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Introduction 

In his History of the Calculus CARL BOYER [1959, 242-3] noted a change of  
view that developed at the middle of the 18 th century, a rejection of geometric 
conceptions and an emphasis on formal methods in the new analysis. The tendency 
noted by BOYER has since been documented in more detail in the literature. 1 
The picture that now emerges of the development of the calculus on the Continent 
would divide advanced research in the subject into three broad periods: a geometric 
stage, in which geometric problems and conceptions predominate; an analytical 
or "algebraic" stage that begins in the 1740s in the writings of LEONHARD EULER 
and reaches it final expression in work of JOSEPH LouIs LAGRANGE at the end of  the 
century; and the period of classical analysis that begins in the early 19 th century 
in the writings of AUGUSTIN LOUIS CAUCHY. 2 

1 See in particular Bos [1974] and ENGELSMAN [1984]. 
2 This division of stages is not absolutely rigid; one can discern at different times 

and at different levels of research a varying mixture of geometric, algebraic and arith- 
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The first part of  this paper presents some examples to illustrate in specific and 
selected detail the calculus of EUL~R and LAGRANGE. My intent is to identify as 
clearly as possible those elements that are c o m m o n  in their approach to analysis. 
My contention is that these elements constitute evidence of a shared conception 
significantly different from the modern one, with its origins in CAUCHY'S early 
19th-century work. 

The second part elaborates this thesis by presenting a characterization of EULER 
and LAGRANGE'S calculus and an account of  how it differs from CAUCHY'S arith- 
metical theory. The discussion is complemented by a consideration of  philosophical 
differences between mathematics in the 18 th and 19 th centuries. 

Part One 

The calculus today is the core of analysis, a subject whose basic concepts are 
domain, functional mapping, limit, continuity, differentiability and so on. At the 
elementary level the calculus is developed for real values of the variable. The 
derivative of a function is defined at each number of the domain by a limit process 
in terms of  the values of the function in a neighborhood about the number. Con- 
ditions of continuity and differentiability enable one to connect the local behavior 
of the function, how it changes in the neighborhood of  a number, to its behavior 
over the entire domain. 

When the calculus, restricted to real values, is developed more fully, using 
terminology and methods borrowed from point-set topology, it becomes modern 
real analysis. A different sort of generalization is obtained when the domain is 
assumed to be a region of the complex plane. The earlier approach, involving the 
definition of the derivative using the concepts of  neighborhood and limit, is also 
applicable here. Although complex analysis places special emphasis on the notion 
of analyticity and on the use of  power series, it retains in its foundation the same 
concepts (neighborhood, limit) as the calculus. 

The process that led to the modern calculus and classical real and complex 
analysis had its beginnings in CAUCHY'S textbooks of  the 1820s. 3 The work of  
CAUCHY constituted a major break with the then-established tradition, prevalent 
in Continental 18th-century work and presented in detail in the famous textbooks 
of  EULER (middle of  the century) and LAGRANGE (end of  the century).* Although 
the careers of  the two men spanned almost a century, and although they differed 
in their specific foundational proposals, their work taken broadly shares an 

metic elements. Specifically, it refers to tendencies in the 18 th century in the work of 
advanced researchers published in the memoirs of the three leading European academies, 
Paris, Berlin and St. Petersburg. 

3 CAUCHY [1821], [1823] and [1829]. For discussions of CAucrie's foundation see 
[JOURDAIN 1913], [GRATTAN-GUINNESS 1970a, b], [FREUDENTHAL 1971], [GRABINER 
1981], [SMITHIES 1986] and [BOTTAZZINI 1986]. 

g EULER [1748], [1755], [1768--70] and LAGRANGE [1797], [1801] and [1806]. CANTOR 
[1901, 699--721, 749--773] provides a summary of [EULER 1748 and 1755]. EULER'S elimin- 
ation [1755, Chapter 4] of higher-order differentials is discussed by Bos [1974]. LA- 
GRANGE'S textbooks are discussed in [OVAERT 1976], [GRABINER 1981] and [FRASER 1987]. 
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explicit emphasis on the analytical or "algebraic" character of  the differential 
and integral calculus, both as a foundational description and as a theme to unify 
the different branches of  the subject; on the need to separate the calculus f rom 
geometry, while continuing to cultivate geometrical and mechanical applications; 
and on a belief in generality as a pr imary goal of  mathematics. 

I t  must be noted that  EULER and LAGRANGE differed in their specific ideas 
concerning the foundation of the calculus. EULER retained as fundamental the 
differential, while LAGRANGE tried using TAYLOR'S theorem and derived functions 
to rid analysis of  infinitesimals. In presenting the following examples, selected to 
illustrate their calculus, I have emphasized the significant, more general similarities 
which I believe exist in their approach to the subject. 

(a) Theorem on the equality of mixed partial differentials 

The theorem on the equality of  mixed partial differentials was published by 
EULER in 1740 in the memoirs of the Academy of Sciences in St. Petersburg. EULER 
used the theorem to derive expressions for partial differentials that had arisen in 
problems involving the construction of orthogonal trajectories to families of  curves. 5 
The result itself was suggested by his experience in working with differential 
expressions, by the recognition that the result obtained in the successive applica- 
t ion of the differential algorithm to expressions involving two variables was in- 
dependent of  the order of  differentiation. 

