-7923-4028-0
185. K. Michalski: Logic and Time. An Essay on Husserl’s Theory of Meaning. 1996

ISBN 0-7923-4082-5
186. G. Munevar (ed.): Spanish Studies in the Philosophy of Science. 1996 ISBN 0-7923-4147-3
187. G. Schubring (ed.): Hermann Gunther Grafimann (1809-1877): Visionary Mathematician, 

Scientist and Neohumanist Scholar. Papers from a Sesquicentennial Conference. 1996
ISBN 0-7923-4261-5

188. M. Bitbol: Schrodinger’s Philosophy of Quantum Mechanics. 1996 ISBN 0-7923-4266-6
189. J. Faye, U. Scheffler and M. Urchs (eds.): Perspectives on Time. 1997 ISBN 0-7923-4330-1
190. K. Lehrer and J.C. Marek (eds.): Austrian Philosophy Past and Present. Essays in Honor of

Rudolf Haller. 1996 ISBN 0-7923-4347-6
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191. J.L. Lagrange: Analytical Mechanics. Translated and edited by Auguste Boissonade and
Victor N. Vagliente. Translated from the Mecanique Analytique, novelle edition of 1811. 
1997 ISBN 0-7923-4349-2

192. D. Ginev and R.S. Cohen (eds.): Issues and Images in the Philosophy of Science. Scientific
and Philosophical Essays for Azarya Polikarov. 1997 ISBN 0-7923-4444-8

193. R.S. Cohen, M. Home and J. Stachel (eds.): Experimental Metaphysics. Quantum Mechani
cal Studies for Abner Shimony, Volume One. 1997 ISBN 0-7923-4452-9

194. R.S. Cohen, M. Home and J. Stachel (eds.): Potentiality, Entanglement and Passion-at-a- 
Distance. Quantum Mechanical Studies for Abner Shimony, Volume Two. 1997

ISBN 0-7923-4453-7; Set 0-7923-4454-5
195. R.S. Cohen and A.I. Tauber (eds.): Philosophies of Nature: The Human Dimension. 1997

ISBN 0-7923-4579-7
196. M. Otte and M. Panza (eds.): Analysis and Synthesis in Mathematics. History and

Philosophy. 1997 ISBN 0-7923-4570-3

Also of interest:
R.S. Cohen and M.W. Wartofsky (eds.): A Portrait of Twenty-Five Years Boston Colloquia for the 
Philosophy of Science, 1960-1985. 1985 ISBN Pb 90-277-1971-3
Previous volumes are still available.

KLUWER ACADEMIC PUBLISHERS -  DORDRECHT / BOSTON / LONDON


	OttePanza1
	OttePanza2
	OttePanza3
	OttePanza4
	OttePanza5
	OttePanza18
	OttePanza19

