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MATHEMATICS

Craig Fraser

Considered broadly, mathematical activity in the eighteenth century was
characterized by a strong emphasis on analysis and mechanics. The great ad-
vances occurred in the development of calculus-related parts of mathematics
and in the detailed elaboration of the program of inertial mechanics founded
during the Scientific Revolution. There were other mathematical develop-
ments of note — in the theory of equations, number theory, probability and
statistics, and geometry — but none of them reached anything like the depth
and scope attained in analysis and mechanics.

The close relationship between mathematics and mechanics had a basis that
extended deep into Enlightenment thought. In the Preliminary Discourse to
the famous French Encyclopédie, Jean d’Alembert distinguished between “pure”
mathematics (geometry, arithmetic, algebra, calculus) and “mixed” mathe-
matics (mechanics, geometrical astronomy, optics, art of conjecturing). He
classified mathematics more generally as a “science of nature” and separated
it from logic, a “science of man.” An internalized and critical spirit of inquiry,
associated with the invention of new mathematical structures (for example,
non-commutative algebra, non-Euclidean geometry, logic, set theory), rep-
resents characteristics of modern mathematics that would emerge only in the
next century.

Although there were several notable British mathematicians of the period —
Abraham De Moivre, James Stirling, Brook Taylor, and Colin Maclaurin
among them — the major lines of mathematical production occurred on the
Continent, a trend that intensified as the century developed.! Leadership was
provided by a relatively small number of energetic figures: Jakob, Johann, and
Daniel Bernoulli, Jakob Hermann, Leonhard Euler, Alexis Clairaut, Jean
d’Alembert, Johann Heinrich Lambert, Joseph Louis Lagrange, Adrien Marie
Legendre, and Pierre Simon Laplace. Research was coordinated by national

! For a study of British mathematics in the cighteenth century, see Niccolo Guicciardini, 7he Devel-
opment of Newtonian Calculus in Britain, 1700—1800 (Cambridge University Press, 1989).
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and regional scientific academies, of which the most important were the acad-
emies of Paris, Berlin, and St. Petersburg. Roger Hahn has noted that the
eighteenth-century academy allowed “the coupling of relative doctrinal free-
dom on scientific questions with their rigorous evaluations by professional
peers,” an important characteristic of modern professional science.? The
academic system tended to promote a strongly individualistic approach to
research. A determined individual such as Euler or Lagrange could emphasize
a given program of research through his own work, the publications of the
academy, and the setting of the prize competitions.

Although the academy as a social institution was inherently centralized and
elitist, the writings of the academicians were more discursive, expository, and
inclusive than would be the case in the specialized research journals of later
science. The democratization of science that occurred in the nineteenth cen-
tury, with the opening of scientific careers to a wide segment of society, was
accompanied intellectually within each field by a rather narrow and proprietary
specialization that was foreign to the spirit of inquiry in the age of Enlight-
enment. In comparing Euler’s writings with those of a hundred or a hundred
and fifty years later one is struck by the change in the way in which the au-
dience is conceived from, in the first case, anyone in principle who is curious
about mathematics to, in the second, a group of specialists who have already
undergone considerable initiation and concerning whose knowledge many
assumptions may be tacitly accepted.

This essay is devoted to major developmental trends in advanced theoreti-
cal mathematics during the eighteenth century. It is important nevertheless
to call attention to the spread of mathematical methods and mentalities in a
range of more practical subjects and pursuits. In navigation, experimental
physics, engineering, botany, demography, government, and insurance there
was an increasing emphasis on quantification and rational method. In the bur-
geoning industrial arts, instrument-makers achieved new levels of precision
measurement. In French engineering schools, sophisticated mathematics —
including the calculus — was introduced for the first time into the teaching
curriculum, a practice that would be widely followed in later education. The
operational, algebraic character of advanced theoretical analysis was reflected
at a wider level in a pronounced instrumentalist understanding of the uses
and nature of mathematics. In an overview of Enlightenment quantitative
science John Heilbron writes as follows:

[In the later eighteenth century] analysis and algebra, which, in contrast to
geometry had an instrumentalist bias, became the exemplar of the mathe-
matical method. . . . This instrumentalism was a key ingredient of the quan-
tifying spirit after 1760. . . . Most of the leading proponents of the Standard

2 Roger Hahn, The Anatomy of a Scientific Institution: The Paris Academy of Science, 1666-1803 (Berke-
ley: University of California Press, 1971), p. 313.
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Model [i.e. Laplacian molecular physics] . . . made clear that they under-
stood it in an instrumentalist sense. . . . They found themselves in agreement
with the epistemologies of Hume and Kant, and perhaps also with Condillac’s
teaching that clear and simple language, not intuitions of truth, conduces to

the advancement of science.?

The rational “quantifying spirit” of the Enlightenment would find a lasting
and pervasive legacy in the adoption at the end of the century in France of the
metric system, a development that took place under the direct supervision of
prominent mathematical scientists of the time.*

THE CENTURY OF ANALYSIS

Euler and Lagrange were leading and representative practitioners of analytical
mathematics in the eighteenth century. Together they dominated the subject
from 1740 until early into the next century. Their writings, and more partic-
ularly their extensive contributions to analysis, defined advanced mathemati-
cal activity. What is fundamental to an understanding of the intellectual fabric
of mathematics of the period is the distinctive conception of algebraic analy-
sis that guided their work. They conceived of the metaphysics of the calculus
in a way that is significantly different from our outlook today. Although we
tend to take the modern foundation for granted, the older approach of alge-
braic analysis was based on a different point of view, a different conception
of how generality is achieved in mathematics, and a rather different under-
standing of the relationship of analysis to geometry and physics. The interest
of the eighteenth-century work lies in considerable part in providing an ex-
ample of an alternative conceptual framework, one with great historical in-
tegrity and cohesion.>

LEONHARD EULER

Euler became established as a mathematician of note during the decade of
the 1730s. He was a young man in his twenties, a member of the St. Petersburg

3 Heilbron’s remarks are contained in his introduction to the volume, T. Fringsmyr et al. (eds.), The
Quantifying Spirit in the 18th Century (Berkeley: University of California Press, 1990), pp. 3, 5.

4 For studies of quantitative applied science in the eighteenth century, see H. Gray Funkhouser, “His-
torical Development of the Graphical Representation of Statistical Data,” Osiris, 3 (1937), 269—404,
and Laura Tilling, “Early Experimental Graphs,” British Journal for the History of Science, 8 (1975),
193-213.

> Although the empbhasis of the present essay is on calculus-related parts of mathematics, a concern for
symbolic methods was also evident in such subjects as the theory of equations and number theory. See
L. Novy, Origins of Modern Algebra (Leiden: Noordhoff International Publishing, 1973). Progress in
formal mathematics was evident in probability and statistics; see Stephen M. Stigler, 7/he History of Sta-
tistics: The Measurement of Uncertainty before 1900 (Cambridge, MA: Harvard University Press, 1986).
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Academy of Sciences and a colleague of Hermann, Daniel Bernoulli, and
Christian Goldbach. Euler’s interest in analysis is evident in writings from this
period, including his major treatise of 1736 on particle dynamics, Mechanica
sive Motus Scientia Analytice Exposita. Although the theme of analysis was well
established at the time, there was in his work something new: the beginning
of an explicit awareness of the distinction between analytical and geometrical
methods and an emphasis on the desirability of the former in proving theo-
rems of the calculus.

