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According to Heinz-Dieter Ebbinghaus (2007, 150) the navigation problem
was suggested to Zermelo by the circumnavigation of the globe by the airship
“Graf Zeppelin” in 1929. The problem concerns a blimp or plane that moves
with a given velocity relative to the air, travelling between two points on the
earth. Because of the action of wind, the motion of the airship over land is
modified. Suppose that the strength and direction of the wind are given as a
function of position and time. The problem is to find the trajectory followed
by the airship and the corresponding steering angle such that the airship
completes its journey in the least time. Following the Hindenburg disaster of
1937, transportation by dirigibles or zeppelins became less common. In later
formulations of the problem the airship was often replaced by a boat and the
wind by current, and the problem was one of navigation along water.

In his two papers Zermelo formulated the problem mathematically as
follows. (Our account is restricted to the two-dimensional case, although it
should be noted that Zermelo extended his analysis to three dimensions.)
The ship moves with velocity k relative to the surrounding medium, the
latter being air in the case of an airship, and water in the case of a boat.
The ship must go from A to B. There is a wind (in the case of a airship)
or a current (in the case of a boat) that affects the motion of the ship. We
consider an x− y coordinate system with A at the origin. Assume at time t
that the ship moves relative to the medium at an angle ϕ = ϕ(t) to the x-axis.
This “steering angle” is the direction in which we power the ship, knowing
that the actual direction followed by the ship will be modified as the result
of the action of the wind or current. The magnitude of the wind or current
at time t and position (x, y) is given in terms of its x and y components,
respectively u(x, y, t) and v(x, y, t). If (x, y) are the coordinates of the ship
then the equations that describe its motion are

dx

dt
= u(x, y, t) + k cosϕ ,

(1)
dy

dt
= v(x, y, t) + k sinϕ .

It is necessary to find the track and steering angle for which the ship travels
from A to B in least time. The partial derivatives of u with respect to x and
y are denoted ux and uy respectively, with similar expressions for the partials
of v. Zermelo derived a formula that describes this optimal motion in terms
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of the steering angle ϕ:

dϕ

dt
= vx sin

2 ϕ+ (ux − vy) cosϕ sinϕ− uy cos
2 ϕ . (2)

Zermelo’s derivation of (2) was complicated and carried out directly from
first principles for the special case of this problem. To the knowledge of the
present writer no subsequent investigator adopted Zermelo’s solution. Im-
mediately following its appearance Tullio Levi-Civita (1931 ) published an
article in which he stated, “Zermelo’s direct and elegant treatment is very in-
teresting.” However, Levi-Civita did not make use of this solution and showed
that the result follows from standard results in the calculus of variations. A
few years later Carathéodory (1935, 378) asserted that the navigation prob-
lem “was posed by Zermelo and completely solved by an extraordinarily inge-
nious method” (translation from the English edition (1967 ) of Carathéodory’s
book). Carathéodory also did not adopt this method and followed Levi-Civita
in treating the problem by means of standard methods in the calculus of vari-
ations. Carathéodory’s investigation was very complete and remains today
the most detailed analysis of the navigation problem. Among other things,
Carathéodory examined the question of sufficiency and extended and system-
atized Zermelo’s discussion of this point. Other mathematicians of the period
who worked on the navigation problem included Basilio Manià (1937 ), and
Magnus R. Hestenes (1937 ). The problem also attracted the attention of
physicists, and was the subject of papers by Richard von Mises (1931 ) and
Philipp Frank (1933 ). The latter researchers did not use the calculus of vari-
ations at all, but made the basis of their investigation an analogy between
the motion of the airship and the passage of a light ray through a medium
of variable refractive index.

The first of Zermelo’s two papers is rather difficult to follow because it
is really only an extended abstract and some details are omitted. Zermelo
was motivated in part to continue work on the problem by an error that
Levi-Civita found in the 1930 paper which he communicated to Zermelo in a
letter. (See Ebbinghaus 2007, 151, where some other details of the genesis and
reception of Zermelo’s two papers may be found.) While the second paper
provides a fuller account of the navigation problem, the analysis remains
difficult to follow, requiring steps that are suited to the problem at hand but
not otherwise part of a general theory. In his investigation of the problem
Zermelo was returning to a branch of mathematics that he had worked on
thirty years earlier. While he may have been somewhat out of touch with
contemporary research in the subject, his formidable mathematical powers led
him to interesting and useful results. Although his analysis was of a personal
and even singular character, his papers are nonetheless worth studying and
contemplating for their own sake and mathematical interest.