EULER'S derivation of the theorem originated out of his belief that  a geometrical 
demonstrat ion would be "drawn from an alien source", and that what was needed 
was an analytical argument based on "the nature of  differentiation itself". 6 

A comparison of his derivation and today's  p roof  provides an informative 
study of 18th-century and modern calculus. EULER [1740, 177-178] considers a 
quantity z that  is a function of the variables x and a. I f  dx and da are the differentials 
o f  x and a, let e, f ,  and g denote the values of  z at (x  + dx, a), (x, a + da) and 
(x  + dx, a + da). EULER differentiates z holding a constant to obtain 

P dx = e -- z.  (1) 

Here P denotes the differential coefficient, in later mathematics the partial deriva- 
tive, of  z with respect to x. He differentiates P dx holding x constant: 

B d x d a = g - - f - - e +  z.  (2) 

s Uses of the theorem by NICHOLAS I BERNOULLI and EULER are described in [ENGELS- 
MAN 1984, Chapters Four and Five]. 

6 These comments appear in "De differentiatione functionum duas pluresve varia- 
biles quantitates involventium", which dates from the mid 1730s and is a draft of his 
[1740]. In this memoir EULER first considers a geometric justification of the theorem and 
then presents the analytical derivation that was later published. The draft is reproduced 
with English translation as Appendix Two of [ENGELSMAN 1984]. The relevant sentence 
reads: "Quia autem haec demonstratio ex alieno fonte est petita, aliam ex ipsius diffe- 
rentiafionis natura derivabo." 
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He now differentiates z holding a constant to obtain 

a da = f - -  z.  (3) 

Finally, he differentiates Q da holding x constant: 

C da dx = g - -  e - - f 4 -  z.  (4) 

By rearrangement of terms the right sides of  (2) and (4) are seen to be equal. 
Equating the left sides EtJLER obtains 

B = C, (5) 

which is the desired result. 
The modern proof  of  the theorem reformulates EULER'S demonstration using 

the law of  the mean and a limit argument. 7 Suppose z = z(x, a) and its first and 
second partial derivatives are defined and continuous on a rectangular region in 
the x --  a plane. For  x and a in this region we have by the law of the mean for 
small h and k the four equations: 

3z 
~----~ (x 4- elh, a) h ~- z(x 4- h, a) -- z(x, a), 0 <~ e: ~ 1, (1)' 

~2 Z 
ea ~x (x 4- e:h, a 4- e2k) hk = z(x 4- h, a 4- k) -- z(x, a 4- k) (2)' 

--  z(x 4- h, a) 4- z(x, a), 0 <= e2 <= 1, 

8z 
~---~ (x, a 4- ~lk) k = z(x, a 4- k) --  z(x, a), 0 <= ~h <= 1, (3)' 

82z 
~x 8a (x 4- ~11h, a 4- ~]2k) kh = z(x 4- h, a 4- k) -- z(x 4- h, a) (4)' 

-- z(x, a 4- k) 4- z(x, a), O <= ~72 ~ 1. 

By rearrangement the right sides of  (2)' and (4)' are equal. The left sides may 
therefore be equated: 

~2z ~2z 
Oa 8x (x 4- e:h, a 4- ezk) ~- OX ¢3t1 (X 4- ~7:h, a 4- ~]2k). 

Letting h and k tend to zero we obtain from the continuity of the second partial 
derivatives the desired result 

~2 Z 82Z 

0a Ox Ox ~a (5)' 

The formal demonstration of the theorem and its classical rehabilitation using 
the law of  the mean are typical of many 18 th century arguments and their modern 
counterparts. The law of  the mean introduces a distinguished value (x 4- e:h, 
and so on), localizing at a particular number the analytical relation or property 

7 The demonstration presented here is adapted from [TAYLOR 1955, 220-221]. 



Calculus as Algebraic Analysis 321 

in quest ion)  The result is then deduced using conditions of  continuity and differ- 
entiability by means of  a limit argument. 

In 18th-century analysis distinguished values were considered exceptional, 
special cases without mathematical significance. 9 EULER believed with some reason 
that  the essential element in a demonstration was its generality, guaranteed by a 
formal algebraic argument. Thus the key step in his proof,  the equality of  the 
right sides of  equations (2) and (4), was an algebraic identity that ensured the 
validity of  the result. Given EULER'S understanding of the calculus his demonstra- 
tion was quite satisfactory, not at all incomplete or unrigorous. 

(b) Infinite Series 

Research on infinite series was one of the most  extensive subjects of  18 th- 
century analysis. Infinite series were used in numerical approximation, in the inte- 
gration of differential equations and in the foundations of  the calculus. 

From the vast researches of  the period it is possible to isolate certain leading 
ideas that were characteristic of  advanced views on the subject. Infinite series were 
never introduced arbitrarily; they were derived from expressions that  were them- 
selves formed in finitely many steps using the processes of  ordinary algebra and the 
differential and integral calculus. This point is made clearly by EULER in his discus- 
sion of  divergence, where he defends his method for assigning a sum to a divergent 
series: 

I f  therefore we change the accepted notion of sum to such a degree that we 
say the sum of any series is a finite expression out of  whose development that  
series is formed, all difficulties vanish of their own accord. For  first that  ex- 
pression f rom whose expansion a convergent series arises displays the sum, 
this word being taken in its ordinary sense; and if the series is divergent, the 
search cannot be thought absurd if we hunt for that finite expression which 
expanded produces the series according to the rules of  analysis. 