Euler’s program of analysis would be launched in a series of comprehensive
treatises on different branches of the calculus and celestial dynamics published
between 1744 and 1766. During this period he was mathematics director of
the Berlin Academy of Sciences. His capacity for calculation and tremendous
output later led Francois Arago to confer on him the title of “Analysis Incar-
nate.” In the last part of his career Euler returned to St. Petersburg where he
continued to carry out research and to publish. In 1735 Euler lost the sight of
his right eye, and shortly after his arrival in St. Petersburg, he lost the sight
of his remaining eye. Despite working in conditions of near blindness he was
able with the assistance of his family and servants to remain productive math-
ematically up to his death in 1783.

GRAPHICAL METHODS AND THE FUNCTION CONCEPT

The geometrical curve was an object of intensive mathematical and physical
interest throughout the seventeenth and early eighteenth centuries. The study
of the relations that subsist between the lengths of plane curves gave rise in
1718 in the writings of Count C. G. Fagnano to a theory of elliptic integrals.
In the calculus of variations, a branch of mathematics pioneered by Jakob and
Johann Bernoulli, classes of curves constituted the primary object of study;
the goal of each problem was the selection of a curve from among a class of
curves that rendered a given integral quantity a maximum or minimum. In
analytical dynamics attention was concentrated on determining the relation
between trajectories of particles moving in space and the forces that act on
them. In the theory of elasticity, researchers studied the shape of static equi-
librium assumed by an elastic lamina under various loadings, as well as the
configurations of a vibrating string.

The curve also played a fundamental and very different role in the con-
ceptual foundation of the calculus. By representing the relationship between
two related variable magnitudes of a problem by means of a graphical curve
the various mathematical methods that had been developed for the geomet-
rical analysis of curves could be brought to bear on the problem. Graphical
procedures had been employed by Galileo Galilei in his Discorsi of 1637 to
relate the speed of a falling body to the time of its descent. They had become
common in mathematical treatises by the late seventeenth century. Christiaan
Huygens in his Horologium Oscillatorium (1673) and Isaac Barrow in his Lec-
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tiones Geometricae (1670) represented quadrature relationships in this way. In
his very first published paper in the calculus Gottfried Leibniz (1684) derived
the optical law of refraction from the principle that light follows the path of
least time. He considered two related magnitudes: the distance of the point
of contact of the light ray along the interface, and the time of transit that
corresponds to this distance. He represented this relationship graphically by
means of a curve and proceeded to apply the differential algorithm, intro-
duced earlier in the paper for the analysis of curves, to obtain the desired law.
In his Principia Mathematica (1687) Isaac Newton investigated the inverse
problem of central-force particle motion. In Propositions XXXIX and XLI of
Book One he graphed the force as a function of the projection of position on
the orbital axis and analyzed the resulting curve to arrive at expressions for
the particle’s trajectory. Jakob Bernoulli employed graphical methods through-
out his researches of the 1690s. In his study of the elastica, the relation between
the restoring force and the distance along the lamina was superimposed in
graphical form on the diagram of the actual physical system.

Graphical methods played a role in the early calculus that would later be
filled by the function concept. This point of view was formalized to some ex-
tent by Pierre Varignon in a 1706 memoir devoted to the study of spiral curves
given in terms of polar variables.® Varignon considered a fixed reference circle
ABYA with center C (Figure 13.1). A “courbe génératrice” HHYV is given; a
point H on this curve is specified by the perpendicular ordinate GH, where G
is a point on the axis xCX of the circle. The line CX is conceived as a ruler that
rotates with center C in a clockwise direction tracing out a spiral OEZAEK.
Consider a point E on the spiral. With center C draw the arc EG. Let ¢ = the
circumference of the reference circle ABYA, x = arc AMB, CA = a, CE =y,
GH =z and AD = b a constant line. The arc x is defined by the proportion
c:x = biz. Varignon wrote what he called the “équation générale de spirals a
I'infini” as cz = bx. By substituting the value for z given by the nature of the
generating curve into this equation, the character of the spiral was revealed.
Depending on whether the generating curve was a parabola, a hyperbola, a
logarithm, a circle, and so on, the corresponding spiral was called parabolic,
hyperbolic, logarithmic, circular, and so on.

In Varignon’s paper the equation of the spiral was formulated a priori in
terms of Cartesian coordinates in the associated “generating curve.” The lat-
ter embodied in graphical form the functional relationship between the
polar variables and acted as a standard model to which this relationship can
be referred.

From the very beginning of his mathematical career in the 1730s, Euler

¢ Pierre Varignon, “Nouvelle formation de spirales beaucoup plus différentes entr’elles que tout ce qu'on
peut imaginer d’autres courbes quelconques 4 I'infini; avec les touchantes, les quadratures, les déroule-
mens, & les longueurs de quelques-unes de ces spirales qu'on donne seulement ici pour éxemples de
cette formation générale,” Histoire de ’Académie royale des sciences avec les mémoires de mathématique
et de physique tirés des registres de cette Académie 1704 (Paris, 1706), pp. 69-131.
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Figure 13.1. Varignon and the “Courbe généatrice.”

imparted a new direction to the calculus by clearly emphasizing the importance
of separating analysis from geometry. His program was evident in 1744 in his
major treatise on the calculus of variations, Methodus Inveniendi Lineas Cur-
vas.” A typical problem of the early calculus involved the determination of a
magnitude associated in a specified way with a curve. To find the tangent to
a curve at a point, it was necessary to determine the length of the subtangent
there; to find the maximum or minimum of a curve, one needed to calculate
the value of the abscissa that corresponded to an infinite subtangent; to find
the area under a curve, it was necessary to calculate an integral; to determine
the curvature at a point, one had to calculate the radius of curvature. The
calculus of variations extended this paradigm to classes of curves.® In the
fundamental problem of the Methodus Inveniends it is required to select that
curve from among a class of curves that makes a given magnitude expressing
some property a maximum or minimum.

Near the beginning of his treatise (p. 13) Euler noted that a purely analyt-
ical interpretation of the theory is possible. Instead of seeking the curve that
renders the given integral quantity an extremum, one seeks that “equation”

7 Euler, Methodus inveniends lineas curvas maximi minimive proprietate gaudentes sive solution prob-
lematis isoperimetrici lattisimo sensu accepti (Lausanne, 1744). Reprinted in Euler’s Opera Omnia,
Ser. 1, V. 24.

8 For historical studies of Euler’s calculus of variations, see Herman H. Goldstine, A History of the Cal-
culus of Variations from the 17th through the 19th Century (New York: Springer-Verlag, 1980), chap. 3;
and Craig Fraser, “The Origins of Euler’s Variational Calculus,” Archive for History of Exact Sciences,
47 (1994), 103—41; and Fraser, “The Background to and Early Emergence of Euler’s Analysis,” in M. Otte
and M. Panza (eds.), Analysis and Synthesis in Mathematics History and Philosophy, Boston Studies in
the Philosophy of Science, vol. 196 (Dordrecht: Kluwer, 1997).
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between x and y that, among all such equations, renders the quantity a max-
imum or minimum. He wrote, “In this way questions in the doctrine of curved
lines may be referred back to pure analysis. Conversely, if questions of this type
in pure analysis be proposed, they may be referred to and solved by means of
the doctrine of curved lines.”