We now give a derivation of Zermelo’s navigation formula using the idea
that originated with Levi-Civita (1931 ). (Our derivation is based on the
account given in Funk 1962, 282–284.) The following theorem was originally
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derived by Adolph Mayer (1895 ) and was presented by Oskar Bolza in his
authoritative textbook Vorlesungen über die Variationsrechnung (1909, 572–
574). We have a variational problem in which x is the independent variable
and y0, y1 and y2 are the dependent variables. The derivative of yi with
respect to x is denoted y′i. The variables x and y0, y1, y2 are connected by an
equation of the form

g(x, y0, y1, y2, y
′
0, y

′
1, y

′
2) = 0 , (3)

on the interval [x1,x2]. The variables y1 and y2 have prescribed values at
the endpoints x1 and x2. The variable y0 has a prescribed value at x1. It
is supposed that the value of y0 at x2 is a maximum or a minimum. A
necessary condition for this to be the case is that there exists a multiplier
function λ = λ(x) defined on [x1,x2] such that the following Euler equations
are valid:

∂(λg)

∂y1
− d

dx

(∂(λg)
∂y′1

)
= 0 ,

(4)
∂(λg)

∂y2
− d

dx

(∂(λg)
∂y′2

)
= 0 .

The variational problem as formulated is known as a Mayer problem. Equa-
tions (4) are derived from a general multiplier rule for problems with con-
straints in the form of differential equations.

Consider now Zermelo’s navigation problem. Because the time t itself is a
variable that must be minimized we express t as a function of an independent
variable τ , where τ lies on the interval [τ1, τ2]. The variables x and y are now
to be regarded as functions of τ . From (1) we immediately obtain the following
equation: (dx

dt
− u

)2
+
(dy
dt

− v
)2 − k2 = 0 . (5)

Expressed in terms of the independent variable τ (5) becomes

(x′
t′

− u
)2

+
(y′
t′

− v
)2 − k2 = 0 , (6)

where the prime notation indicates differentiation with respect to τ. We now
apply Mayer’s result to this problem. In the application of this result the
variables τ, t, x, y take the place of x, y0, y1, y2 above. Here

g(τ, t, x, y, t′, x′, y′) =
(x′
t′

− u
)2

+
(y′
t′

− v
)2 − k2 = 0 . (7)

Then there exists a multiplier function λ = λ(τ) such that

∂(λg)

∂x
− d

dτ

(∂(λg)
∂x′

)
= 0 ,

(8)
∂(λg)

∂y
− d

dτ

(∂(λg)
∂y′

)
= 0 .
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These equations reduce to

λ
((x′

t′
− u

)
ux +

(y′
t′

− v
)
vx

)
+

d

dτ

(λ
t′
(x′
t′

− u
))

= 0 ,
(9)

λ
((x′

t′
− u

)
uy +

(y′
t′

− v
)
vy

)
+

d

dτ

(λ
t′
(y′
t′

− v
))

= 0 .

From (1) we have
(x′
t′

− u
)
=
(dx
dt

− u
)
= k cosϕ and

(y′
t′

− v
)
=
(dy
dt

− v
)
=

k sinϕ. Introduce the new multiplier function μ =
λ

t′
. Note that for any

variable z we have
dz

dτ
= t′

dz

dt
. Then equations (9) simplify to

μ cosϕux + μ sinϕvx +
d

dt
(μ cosϕ) = 0 ,

(10)
μ cosϕuy + μ sinϕvy +

d

dt
(μ sinϕ) = 0 .

Elimination of μ and
dμ

dt
from these two equations leads to Zermelo’s navi-

gation formula (2).

It is useful to consider some examples. We will examine two given by
Zermelo (1930 ), although we present them in more detail than Zermelo did
himself. For the sake of discussion, we will illustrate his formula for the case
of a ship or power boat crossing a river. In the first example we are given a
river that is straight with constant width a lying parallel to the x-axis, the
latter being oriented in a west-east direction. The beginning point A on the
south side of the river is taken to be the origin of the coordinate system; the
y axis runs in a positive direction northwards, the x axis runs in a positive
direction eastwards. The destination is the point B on the opposite side of
the river with coordinates (b, a). The speed of the boat relative to the water
(its speed over land in still water) is k. The current is constant in time and
place, flowing from east to west. Its value at each point (x, y) is −c, where
k > c ≥ 0. The goal is to find the so-called “steering direction” ϕ = ϕ(t).
This is the direction in which we power the ship, knowing that the actual
direction followed by the ship will be modified as the result of the action of
the current. Equations (1) here become

(a)
dx

dt
= − c+ k cosϕ ,

(11)
(b)

dy

dt
= k sinϕ .

The navigation formula (2) becomes
dϕ

dt
= 0, or ϕ = const. It is apparent

from (11) that
dy

dx
= const., and the path followed by the ship in least time
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is the straight line joining A and B. If we let a = b then
dy

dx
= 1. Dividing

(11a) by (11b) we have cosϕ− sinϕ =
c

k
. Solving for the steering angle ϕ we

obtain

ϕ = arccos

( c

k
+

√
2− c2

k2

2

)
. (12)

For example, if k = 10 knots and c = 3 knots then ϕ = arccos(.841) = 32.8◦.
Hence we would place the ship on a steering bearing of 57.2◦ (90◦ − 32.8◦)
with respect to true north for it to follow the track y = x of least time from
A to B.