[1760, 211-212] 1° 

8 The mean value theorem is first stated in [LAGRANGE 1797], where it is introduced 
(without any of the modern conditions) in order to derive estimates for the remainder 
in the TAYLOR series. This part of LAGRANGE'S theory, which stands somewhat apart 
from the rest of his treatise, is concerned with the numerical approximation of functions. 
From his own standpoint, it constitutes an application of the calculus. The theory would 
assume a new, different and fundamental significance in CAUCrtY's later work. The 
history of the mean value theorem is presented by FL~TT [1974], and the relation of 
LAGRANGE'S theory to CAUCHY is discussed by GRABINER [1981]. 

9 The treatment of exceptional values in EULER'S calculus is discussed by ENGELSMAN 
[1984, 10-13], and in LAGRANGE'S calculus, by FRASER [1987]. 

lo "Si igitur receptam summae notionem ita tantum immutemus, ut dicamus cuisque 
seriei summam esse expressionem finitam, ex cuius evolutione illa ipsa series nascatur, 
omnes difficultates, quae ab utraque parte sunt commotae, sponte evanescent. Primo enim 
ea expressio, ex cuius evolutione nascitur series convergens, eius simul summam, voce 
hac vulgari sensu accepta, exhibet, neque, si series fuerit divergens, questio amplius 
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Elsewhere EULER observes [CANTOR 1901, 692] that it is "certain that the same 
series can never arise from the evolution of two genuinely different finite expres- 
sions. ''11 

As the title indicates, infinite series are the subject of EULER'S Introductio 
in analysin infinitorum (1748), the work that made the concept of function central 
to mathematics: 

A function of a variable quantity is an analytical expression composed in 
any way from the variable and from numbers or constant quantities. [1748, 
§4] 12 

Although infinite series, and more particularly power series, are a useful tool in 
the investigation of all functions, they are especially important for the study of 
transcendental expressions, the logarithmic, exponential and trigonometric func- 
tions: 

Moreover the nature of a transcendental Function is made more intelligible 
if it is in this form, although infinite, expressed. [1748, § 59] 13 

Note that infinite series are not themselves regarded as functions, but serve only 
to render these objects "intelligible". 

An example of how infinite series entered analysis is provided by the trigono- 
metrical functions. In his Traitd de Dynamique [1743, 100-1] D'ALEMBERT consid- 
ered the differential equation in the variables u and t 

d2u/dt 2 ~ --(2 ¢2/T 2) u (T a constant) 

absurda reputari poterit, si cam indagemus expressionem finitam, quae secundum regulas 
analyticas evoluta illam ipsam seriem producat." Et~ER'S work in summability is the 
subject of [BARBEAU & LEArI 1976], which also contains a partial English translation of 
[EULER 1760]. The above translation follows this source. 

11 .... ich glaube aber gewiss zu seyn, dass nimmer eben dieselbe series aus der Evo- 
lutionem zweyer wirklich verschiedener expressionum finitarum entstehen krnne." 
EULER'S comments appear in a letter to GOLDBACH dated August 7, 1745, published in 
[Fuss 1843 I 324]. 

J2 "Functio quantitas ergo variabilis est expressio analytica quomodocunque compo- 
sita ex illa quantitate variabili & numeris seu quantitatibus constantibus." Compare 
D'ALEMBERT [1757]: "on appelle fonction de x, ou en grnrrale d'une quanitit6 algr- 
brique composre de tant de termes qu'on voudra et dans laquelle x se trouve d'une 
manirre quelconque, melre, ou non, avec des constants; ainsi x 2 + x a, l/~aa q-xx, 
~(aa + xa)/(bb d- x4), f dx~-a i -- x 2, etc. sont des fonctions de x." 

la "Quin etiam natura Functionum transcendentium melius intelligi censetur, si 
per eiusmodi formam, etsi infinitam, exprimantur." The realization that plane curves 
are divided into two classes, corresponding to those that may be represented by a poly- 
nomial equation of finite degree in x and y and all others, seems to have appeared first 
in DESCARTES' Gdomdtrie (1637). Non-algebraic, "mechanical" or transcendental curves 
appeared frequently in subsequent mathematics and are closely connected [MAHONEY 
1984] to the invention and development of the calculus. GUISN~E [1733] writes that in 
order to represent a "mechanical" curve by means of a polynomial equation "il faudrait 
qu'au moins une de ses inconnunes rut une infinit6 de dimensions, ce qui est impossible; 
et c'est pour cela ques Courbes sont aussi nommres transcendentes." 
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and using the substitution v = du/dt integrated it to obtain 

dt = --  T du /¢A 2 - -  2 ¢2u 2 , 

where A is a constant of integration. The solution of  this equation is given by 
D'ALEMBERT as a geometrical construction connecting u and t. His solution indi- 

cates that he recognized that (]/2 ]/2 t ) /T  is equal to the angle whose cosine is 