Euler’s derivation of the basic equations and principles of the calculus of
variations was formulated in terms of the detailed study of the properties of
geometrical curves. Nevertheless, in Chapter 4 of his book he showed that a
purely analytical interpretation of the theory was possible. He observed that
“the method presented earlier may be applied widely to the determination of
equations between the coordinates of a curve which render any given expres-
sion [Zdx a maximum or a minimum. Indeed it may be extended to any two
variables, whether they involve an arbitrary curve, or are considered purely
in analytical abstraction.” He illustrated this claim by solving several examples
using variables other than the usual rectangular Cartesian coordinates. In the
first example he employed polar coordinates to find the curve of shortest
length between two points. He was completely comfortable with these coor-
dinates; gone was the Cartesian “generating curve” that Varignon had em-
ployed in his investigation of 1706 to introduce general polar curves. In the
second example Euler displayed a further level of abstraction, employing vari-
ables that were not even coordinate variables in the usual sense.

A range of non-Cartesian coordinate systems had been employed in earlier
mathematics but never with the same theoretical import as in Euler’s varia-
tional analysis. Here one had a fully developed mathematical process, centered
on the consideration of a given analytically expressed magnitude, in which a
general equational form was seen to be valid independent of the particular
interpretation conferred upon the variables of the problem.

Euler had succeeded in showing that the basic subject matter of the
calculus — what in some ultimate sense the calculus is “about” — could be
conceived independently of geometry in terms of abstract relations between
continuously variable magnitudes. To develop this point of view systemati-
cally it was necessary to introduce formal concepts and principles. To do this
Euler turned to the concept of a function, a concept that had appeared in
earlier eighteenth-century work and that he made central in his mid-century
treatises on the calculus.” His Introductio in Analysin Infinitorum of 1748
contained an explicit definition: “A function of a variable quantity is an an-
alytical expression composed in any way from the variable and from num-
bers or constant quantities” (p. 4). Although he sometimes considered a more

9 Carl Boyer observes that for Euler “analysis was not the application of algebra to geometry; it was a
subject in its own right — the study of variables and functions — and graphs were but visual aids in
this connection. . . . It now dealt with continuous variability based on the function concept . . . only
with Euler did it [analysis] take on the status of conscious program.” (History of analytic geometry;
originally published as Numbers Six and Seven of The Scripta Mathematica Studies; republished 1988
by The Scholar’s Bookshelf; the quoted passage appears on page 190 of the latter edition.)
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general notion of a function, for example in the discussion of the solution to
the problem of the vibrating string, the /ntroductio furnished the operative
fundamental definition for eighteenth-century work in analysis.!®

A notable example of Euler’s functional approach is provided by his intro-
duction of the sine and cosine functions. Tables of chords had existed since
Ptolemy in antiquity, and the relations between sines and cosines were com-
monly used in navigation and mathematical astronomy. With the advent of
the calculus, trigonometric relations were expressed in terms of geometrical
infinitesimal elements contained in a standard reference circle. Euler, by con-
trast, defined the sine and cosine functions as formulas involving variables that
were given independently of geometrical constructions or dimensional con-
siderations. He also derived the standard power series for the trigonometrical
functions, using multiangle formulas and techniques he had employed earlier
in the treatise to obtain the exponential series. Although these expansions were
not new, they had been derived by analytical principles: a function that was
a solution to a definite differential equation had been expanded to yield the
given series.!!

DIFFERENTIATION

In the original Leibnizian calculus, the concept of differentiation possessed a
dual character: algebraic/algorithmic on the one hand, and geometric on the
other. The algebra comprised a set of rules that governed the use of the
symbol d and was based on two postulates: d(x + y) = dx + dy and d(xy) =
ydx + xdy. Accompanying these rules there was also an order principle, ac-
cording to which higher-order differentials in a given equation were to be
neglected with respect to differentials of a lower order.

The differentials that appeared in a given problem could also be under-
stood in another way: as the differences of values of a variable quantity at
successive points in the geometrical configuration. The differential dx was set
equal to the difference of the value of x at two consecutive points infinitely
close together; higher-order differentials were set equal to the difference of
successive lower-order differentials. Euclidean geometry was used to analyze
the properties of the curve in terms of these differentials.

A good illustration of the dual character of differentiation is provided by

10 For studies dealing with the history of the function concept, see Ivor Grattan-Guinness, 7he Devel-
opment of the Foundations of Mathematical Analysis from Euler to Riemann (Cambridge, MA: MIT
Press, 1970); A. . Youschkevitch, “The Concept of the Function up to the Middle of the 19th Cen-
tury,” Archive for History of Exact Sciences, 16 (1976), 37-85; and Steven Engelsman, “D’Alembert et
les Equations aux Dérivées Partielles,” Dix-Huitieme Siccle, 16 (1984), 27-37. In the secondary liter-
ature there has tended to be something of a historiographical divide. Authors such as Truesdell,
Demidov, and Youschkevitch have emphasized Euler’s modernism, whereas Grattan-Guinness and
Fraser have in a less Whiggish vein called attention to historically particular features of his thought.

1 For a historical account, see Victor J. Katz, “Calculus of the Trigonometric Functions,” Historia
Mathematica, 14 (1987), 311—24.
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Figure 13.2. UHbpital and the center of curvature.

the derivations of the formula for the radius of curvature of a curve given by
the Marquis de 'Hépital in his textbook Analyse des infiniment petits, pour
Uintelligence des lignes courbes (1696; second edition 1716). This formula was
used in analytic geometry to calculate the evolute to a curve, that is the lo-
cus formed by the center of the radius of curvature. In mechanics it was
known that the restoring force on an element of a stretched elastic string is
proportional to the curvature (the reciprocal of the radius of curvature) of
the string at the point where the element is located. The expression for the
radius could be used to derive a differential equation to describe the string’s
motion.'?