Zermelo (1930, 48) refers to the second example as “the simplest non-
trivial example of our theory.” In this example the current in the river in-
creases as a linear function of y, being 0 at A and reaching its maximum
value at B. Assume again that the river flows from east to west. Equations
(1) here are

(a)
dx

dt
= −y + cosϕ ,

(13)
(b)

dy

dt
= sinϕ ,

where the units have been adjusted so that k = 1. The navigation formula

gives
dϕ

dt
= cos2 ϕ. We integrate this to obtain tanϕ = t+tanϕ0, which gives

the steering angle as a function of time. To find the optimal track we begin

by noting that from (13b) we have
dy

dϕ
· dϕ
dt

= sinϕ, or
dy

dϕ
cos2 ϕ = sinϕ.

Hence y =
1

cosϕ
+ const., or

y =
1

cosϕ
− 1

cosϕ0
. (14)

We now divide(13a) by (13b) and use (14) to obtain

dx

dy
=

1− y(y + f)√
(y + f)2 − 1

, (15)

where f = secϕ0. (15) describes the tracks followed by the ship in least time
from A to points B on the opposite bank. Fig. 1 provides graphs of solutions
to (15) giving the optimal curves for values of f from 1.0 to 1.45 in increments
of 0.05.
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Fig. 1

Zermelo’s navigation problem appears in several later textbooks on the
calculus of variations. Funk 1962 and Klötzler 1970 are representatives from
the German literature. Funk’s treatment is very clear but relatively brief. A
notable characteristic of Klötzler’s account is its abstruseness, a result of the
author’s decision to develop the calculus of variations as part of functional
analysis. English-language authors seem united in presenting the problem
as one in nautical navigation. Some authors of note here are Fox (1950 ),
Pars (1962 ), Young (1969 ), and Sagan (1969 ). With the exception of Funk,
Zermelo’s navigation formula is derived in none of these books. The only thing
the authors seem to owe to Zermelo’s original analysis is the formulation of
the problem as one in the calculus of variations. In the English literature the
navigation problem is presented for a ship moving through water against a
current. There is no recognition that the problem was originally formulated
for an aircraft or dirigible. Young states the problem but provides no solution.
The treatment of Fox is very clear and derives from Carathéodory 1935. Fox
(p.152) deduces the interesting fact that the ship can be steered along its
optimal track by blind reckoning, that is, by a knowledge only of the time
independent of any information about its external position. Pars’s exposition
is essentially a recapitulation of Fox’s account. Of these later treatments,
Sagan’s is the simplest in its approach. This author solves for the time t and
then uses the standard Euler equations to obtain a description of the motion
of the boat.

It should be noted that the canonical problems of the calculus of varia-
tions—the isoperimetric problem, the hanging chain, the brachistochrone—go
back centuries and appear at an early stage in the history of the subject. The
navigation problem is somewhat unusual in providing a simple and signature
example of very recent vintage, arising from technological developments of
the twentieth century.
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In the theory of control Zermelo’s navigation problem appears as a stan-
dard problem of interest. Indeed, in modern mathematical science this subject
would probably be the most likely place one would encounter the problem. For
a sample of this literature see Hsu and Meyer 1968, Bryson and Ho 1975, and
Lewis 1986. Writers refer to the Zermelo problem as “classic”; it is invariably
presented for the case of a power boat moving against a current. In a recent
book on optimal control and aerospace applications Ben-Asher (2010, 101)
writes: “This problem was proposed by the German mathematician Ernest [sic]
Zermelo in 1913 [sic]. Although formulated for a boat, it can also describe an
aircraft flying in wind, assuming a fast response to heading changes. Therefore,
it will be used extensively in this textbook.” Historical misinformation is also
present in the Wikipedia article on Zermelo, where we find the following: “Pro-
posed in 1931, the Zermelo’s navigation problem is a classic optimal control
problem. The problem deals with a boat navigating on a body of water, origi-
nating from a point O to a destination point D. The boat is capable of a certain

Über die Navigation in der Luft als Problem
der Variationsrechnung

1930c

(Auszug. Eine ausführliche Darstellung erfolgt demnächst in der „Zeitschrift
für angewandte Mathematik“.)

Das hier behandelte Problem ist das folgende. In einer unbegrenzten Ebe-
ne, in welcher die Windverteilung durch ein Vektorfeld u, v als Funktion von
Ort und Zeit gegeben ist, bewegt sich ein Luftschiff oder Flugzeug mit der kon-
stanten Eigengeschwindigkeit k relativ zur umgebenden Luftmasse. Wie muß
das Fahrzeug gesteuert werden, um in kürzester Zeit von einem Punkte P0 zu
einem anderen P1 zu gelangen? Wird mit ϕ der Winkel bezeichnet, den die
„Steuerrichtung“ des Fahrzeuges, d. h. der Vektor seiner Eigenbewegung mit
der x-Achse bildet, so ergeben sich unmittelbar durch Vektoraddition für die
Geschwindigkeitskomponenten der Gesamtbewegung die „Steuergleichungen“

dx

dt
= k cosϕ+ u(x, y, t)

dy

dt
= k sinϕ+ v(x, y, t) ,

⎫⎪⎬
⎪⎭ (1)

welche die Bewegung vollständig bestimmen, wenn ϕ als Funktion der Zeit
gegeben ist. In Wirklichkeit soll aber diese Funktion so gewählt werden, daß
die gestellte Minimumsbedingung erfüllt ist. Es handelt sich also um ein Va-