(]/2]/2 u)/A, although no functional trigonometrical notation is employed. In 
this respect his treatment was entirely typical of the period. In the 1740s EULER, 
responding to the technical needs of mathematical astronomy, invented the calcu- 
lus of  the sine and cosine functions. Rejecting the special geometric constructions 
and dimensional considerations of earlier work, he developed a purely analytical 
theory. 14 In the Introductio [1748, Chapter 8] EULER derived the familiar power 
series for the trigonometrical functions, using multi-angle formulas and techniques 
he had employed earlier in the treatise to obtain the exponential series. Although 
the sine and cosine expansions were not new, they had now been derived by ana- 
lytical principles: a function that was a solution to a definite differential equation 
had been expanded to yield the given series. 

EULER'S derivation illustrates I believe the 18th-century understanding of in- 
finite series. While an infinite series could be generated recursively as a solution 
to a differential equation (using, for example, the method of  undetermined coeffi- 
cients [KLINE 1972, 488-499]), the series was not itself regarded as an independent 
mathematical object. A new transcendental function y = f ( x )  defined as a solu- 
tion to the given differential equation presented a relation between x and y whose 
permanence was ensured by the equation; f ( x )  enjoyed definite anaiytical properties 
that might be regarded apart from its possible representation as an infinite poly- 
nomial. 

The concept of function that EULER made central in the Introductio is also 
fundamental to LAGRANGE'S algebraic calculus ([1797,] [1801], [1806]). This cal- 
culus is based on the assumption that every function f ( x )  may be expanded in 
a power series 

f ( x  + i) = f ( x )  + p(x)  i + q(x) i 2 + r(x) i a @ . . . ,  

except possibly at isolated values of x. LAGRANGE regards the possibility of forming 
such expansions as inherent in the notion of a function; he calculates the expan- 
sions explicitly for a few algebraic functions and the exponential, logarithmic and 
trigonometric functions. Although the subsequent theory uses series extensively, 
it is clear that LAGRANGE'S concept of function does not itself include infinite ex- 
pressions; a function is always a finite analytical formula. 

Histories of mathematics have attributed the emphasis placed on convergence 
by CAUCHY, GAUSS and ABEL to the 19th-century movement to instill rigour in 
analysis. The significant change in the theory of infinite series, however, was not 
so much that classical analysis brought rigour to the subject by paying attention to 

14 EULER'S introduction of trigonometrical functions is discussed by WILSON [1985, 
17-18] and KATZ [1987]. 



324 C. FRASER 

convergence, but that  an arbitrary series whose individual terms were specified 
at will now became, subject to convergence over some domain, implicitly an object 
of  mathematical  study. The understanding of what an infinite series was had 
undergone a substantial transformation. 

(c) The calculus of variations 

LAGRANGE'S first and arguably most  significant contribution to mathematics 
was his discovery in 1755 at age nineteen of the O-algorithm for the formulation 
and derivation of the basic problems and equations of  the calculus of  variations.15 
LAGRANGE began his investigation with EULER'S Methodus inveniendi lineas curvas 
maximi minirnive proprietate gaudentes (1744). EULER had considered a curve that 
was represented by an analytical relation between the variables x (abscissa) and y 
(ordinate). The curve was assumed to be the one that maximized or minimized the 
definite integral of  some given expression in x and y evaluated between specified 
endpoints. EULER took any y and increased it by an infinitesimal "part icle",  
thereby obtaining a second curve identical to the first except at y. Because the inte- 
gral was an extremum the difference between its value along the two curves had to 
be zero. EULER used this condition and the methods of the calculus to derive the 
basic differential equation, known today as the EUL~R-LAGRANGE equation, that  
characterizes the extremalizing curve. 

EULER'S derivation illustrated well the calculus as applied to the representation 
and investigation of the curve. The differential dy of the variable y was the differ- 
ence o f y  at two infinitesimally close values of  x. These values belonged to a l inear  
geometrical continuum composed of discrete, infinitesimal "particles".  The com- 
parison curve was obtained by increasing a given value of  y by an infinitesimal 
particle. Each step in the derivation possessed an explicit geometrical interpretation. 

LAGRANGE'S "beautiful idea" [GoLDSTtNE 1980, 110] was to introduce a second 
symbol ~ to distinguish the variation in y required to obtain the comparison 
curve f rom the usual differential dy of y with respect to x. He experimented with 
the resulting calculus until he had devised an algorithm that  yielded the variational 
equations. Mathematically quite distinct f rom EULER'S procedure, his derivation 
required no reference to the geometrical configuration. When interpreted geometri- 
cally it could be seen to require the simultaneous variation of all the values of  the 
ordinate y. LAGRANGE'S method included all the cases considered by EULER and, 
in addition, facilitated the treatment of  problems involving variable endpoints. 

LAGRANGE'S idea was immediately adopted by EULER and made the basis o f  
his own presentation of the calculus of  variations, The invention of the &algorithm 
showed that  technical, formal innovations could lead to very significant results 
when interpreted in the geometry of  curves. I t  suggested that the substantial content 
of  the variational calculus was contained in its formal aspects. LAGRANGE himself 
seems to have held such a view, and in subsequent published treatises he tended 
increasingly to present its principles in terms of formal algorithms and rules. 