The first derivation of the formula that we shall consider was taken by
’'Hépital from a textbook published by Johann Bernoulli in 1691. Assume M
is any point on the curve AMD (Figure 13.2). Let m be a point on the curve
infinitely close to M. The normals to the curve at M and m intersect at the
center of curvature C. The distance MC is the radius of curvature. Suppose
AP = x and PM =y are the abscissa and ordinate of M. The lines MR and
Rm parallel to AP and PM are the infinitesimal increments dx and dy of x
and y. CHépital calculated that PQ = ydy / dx. Let Q and q be the intersec-
tions of the normals MC and mC and the axis of the abscissae. CHépital

12 A detailed historical account of the theory of differentials from Leibniz to Euler, including a de-
scription of the calculation of the radius of curvature, is contained in Henk J. Bos, “Differentials,
Higher-Order Differentials and the Derivative in the Leibnizian Calculus,” Archive for History of
Exact Sciences, (1974), 1-90.
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C
Figure 13.3. L'Hépital and second-order differentials.

supposed that the quantity dx is constant, a step that corresponds from a mod-
ern perspective to the assumption that x is the independent variable in the

problem. Since Qq = d(AQ) = dx + d(PQ), he applied the differential algo-
rithm and obtained the expression Qq = dx +(dy? + yddy) / dx. Using similar
triangles he proceeded to calculate the radius MC and obtained the formula
PN
B —dxddy

MC

(1)

In a subsequent derivation I'Hépital employed a different procedure,
calculating the second differentials directly in terms of the elements of the
geometrical configuration. Consider again the portion of the curve AMD
containing Mm (Figure 13.3). Let n be a point on the curve infinitely close to
m. UHépital conceived of the portion Mmn as composed of the polygonal
segments Mm and mn. The second differential of y, ddy, is given as ddy = nS —
mR = nS — HS = —Hn. By means of similar triangles he arrived at an estimate
for the radius of curvature that reduced to formula (1).

Another illustration of the dual character of differentiation is provided in
mathematical dynamics in the calculation of differential equations of motion
connecting the force to the spatial coordinates of a moving particle. The usual
procedure during the period involved the comparison of the dynamical sys-
tem at three successive instants in time. The second differentials appearing
in the equations of motion were calculated in terms of the second differences
arising in these configurations. In the 1740s and the 1750s, in the writings of
Euler and d’Alembert, the second differentials were calculated directly in terms
of the differential algorithmic procedures of the calculus.!® This method, as-

13 Both methods of calculating second differentials were employed by d’Alembert in his 77aité de Dy-
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sociated today with the differential-equation form of Newton’s second law,
soon became standard in classical mechanics.

In his mid-century treatises Euler, as part of his program of separating
analysis from geometry, made the algebraic conception of differentiation fun-
damental. In so doing he made the concept of the algorithm primary in his
understanding of the foundations of the calculus. Some of the issues that arise
in this shift in viewpoint are illustrated by his theory of differential expressions
set forth in Chapters 8 and 9 of the first part of his 1755 Institutiones Calculi.
Consider any formula containing dx, ddx, dy, ddy, . . . . Because these quan-
tities are no longer interpreted geometrically the meaning of the formula is
unclear; its value will depend on whether dx or dy is held constant, an as-
sumption that is not evident in the algebra. For example, the quantity ddy / dx*
is zero if dy is constant; if dx is constant its value will vary according to the
functional relation between x and y. Conversely, certain expressions, such as
(dyddx — dxddy) / dx?, may be shown to be invariant regardless of which vari-
able is taken to be independent.

Euler’s solution to the problem of indeterminacy in differential expressions
was to introduce notation that made clear the relations of dependency among
the variables. He did so by eliminating higher-order differentials as such, re-
placing them instead with differential coefficients. Rather than write ddy / dx*
(dx constant) we define the differential coefficients p and q by the relations
dy = pdx and dp = qdx; ddy / dx* then becomes simply q. Euler provided rules
and examples that showed how more complicated expressions can be reduced
to ones containing only variables and differential coefficients. In addition to
bringing order to the calculus, this emphasis on the differential coefficient
was conceptually important in identifying the derivative as an independent
object of mathematical study.'*

INTEGRATION

Leibniz had regarded the integral as a kind of infinite summation carried out
with reference to a sequence of values of one of the variables of the problem.
He denoted integration using an elongated “S,” which stood for the first let-
ter of the Latin word “summa” for sum. Thus, the area under the curve y = x*
was expressed as Jx2dx, where the limits of integration were understood to be
given.

A significant modification of Leibniz’s conception was introduced in the
early 1690s by Johann Bernoulli, who replaced the concept of an integral as
a sum with the quite different concept of the integral as an antiderivative.!”

namique of 1744. See Craig Fraser, “D’Alembert’s Principle: The Original Formulation and Appli-
cation in Jean D’Alemberts T7aité de Dynamique (1743),” Centaurus, 28 (1985), 31-61, 145-59.
14 For a more detailed description of Euler’s theory, see Bos, “Differentials, Higher-Order Differentials.”
15 Bernoulli’s definition was contained in his Die erste Integralrechnung, a selection of his writings from

Cambridge Histories Online © Cambridge University Press, 2008



316 Craig Fraser

Taking the d-operation as logically primary, Bernoulli defined integration as
the operational inverse of differentiation. The integral [x2dx was by defini-
tion equal to x> / 3, because the differential of the latter expression is equal
to x*dx.

In his mid-century writings on analysis Euler adopted Johann Bernoulli’s
notion of the integral as an antiderivative, a point of view that Euler made
fundamental in his two-volume Institutiones Calculi Integralis of 1768. It is
clear that Euler held to this conception from a very early stage of his career.
In the 1730s he had investigated the problem of determining orthogonal tra-
jectories to families of curves, a subject that had been broached by Leibniz forty
years earlier.!® The latter had considered integrands consisting of expressions
involving both a variable x and a parameter t. Leibniz showed that the par-
tial derivative with respect to t of the integral is equal to the integral of the
partial derivative of the expression itself with respect to t:

% [fx Dde=] % Sl 1)dx (2)

To establish this result, known in modern calculus as Leibniz’s rule, Leibniz
used the fact that the differential of a sum of infinitesimal elements is equal to
the sum of the differentials of each of the elements. In his studies of orthogonal
trajectories Euler provided a quite different proof of the same result, a proof
that rested on his understanding of the integral as an antiderivative.!” To
carry out the derivation Euler first established a preliminary theorem, show-
ing that if f is a function of the two variables x and t then the second partial
derivative of f is independent of the order of differentiation:

- 9 fl 1) = aa aa (5 9 3)

With this result and his definition of the integral as an antiderivative Euler was
able to deduce Leibniz’s rule directly:

—Jf<x, = Ja ( %It ) d =

(4)
NERE 9
=12 (a—xjf(x, r)dx)dx-]a—tf(x, e

the years 1691 and 1692 published in 1914, p. 3. See Carl Boyer, A History of the Calculus and Its Con-
ceptual Development (New York: Dover Publications, Inc., 1959; originally published by Hafner Pub-
lishing Company in 1949 under the title “The Concepts of the Calculus, A Critical and Historical
Discussion of the Derivative and the Integral”), pp. 278-9.

16 For a historical survey of this subject, see Steven B. Engelsman, Families of Curves and the Origins of
Partial Differentiation (Amsterdam: North-Holland, 1984).

17 The derivation is contained in Euler, “De infinitis curvis eiusdem generis seu methodus inveniendi
aequationes pro infinitis curvis eiusdem generis,” Commentarii Academiae Scientiarum Petropolitanae
7 1734-1735 (1740), 174-89, 180—9. (Pages 190—9 were incorrectly numbered as 180—-9.) In Euler’s
Opera Ser. 1, V. 22, pp. 36—56.
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In his later writings Euler followed the pattern here, obtaining first equa-
tion (3) and then proceeding to derive Leibniz’s rule; the proof rested at base
on Euler’s concept of the integral as an antiderivative. In his /nstitutiones Cal-
culi Integralis he expounded in some detail on his operational understanding
of the integral. Integration understood as the inverse of differentiation was
analogous to subtraction as the inverse of addition, division as the inverse of
multiplication, and the taking of roots as the inverse of the taking of powers.
When it is not possible to express the inverse of a given expression Xdx in terms
of known algebraic functions, then it follows that the resulting integral must
be transcendental. The situation is analogous to the one with respect to the
three inverse algebraic operations. When subtraction leads to numbers that
are not positive then we arrive at negative numbers; when division results in
nonintegral numbers we arrive at fractions; when the taking of roots leads to
nonintegral numbers then we arrive at radicals.