15 Recent studies of LAGRANGE'S calculus of variations are [GoLDSTINE 1980] and 
[FRASER 1985b]. These sources contain references to the original papers of EULER and 
LAGRANG~ and provide a survey of the older secondary literature. 
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LAGRANGE'S derivation of the variational equations requires for its full justifi- 
cation concepts and techniques that belong to classical real analysis. In particular, 
one needs the concept of  arithmetical continuity as well as a more general notion 
of function than the one he employed. In his writings LAGRANGE presented differ- 
ent arguments to justify the steps in the derivation. Perhaps the most interesting 
is contained in the second edition [LAGRANGE 1806] of  his lessons on the calculus 
of functions. In this treatise he developed the calculus as an algebra of finite 
quantities, defining the derivatives of a function in terms of the coefficients of  
its TAYLOR expansion. Assuming the general possibility of such expansions, 
LAGRANGE worked out a rather complete theory of the differential and integral 
calculus. To obtain the variational equations he modelled the derivation after an 
earlier argument in the theory of integrability. Although his derivation never 
achieved acceptance among later researchers, it remains noteworthy [FRASER 1985 b 
and 1987] as an example of advanced reasoning in algebraic analysis. 

(d) "Discontinuous" Functions 

In textbooks of EULER and LAGRANGE a function is given by a single analytical 
expression, a formula constructed from variables and constants in finitely many 
steps using algebraic and transcendental operations and the composition of func- 
tions. In the 18 th century such functions were termed "continuous",  in opposition 
to "discontinuous" functions, expressions defined piecewise over more than One 
interval of real numbers. 

The issue of the nature of a function arose openly in the debate over the vibrat- 
ing string, probably the most interesting and best documented mathematical con- 
troversy of the 18 th century. ~6 Although the debate engaged several mathemati- 
cians and involved a range of issues, the points of relevant interest here are illus- 
trated by the disagreement between D'ALEMBERT and EULER. 

In 1747 D'ALEMBERT derived and integrated a partial differential equation, the 
wave equation, to describe the motion of a stretched elastic string. D'ALEMBERT'S 
achievement was a major one, both mathematically and in its use of dynamical 
principles. His derivation was immediately adopted by EULER who reinterpreted 
the solution to permit a broader class of  curves acceptable as initial shapes of the 
string. EULER considered this reinterpretation a substantial addition to D'ALEM- 
BERT'S analysis, and reacted strongly when the latter dismissed his work. The sub- 
sequent debate, which was never resolved to the participants' satisfaction, concerned 
the mathematical question of how to interpret the initial solution of  the wave 
equation. 

16 BURKHARDT [1908], TRUESDELL [1960], LANGER [1947] and RAVETZ [1961] provide 
an account of physical and mathematical issues in the debate as well as references to 
original papers. Further observations are contained in [GRATTAN-GUINESS 1970b] and 
[LOTzEN 1983]. 
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The basic issue was that the integration of partial differential equations re- 
quired the introduction of  "arbi trary" functions. D'ALEMBERT insisted that only 
an equation connecting the variables x and y was acceptable as an initial solu- 
tion; hence he would permit only functions that were given by single analytical 
expressions. Since the initial solution to the vibrating string had been shown to 
be periodic, one could allow only those functions that were, by virtue of their 
algebraic form, periodic. 

EULER could not accept the restrictions D'ALEMBERT had imposed on the possi- 
ble initial solutions. According to D'ALEMBERT, an initial shape of the string that 
was given by an arc of  the parabola y = x(1 --  x) would be unacceptable because 
the expression x(1 -- x) was non-periodic. EULER saw no reason why one could 
not  translate the arc of the parabola along the horizontal axis and thus define a 
new periodic curve. The curve obtained would be given by a periodic function 
that was defined piecewise over each interval of length 1. In the solution y = f(x) 
the function symbol f(x) would now refer to  different algebraic expressions de- 
pending on the interval of real numbers to which x belonged. 

In the subsequent debate D'ALEMBERT and EULER defended vigorously their 
respective positions. On grounds of  physical plausibility and mathematical 
generality EULER advocated the acceptance of "discontinuous" functions as 
initial solutions to the wave equation. D'ALEMBERT maintained that EULER'S 
conception was artificial, that the curves in question were not produced by any 
natural mode of generation. The calculus studied definite, given analytical ex- 
pressions corresponding to such natural curves and the inclusion of EVLER'S 
more general functions violated the basic principles of  the subject. 

Although the debate over the concept of  function touched the very foundation 
of  the calculus, the issues at question remained curiously isolated from the main- 
stream of  contemporary mathematical analysis. The general functions advocated 
by EULER raised foundational problems that could not  be resolved given the cur- 
rent directions of  research. D'ALEMBERT'S opposition may have seemed obstinate, 
but it also displayed a clear sense for the spirit of  the calculus. The distinguishing 
property of a "discontinuous" function, that its algebraic form depended on the in- 
terval of real numbers to which the independent variable belonged, undermined 
the basis of  the calculus as a subject explicable by formal analytical principles. 
To defend the introduction of these objects EULER appealed to the physical model, 
without any clear specification of  the necessary mathematical conditions; his 
reasoning here has been aptly termed a "return to geometry" [GRATTAN-GUINNESS 
1970b, 11]. His notion of  a general function was never incorporated into the ana- 
lytical theory presented in his mid-century textbooks, and indeed was at odds with 
its basic direction. At  best, EULER'S conception of  a general function constituted 
an unrealized "vision" [Lt~TZEN 1983] of a future mathematics. 