The definition of integration as the operational inverse of differentiation
was widely adopted in late eighteenth-century mathematics. By taking inte-
grals one obtained new functional objects, and by applying functional inver-
sion to these objects one obtained a further class of functions. The domain
of analysis was thereby enlarged greatly. In an early memoir on elliptic inte-
grals, Lagrange had observed that the investigation of the integrability of ra-
tional polynomials opened “a vast field to the researches of the analysts.”!®
It should be noted that in this conception a given transcendental integral and
its various properties were understood to be a consequence of the algebraic
nature of the differential process. In particular, the various considerations of
existence that are so fundamental in modern theories of integration did not
arise at all.

THEOREMS OF ANALYSIS

A fundamental difference between eighteenth-century and modern analysis is
the absence in the former of what is known today as the mean value theorem
or the law of the mean. This result, a basic part of the classical arithmetic foun-
dation of the calculus, is used in theorem-proving to localize a given property
or relation at a definite value of the numerical continuum. The proposition
is established by showing its validity at each value of this continuum.
Euler’s viewpoint was quite different. A relation between variables was re-
garded by him as a primitive of the theory; it was not further conceptualized
in terms of the numerical continuum of values assumed by each variable. This
notion of a primitive abstract relation in large part defined his approach to

18 Lagrange, “Sur l'intégration de quelques équations différentielles dont les indéterminées sont séparées,
mais dont chaque membre en particulier n’est point intégrable,” Miscellanea Taurinensia, 4; in La-
grange’s Oeuvres de Lagrange 2, pp. s—33. The quote is on p. 33 of Oeuvres 2.
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analysis, distinguishing his point of view both from that of the early pioneers,
who made the geometrical curve the basic object of study, and that of the
nineteenth-century researchers, for whom the numerical continuum consti-
tuted a fundamental object of study.

Euler’s proof in 1740 of (3), the theorem on the equality of mixed partial
differentials, was analytical in a formal, nongeometrical sense. He was moti-
vated to develop such a proof by a belief that a geometrical demonstration
would be “drawn from an alien source.”’® He considered a quantity z that
is a function of the variables x and a. He expressed the relevant differentials
in terms of differential coefficients and showed by a suitable rearrangement
of terms that the two partial differentials are equal. In modern real-variable
analysis, Euler’s argument is reformulated using the law of the mean and a
limit argument. Suppose z = z(x,a) and its first and second partial derivatives
are defined and continuous on a rectangular region in the x-a plane. The law
of the mean is used to obtain expressions for the relevant partial derivatives,
which by rearrangement and a limit argument are shown to be equal.?°

This example is typical of eighteenth-century calculus theorems and their
counterparts in modern analysis. (Other examples are the fundamental the-
orem of the calculus, the theorem on the change of variables in multiple in-
tegrals, and the fundamental lemma of the calculus of variations.) The law
of the mean introduces a distinguished value, localizing at a particular num-
ber the analytical relation or property in question. The result is then deduced
using conditions of continuity and differentiability by means of a limit argu-
ment. In Euler’s formulation, by contrast, there was no consideration of
distinguished or individual values as such. Euler believed that the essential
element in the demonstration was its generality, which was guaranteed by a
formal analytical or algebraic identity. Thus, the key step in his proof rested
on an algebraic identity that ensured the validity of the result.

ANALYTICAL PHILOSOPHY

Although the leading analysts of the eighteenth century did not formulate an
explicit mathematical philosophy, implicit philosophical attitudes were evi-
dent in their handling of issues such as generality and the relationship of pure
and applied mathematics. For Enlightenment mathematicians, each part of
mathematics was understood to be given in some objective sense; its range
of application and certainty derived from this objective nature and were not
consequences of the particular method or set of concepts adopted by the math-
ematician. The generality of mathematics was a consequence of the general

19 See Engelsman, Families of Curves, p. 129.

20 Euler’s derivation is studied in more detail in Craig Fraser, “The Calculus as Algebraic Analysis: Some
Observations on Mathematical Analysis in the 18th Century,” Archive for History of Exact Sciences,
39 (1989), 317-35, especially 319—21.
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character of its objects, whether these be formulas of algebra or diagrams of
geometry.

In the writings of the analysts the original problem of the calculus — to de-
scribe change along a curve — gave way to the study of formulas and relations.
An analytic equation implied the existence of a relation that remained valid
as the variables changed continuously in magnitude. Analytic algorithms and
transformations presupposed a correspondence between local and global
change, the basic consideration in the application of the calculus to the curve.
The rules and procedures of the calculus were assumed to be generally valid.
In a memoir published in 1751 Euler considered the rule d(logx) = dx/x.*! He
rejected an earlier suggestion of Leibniz that this rule was only valid for pos-
itive real values of x with the following observation:

For, as this [differential] calculus concerns variable quantities, that is, quan-
tities considered in general, if it were not generally true that d.Ix = dx / x, what-
ever value we give to x, either positive, negative or even imaginary, we would
never be able to make use of this rule, the truth of the differential calculus
being founded on the generality of the rules it contains. (pp. 143—4)

Eighteenth-century confidence in formal mathematics was almost unlim-
ited. One historian has noted, “Sometimes it seems to have been assumed that
if one could just write down something which was symbolically coherent, the
truth of the statement was guaranteed,” and another has commented on Euler’s
“naive faith in the infallibility of formulas and the results of manipulations
upon them.”?? Functionality and operational efficacy were valued over de-
duction and logical verification. A belief in symbolic methods was supported
by more general philosophical thinking about exact science. The writings of
Nicolas Malebranche and his school had stressed the value of an arithmetical/
algebraic approach to mathematics. Somewhat later, Etienne Condillac em-
phasized the importance of a well-constructed language in rational investiga-
tion, and he cited algebra as the paradigm of what could be achieved in this
direction.??

That the problems of geometry and mechanics should conform to treat-
ment by pure analysis was something that eighteenth-century authors accepted
as a matter of philosophical principle. Sergei Demidov, writing of the failure

21 Euler, “De la controverse entre Mrs. Leibniz et Bernoulli sur les logarithmes des nombres negatifs et
imaginaires, Mémoires de l'académie des sciences de Berlin s (1749), (1751), 139-171; in the Opera Omnia
Ser. 1, V. 17, 195—232.

22 See Judith V. Grabiner, “Is Mathematical Truth Time-Dependent?” American Mathematical Monthly,
81 (1974), 354—65, especially 356, and Rudolph E. Langer, “Fourier Series, The Evolution and Gen-
esis of a Theory,” American Mathematical Monthly, 54, pt. 2 (1947), 1-86, especially 17.

23 Malebranche’s mathematical philosophy is discussed in Craig Fraser, “Lagrange’s Analytical Mathe-
matics, Its Cartesian Origins and Reception in Comte’s Positive Philosophy,” Studies in the History
and Philosophy of Science, 21 (1990), 243—56. An account of Condillac’s thought is contained in
Robert McRae, “Condillac: The Abridgement of All Knowledge in “The Same is the Same,” in
The Problem of the Unity of the Sciences: Bacon to Kant (Toronto: University of Toronto Press, 1961),
pp- 89-106.
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of Euler and d’Alembert to understand each other’s point of view in the dis-
cussion of the wave equation, observes:

A cause no less important of this incomprehension rests, in our opinion, on
the understanding of the notion of a solution of a mathematical problem.
For d’Alembert as for Euler the notion of such a solution does not depend
on the way in which it is defined . . . rather the solution represents a certain
reality endowed with properties that are independent of the method of defin-
ing the solution. To reveal these properties diverse methods are acceptable,
including the physical reasonings employed by d’Alembert and Euler.?*

A biographer of d’Alembert has noted his insistence on “the elementary truth
that the scientist must always accept the essential ‘giveness’ of the situation
in which he finds himself.”?> The sense of logical freedom that developed in
later mathematics — expressed, for example, in Richard Dedekind’s famous
statement of 1888 that numbers are free creations of the human mind and the
belief that the essence of mathematics consists in its autonomous conceptual
development — reflects aspects of the modern subject that were quite absent
in the eighteenth century.

JOSEPH LOUIS LAGRANGE

Lagrange’s professional career was an exceptionally long one, spanning from
1754, when he was eighteen, to his death in 1813. From his birth in 1736 un-
til 1766 he lived in Turin, participating in the founding of the Turin Society in
1757 and then becoming one of its active members; from 1766 to 1787 he was
mathematics director of the Berlin Academy of Sciences; from 1787 to his death
he lived in France as a pensionnaire of the Paris Academy of Sciences.
Although Lagrange’s analytical tendencies were apparent from the very be-
ginning of his career, his distinctive mathematical style became consolidated
only in the period 1770 to 1776, when he was in his late thirties and com-
fortably settled at the Berlin Academy. In these years the value of analysis
became an explicit theme in his writings for the Academy on a range of sub-
jects in pure and applied mathematics.?® In a memoir of 1771 on Kepler’s prob-
lem he distinguished three approaches to its solution: one involving numer-
ical approximation, a second using geometrical or mechanical constructions,
and a third that is algebraic, employing analytical expressions. The last he cited
for its “continual and indispensable use in the theory of celestial bodies.” In
a paper the next year on the tautochrone, a problem first investigated geo-

24 Sergei Demidov, “Création et développement de la théorie des équations différentielles aux dérivées
partielles dans les travaux de J. d’Alembert,” Revue d Histoire des Sciences 35/1 (1982), 3—42, especially 37.

25 R. G. Grimsley, Jean d’Alembert (1717-1783) (Oxford: Clarendon Press, 1963), p. 248.

26 For references to the publications of Lagrange cited in this section, see René Taton, “Inventaire
chronologique de 'oeuvre de Lagrange,” Revue d’Histoire des Sciences, 26 (1974), 3-36.
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metrically by Huygens, Lagrange took as a starting point “analytical solutions”
that had been advanced by Johann Bernoulli and Euler. In 1775 several mem-
oirs appeared in which the value of analysis is promoted. In his paper on the
attraction of a spheroid Lagrange attempted to show that the method of
“algebraic analysis” provides a more direct and general solution than the “syn-
thetic” or geometrical approach followed by Maclaurin. (This appears, in-
cidentally, to be the first explicit appearance in his writing of the term “alge-
braic analysis.”) In his study of the rotation of a solid Lagrange advanced an
alternative to the mechanical treatment of d’Alembert and Euler, one that
was “purely analytic,” whose merit consisted “solely in the analysis” that it
employed, and which contained “different rather remarkable artifices of
calculation.” In a memoir on triangular pyramids Lagrange noted that his
“solutions are purely analytic and can even be understood without figures”;
he observed that independent of their actual utility they “show with how much
facility and success the algebraic method can be employed in questions that
would seem to lie deepest within the province of Geometry properly consid-
ered, and to be the least susceptible to treatment by calculation.”

The theme of analysis recurs in Lagrange’s writings of the late 1770s and
1780s. In a 1777 study of cubic equations he described a method due to Thomas
Harriot that avoided the geometrical constructions that had been used by
mathematicians to investigate expressions for roots. In a memoir submitted
to the Paris Academy in 1778 on the subject of planetary perturbations La-
grange offered a method for transforming the equations of motion that would
“take the place of the synthetic methods proposed until now for simplifying
the calculation of perturbations in regions beyond the orbit” and that “has
at the same time the advantage of conserving uniformity in the march of the
calculus.” In 1780 he published a memoir on a theorem of Johann Lambert’s
in particle dynamics. The result in question had been demonstrated syntheti-
cally, and Lagrange expressed concern that it might be regarded as one of “the
small number [of theorems] in which geometric analysis seems to be superior
to algebraic analysis.” His purpose was to present a simple and direct analyt-
ical proof. In a study in 1781 of projection maps he offered a “research, equally
interesting for the analytic artifices that it requires as well as for its utility in
the perfection of geographical maps.” In the preface to his famous 77aité de
la méchanique analitique, completed around 1783, he announced that in it
“no figures would be found,” that all would be “reduced to the uniform and
general progress of analysis.” In a memoir of 1788 he discussed successes and
difficulties in treating analytically the various subjects of Newton’s Principia
Mathematica and offered a new analysis of the problem of the propagation
of sound.

Directness, uniformity, and generality were qualities that Lagrange associ-
ated with analysis; he sometimes also mentioned simplicity. Analysis was cited
not simply for the results to which it led but also for the methods that it of-
fered. In the writings discussed earlier he was affirming the value of analysis
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in situations in which an alternative geometrical or mechanical treatment ex-
isted; it was the possibility of this alternative that led him to explicitly assert
his own methodological preferences. One should also note the sheer prepon-
derance of pure analysis in his work of the 1770s and 1780s in such topics as
the theory of equations, diophantine arithmetic, number theory, probability,
and the calculus, subjects in which explicit questions of approach or method-
ology did not arise.

THEORY OF ANALYTICAL FUNCTIONS

By the end of the century a more critical attitude began to develop both within
mathematics and within general intellectual culture. As early as 1734 Bishop
George Berkeley in his work 7he Analyst had called attention to what he per-
ceived as logical weaknesses in the reasonings of the calculus arising from the
employment of infinitely small quantities. Although his critique was some-
what lacking in mathematical cogency, it stimulated writers in Britain and
the Continent to explain more carefully the basic rules of the calculus. In
the 1780s a growing interest in the foundations of analysis was reflected in the
decision of the academies of Berlin and St. Petersburg to devote prize com-
petitions to the metaphysics of the calculus and the nature of the infinite. In
philosophy, Immanuel Kant’s K7itik der reinen Vernunfi (1788) set forth a pen-
etrating study of mathematical knowledge and initiated a new critical con-
ceptual movement in the exact sciences.