The theory of  partial differential equations would wait until the 19th century 
for the resolution of  the issues in the vibrating-string debate. CAUCHY'S definition 
of  the derivative, in whichf ' (x)  is a function obtained f romf(x)  at each numerical 
value of x by a limit process, logically presupposed a new understanding of a 
function, as an arithmetical object that is specified (in whatever way) at each value 
of  the independent argument. The issue of whether a function is given by a single 
expression or defined piecewise disappeared. 
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(e) Complex Analysis 

As the examples discussed thus far suggest, the calculus in the 18 th century 
was developed in systematic detail for functions of  a real variable. For  reasons 
discussed presently, complex analysis remained by and large undeveloped during 
the period. 

In. 18tU-century analysis no restriction was assumed to hold for the values 
taken by a variable or "universal quantity". EtrLER observes in the lntroductio 

of  1748 

A variable quantity includes all numbers, positive and negative, whole and 
fractional, rational, irrational and transcendental. Even zero and imaginary 
numbers are not  excluded in the meaning of a variable quantity. 

[1748, § 2] 17 

One could by the rules of algebra manipulate expressions containing imaginaries, 
and it was clear in specific problems, e.g., determination of the roots of unity, that 
the formalism possessed a geometrical interpretation. EULER showed how to define 
the elementary algebraic and transcendental functions for complex values of the 
independent variable. Both EULER and D'ALEMBERT attempted to show that the 

general polynomial with real coefficients had a root  of the form a -? b ] / - -1  
(a and b real). 

Mathematicians in the 18 th century never developed a full geometric represen- 
tation for complex numbers. Applied analysis and mechanics, so important during 
the period in suggesting lines of  investigation, generated here no new problems. 
The algebraic understanding of the calculus reinforced the implicit assumption 
that the extension of the calculus to the complex domain raised no new issues, is 
The idea that one must distinguish two theories, for functions of  a real and a 
complex variable, never arose in the 18 th century. 19 

CAUCHY'S contributions to complex analysis were developed over thirty years 
in a series of memoirs devoted to integration in the complex domain. 2° Complex 
analysis emerged in his work as a subject with its own theorems, problems and 

17 "Quantitas ergo variabilis in se complecitur omnes prorsus numeros, tam affirma- 
tiros quam negativos, tam integros quam fractos, tam rationales & transcendentes. 
Quinetiam cyphra & humeri imaginarii a significatu quantitatis variabilis non excludun- 
tur." 

is The view is sometimes expressed that LA~RAN~E'S power-series approach to the 
theory of functions was vindicated in later mathematics by the conception of "analytical" 
function in complex analysis. It is worth noting that problems in this subject are con- 
spicuously absent in LA~RAN~E'S oeuvre, and that his understanding of how and under 
what conditions a function may be expanded in terms of its derivatives is different from 
the later theory. 

19 A survey of 18th-century analytical work that involves imaginaries is presented by 
ST~CKEL [1900]. 

2o Studies of CAUCHY'S work in complex analysis, with references to the original 
papers, are provided by ST~CKEL [1900], JOURDArN [1905] and GRATTAN-GUIYESS [1970b, 
Chapter Two]. 
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applications. Although he never presented a foundation for the theory in the style 
of his textbooks on the calculus of a real variable, his earlier approach was evi- 
dently valid here. AR~ANO and GAUSS had shown that the field of complex num- 
bers could be interpreted as points in a two-dimensional continuum. A function 
of a complex variable became a relation among variables connecting points in 
two such continua. The framework that CAUCHY had developed for real analysis, 
involving neighborhoods, limits and pointwise definition of the derivative, was 
immediately generalizable to the complex domain. 

Part Two 

(a) Mathematical Reflections 

For reasons discussed above, the calculus in the 18 th century was developed 
systematically for functions of a real variable. It is therefore appropriate to restrict 
comparisons between this calculus and the modern subject to consideration of a 
theory of a real variable. 

In the analytical approach of EULER and LAGRANGE the calculus is an instru- 
ment for investigating geometrical curves, a distinct class of mathematical 
objects. It is evident (in a particular but definite sense) that this separation of the 
formalism of the calculus from geometry does not arise in the modern subject. 
A theorem about a function defined on some interval of real numbers under speci- 
fied conditions of differentiability has a geometrical interpetation implicit in its 
very formulation. 

The algebraic calculus studies functional relations, algorithms and operations 
on variables. The values that these variables receive, their arithmetic or geometric 
interpretation, are of secondary concern. In real analysis, by contrast, the basic 
object of study is the numerical continuum. The formalism of the modern subject 
is in a fundamental sense interpreted--given meaning--as a theory of functions 
defined on domains of real numbers. In this respect classical real analysis resembles 
the calculus of the early 18 th century, when the formalism of the subject was regard- 
ed as a way of representing and investigating the curve. The early calculus was based 
on a concept of a particulate geometrical continuum, something that is quite 
.different from the numerical continuum of classical analysis. Nevertheless, the early 
~calculus was interpreted in the geometry of curves in the same way that the modern 
calculus is interpreted in real analysis. 