The most detailed attempt to provide a systematic foundation of the cal-
culus was contained in two treatises by Lagrange published at the end of the
century: the Théorie des fonctions analytiques (1797) and Legons sur le calcul
des fonctions (1801; rev. ed. 1806). The full title of the first work explains its
purpose: “Theory of analytical functions containing the principles of the
differential calculus disengaged from all consideration of infinitesimals, van-
ishing limits or fluxions and reduced to the algebraic analysis of finite quan-
tities.” Lagrange’s goal was to develop an algebraic basis for the calculus that
made no reference to infinitely small magnitudes or intuitive geometrical no-
tions. In a treatise on numerical equations published in 1798 he set forth
clearly his conception of algebra:

[Algebra’s] object is not to find particular values of the quantities that are
sought, but the system of operations to be performed on the given quanti-
ties in order to derive from them the values of the quantities that are sought.
The tableau of these operations represented by algebraic characters is what
in algebra is called a formula, and when one quantity depends on other quan-
tities, in such a way that it can be expressed by a formula which contains these
quantities, we say then that it is a function of these same quantities.27

27 Lagrange, Traité de la résolution des équations numériques de tous les degrés (Paris, 1798). The second
edition was published in 1808 and was reprinted as Lagrange’s Oeuwvres 8. The quoted passage appears
on pp. 14-15 of the latter volume.
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Lagrange used the term “algebraic analysis” to designate the part of math-
ematics that results when algebra is enlarged to include calculus-related meth-
ods and functions. The central object here was the concept of an analytical
function. Such a function y = f(x) is given by a single analytical expression that
is constructed from variables and constants using the operations of analysis.
The relation between y and x is indicated by the series of operations schema-
tized in f(x). The latter possesses a well-defined, unchanging algebraic form
that distinguishes it from other functions and determines its properties.

The idea behind Lagrange’s theory was to take any function f(x) and expand
it in a Taylor power series:

Flc+ i) =f(x) + pi+ qi% + ri® +sit + - (5)

The “derived function” or derivative f’(x) of f(x) is defined to be the coeffi-
cient p(x) of the linear term in this expansion. f’(x) is a new function of x
with a well-defined algebraic form; it is different from but related to the form
of the original function f(x). Note that this conception is very different from
that of the modern calculus, in which the derivative of f(x) is defined at each
real value of x by a limit process. In the modern calculus the relationship of
the derivative to its parent function is specified in terms of correspondences
that are defined in a definite way on the numerical continuum.

Lagrange’s understanding of derived functions was revealed in his discus-
sion in the eighteenth lesson of the method of finite increments. This method
was of historical interest in the background to his program. Brook Taylor’s
original derivation in 1715 of Taylor’s theorem was based on a passage to the
limit of an interpolation formula involving finite increments. Lagrange wished
to distinguish clearly between an approach to the foundation of the calcu-
lus that uses finite increments and his own quite different theory of derived
functions. In taking finite increments, he noted, one considers the difference
f(x_,,) — f(x ) of the same function f(x) at two successive values of the inde-
pendent argument. In the differential calculus the object Lagrange referred to
as the derived function was traditionally obtained by letting dx = x_ | —x_
be infinitesimal, setting dy = f(x__ ) — f(x ), dividing dy by dx, and neglect-
ing infinitesimal quantities in the resulting reduced expression for dy/dx. Al-
though this process leads to the same result as Lagrange’s theory, the con-
nection it presumes between the method of finite increments and the calculus
obscures a more fundamental difference between these subjects: in taking
Ay = f(x_,,) — f(x ) we are dealing with one and the same function f(x); in
taking the derived function we are passing to a new function f’(x) with a new
algebraic form. Lagrange explained this point as follows:

The passage from the finite to the infinite requires always a sort of leap, more
or less forced, which breaks the law of continuity and changes the form of
functions. (Legons 1806, p. 270)
In the supposed passage from the finite to the infinitely small, functions
actually change in nature, and . . . dy/dx, which is used in the differential
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Calculus, is essentially a different function from the function y, whereas as
long as the difference dx has any given value, as small as we may wish, this
quantity is only the difference of two functions of the same form; from this
we see that, if the passage from the finite to the infinitely small may be ad-
mitted as a mechanical means of calculation, it is unable to make known the
nature of differential equations, which consists in the relations they furnish
between primitive functions and their derivatives. (Legons 1806, p. 279)

Lagrange’s Théorie and Legons, written when he was in his sixties, were
notable for their success in developing the entire differential and integral cal-
culus on the basis of the concept of an analytical function.?® They contained
several quite important technical advances. Lagrange introduced inequality
methods to obtain numerical estimates of the values of functions, thereby pro-
viding a source of techniques that Augustin Cauchy was later able to use in
his arithmetical development of the calculus. Another significant contribu-
tion was contained in Lagrange’s exposition of the calculus of variations. To
obtain the variational equations he modeled the derivation after an earlier ar-
gument in the theory of integrability. Although his derivation never quite
achieved acceptance among later researchers, it remains historically notewor-
thy as an example of advanced reasoning in algebraic analysis. Lagrange also
introduced the multiplier rule in both the calculus and the calculus of vari-
ations, a powerful method that allows one to solve a range of problems in the
theory of constrained optimization.?”

REFLECTIONS ON ALGEBRAIC ANALYSIS

It is important to appreciate the distinctive philosophical character of
eighteenth-century algebraic analysis, understood within the larger historical
and intellectual evolution of mathematical analysis. The algebraic calculus of
Euler and Lagrange was rooted in the formal study of functional equations,
algorithms, and operations on variables. The values that these variables re-
ceived, their numerical or geometrical interpretation, was logically of second-
ary concern. Such a conception, strongly operational and instrumentalist in

28 For a more detailed study of these works, see J. L. Ovaert, “La these de Lagrange et la transforma-
tion de I'analyse,” in Christian Houzel et al. (eds.), Philosophie et Calcul de 'Infini (Paris: Francois
Maspero, 1976), pp. 122—157; Judith V. Grabiner, 7he Origins of Cauchys Rigorous Calculus (Cam-
bridge, MA: MIT Press, 1981); and Craig Fraser, “Joseph Louis Lagrange’s Algebraic Vision of the
Calculus,” Historia Mathematica, 14 (1987), 38—s3. Grabiner and Fraser emphasize somewhat different
aspects of the historiography. Grabiner calls attention to the origins of Cauchy’s technical methods
in Lagrange’s writings and makes the concept of rigor central to understanding Cauchy’s achievement.
Fraser is concerned with highlighting the conceptual differences between the viewpoints of Lagrange
and Cauchy and sees the latter’s central accomplishment as having made the numerical continuum
a fundamental object of concern.