The calculus of EULER and LAGRANGE differs from later analysis in its assump- 
tions about mathematical existence. The relation of this calculus to geometry or 
arithmetic is one of correspondence rather than representation. Its objects are for- 
mulas constructed from variables and constants using elementary and transcenden- 
tal operations and the composition of functions. When EULER and LAGRANGE use 
the term "continuous" function they are referring to a function given by a single 
analytical expression; "continuity" means continuity of algebraic form. A theorem 
is often regarded as demonstrated if verified for several examples, the assumption 
being that the reasoning in question could be adapted to any other example one 
chose to consider. The problem of establishing the a priori  existence of a general 
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solution to a given class of differential equations does not arise within such a 
framework. 

In the modern calculus attention is focussed locally, on a curve near a point 
or on a neighborhood about a number. By contrast, the algebraic viewpoint of 
EULER and LAGRANCE is global. The existence of an equation among variables 
implies the global validity of the relation in question. An analytical algorithm or 
technique implies a uniform and general mode of operation. In EULEa'S or LA- 
GRANGE'S presentation of a theorem of the calculus, no attention is paid to consid- 
erations of domain. The idea behind the proof  is always algebraic. It is invariably 
understood that the theorem in question is generally correct, true everywhere 
except possibly at isolated exceptional values. The failure of the theorem at such 
values is not considered significant. The primary fact, the meaning of the theorem, 
derives always from the underlying algebra. 

Ca) Philosophical Reflections 

In the Preface to the Traitd de Dynamique (1743) JEAN D'ALEMBERT discusses 
the philosophy of mathematics as background to the presentation of his dynamics. 
D'ALEMB~RT'S comments express clearly the 18th-century understanding of mathe- 
matics: 

The certitude of Mathematics is an advantage that these Sciences owe prin- 
cipally to the simplicity of their object. [1743, i] 21 

By the "object"  of  mathematics D'ALEMBERT is referring to 

the calculation of magnitudes and the general properties of extent, that is 
Algebra, Geometry and Mechanics, ... [1743, i] 22 

He comments on the object of the mathematical sciences: 

The more the object they embrace is extended and considered in a general 
and abstract manner, the more also their principles are exempt from obscurity 
and easy to grasp. [1743, ii] 2a 

He proceeds to describe the correct method in any science: 

It results from these reflections that in order to treat according to the best 
possible Method any given part of Mathematics whatever (we could even say 

21 "La certitude des Math6matiques est un avantage que ces Sciences doivent 
principalement ~t la simplicit6 de leur objet." 

22 "calcul des grandeurs, & des propri6t6s g6n&ales de l'6tendue, c'est4t-dire I'A1- 
g6bre, la G6om6trie & la M6chanique . . . .  " 

23 "Plus l'objet qu'elles embrassent est 6tendu, & consid6r6 d'une mani6re g6n6rale 
& abstraite, plus aussi leurs Principes sont exempts de nuages, & faciles ~t saisir." 
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any Science) it is necessary not only to introduce and apply there ideas derived 
in the more abstract and consequently more simple Sciences, but moreover to 
envisage in the manner most abstract and most simple as is possible the parti- 
cular object of this Science; to assume nothing and to admit nothing in this 
object except the properties that the Science itself there supposes. [1743, 
ii-iii) 2~ 

It is important to note that in this conception the generality of  the method of  
any part of  mathematics derives from its "object".  Thus it is the generality of  the 
formulas of algebra or the diagrams of  geometry that assures the generality 
of  the associated method and hence the generality of the mathematics itself. In 
particular, the range of application and the certainty of a given branch of  mathe- 
matics derives, not from the inherent logically prior character of  its method, but 
from the simplicity and abstraction of  its object. 

According to D'ALEMBERT the "object"  of  mathematics is given to us as alge- 
bra, geometry or mechanics. Mathematical concepts are idealizations derived from 
physical reality and distinguished by their exceptional abstraction and generality. 
Although mathematical knowledge consists of  necessary truths, the mathematics 
itself is not made up of  a priori constructs. Formulas, spatial configurations and 
dynamical interactions are given "objectively" as part of  algebra, geometry and 
mechanics, and derive their meaning as part  of these subjects. 2s 

D'ALEMBERT'S philosophy reflected the prevailing 18th-century understanding 
of  mathematics. The placement of  mathematics in its "object"  and the emphasis 
on generality had implications for the differential and integral calculus, the most 
advanced mathematical science of  the period. The calculus or infinitesimal analysis 
was an extension of  ordinary algebra used to investigate the geometry of curves. 
The problems and theorems of the subject arose in the course of  these investiga- 
tions; they did not appear as arbitrarily formulated propositions. 