29 For a discussion of Lagrange’s calculus of variations, see Craig Fraser, “J. L. Lagrange’s Changing
Approach to the Foundations of the Calculus of Variations,” Archive for History of Exact Sciences, 32
(1985), 15191, and Fraser, “Isoperimetric Problems in the Variational Calculus of Euler and Lagrange,”
Historia Mathematica, 19 (1992), 4—23.
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character, should be contrasted with the geometrical approach of the early
calculus, which relied heavily on diagrammatic representations and intuitions
of spatial continuity. The geometrical emphasis of the early calculus condi-
tioned how the subject was understood, allowing it to be experienced intel-
lectually as an interpreted, meaningful body of mathematics.

Lagrange’s algebraic analysis should also be contrasted with the much more
conceptual and intensional mode of reasoning that was characteristic of clas-
sical real analysis, the field that developed in the nineteenth century and be-
came the foundation of the modern subject. Although real analysis is logically
independent of geometry, it continues to posit objects — defined using the con-
cept of arithmetical continuity — that constitute its subject matter and define
its point of view as a mathematical theory. A proposition about a function
defined on some interval of real numbers under specified conditions of dif-
ferentiability has a geometrical interpretation implicit in its very formulation.
On a foundational level the algorithmic character of differentiation in real
analysis is irrelevant to a conceptual understanding of this process; in alge-
braic analysis, by contrast, the notion of algorithm is fundamental to the whole
approach.??

ROBERT WOODHOUSE AND GEORGE PEACOCK

The algebraic program of Enlightenment mathematics was taken up and ex-
tended by several English figures of the early nineteenth century.®! Although
these researches fall somewhat outside the period of this essay, they are wor-
thy of note here as a direct continuation of what was primarily an eighteenth-
century development. The appeal of algebraic analysis to the English was due
in considerable part to a reaction against the prevalent geometric synthetic
spirit of British mathematics. In his 1802 memoir “On the Independence of
the analytical and geometrical Methods of Investigation; and on the Advan-
tages to be derived from their Separation” Cambridge fellow Robert Wood-
house recommended the removal from analysis of all notation of geometrical

30 For a more detailed discussion of this subject, see Fraser, “The Calculus as Algebraic Analysis,” and
Marco Panza, “Concept of Function, between Quantity and Form, in the 18th Century,” in H. Niels
Jahnke et al. (eds.), History of Mathematics and Education: Ideas and Experiences (Géttingen: Van-
denhoeck & Ruprecht, 1996), pp. 241-74. For a social-intellectual study that deals with the place
of algebraic analysis in nineteenth-century German mathematics, see H. Niels Jahnke, Mathematik
und Bildung in der Humboldtschen Reform, volume 8 of the series Studien zur Wissenschafts-, Sozial-
und Bildungsgeschichte der Mathematik,” eds. Michael Otte, Ivo Schneider, and Hans-Georg Steiner
(Géttingen: Vandenhoeck & Ruprecht, 1990).

31 For historical studies of this subject, see Joan L. Richards, “The Art and the Science of British Algebra:
A Study in the Perception of Mathematical Truth,” Historia Mathematica, 7 (1980), 343—65; Helena
Pycior, “George Peacock and the British Origins of Symbolical Algebra,” Historia Mathematica, 8
(1981), 23—45; and Menachem Fisch, ““The Emergency Which Has Arrived’: The Problematic History
of Nineteenth-Century British Algebra — a Programmatic Outline,” British Journal for the History of
Science, 27 (1994), 247—76.
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origin. He urged, for example, that instead of writing sin x, a term whose
etymology involved graphical associations, we employ the expression
(2\/—_1 )’1(6:"\/’1 - e”‘\/’l). He also began to move toward a more careful ex-
planation of the symbols of formal analysis. Thus he wrote the following
concerning the symbol “=”:
It is true that its signification entirely depends on definition; but, if the def-
inition given of it in elementary treatises be adhered to, I believe it will be im-
possible to show the justness and legitimacy of most mathematical processes.
It scarcely ever denotes numerical equality. In its general and extended mean-
ing, it denotes the result of certain operations. (p. 103)

Woodhouse illustrated this point with the inverse sine series

3 5
z:x+x_+ai+...,
32 58

in which

nothing is affirmed concerning a numerical equality; and all that is to be un-
derstood is, that

3 5
z=x+ 43X + etc.,
32 58

is the result of a certain operation performed [on the series for sin x]

3 5
X=z— z +24—etc.
123 12:34°5

Woodhouse’s formal viewpoint was developed into a complete theoretical
system by another Cambridge mathematician, George Peacock. In his “Re-
port on the Recent Progress and Present State of certain Branches of Analy-
sis,” which was delivered to the British Association for the Advancement of
Science in 1833, Peacock defined analytical science to include algebra, the ap-
plication of algebra to geometry, the differential and integral calculus, and
the theory of series. The first part of the report was devoted to an outline of
his theory of algebra, which he based on something that he called the prin-
ciple of the permanence of equivalent forms. An equivalent form is any rela-
tion that expresses the result of an operation of algebra: (a + b)c = ac + be,

" a™ = a™™, and so on. The principle of equivalent forms asserts as follows:

-a

2 n+m
Whatever equivalent form is discoverable in arithmetical algebra considered
as the science of suggestion, when the symbols are general in their form,
though specific in their value, will continue to be an equivalent form when
the symbols are general in their nature as well as their form. (p. 199)

n+m

Because the relation a” - a™ = a”*™ is an equivalent form when n and m are
integers, it is by the principle also an equivalent form as a purely symbolic
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relation. Peacock regarded this fact as justification for extending the range of
validity of a” - a™ = a"*™ to non-integral values of n and m. In other branches
of analysis — for example the theory of infinite series — the principle plays a
similar role. Thus, because the relation 1/ (1 —X) =T+ X+ X2+ X°> + ... Is
valid for x <1, it possesses by virtue of its form a general symbolical validity.
The relation therefore remains valid, or at least meaningful, when x > 1, al-
though in this case it is no longer interpretable in the usual sense in arithmetic.

The principle of equivalent forms is the formal statement of the idea con-
tained in Euler’s assertion of the universal validity of the relation d(logx) =
dx / x. In Peacock’s system of analysis the principle had a dual purpose. It
made legitimate the use of general symbolic relations and allowed one to
assume an extended domain of validity for the variables contained in these
relations. In addition, it ensured that the algebraic relations have at least a
partial interpretation in arithmetic, and it thereby restricted the proliferation
of purely abstract symbolical systems.

n+m

CONCLUSION

Eighteenth-century analysis achieved a theoretical completeness and sophis-
tication not attained by other parts of mathematics. From a historiographi-
cal viewpoint, algebraic analysis provides an interesting example of a mature
mathematical paradigm that would be replaced by a quite different paradigm
in the later development of the subject. The transition from Euler and Lagrange
to Cauchy and Weierstrass constituted a profound intellectual transformation
in conceptual thought. The sort of relativism of viewpoint documented by
Thomas Kuhn in the history of the physical sciences is also present in math-
ematics, albeit at a more purely conceptual level.>? The case of mathematics
is even in some important respects more striking, because the point of view
embodied in the older paradigm retains a certain intellectual interest and va-
lidity not found in quite the same way in the discarded theories of older physics.

32 For discussion of the relevance of Kuhn’s ideas to mathematics, see Donald Gillies (ed.), Revolutions
in Mathematics (New York: Oxford University Press, 1992).
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