The movement at the middle of  the century to separate the calculus from geo- 
metry transformed the prevailing philosophy into a version of mathematical for- 
realism. The original problem of the calculus, to describe mathematically change 
along a curve, gave way to the study of  formulas as the defining characteristic 
of  the subject. The rules and procedures of the calculus were assumed to be gen- 
erally valid. In a memoir published in 1751 EULER considers the rule d( log x) 

24 "I1 r6sulte de ces rrflexions, que pour traiter suivant la meilleure Mrthode possible 
quelque partie des Mathrmatiques que ce soit (nous pourrions marne dire quelque 
Science que ce puisse 6tre) il est nrcessaire nonseulement d'y introduire & d'y appliquer 
autant qu'il se peut, des connoissances puisres dans des Sciences plus abstraites, & par 
consrquent plus simples, mais encore d'envisager de la manirre la plus abstraite & la 
plus simple qu'il se puisse, l'objet particulier de cette Science; de ne rien admettre dans 
cet objet, que les propri6t~s que la Science m~me qu'on traite y suppose." 

25 It is interesting here to note the places of mathematics and logic in the organiza- 
tional chart of knowledge presented at the beginning of the preliminary discourse to 
the Eneyclopddie. D'ALEMBERT divides understanding into the three general categories 
of memory, reason and imagination. Although both mathematics and logic are listed 
under reason, mathematics is classified as a "science of nature" while logic is regarded 
as a "science of man." 
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---- dx / x .  He rejects an earlier suggestion of LEIBNIZ that  this rule is only valid for 
positive real values of  x with the observation 

For, as this [differential] calculus concerns variable quantities, that is, quan- 
tities considered in general, if it were not generally true that  d .  lx  = dx / x ,  

whatever value we give to x, either positive, negative or even imaginary, we 
would never be able to make use of  this rule, the truth of  the differential cal- 
culus being founded on the generality of  the rules it contains. [EuLER 1751, 
143-144] 26 

EULER'S confidence in formalism derived from the evident success of  analytical 
methods, but it was also supported by his philosophy. The calculus enjoys an 
extended range of  application because of the generality of  the analytical relations 
that comprise it. A formal demonstration of a relation, one involving no assump- 
tions concerning the individual values of  the variables, ensures its global validity. 
Since the truth of  the calculus is grounded in generality isolated exceptional values 
at which the relation fails are not significant. 

The calculus of  EULER and LAGRANGF. is composed independently of  arithmetic 
and geometry of analytical relations and formulas. In addition, the principles that  
govern this calculus are not formulated as part  of  any logical method;  they are 
in some unspecified sense given as part  of  the subject. A problem not resolved by 
EULER and LAGRANGE is to explain precisely how, given this independence of the 
calculus f rom arithmetic and geometry, its "object"  is constituted. The 18 th- 
century faith in formalism, which seems today rather puzzling, was reinforced 
in practice by the success of analytical methods. 27 At base it rested on what was 
essentially a philosophical conviction. 2s 

Conclusion 

Historians of  mathematics have noted traditional elements in CAUCHY'S cal- 
culus, his retention in practice at least partially of  the older concept of  function 
and his failure to distinguish between continuity and uniform continuity. The 

2 6  "Car, comme ce calcul roule sur des quantitrs variables, c. ~t d. sur des quantitrs 
considrrres en grnrral, s'il n'etoit pas vrai grnrralement qu'il fiat d. Ix = dx/x, quelque 
quantit6 qu'on donne ~t x, soit positive ou negative, ou mrme imaginaire, on ne pourrait 
jamais se servir de cette rrgle, la verit6 du calcul differentiel 6tant fondre sur la grnrralit6 
des rrgles qu'il renferme." 

27 LANGER [1947, 17] writes "[EuLER] combined with a phenomenal ingenuity an 
almost naive faith in the infallibility of mathematical formulas and the results of mani- 
pulations upon them." GRAB~NER [1974, 356] notes "Trust in symbolism in the eighteenth 
century is somewhat anomalous in the history of mathematics, and needs to be accounted 
f o r .  ~ 

28 Discussing the famous passage at the beginning of the Cours d'analyse in which 
CAucrrv rejects the "generality of algebra", FREUDErqTHAL [1971, 377] refers to "CAUcHY'S 
own, much broader appreciation, by which all metaphysics are to be barred from mathe- 
matics." 
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present paper  nevertheless indicates the radical character of  his break with re- 
ceived practice. Apar t  f rom how he understood his theory, there were mathematical  
and logical consequences implicit in his new approach. Mathematically, CAUCH¥ 
rejected the algebraic viewpoint and returned the calculus to its original concern 
with the curve, where in his arithmetical theory the line was replaced by the nume- 
rical continuum and the curve by a functional relationship between numbers. In 
his development of  complex analysis he showed-- i f  only implici t ly-- that  his 
approach was generalizable to any field of  numbers that possessed a suitable topo- 
logical structure. 

Assumed in CAUCHY'S theory was the logical realization that generality must 
be sought internally in the methods of  mathematics, not somehow in the "objective" 
character of  its subject. I t  is I believe in this sense that  the traditional picture of  
CAUCrlY as a mathematician concerned with rigour should be understood. His 
work may be viewed as an extremely significant contribution to the development 
in the 19 tu century of  pure mathematics and to the corresponding explicit logical 
separation o f  mathematics and theoretical physics that occurred during this 
period. 
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